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Production and investigation of highly thermophilic multi-domain carbohydrate-active 
enzymes 
Daniel Krska 
 
Division of Industrial Biotechnology 
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Chalmers University of Technology 

Abstract 

With the looming threat of climate change caused largely by an excess of carbon dioxide 
in the atmosphere, recent scientific efforts have focused on the substitution of fossil 
fuels and other polluting compounds with more environmentally conscious choices. To 
this end, the investigation of biomass as both a renewable source of energy and as a 
chemical basis to produce high-value products is being extensively investigated. 
Although plant biomass is complex, it is also an extremely rich carbon source, and 
microorganisms in a plethora of environments have evolved to exploit it. These 
microorganisms produce carbohydrate-active enzymes (CAZymes) to degrade the 
plant biomass into components that can be utilized for their growth. The deeper study 
of these enzymes, especially those containing multiple enzyme domains, can elucidate 
their mechanisms of action, and guide their exploitation for industrial purposes.  
 
This thesis consists of the characterization of two different multicatalytic CAZymes 
from different bacteria found in extremely different environments. The enzymes both 
contain CE15 (carbohydrate esterase family 15) domains, which have not previously 
been studied in a multicatalytic context. CkXyn10C-GE15A from the 
hyperthermophilic Caldicellulosiruptor kristjanssonii consists of a GH10 (glycoside 
hydrolase family 10) xylanase linked to a CE15 enzyme, and additionally contains two 
CBM22 (carbohydrate binding module family 22) and three CBM9 domains. A second 
enzyme, BeCE15A-Rex8A from the gut bacterium Bacteroides eggerthii, consisting of a 
GH8 xylan-targeting domain and a CE15 domain was also investigated. Although the 
catalytic domains in both enzymes were active, no synergy was seen between them, 
respectively. As these enzymes were difficult to produce recombinantly, a new 
technique using split intein-mediated fusions to produce multicatalytic enzymes was 
investigated, with results showing that the produced enzymes remain catalytically active 
after the fusion event. 
 
The work presented in this thesis contributes to the understanding of multidomain 
enzymes and the synergy (or lack thereof) of xylanases in combination with CE15 
domains. It also provides structural insights into a number of highly thermophilic 
CAZyme domains, and has implications for industrial biorefinery applications. 
 
Keywords: Caldicellulosiruptor, carbohydrate-active enzymes, multidomain enzymes, 
carbohydrate esterase, xylanase, thermostable enzymes, plant biomass degradation, 
protein structure  
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Chapter 1: Introduction 

 
raditional energy and chemical production processes have historically been 
focused around the use of petroleum products and other fossil resources (1). 
However, these sources have several drawbacks, in that they are non-

renewable, and inherently damaging to the climate (1,2). With the evidence of these 
drawbacks becoming increasingly apparent, the search for more sustainable and 
climate-friendly alternatives has led to several promising possibilities. According to 
the Intergovernmental Panel on Climate Change, in order to be able to meet the 
goals of the Paris Agreement and limit global warming to 1.5°C, biofuels and other 
bioenergy sources are needed to play a large part (3,4). 

 
In addition to bioenergy being required to replace fossil energy to meet the targets 
set out in the Paris Agreement, other sources of greenhouse gas emissions from 
petroleum products must be considered. Emissions from plastic lifecycles are a 
significant contribution to overall greenhouse gas emissions, and must also be 
lowered to meet climate targets (5). Although plastics only saw large scale 
production from the 1950s, they have quickly grown to become more than 20% of 
solid waste produced annually (6,7). Plastics account for over a gigaton of 
greenhouse gas emissions yearly (more than 2% of total emissions), and 
microplastics significant hamper the carbon fixation capacity of the natural 
environment (5). Production of plastic from non-fossil sources could provide a 
significant tool in meeting Paris Agreement targets. 
 
A potential way to produce plastics (and other products) from non-fossil sources 
that will be expanded on in the next chapter is through the use of enzymes. Enzymes 
are, in simplest terms, biological catalysts capable of greatly increasing the rate of a 
chemical reaction (8). They are produced by every living organism and are an 
essential component to life on Earth. Enzymes generally only act on one substrate, 
or at most, a small range of similar substrates, meaning a different enzyme is 
generally needed for each reaction that requires catalysis. Different enzymes have 
evolved various properties to make them more suited for specific tasks, such as 
substrate specificity, reaction rate, thermostability, or ionic tolerance (8). The 
tremendous variety and functionality of enzymes produced by evolution is 
unparalleled by almost any other organic process, with over 8000 different enzyme 
classes and countless enzymes within those classes known today, and research is just 
starting to produce artificial enzymes that can rival natural efficiency (9,10). 
 

T 
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1.1 Aims and Structure of this Thesis 
Before work began on the research contained in this thesis, three overall aims were 
identified. The first was to study multicatalytic enzymes, specifically those which act 
on plant biomass, to greater understand how they function and what the relationship 
between the catalytic domains is. These types of enzymes, containing two or more 
catalytic domains within the same polypeptide chain, are relatively common 
amongst plant biomass degrading organisms, but they remain fairly unstudied 
compared to their single-domain counterparts. This investigation of multicatalytic 
enzyme activities is conducted in Paper I, Paper II, and Paper III. 
 
A second aim of this thesis work was to further investigate and add to the 
understanding of carbohydrate esterase family 15 (CE15) enzymes. CE15 is thought 
to be responsible for breaking ester bonds between hemicellulose and lignin, 
although it has only recently become a more researched enzyme family. The work 
in this thesis aimed to expand the knowledge of this family, and hopefully give an 
indication of whether this family of enzymes could be useful in an industrial context. 
The investigation of CE15 enzymes is conducted in Paper I, Paper II, and Paper III. 
 
The final aim of this thesis was the construction of a library of non-natural 
multicatalytic enzymes, in order to determine if rationally designed multicatalytic 
enzymes could be useful for industrial purposes. Using knowledge learned from the 
first thesis goal, a DNA-based library of different possible combinations of catalytic 
domains was to be constructed and tested. This aim was explored in Paper IV. 
 
The overall thesis is structured into two major parts. The first part of the thesis is 
designed to summarize the research results of the contained work, and to provide a 
background for the research contained in the second part. The next chapter will 
discuss the societal context of the research, including potential applications. The 
third chapter discusses lignocellulose, and its structural diversity. Lignocellulose-
degrading enzymes are discussed in more detail in chapter four, along with 
associated protein modules. Chapter five contains information on multicatalytic 
enzymes, their producers, and how they differ from other enzyme architectures. In 
chapter six, a brief discussion on designer enzymes and methods of assembling 
multicatalytic enzymes is found. A summary of the conclusions of the work is found 
after chapter six, along with an outlook of where the work may lead in the future. 
 
The second part of this thesis contains the scientific publications that represent the 
bulk of the research that was performed for this thesis. Paper I investigates a novel 
xylanase-glucuronoyl esterase multicatalytic enzyme from Caldicellulosiruptor 
kristjanssonii (Figure 1.1 A), and characterizes the behaviour of the catalytic 
domains. Paper II expands further on the investigation of this enzyme, focusing 
largely on structural characterization and investigation of associated non-catalytic 
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domains. In Paper III, a different multicatalytic enzyme from Bacteroides eggerthii 
is characterized (Figure 1.1 B). Paper IV contains work on the construction of a 
multicatalytic enzyme library. 
 

 
Figure 1.1: Schematic diagrams of the enzymes that are the primary focus of this thesis. A) 
CkXyn10C-GE15A from C. kristjanssonii, studied in Paper I and Paper II. B) BeCE15A-Rex8A 
from B. eggerthii, studied in Paper III. Blue triangles represent carbohydrate binding module 
family 22 (CBM22) domains, and green triangles represent carbohydrate binding module family 
9 (CBM9) domains. Red circles with a missing wedge are representative of xylanases (although 
they belong to different families in A and B), and yellow circles with a missing wedge represent 
carbohydrate esterase family 15 (CE15) domains. 
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Chapter 2: The Bioeconomy 

 
n important step in moving away from a fossil-based economy is the 
conversion to a bioeconomy. The bioeconomy is defined by the European 
Union as “the production of renewable biological resources and the 

conversion of these resources and waste streams into value added products, such as 
food, feed, bio-based products and bioenergy” (11). It is important to establish an 
economy in which resources are not extracted to depletion, but instead harvested 
sustainably and, ideally, in a carbon-neutral way. The idea of a “circular 
bioeconomy” expands on these concepts and has come into greater focus recently 
by focusing on the entire lifecycle of products produced in a bioeconomy setting, 
with emphasis on the reduction of waste generation and improvements in product 
longevity (12). The European Commission now considers circularity to be one of the 
most important aspects of an overall bioeconomy (13), indicating a greater need for 
sustainability in a bioeconomy. 
 
There are several important aspects to consider during conversion to a bioeconomy. 
Arguably the most important is the consideration of input. In the framework of the 
bioeconomy, biomass is the input which is consumed to create new products. 
However, humans already consume a large amount of biomass produced in the form 
of food (both directly and indirectly through animal feed), as well as wood used to 
produce e.g. paper, furniture, housing, and heating (unless otherwise specified, in 
this thesis, “biomass” refers to biological material derived from plant sources) (14). 
The need for food production is expected to increase in the coming decades, and 
existing farmland is already beginning to struggle with issues such as soil 
degradation, drought, and other impacts of climate change (15,16). While the needs 
of industry and agriculture could be balanced, it must be done carefully to avoid 
famine – food security is considered a cornerstone of the bioeconomy (14). 

 
Along with issues surrounding alternate uses of feedstock, there are more 
fundamental economic issues to consider in a bioeconomy (17). In general, the price 
of a feedstock must be high enough that it is economically advantageous to produce, 
but low enough that the end product is price-competitive with alternative sources 
(in this case referring to fossil resources, which unfortunately have a decades-long 
head start in optimisation of production) (17,18). Governmental policy decisions 
play a role in this, whether in mandating bio-based products, or removing or 
lowering the extremely large subsidies currently given to fossil fuel products (14,17). 
While the in-depth economics of this situation is not the focus of this thesis, it is 
important to emphasize that increasing efficiencies and lowering costs at all stages is 
essential to the success of the bioeconomy. 

A 
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2.1 Biorefineries 
The production of biofuels and bioplastics (along with other bio-based materials) 
can be conducted in a facility known as a biorefinery (19). A biorefinery is defined 
by the US National Renewable Energy Laboratory as “a facility that integrates 
biomass conversion processes and equipment to produce fuels, power, and chemicals 
from biomass” (19,20). Alternative definitions, such as the one from the 
International Energy Agency, restrict the concept to a facility utilizing biomass in a 
sustainable way (19,21). In general, a biorefinery uses input biomass, from e.g. 
forestry, agriculture, marine sources, or industrial and municipal waste, and converts 
it into useable end products (22). Biorefineries can be used to replace existing, high 
carbon output processes, or be used for novel production of high-value products, 
and do so while being both energy and material efficient (19). 

 
Many functional biorefineries are currently in operation throughout the world, 
producing a variety of end products from various different feed stocks. The Spanish 
company Abengoa has constructed and operates a number of biorefineries for 
energy production, as well as bioethanol and bio-based jet fuel production. Lenzing, 
a company originally from Austria, produces multiple end-products from their 
biorefineries in Europe, including acetic acid, sodium sulphate, and xylose. In 
Norway, Boregaard uses wood to produce bioethanol, vanillin, biopolymers, and 
other products. Within Sweden, the Domsjö Fabriker, produces products such as 
cellulose and bioethanol from wood. These facilities are just some of the many 
worldwide that are already working to produce materials utilizing the biorefinery 
concept. 
 

2.2 Biorefineries: A History 
Throughout the development of biorefineries, challenges with process efficiency and 
final product yield have hampered movement toward a fully realized bioeconomy. 
Arguably, the first evidence of a biorefinery can be traced back as far as 9000 BCE, 
when the first indications of an ethanol distillation process can be found in China 
(23). Since then, improvements in biomass utilization have led to the production of 
many different end products, and the use of many types of input materials. Industrial 
scale biorefineries have existed since at least the late 1800’s (23). In 1895, Germany 
saw the opening of the first industrial-scale lactic acid production plant by C. H. 
Boehringer Sohn, a company that is still in operation as Boehringer Ingelheim 
(20,23,24). Around the same time, ethanol was produced at an industrial scale as a 
fuel for internal combustion engines (eventually out-competed by petroleum-based 
fuels) (20). Ethanol was not the only biofuel used at the time, as some early diesel 
engines were demonstrated (by Rudolf Diesel himself) to run on vegetable oils (25). 
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One of the first large-scale processes for the conversion of woody biomass (biomass 
that can not alternatively be used as food) was developed and patented in 1909, 
which aimed to turn sawdust into ethanol (26). However, poor yields at the time 
proved the process to be non-viable. Further development of the idea was done 
during the period between World War I and World War II, by Nobel laureate Dr. 
Friedrich Bergius (23,26). His process was capable of nearly 50% yields of ethanol 
from wood waste. Dr. Bergius also utilized parts of the wood not converted into 
ethanol to produce other compounds (26). As the exploitation of fossil resources for 
both energy and petroleum-derived chemical products became cheaper and easier, 
the research and development focus shifted, and biorefinery advances lessened (20).  
 

2.3 Biorefineries: The Future 
With increasing concerns about pollution, greenhouse gas emissions, and the evident 
effects of climate change, focus has shifted back towards biorefineries to meet 
societal energy and chemical product needs. Governments around the world have 
and continue to provide various incentives towards the development and operations 
of biorefineries (27-29). However, many improvements are still necessary to 
compete with the scale, dominance, and cost-effectiveness of the petroleum industry, 
and biorefinery research now aims to make the processes more efficient and cost 
effective (30). While the petroleum industry has a significant head start in 
establishing supply chains and processes to keep costs low, technology to help 
process and degrade biomass has advanced considerably in the interim (17). While 
many older biorefinery methods utilized harsh chemical processes and could only 
produce limited end products, biotechnological advances have greatly changed what 
is possible to do with biomass. The capability to manipulate the genomes of different 
organisms has opened vast new possibilities for the utilization of biomass, both in 
increasing utilization of all components, as well as in the creation of new valuable 
chemicals from the different biomass feedstocks (31-33). 

 
As we have come to better understand the chemical structure of plant biomass, new 
methods have been developed to better degrade and utilize the components. 
Biorefineries can now replace harsh chemicals with enzymatic catalysis to achieve 
the same or better results in more sustainable ways (34,35). The use of enzymes 
greatly reduces environmentally harmful waste products produced by traditional 
methods, and can lower the volume of non-biomass input needed to obtain the same 
output amounts (34,35). Greater understanding and advances in molecular biology 
techniques have enabled production of specific enzymes that can be used to target 
desired chemical bonds within plant biomass (35-37). Different enzymes can be 
combined into enzyme cocktails, which allow for the degradation of specific types of 
biomass into base components (35,38). Developing these cocktails is an ongoing 
process, as new discoveries that lead to potential improvements are constantly being 
made (35,38). The work presented within this thesis is primarily focused on the 
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investigation of novel enzymes and protein domains which have the potential for 
increasing the efficiency of such cocktails, as well as novel ways of constructing 
enzymes for use in these cocktails. 
 

2.4 Enzymes Within Biorefineries 
Enzymes used in biorefineries originally come from natural sources, and the 
organisms which evolved these enzymes use them to operate successfully in various 
environments. Although many enzymes exist intracellularly, and are expected to be 
exposed to a relatively constant environment, others are secreted into the 
extracellular environment (8). This has led to the need for these enzymes to be able 
to withstand and function in a variety of different conditions. Consequently, 
enzymes from more extreme environments are ideal to explore for industrial 
applications, as many less robust enzymes are simply unable to function in harsh 
industrial processes (39). This section will focus on different extreme conditions 
faced by enzymes, and the adaptations that have consequently evolved. 
 

2.4.1 Temperature 
Enzymes that can withstand temperature extremes are highly sought after in an 
industrial context, as many processes occur at temperatures outside of normal 
physiological range (40). Higher temperatures are important in industrial processes 
as the increase in temperature often leads to corresponding increases in substrate 
solubility and diffusion rates of substrates and products, as well as a decreased 
viscosity of the reaction medium (41). Perhaps most importantly, performing 
processes at high temperature greatly reduces the risk of contamination from 
environmental microorganisms (42,43).  
 
The overall thermostability of an enzyme can be measured using three parameters: 
enzyme half-life at a given temperature (t½), the free energy of stabilization of the 
enzyme (ΔGstab) and the melting temperature of the enzyme (Tm) (44,45). These 
three factors are intrinsically related, and correlations can be noted among the three, 
e.g. increased ΔGstab correlates with increased Tm (46). Despite these relatively 
simplistic measures for thermostability, the actual mechanisms behind it can be 
complex, and there is no universal set of enzyme properties that is present in every 
thermostable enzyme (47).  
 
Several factors influence enzyme thermostability. In the literature, there are many 
examples of disulfide bridges leading to increased thermostability, especially at the 
N-terminus of proteins (48-50). However, not all thermostable enzymes contain 
disulfide bridges (51). A lack of disulfide bridges can be seen in the structures of 
protein domains determined in Paper II, despite the apparent thermostability of the 
overall enzyme. Disulfide bridges influence enzyme rigidity, which itself is a major 
factor impacting thermostability (52,53). Several other factors can contribute to 
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protein rigidity, and the most important is arguably the number of short helices in 
the protein (54). These helices decrease the protein flexibility when they replace 
connecting loops existing in related mesophilic proteins (54-56). The formation of 
salt bridges between charged amino acid residues also has a significant impact on 
increasing protein thermostability (54,57). Though these bridges make little 
contribution to stability at room temperature, they are significant in stability at 
higher temperatures (54,57). Thermostable enzymes show several other 
advantageous properties, outside of their thermostability. Industrial processes can 
contain harsh denaturants, detergents, and organic solvents, and thermostable 
enzymes often show a positive correlation with the ability to withstand such 
conditions (58). Thermostable enzymes also show a positive correlation between 
temperature stability and resistance to proteolysis, suggesting that they are more 
stable overall than their mesophilic counterparts (40,59). 
 
A major concern in industrial lignocellulosic biorefineries is microbial 
contamination, and thermostable enzymes help to reduce this risk (60,61). 
Thermophilic enzymes can also be seen, in general, to have higher rates of reaction 
than their lower-temperature counterparts, due to increased specific activity and 
lower fluid viscosity of the medium at high substrate concentrations (60,61). 
Interestingly, thermostable enzymes appear to have less susceptibility to inhibition 
by lignin present in the reaction mixture than their mesophilic counterparts, even 
though the impact of inhibition has been seen to increase with an increase in 
temperature (62). 
 
Although less studied, enzymes at the opposite end of the temperature tolerance 
spectrum can also be useful for industry. These psychrophilic enzymes, mainly 
produced by deep sea organisms, possess many advantageous properties for industry 
(63). While the high- and low-temperature enzyme utilization strategies obviously 
cannot be used at the same time in a biorefinery, it seems likely that the industrial 
niche for both exists. 
 

2.4.2 pH 
Many microorganisms survive and thrive at very low pH levels, as extreme as below 
pH 1 (64). As one of the most common pre-treatment methods for lignocellulosic 
biomass is an acid hydrolysis step, acidophilic enzymes could be a highly useful 
addition to a lignocellulosic biorefinery (65). Acidophilic enzymes are still a 
relatively less studied class of enzymes, however, several acidophilic xylanases and 
cellulases have been discovered thus far (64,66,67). Many of these acid-stable 
enzymes are also thermostable, providing an added advantage for their use in 
industrial processes (64). Also enzyme activity at high pH has been documented in 
the scientific literature (68). Like acidophilic enzymes, not much focus has been 
directed towards these alkaliphilic enzymes. Many of the commercialized 
alkaliphilic enzymes are utilized in detergents, including commercial cellulases (69). 
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The investigation of alkaliphilic enzymes for usage in industrial biorefineries has 
thus far been fairly limited, however. 
 

2.4.3 Salinity 
Halophilic enzymes are those which operate best with high concentrations of salt in 
solution, some of which can function at 5M or higher concentrations (39). This 
halophilicity is often conferred via an increase in percentage of acidic amino acids 
within the protein, and a corresponding decrease in basic ones compared to less 
halotolerant counterparts (70). In addition to halophilicity, many halophilic enzymes 
show tolerance to a wide range of pH values and temperatures, suggesting that these 
are highly stable enzymes (71,72). The potential drawbacks of halophilic enzymes, 
including their requirements for specific salts (rather than a general high-ionic 
strength medium), as well as often displaying low solubility in aqueous media, have 
led to them not being highly utilized industrially at this point in time (73-75). 
 

2.4.4 Inhibitors 
The rate of enzyme activity is a function of many properties of the environment in 
which an enzyme finds itself, not the least of which is the presence of inhibitors (76). 
Inhibitors can function through several different mechanisms, but all involve the 
inhibitor molecule binding to the enzyme being inhibited (77). Often this occurs 
through binding of the inhibitor at the catalytic site, but this is not always the case 
(77). Inhibitors are of great relevance to biorefinery enzymes. Firstly, inhibitors can 
aid in the study of enzyme mechanisms by helping to lock the enzyme in a mid-
reaction conformation long enough to obtain structural information (78). This allows 
researchers to gain insight into the mechanism of action of the enzyme and can 
possibly inform later enzyme engineering efforts (78). Secondly, and more relevant 
to applications, lignocellulose pretreatment often produces by-products that inhibit 
enzymatic reactions, and the ability of an enzyme to work despite the presence of 
these inhibitory products is a key factor that influences its use in a biorefinery (79). 
 
Chapter 2: Summary 
 

• A transition to a bioeconomy is necessary for a sustainable, climate friendly 
future 

• Biorefineries aim to produce useful products from renewable, biological 
sources 

• Enzymes are used within biorefineries to degrade the input material into 
its component sugars, which can then be used to construct the end products 

• There are a variety of enzyme properties that can be beneficial in this 
context, including thermostability, pH tolerance, halotolerance, and 
inhibitor tolerance 
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Chapter 3: Lignocellulose 

 
n order to most efficiently utilize plant biomass (in both the biorefineries 
discussed in chapter two, and in any other applications), it is essential to 
understand what, exactly, plant biomass is. There are three major components 

that make up the majority of lignocellulosic plant biomass: polysaccharides, lignin, 
and extractives and ash (80). While the exact amounts of each component vary 
depending on the initial source (Table 1), these major components are present in 
almost every source available, and major types are introduced in this chapter. 
 

3.1 The Cell Wall 
In plants, the cell wall is a structure which encloses each cell (81). It is primarily 
made up of polysaccharides, lignin, and glycoproteins, with different plant cell types 
each showing different compositions, proportions, and structures (82,83). The cell 
wall structure can be divided into two separate types: the primary and secondary cell 
walls (81,82). All plant cells are surrounded by a primary cell wall, which is thin and 
extensible (81,83). The secondary cell wall is formed in some plant cell types after 
the cell stops growing, and consists of new layers of material deposited inside the 
primary cell wall, making the overall cell wall more rigid (81,83). This secondary cell 
wall is necessary for terrestrial plants to grow upright (83). The exact composition 
of both of these cell walls is determined by a number of factors, including plant 
species, cell type, and light exposure, among others (84). 
 
The primary cell wall consists mainly of polysaccharides, most notably cellulose, as 
well as glycoproteins (85,86). Additionally, it generally contains some or all of the 
following polysaccharides: xylan, xyloglucan, and β(1→3, 1→4)-D-glucan (mixed 
linkage glucan). There may also be lignin and several other minor non-carbohydrate 
compounds incorporated into the primary cell wall (85). All of these components 
are combined in an intricate and complex structure through both covalent and non-
covalent bonding (85,87). Modern cell wall models posit that xyloglucan can “glue” 
portions of the cellulose fibrils together into bundles, as well as fill some of the space 
in between (88). Within these models, large amounts of pectin exist throughout the 
entire primary cell well (88). Recent work has shown that this leads to a highly 
heterogeneous distribution of cell wall components and cell wall strength, the 
reasons for which are not entirely clear (89). 
 
Secondary cell walls are again based largely on polysaccharides, mainly cellulose, 
accompanied by greater quantities of xylan, lignin, and glucomannan, with the lignin 
fraction showing the most significant increase, and less xyloglucan and pectin (88).  
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In this structure, the cellulose fibrils form loosely bound bundles which are coated 
with a xylan-lignin complex. Glucomannan chains hydrogen bond with the cellulose 
bundles, linking them together (88). The secondary cell wall (when present) is  
generally the larger of the two cell wall structures, and comprises the bulk of cell 
wall material (86). 
 

3.2 Polysaccharides 
Polysaccharides, the main components of plant cell walls discussed above, are chains 
of at least ten sugar molecules in length (chains of two sugars are known as 
disaccharides, and 3-9 sugar chains are oligosaccharides) (95). The linkages between 
monosaccharides (individual sugar molecules) within a larger molecule are generally 
designated in the format (1→4), indicating that the glycosidic linkage is formed 
between the hydroxyl group of the anomeric carbon of one monosaccharide and the 
hydroxyl group of the fourth carbon of the second monosaccharide (96). Glycosidic 
linkages will always follow the format in (X→Y) when written in this thesis (and 
often outside this thesis as well)(97). By convention, a polysaccharide is named by 
replacing the -ose suffix of the monosaccharide with an -an suffix, for example, a 
purely xylose-containing polysaccharide becomes xylan (98). There do exist many 
exceptions to this rule of polysaccharides that were discovered and named before 
the convention was adopted, for example, cellulose, starch, and pectin (98). 
 
The ends of a polysaccharide are referred to as reducing and non-reducing ends (99). 
Reducing ends comprise an anomeric carbon not involved in a glycosidic bond, 
leaving it free to be oxidized by an appropriate oxidizing agent. This does not occur 
with the cyclic form of the sugar residue, only the linear form (which exists in 
equilibrium with the cyclic form in solution if not confined in a glycosidic bond), and 
does not occur in every polysaccharide. Consequently, in a non-reducing end of a 
polysaccharide, the anomeric carbon of the sugar residue is involved in a glycosidic 
bond (99). In addition to the linear backbone of polysaccharides, they can also have 
“branches” off the main chain, that is, sugar side chains that are not part of the main 
backbone (100). The sugars making up the branches can be different to those making 
up the backbone, so theoretically countless variations are possible, although far 
fewer have been observed as naturally occurring (97,101). These branches serve a 
number of different functions biologically, depending on the specific polysaccharide 
backbone and branches, although an important feature is a general increase in 
solubility of branched polysaccharides compared to unbranched (97). Some of the 
most biorefinery-relevant polysaccharides are described in the following 
subsections. 
 

3.2.1 Cellulose 
Cellulose is the most abundant naturally occurring polymer on earth (102), and can 
comprise up to 90% of plant biomass (103), although it is more commonly 40-50% 
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of the dry weight of lignocellulosic feedstocks (22). It can also be considered to be a 
fairly simple component of plant biomass, as it is composed exclusively of D-glucose 
units connected through β(1→4)-glycosidic bonds (22,99). Despite being composed 
solely of straight glucan chains, cellulose forms highly crystalline and insoluble 
crystals (crystalline fibers), making it insoluble in water and challenging to 
hydrolyze. However, successful hydrolysis of cellulose results in individual glucose 
monomers, which can easily be utilized in later steps of a biorefinery process (22). 
 

3.2.2 Hemicellulose 
Hemicellulose is the name given to a wider variety of polysaccharides, although the 
exact definition as to what constitutes a hemicellulose polymer can be unclear (104). 
Traditionally, hemicelluloses were defined based on extractability with an alkaline 
treatment, however, this definition does not fully encapsulate some compounds 
which are considered to be hemicelluloses, and includes others which are not (104). 
Indeed, what constitutes a hemicellulose is under some debate in scientific literature. 
In general, hemicelluloses can be defined as equatorial β(1→4)-linked 
polysaccharides that are not cellulose (104). Regardless of the definition, 
hemicelluloses are an important and often underutilized source of sugar for 
biorefineries. Some of the more commonly utilized hemicelluloses include various 
mannans, mixed-linkage glucan, xylans, and xyloglucans (105). These polymers 
consist of a variety of sugars including, but not limited to, the pentoses arabinose 
and xylose, as well as the hexoses fucose, galactose, glucose, mannose and rhamnose 
(105). Due to this, hemicellulose utilization is more difficult than cellulose 
utilization. Additionally, the composition and proportions of hemicelluloses vary 
greatly between different plants and even different plant tissues (104,106,107). 
 

3.2.2.1 Xylan 
Xylan is the most abundant hemicellulose in both hardwood trees and grasses, and 
accounts for approximately one third of the renewable carbon on earth (105,108-
111). Given its abundance, xylan is the most important hemicellulose for 
biorefineries, and the most important feedstock for lignocellulosic biorefineries after 
cellulose. Xylan is traditionally thought to have a backbone consisting of β(1→4) 
linked xylose sugars, which can additionally have a variety of appended 
carbohydrate and non-carbohydrate moieties (Figure 3.1) (105,112,113). However, 
β(1→3) xylan is also known, existing mostly in algal cell walls (114). In either case, 
xylan has also been known to cover cellulose fibrils in plants (exactly how it interacts 
with and covers cellulose is determined by the specific pattern of substitutions on 
the backbone), meaning that in order to degrade the cellulose, one must first remove 
or degrade xylan (110). Chemical methods to remove xylan often leave it in an 
unusable state, so enzymatic methods are preferred in order to most efficiently use 
the input material (115). 
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Figure 3.1: Xylan types. Homoxylan (A), glucuronoxylan (B), glucuronoarabinoxylan (C), and 
arabinoxylan (D) are depicted as chemical structures. Arabinose is shown linked to the (1→4) 
xylan backbone in a (1→3) configuration (C, D) and a (1→2) configuration (D). Glucuronic acid 
is shown linked in a (1→2) configuration (B, C). 
 
On a structural level, xylans from different sources can be very different (116). 
Depending on its substitutions, xylans can be subdivided into 
arabinoglucuronoxylan, arabinoxylan, glucuronoarabinoxylan, glucuronoxylan, 
heteroxylan, and homoxylan (117). The various branching patterns and substitutions 
are too numerous to mention individually in this thesis, and leads to xylans from 
different sources having diverse compositions and properties (116). This can lead to 
experimental difficulties in comparing xylan-acting enzymes, as both commercial 
and non-commercial xylan sources may not be directly comparable (116). 
 
Substitutions on the xylan backbone are known to have a significant impact on xylan 
behaviour, as well as its interactions with cellulose (118). Major xylan substitutions 
include acetyl groups linked at the 2 or 3 carbon position, α(1→2)- and α(1→3)-L-
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arabanose, and α(1→2)-(4-O-methyl)-glucuronic acid (MeGlcA). In interactions 
with cellulose, the arabinose residues stabilize the interaction of individual xylan 
chains with cellulose, with the (1→2) linked arabinose providing much greater 
stabilizing effects (although the (1→3) linked arabinose seems to form more contacts 
with cellulose overall). MeGlcA moieties can also cross-link chains via Ca2+ ions, 
providing a strong stabilizing effect. At high temperatures, MeGlcA also stabilizes 
the xylan-cellulose interaction through hydrophobic effects (118). Additionally, 
MeGlcA is thought to be directly involved in the linkage between xylan and lignin, 
contributing to lignocellulose recalcitrance (119) (discussed in 2.4, below). 
 

3.2.2.2 Mannan 
Mannans, polysaccharides consisting of a mannose-containing β(1→4) linked 
backbone, can be divided into four major categories: linear mannan, galactomannan, 
glucomannan and galactoglucomannan (GGM) (120). The first two of these has a 
backbone consisting solely of mannan, while the latter two have a backbone 
consisting of glucose and mannose in a non-repeating pattern (104,120). Mannans 
are found in almost all plants, but are major components of softwood plants (120). 
Similar to xylan, mannan can also be found coating cellulose in some cases (121). In 
a lignocellulosic biorefinery context, the most relevant form of mannan is GGM, as 
it is the most abundant form of mannan, and the most abundant hemicellulose in 
softwood (122). Overall, degradation of all mannan forms can be considered 
important for more advanced biorefineries (120,123). 
 

3.2.2.3 Xyloglucan 
As mentioned above, xyloglucan is a hemicellulose which is thought to function as a 
glue to hold cellulose fibrils together (88). It is found in every terrestrial plant, as 
well as many algal species, and in many species is the most abundant hemicellulose 
in the primary cell wall (104). Xyloglucan , like cellulose, of a backbone of D-glucose 
units connected through β(1→4)-glycosidic bonds (124). This backbone is regularly 
substituted with α-D-xylosyl residues through an α(1→6) linkage (104,124,125). The 
canonical xyloglucan structure features a repeating motif of three substituted 
glucose units followed by one unsubstituted (124,125). However, this exact pattern 
is not observed in all plant species, and xyloglucan can be as little as 30% substituted 
with xylose (124). As well, additional sugars can be attached to these xylose 
substitutions, making potential xyloglucan structures extremely complex (124,125). 
 

3.2.2.4 Mixed-Linkage Glucan 
Glucans are polysaccharides in which the backbone is comprised primarily of 
glucose (126,127). Following this definition, it becomes clear that cellulose can be 
considered a glucan. Focusing solely on hemicellulosic glucans, the glucans of 
highest interest within plant biomass have been shown to be β(1→3, 1→4)-glucan 
(found primarily in grasses) (104). 



 

 17 

 

3.2.3 Pectin 
Pectin is the final major polysaccharide component in lignocellulosic biomass (128). 
It is different from hemicellulose and cellulose in that it is relatively easily extracted 
utilizing acid treatment or chelators, and has a high galacturonic acid content, adding 
a significant negative charge (128). It can be up to 35% of the primary cell wall of a 
plant, with the highest amounts of pectin being found in dicots (129). Important 
pectic polysaccharides include apigalacturonan, homogalacturonan, 
rhamnogalacturonan I and II, and xylogalacturonan (128,129). The most abundant 
of these, homogalacturonan, is typically responsible for the strengthening of cell 
walls (128). Pectin has far more functions than simply strengthening cell walls – it 
has been noted to be involved in plant cell morphogenesis, defense, signaling, cell-
cell adhesion, seed hydration, and fruit development, as well as other roles (129). 
 

3.3 Lignin 
The fourth major component of lignocellulosic biomass is lignin. Unlike the others, 
it is not a polysaccharide, and not a carbohydrate at all (130). After cellulose, it is 
often reported as the most abundant natural substance in nature (131). From a 
biorefinery perspective, however, lignin is a little used component (131,132). Most 
biorefinery concepts consider lignin as nothing more than a source of energy (nearly 
98% of lignin is burned for energy), and produce more lignin than they use (132). 
Lignin can also be a hinderance to the biorefinery, as it can inhibit enzymatic 
degradation of other components. The major reason for this is that lignin is 
incredibly complex. At least thirty five different major lignin monomers from eleven 
different classes of metabolites are used as the basic building blocks of lignin 
(although there are many others that do not occur as frequently), and its exact 
composition varies greatly between different species (133). The majority of these 
building blocks are aromatic compounds, and are linked together either through 
cross-linking reactions or polymer-polymer coupling (131). The most frequent bonds 
within lignin are carbon-carbon and carbon-oxygen bonds, although others are 
known to exist (131).  
 
Lignin is generally formed by the plant cell after the polysaccharide network is 
established (134). Monolignols are synthesized in the cytoplasm of the producing 
cell, and then exported to the cell wall (135). These are oxidized, which leads to a 
polymerization cascade, driven by oxidative coupling rather than an enzymatic 
process (135). The oxidation of monolignols is, however, catalyzed by a laccase 
enzyme (although peroxidases can also be involved) (135,136). The binding of the 
growing lignin network to the polysaccharides of the cell wall is a complex process 
that involves aggregation of lignin and hemicelluloses, dehydrating the local 
environment, and allowing nucleophilic reactions to take place between the 
hemicellulose and lignin (137). 
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Despite its complex structure, if processed correctly, lignin can be an excellent 
source of value-added chemicals in a lignocellulosic biorefinery (131,132). Lignin 
can be a source of chemicals that are currently produced using fossil fuels – 
production of these would both increase the profitability of a lignocellulosic 
biorefinery, as well as decrease overall dependence on fossil fuels (138). Some of the 
major compounds that have been successfully produced from lignin include phenol, 
vanillin, and ethylbenzene (building block for polystyrene) (138,139). Conversion of 
lignin to biofuels has also been demonstrated, including conversion into energy-
dense jet fuel (140). As well, bioplastic precursors have been successfully derived 
from lignin fermentation (141-143). Despite its complexity, lignin remains a 
promising source of many important and valuable chemicals as biorefinery output. 
 

3.4 Lignin-Carbohydrate Complex 
Lignin is often covalently linked to the cellulose or hemicellulose fractions of 
lignocellulose in what is known as a lignin-carbohydrate complex (LCC) (144,145). 
The majority of lignin in hardwood plants, and all lignin in softwood plants, is 
suggested to exist in these complexes (144,146,147). These LCCs add stability to 
plant biomass, as well as increase its recalcitrance, and the covalent bonds between 
the lignin and polysaccharides impede its removal from the biomass (144,147). When 
the cellulose or hemicellulose portion of the LCC is acted on by the appropriate 
enzymes, the enzyme efficiency is greatly decreased when compared to their actions 
on pure cellulose or hemicellulose (148). Additionally, pieces of the polysaccharide 
will remain attached to the lignin even after treatment of LCCs with polysaccharide-
degrading enzymes, increasing the difficulty of utilizing the lignin, and decreasing 
the yield of sugars from polysaccharide degradation (119,149). 
 
LCCs have several major types of bonds linking the lignin component to the 
carbohydrates: ester-, ether-, and glycosidic bonds (Figure 3.2) (144). These 
connections exist in various amounts (and the amounts differ between different 
species), and can thus link the lignin to various carbohydrates in the material. Of 
these, benzyl ether, benzyl ester, and phenyl glycosidic linkages have been observed 
to be the most common (144). The exact nature of LCC bonds is however difficult 
to determine, and requires the use of advanced techniques, such as 2- or 3D NMR, 
along with highly optimized extraction protocols (150). 
 

3.5 Extractives, Ash, and Other Cell Wall Components 
The remainder of the dry biomass weight consists of extractives and ash, which can 
make up over 20% of the plant biomass, with the amount greatly varying between 
different parts of the plant (151-153). This includes both organic (extractives) and 
inorganic (ash) components (153). The extractives consist of a variety of secondary 
metabolites including alkaloids, aromatic compounds, fatty acids, phenols, protein, 
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Figure 3.2: Schematic representation of the LCC (A) (150). Green rectangles represent cellulose 
microfibrils, blue lines represent hemicellulose, and the brown lines represent lignin. Examples 
of an LCC ether bond (B), ester bond (C) and glycosidic bond (D) (144). 
 
terpenes and wax (154,155). These exist in the plant mainly for protection, and are 
typically in higher concentrations in the bark than in other parts of the plant 
(156,157). The ash in biomass consists of three main components: soil and sand 
contamination (from handling of the biomass), inherent vascular ash, and structural 
ash (158). While the first type can simply be washed away, the second and third type 
consist of minerals incorporated into cell walls, and are not as easily removed 
(158,159). Although it is possible these minerals may be useful in other contexts and 
can be extracted and sold, no such process currently operates at a large scale (153). 
 
Ultimately, removal of these compounds is preferred prior to the use of the 
lignocellulosic biomass as a feedstock, as they may act as inhibitors towards 
microbial fermentation and hydrolysis (153). Ash can often cause physical problems 
for equipment used in biorefineries (160,161). While ash removal is well studied, 
significantly less research has been conducted into the impacts of extractive removal 
(162). Recent work has however shown that several extractive compounds 
negatively impact product yields, and regardless, as the organic extractives can be 
valuable end products in their own right, removal is considered preferable (163-165). 
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While this section has covered the most important cell wall polysaccharides, a vast 
number of others exist in varying quantities in the cell walls of different plant species. 
One example is callose, consisting of β(1→3)-linked glucose residues, and which is 
produced as a stress response and can be present in cell walls of various plant tissues 
(166). The polysaccharides carrageenan and alginate, special classes of galactans, are 
present in high amounts in different algal species (167). Plants produce many other 
polysaccharides, such as starch and gums, though those are generally not 
incorporated into the cell wall (167,168). 
 
Chapter 3: Summary 
 

• Plant biomass is an extremely complex substance 
• Polysaccharides can be linear or branched 
• Major polysaccharides in plant cell walls include cellulose, xylan, mannan, 

and pectin 
• Lignin is not a carbohydrate, but contains a variety of potentially useful 

structures 
• Lignin can be linked to hemicelluloses via LCCs 
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Chapter 4: Carbohydrate-Active Enzymes 

 
ith the complexities of the plant cell wall discussed in chapter three, the 
system of enzymes required to fully degrade all plant cell polymers must 
also be complex. This task falls to a group of enzymes known as 

carbohydrate-active enzymes (CAZymes). CAZymes, in simplest terms, are 
enzymes which facilitate the assembly or degradation of oligosaccharides or 
polysaccharides (169). They are extremely abundant in nature, with the largest 
database of such enzymes currently housing several million enzyme sequences (170). 
CAZymes are classified into five distinct classes: Glycoside Hydrolases (GH), 
Carbohydrate Esterases (CE), Polysaccharide Lyases (PL), GlycosylTransferases 
(GT) , as well as the more recently added Auxiliary Activities (AA) class (169,170). 
The AA class includes enzymes targeted towards lignin degradation, as well as the 
recently discovered lytic polysaccharide monooxygenases (LPMO) (171). While 
many of these AA enzymes do not act directly on polysaccharides (LPMOs being 
the exception), they assist other CAZymes by degrading and removing lignin from 
the polysaccharides being targeted (171). The work in this thesis is focused largely 
on enzymes from the GH and CE classes, and the most relevant families from these 
classes will be discussed in greater detail in this chapter. 
 
CAZymes are, in general, an extremely useful type of enzymes with numerous 
applications in industry (169). Apart from biorefineries, CAZymes are used in 
animal feed in order to increase its nutritional availability, in the food industry to 
help with sugar extraction (and other purposes), in the pharmaceutical industry, the 
textile industry, the paper industry, the brewing industry, and in waste management, 
to name only a few applications (172,173). 
 

4.1 Glycoside Hydrolases 
Out of all the classes of CAZymes currently documented, GHs are by far the most 
abundant, making up almost half of the CAZy (Carbohydrate-Active enZyme) 
database (170). This large group contains enzymes with a huge variety of different 
functions, however, all of them are defined by their ability to catalyze glycosidic 
bond hydrolysis (174). Apart from the crucial role they play in lignocellulose 
degradation, they are involved in a diverse range of functions; for example, lysozyme 
and neuraminidase enzymes are glycoside hydrolases (10). 
 
At the moment, glycoside hydrolases are sub-categorized by sequence identity in 
CAZy into 171 different families, although many GH sequences have been 
identified that do not belong to an existing family, and new families are being 

W 



 

 22 

discovered every year (170). Because the system of classification is based on 
sequence rather than function (activities), many families have multiple identified 
functions, and many functions exist in multiple families (170). GH enzymes are 
essential for every organism that degrades lignocellulose as a carbon source – 
without them, degradation of lignocellulose is not possible. 
 
CAZymes (and the majority of known enzymes) are characterized using the 
Michaelis-Menten equation and the constants which derive from it (175). However, 
it can be argued that this is not an entirely accurate way to characterize these 
enzymes, even if it is the best way currently available. In a traditional Michaelis-
Menten enzyme reaction, the substrate is assumed to be uniform and is consumed 
when the product is produced by the enzyme (175). This assumption does not hold 
true with polysaccharides, as they are inevitably of wildly varying lengths, and are 
not instantly consumed as enzymes act on them, but rather shortened sequentially. 
While differences in polysaccharide length may not impact the enzymes acting on 
them, it is cannot be said for certain, as isolating polysaccharides of a specific length 
is incredibly difficult. Purchased polysaccharides can also vary greatly between 
suppliers and even between batches, in terms of mixture of polysaccharide lengths 
as well as in terms of ash and other contaminants. Finally, as mentioned, 
polysaccharides can contain a large number of backbone substitutions, which can 
have a large impact on enzyme binding and activity (176). All of these factors 
combined strongly suggest that Michaelis-Menten kinetic constants are more of a 
“best guess” approach for investigating the activity of these enzymes, rather than 
numbers derived from effective measurement of enzyme kinetic rate. 
 

4.1.1 Xylanases 
As discussed above, xylan is the most abundant and most industrially relevant 
polysaccharide found in lignocellulose, after cellulose itself. Enzymes which degrade 
xylan are fittingly known as xylanases, and can be found in GH families 5, 7, 8, 10, 
11, 12, 30, 43, 98, and 141 (170,177). Xylanases, categorized by function, can be 
described as either endo- or exo- acting (note that the endo-/exo- categorization can 
be applied to many types of GH enzymes – cellulases, chitinases, mannanases, etc.) 
(177). Endo-acting xylanases are enzymes which bind along a xylan chain and cleave 
the glycosidic bonds, resulting in long-chain xylooligomers (178). Exo-acting 
xylanases, on the other hand, cleave the xylan chain from either the reducing end or 
non-reducing end, often releasing xylobiose (although other short xylooligomers are 
possible) (178,179). Interestingly, although the first xylanase was first reported in 
1955, the first exo-xylanase did not appear in the scientific literature until 1989 
(109,178). Xylanases can also be processive, meaning that they can perform several 
successive cuts on the same chain before letting go (180). 
 
Xylanases are highly relevant enzymes in an industrial context. Currently, they are 
commercially produced for bakeries, the paper industry, as feed additives, and more 
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(181). Within the paper industry, xylanases are used for bleaching of wood pulp, as 
well as de-inking recycled paper, resulting in significantly lowered usage of harsh 
chemicals that would be traditionally used for these processes (182,183). In the 
animal feed industry, xylanases are applied to certain cereal plants before they are 
fed to animals, increasing digestibility and energy availability from the crops (184). 
In bakeries, xylanases are used to produce better quality and more consistent doughs 
(185). Xylobiose produced by xylanases has shown promise as a prebiotic, and is 
therefore attractive to the pharmaceutical industry (186,187). Finally, the use of 
xylanases in lignocellulosic biorefineries and for biofuel production can increase 
yields dramatically, as lignocellulosic biomass can be more than a third xylan by dry 
weight (181,188). 
 

4.1.1.1 Glycoside Hydrolase Family 8 Enzymes 
Glycoside hydrolase family 8 (GH8) is an exclusively bacterial family which contains 
enzymes of a variety of different functions, including chitosanase, cellulase, 
licheninase, endo-β(1→4)-xylanase, and reducing-end-xylose releasing exo-
oligoxylanase (Rex) activities (170). Of these, no activity is exclusive to GH8 
enzymes, however, very few Rex enzymes have been identified within other families 
(170,189). Interestingly, aside from polysaccharide degradation, GH8 enzymes are 
also involved in bacterial cellulose synthesis, although they have not been implicated 
in the same processes in plants (190). Compared to other xylanase families, GH8 
xylanases remain relatively little-studied (191). These enzymes are exclusively endo-
xylanases, and show a variety of different product profiles, although all produce 
xylooligosaccharides of between two and four xylose units (170,192). The majority 
of known GH8 xylanases are single domain enzymes, with few exceptions (192,193). 
This is in contrast to the broader group of xylanase enzymes, which are often 
multidomain proteins (191). Paper III is partially focused on the study of a Rex 
domain from the multicatalytic B. eggerthii enzyme BeCE15A-Rex8A. 

 
As mentioned, a unique activity among some GH8 enzymes is the ability to release 
xylose and xylobiose from the reducing end of relatively short xylooligosaccharides 
(170,194,195). The term “Rex” can be somewhat confusing in the scientific literature 
surrounding CAZymes, as it is used both for reducing-end-xylose releasing exo-
oligoxylanase enzymes, the activity found in the GH8 family, and for reducing-end 
xylose-releasing exoxylanase enzymes (and the terms are sometimes incorrectly 
used interchangeably) (178,189,194-196). Although there is overlap between the 
two, it is more correct to use the “exo-oligoxylanase” term for GH8 Rex enzymes, 
as they show low or no activity on polymeric xylan (194). To date, the only known 
enzyme which could truly be referred to as a reducing-end xylose-releasing 
exoxylanase is the GH30 XYN IV from Trichoderma reesei (197). The exact 
xylooligosaccharide size requirements which steer Rex function is unknown (though 
it is likely to be different on a case-by-case basis), as xylooligosaccharides of greater 
size than xylohexose are prohibitively expensive, and not routinely used for testing 
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(194,198,199). The major feature thought to be responsible for limiting the size of 
the substrate is a small Leu-His-Pro loop present in most Rex enzymes, although in 
two of the currently characterized enzymes, this is substituted with an Arg-His-Ser 
loop instead (200). This loop does not appear to be entirely responsible for substrate 
length determination however; some enzymes in each loop category are active on 
xylan, and some are not (194). 
 
To date, structures of 17 different GH8 enzymes have been deposited in the Protein 
Data Bank (PDB) (170,201). The structures share a common (α/α)6 fold (Figure 4.1) 
(195). GH8 structures typically show a binding cleft, in which the substrate rests and 
can be acted on by catalytic residues (195,202). The exact position and nature of the 
catalytic residues can vary between three different sub-classes of GH8 (GH8a, 
GH8b, and GH8c) (203). While the catalytic acid is conserved throughout the family 
(a glutamate residue around 100 amino acids in to the sequence), the catalytic base 
is different in the different subfamilies (203). The catalytic base is an aspartate in 
GH8a, a glutamate in GH8b, and currently unknown in GH8c (195,203). 
 

 
Figure 4.1: Three-dimensional structure of a representative GH8 enzyme (PDB ID: 6SHY), 
Rex8A from Paenibacillus barcinonensis (195). Catalytic residues are highlighted in cyan. The 
(α/α)6 fold can be seen to be the main component of the structure. 
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4.1.1.2 Glycoside Hydrolase Family 10 Enzymes 
A large percentage of enzymes within the glycoside hydrolase family 10 (GH10) 
group of enzymes are bacterial in origin, although eukaryotic and archaeal enzymes 
in this family do exist (170). Activities within this family are somewhat limited, with 
the vast majority of enzymes having endo-xylanase activity, although other activities 
have been documented (170). An important feature of GH10 xylanases is that they 
are seemingly only slightly impacted by substitutions on the xylan backbone, 
allowing them to effectively degrade a variety of different xylans (186). This 
flexibility to work around backbone substitutions comes with the limitation that 
GH10 enzymes are only slightly able to hydrolyze insoluble xylans (186). Along with 
xylanases from the glycoside hydrolase 11 family (GH11), GH10 xylanases are the 
most likely family of xylanase to be thermostable (204). Paper I and Paper II focus 
on a the multicatalytic enzymes CkXyn10C-GE15A from C. kristjanssonii, which 
contains a thermostable GH10 domain. The same domain is used as a in Paper IV 
for multicatalytic enzyme construction. 
 
Many more GH10 structures are available as compared to GH8 – currently 55 
different structures of GH10 enzymes are available in the PDB (170,201). All 
structurally solved members display a (β/α)8 fold, the most common protein fold 
among GH enzymes (Figure 4.2 A) (205). As these are endo-acting enzymes, they 
have a binding cleft going along the side of the enzyme which is generally capable of 
binding up to seven xylose residues (206). Two catalytic residues are present within 
the general GH10 sequence, both of them being glutamates (207).The first 
glutamate (present around residue 140) acts as a nucleophile, and the second  
 

 
Figure 4.2: Three-dimensional structure of a representative GH10 enzyme (PDB ID:1W2P), 
Xyn10A from Cellvibrio japonicus (A) and three-dimensional structure of a representative 
GH11 enzyme (PDB ID: 1BCX) from Bacillus circulans (B) (208,209). The (β/α)8 fold can be 
seen to be the main component of the structure in A, and the jelly roll fold can be seen as the 
main component of the structure in B. In both cases, the catalytic residues are highlighted in 
cyan. 
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(around residue 250) acts as a catalytic base (207). 
 

4.1.1.3 Glycoside Hydrolase Family 11 Enzymes 
Like GH10 enzymes, the vast majority of glycoside hydrolase family 11 (GH11) 
enzymes are also bacterial in origin (170). The family only has two reported 
activities, endo-β(1→4)-xylanase and exo-β(1→4)-xylosidase, which makes it a 
highly specialized family compared to many others within CAZy (170). The GH11 
family has been relatively well characterized structurally, with 36 different structures 
currently available in the PDB (170,201). Family members display a jelly roll fold 
(Figure 4.2 B) (209). In these enzymes, the catalytic nucleophile and the catalytic 
base are both generally glutamate residues, with the nucleophilic glutamate coming 
earlier in the protein sequence (209). 
 

4.1.2 Cellulases 
Cellulases are extremely important enzymes, both from a microbial and an industrial 
perspective. Cellulose is the most abundant organic compound on Earth, and its 
composition and relative simplicity make it an excellent carbon source (210). 
Although cellulose degradation is a relatively rare strategy, it can be found 
throughout various types of microbial life; it is found in bacteria, fungi, and archaea, 
and in both aerobic and anaerobic microorganisms (211). Within CAZy, cellulases 
are found in a large number of GH families; families 1, 3, 5, 6, 7, 8, 9, 12, 26, 44, 45, 
48, 51, 74, 124, and 131 (170,212). 
 
Similar to xylanases, cellulases can also be categorized as either endo- or exo- acting 
(213,214). These behave in the same way as their xylanase counterparts, with endo- 
enzymes cleaving cellulose chains randomly, and exo-cellulases cleaving chains from 
either the reducing or non-reducing end, and some enzymes are also processive 
(212). Like xylanases, cellulases are extensively used in industrial applications (much 
more so, in fact) (172). For an in-depth discussion of these applications, an excellent 
review by Kuhad et al. discusses applications in great detail, the contents of which 
will be briefly summarized here (172). Cellulases are, among many other 
applications, heavily used in a biorefinery context for the degradation of feedstocks 
to allow for the production of valuable bioproducts (215). 
 

4.1.2.1 Glycoside Hydrolase Family 9 
Glycoside hydrolase family 9 (GH9) almost exclusively consists of cellulases, with 
less than 1% of discovered enzymes in the family having primarily non-cellulase 
activity (170,216). Many of these enzymes do, however, display side activity on other 
polysaccharides, such as xylan. These enzymes are found in all kingdoms of life, and 
are a common feature among microorganisms that break down cellulose (and are 
also common in plants), although they are typically not found in aerobic fungi (216). 
Surprisingly, genes encoding GH9 cellulases have also been discovered in termites 
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and several other animals (217-220). This is in contrast to the traditional view that 
animals who consume cellulose rely solely on their gut microbiota for polysaccharide 
deconstruction (218). 
 
As the second-largest cellulase family, GH9 contains most plant and animal 
cellulases, as well as many bacterial cellulases, and its enzymes have found 
significant usage in industrial applications (221,222). The family contains most well-
characterized processive cellulases, although both processive and non-processive 
activities are present within the family (222,223). Within bacterial systems, GH9 
enzymes are among the most important and abundant cellulases (although the same 
is not true of fungal systems) (223). GH9 enzymes to date have twenty protein 
structures deposited in the PDB (170,201). Like the GH8 enzymes, GH9 enzymes 
display an (α/α)6 fold (Figure 4.3 A) (224), with binding clefts containing a minimum 
of six sugar binding sites (224). GH9 enzymes have three important catalytic residues 
– a glutamate around residue 400 as the catalytic acid, and two aspartates near 
residue 55 that act as catalytic bases (225). 
 

 
Figure 4.3: Three-dimensional structure of a representative GH9 enzyme (PDB ID: 4DOD), the 
CelA GH9 from Caldicellulosiruptor bescii (A) and a three-dimensional structure of a 
representative GH48 enzyme (PDB ID:5YJ6), CelS from Clostridium thermocellum (B) 
(226,227). The (α/α)6 fold can be seen to be the main component of the structure in both 
structures. Catalytic residues are not shown for the GH9, as no information on experimental 
determination could be found in literature. Catalytic residues for the GH48 are shown in cyan 
(228). 
 

4.1.1.2 Glycoside Hydrolase Family 48 
Glycoside hydrolase family 48 (GH48) enzymes are almost exclusively cellulases, 
although glucanase and chitinase activity have been detected within the family (170). 
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They are considered to be the most important component of bacterial cellulose 
degradation systems, even more so than GH9 enzymes (223). Almost all GH48 
enzymes are bacterial in origin, with only 40 of over 1000 sequences in CAZy being 
of non-bacterial origin (170,229). They can also be found as free enzymes, 
multicatalytic enzymes, and as part of a cellulosome, enzyme organizational systems 
that will be discussed in detail in the next chapter (226,230-232). The rare non-
cellulolytic GH48 enzymes are typically non-bacterial in nature; for example, GH48 
chitinases can be found within certain species of beetle (233). In Paper IV, a GH48 
domain from the C. bescii CelA protein is used as an example domain for 
multicatalytic enzyme construction. 
 
Unlike many other cellulases, GH48 enzymes are typically only found in a single 
copy in a genome (234). They are commonly found to work in conjunction with GH9 
cellulases, and often show significant synergy when combined in a reaction (177). In 
fact, in what is perhaps the most efficient cellulase known to exist, CelA from C. 
bescii, both a GH9 and a GH48 catalytic domain are present within the same 
polypeptide in a multicatalytic configuration (226). To date, only ten structures of 
GH48 enzymes are available in the PDB (170,201). Like GH8 and GH9 enzymes, 
all GH48 enzymes have an (α/α)6 fold (Figure 4.3 B) (229). Rather than a binding 
groove, GH48 enzymes have a binding tunnel, through which polysaccharide is fed 
and cleaved (229). The catalytic residues have been identified as a glutamate present 
around residue 55 (catalytic base), and an aspartate present around residue 225 
(catalytic acid) (228). 
 

4.2 Carbohydrate Esterases 
While GHs represent the largest and most studied CAZyme class, also other classes 
are extremely important for the degradation of lignocellulose. Carbohydrate 
esterases are enzymes which remove -N or -O ester-bonded side chains and other 
modifications from mono-, oligo-, and polysaccharides and enable other CAZymes 
to reach their substrates (235). Currently, there are almost 100	000 putative CE 
sequences in CAZy, spread across 19 families (although family 10 has been removed, 
leaving 18 active families) (170). As with GH enzymes, many CE families have 
overlapping activities due to the system of classification based on sequence rather 
than function (170). These enzymes can act on a variety of different polysaccharide 
substrates, including chitin, chlorogenic acids, hemicelluloses, and pectin (235). 
 

4.2.1 Carbohydrate Esterase Family 15 
All characterized enzymes within carbohydrate esterase family 15 (CE15) 
characterized thus far have been glucuronoyl esterases, which cleave ester bonds 
between lignin and glucuronoxylan (236). These enzymes exist in both bacteria and 
fungi, although bacterial and fungal enzyme variants are structurally significantly 
different from each other (237). The removal of lignin from xylan is thought to be 
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very important for further efficient xylan degradation (238). Unfortunately, due to 
the difficulty in producing structurally consistent LCCs, no natural substrates for 
these enzymes are accessible to researchers, and they are typically characterized 
with model substrates, on which they may be significantly less efficient (238). Paper 
I and Paper II partially focus on the characterization of a CE15 domain from the C. 
kristjanssonii multicatalytic CkXyn10C-GE15A enzyme, and Paper III includes the 
characterization of a CE15 domain from the B. eggerthii BeCE15A-Rex8A enzyme. 
Paper IV uses the CkXyn10C-GE15A CE15 domain for multicatalytic enzyme 
construction. 
 
Currently, there are only eight structures of CE15 enzymes in the PDB, although the 
number of deposited structures has increased greatly in recent years (170,201). 
These enzymes have an overall α/β-hydrolase fold, although with some extra 
features (additional N-terminal β-strands and α- and 310-helicies sandwiching the 
central fold) (Figure 4.4) (237). Bacterial CE15s generally differ from their fungal 
counterparts by the inclusion of three extra inserted regions, although they are not 
always present (Paper II)(51,239). These enzymes typically have a catalytic triad of 
a serine, a glutamate or an aspartate, and a histidine, typical of esterases (239). In 
 

 
Figure 4.4: Three-dimensional structure of a representative CE15 enzyme (PDB ID: 7NN3), 
CkGE15A from Caldicellulosiruptor kristjanssonii (Paper II). The α/β-hydrolase fold can be 
seen as the central component of the structure. Catalytic residues are highlighted in cyan. 
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addition to the catalytic residues, several other important amino acids are generally 
conserved within the family, the most important of which is a conserved arginine 
located directly after the catalytic serine which is suggested to form the oxyanion 
hole stabilizing the transition state intermediate (239). In a few cases, this arginine 
is substituted with an aromatic residue, and those enzymes display significantly less 
activity than their counterparts (Paper III)(200,239). Replacing the aromatic residue 
with an arginine does not restore activity, however, and can eliminate it altogether 
(200). 
 

4.3 Carbohydrate Binding Modules 
Carbohydrate Binding Modules (CBMs) are not enzymes like GHs and CEs, but are 
instead smaller non-catalytic protein domains which bind to various carbohydrates 
(240). Generally, they are found associated with a CAZyme (through being a part 
of the same polypeptide chain – multiple domains of the same protein), for which 
they assist in substrate recognition and binding (241). However, there are many 
examples where CBMs have been identified with no linked domains, seemingly 
existing on their own (240). CBMs are currently the only class of proteins 
categorized as “Associated Modules” in CAZy (170). As of this writing, there are 88 
families (although CBM7 has been removed, and CBM33 has since been found to 
have catalytic activity and been reclassified as Auxiliary Activity Family 10) of 
CBMs in CAZy, with almost 275	000 proteins distributed across them (170). CBMs 
can recognize a broad range of carbohydrates – almost all known carbohydrates can 
be bound by CBMs from one or more families (170,241). 
 
CBMs can be functionally classified into three main types, based on how they bind 
to carbohydrates (241). A type A CBM possesses a flat surface containing a high 
proportion of aromatic residues, which bind to the hydrophobic face of 
polysaccharides (242). Type A CBMs have not been observed to bind to mono- or 
oligosaccharides (241). Type B CBMs bind along a polysaccharide chain using a 
cavity in the CBM surface to accommodate the individual polysaccharide strands. A 
Type C CBM is one that binds to the end of polypeptide chains, generally through a 
binding site pocket (241). 
 
There are five main functional roles that have been identified for CBMs: proximity 
effect (binding to the substrate and keeping the enzyme in close proximity), 
targeting function (affinity for a specific portion of the substrate, targeting the 
enzyme domain to that portion), disruption (loosening tightly-packed 
polysaccharides), adhesion (anchoring the attached enzyme domain to the surface 
of the producing cell), stabilization of the attached enzyme domain, and active site 
extension of the attached enzyme domain (243-247). Not every CBM will have all of 
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these functions; it is more common for them to only display one or two (243). In fact, 
it is difficult to envision how any CBM would perform all six roles. 
 
CBMs are a structurally diverse set of proteins, and can be classified by structure 
into seven different groups (243). The groups are: β-sandwich fold, β-trefoil fold, 
cysteine knot, oligonucleotide/oligosaccharide binding fold, hevein fold, unique fold, 
and hevein-like unique fold. The β-sandwich fold is the most common CBM fold, 
which is present in more families than all other folds combined (243). Despite the 
common fold, there is no commonality in terms of metal binding (for structure or 
function), binding site location, or even number of binding sites, indicating that 
CBMs have evolved diverse ways to take advantage of this fold type (243,248). 
 

4.3.1 Carbohydrate Binding Module Family 3 
Carbohydrate binding module family 3 (CBM3) proteins are type A CBMs which 
generally bind crystalline cellulose (although chitin binding has also been reported, 
and recent findings have shown that some CBM3 proteins bind hemicellulose) 
(170,249,250). Currently in CAZy there are over 2 000 sequences identified, with 142 
characterized, and 20 structures (these numbers may be overestimated, as CAZy will 
often count CBMs as characterized if they are attached to an enzymatic domain 
which has been characterized) (170). Four major subgroups of CBM3 have been 
identified so far, designated a-d, and grouped based on sequence similarity (250). 
Subgroup c is particularly interesting, as proteins in this group do not appear to bind 
cellulose on their own (251). Instead, they improve activity of their attached 
cellulase, and help it to act in a processive manner (249,251,252). Paper IV uses a 
CBM3 domain from the C. bescii CelA protein in multicatalytic enzyme 
construction. 
 
Structurally, CBM3 domains share a β-sandwich fold (Figure 4.5 A) (170,243). 
Polysaccharide binding residues differ between the different CBM3 subgroups (253-
256). For example, in subgroup b, a histidine, tryptophan, tyrosine, and arginine-
aspartate ion pair form a planar hydrophobic surface (253-255). In other cases, the 
non-aromatic residues are replaced with more aromatic residues, making all of the 
important binding residues aromatic (256). In addition to the polysaccharide binding 
site, CBM3 domains often have a shallow groove with highly conserved amino acids, 
which has been proposed to be involved in binding proline-threonine-rich linker 
regions linking CBM3 modules to enzymatic domains (249,257). 
 

4.3.2 Carbohydrate Binding Module Family 9 
Carbohydrate binding module family 9 (CBM9) proteins are significantly less 
studied and less prevalent than CBM3 proteins, with just under 650 sequences in 
CAZy, 50 characterized and only two structures (170). They are reported to be 
exclusively coupled to xylanases, and bind cellulose (170). Both solved structures 
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display a β-sandwich fold and have three calcium-binding sites (although one is only 
partially occupied in CkCBM9.3) (Figure 4.5 B) (Paper II)(51,170,258). CBM9 
proteins are thought to function using a clamp mechanism, in which the polypeptide 
chain is held between two aromatic residues (51,258). However, not every putative 
CBM9 shows this binding clamp, indicating that there may be subfamilies of CBM9 
modules that have yet to be properly classified (Paper II)(51). Due to the binding 
clamp having been observed to bind to polysaccharide chain ends, the CBM9 family 
is classified as type C CBMs, although more work is needed to determine if the 
CBM9 modules lacking the binding clamp residues still function as type C (51,258). 
Examples of CBM9 modules with a double tryptophan binding clamp, a tryptophan-
tyrosine binding clamp, and a lack of traditional binding clamp are all explored in 
Paper II. These modules all show different specificities for various polysaccharides, 
although all do show at least some binding. Interestingly, the CBM9 domain that did 
 

 
Figure 4.5: Three-dimensional structure of a representative CBM3 domain (PDB ID: 1NBC) 
from Acetovibrio thermocellus (A), a representative CBM9 domain (PDB ID: 7NWN) from 
Caldicellulosiruptor kristjanssonii (B), and a representative CBM22 domain (PDB ID: 4XUR) 
from Paenibacillus barcinonesis (C)  (51,257,259). Calcium ions are shown in green. The typical 
β-sandwich fold can be seen as a central component of all three structures. Binding residues are 
shown in cyan. 
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not show the characteristic binding clamp appeared to severely limit the growth rate 
of E. coli during production, but a mechanistic explanation was not determined. This 
suggests there could be a larger overall role to the CBM9 family than simply assisting 
enzyme domains with binding to polysaccharides. 
 

4.3.3 Carbohydrate Binding Module Family 22 
Carbohydrate binding module family 22 (CBM22) proteins display, like the two 
previously mentioned modules, a β-sandwich fold (Figure 4.5 C) (170). CAZy 
currently lists just over 1500 known sequences, 111 of them characterized, and four 
with known structures (170). CBM22 domains are type B CBMs, showing several 
conserved aromatic residues which function as a clamp for the target polysaccharide 
chains (259). These aromatic residues, along with conserved nearby polar residues, 
have been shown to be essential for polysaccharide binding within CBM22 modules 
(260). 
 
In addition to the carbohydrate-binding role of CBM22 modules, they have also 
shown in some cases to confer thermostability to their attached enzyme (usually a 
GH10 enzyme) (261-264). This thermostabilizing effect was seen for the CBM22 
modules studied in Paper I. CBM22 modules often appear in duplicate or triplicate 
within a polypeptide, and in some cases displaying similar properties for ligand 
binding, and in other cases not (259,261,265-267). These modules have been shown 
to increase xylanase activity in some cases, but in other cases have been seen to 
decrease activity (261,266,268). For the CBM22 modules studied in Paper I, 
significant differences were observed in several properties, most notably in solubility 
– the first CBM22 module would not remain soluble on its own, and required at a 
minimum to be expressed in a polypeptide containing the second CBM22 module as 
well. There were also observed differences in binding between the protein 
containing both CBM22 modules and the second CBM22 module on its own, 
suggesting that the two modules have different binding capabilities. These CBM22 
modules were also seen to decrease the activity of the attached GH10 domain, 
however, as they increased its thermostability, it became capable of functioning at 
the optimal growth and environmental temperature of the encoding organism, 
indicating an exchange of rate of activity for function. The CBM22 modules studied 
in Paper I were also used in multicatalytic enzyme construction in Paper IV. 
 

4.4 Methods of Enzyme Study 
The study of enzymes can take several forms depending on what information the 
researcher is looking for, however, it is common to explore several different 
properties in order to gain a more complete understanding of the studied enzyme. 
Enzymes can be characterized to determine the speed and efficiency of their 
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reactions, their properties, and their structure. The methods through which to 
determine these features are discussed in the sections below. 
 

4.4.1 Enzyme Activity Measurements 
Enzyme activity measurements are vital to the understanding of a specific enzyme. 
The activity of an enzyme can be measured in different ways, and the “correct” way 
often depends on the enzyme itself, the available substrates, and the available 
methods to measure product formation. Measurement of enzyme activity can be 
performed in either a continuous or discontinuous manner (269). In a continuous 
assay, the progress of the reaction can be monitored in real time, for example, by 
using spectroscopic or fluorescence methods to follow product formation. In 
contrast, a discontinuous assay is one in which product formation cannot be followed 
in real time, often due to a lack of absorbance/fluorescence spectra change between 
the substrate and product. In this case, an assay is stopped after a period of time and 
analyzed in a way that allows for measurement of the product (269).  
 
When measuring enzyme activity, measurements can be performed either directly 
or indirectly (269). When measuring activity directly, a researcher measures either 
the increase in concentration of the product, or the decrease in concentration of the 
substrate. When measuring indirectly, neither the product nor substrate can be 
detected by available methods. However, it is often possible to couple a second 
enzyme reaction to the first. This reaction must be several orders of magnitude more 
rapid than the one being measured, and the product of that reaction must be 
detectable in some manner. In this way, it can be assumed that when a substrate is 
converted to product by the enzyme being studied, the product is immediately used 
as a substrate by the coupled enzyme. Thus, measuring the product formation of the 
coupled enzyme will give information as to the rate of product formation of the 
studied enzyme (269). One way of measuring product formation specific to 
CAZymes is to measure the presence of reducing ends of oligo- and polysaccharides 
– an increase in reducing ends indicates that the enzyme has made cuts within the 
chain (270). This can be done using the 3,5-Dinitrosalicylic acid assay, as was done 
in Paper I and Paper III (270). 
 
Often, it is not possible when conducting enzyme activity assays to use the natural 
substrate, either because it is too difficult to synthesize or isolate, it is too unstable 
under the tested conditions, or there is no way to detect the change in 
substrate/product concentration. A model substrate should be able to reach a high 
enough concentration to saturate the enzyme in solution completely (269). Model 
substrates can also be designed with properties that make either them or their 
products easier to detect, to allow for better measurement of the rate of catalysis by 
the enzyme (271). Enzyme activities were tested in Paper I and Paper III using 
model substrates for the CE15 domains, and more natural substrates for the GH8 
and GH10 domains, as well as for synergy studies between the domains. 
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4.4.2 Measure Enzyme Properties 
As mentioned earlier, enzymes have many properties that are crucial in determining 
their suitability for industrial use. Many analysis techniques have been developed to 
investigate these features of enzymes, some of which will be summarized in this 
section. 
 

4.4.2.1 Temperature Dependence 
Optimal enzyme operating temperature is a highly important property in an 
industrial context. It is important to have an enzyme that works most effectively 
around the temperature of the reaction being run (or conversely, to set the 
temperature of the reaction to the optimal temperature of the enzyme being used) 
– if the temperature is too low, the enzyme effectiveness decreases, and if it is too 
high, the enzyme may become permanently damaged, rendering it useless (272). 
Enzyme optimum temperature can be estimated using the optimal growth 
temperature of its producing organism, as the optimal temperature of an enzyme 
often (but not always) correlates strongly with the growth temperature (273). 
Several computational methods have also been developed to attempt to calculate 
optimum temperature based on amino acid sequence (273,274). 
 
While predictions provide a good starting point for determining enzyme 
temperature optimum, current methods do not take into account the impact of 
reaction conditions on the optimum temperature (275). Rigorous testing is required, 
measuring the enzyme activity at various temperatures and time lengths, in order to 
determine the ideal operating temperature (275). Enzyme temperature optima are 
determined in Paper I, although indirectly for one of the domains. For the CE15 
domain in CkXyn10C-GE15A, there is no thermostable model substrate, so the 
temperature optimum had to be estimated from melting temperature of the enzyme. 
Such estimations do not always prove accurate, and its accuracy was unable to be 
confirmed. If the estimation is indeed accurate (or at least close), then the CkGE15A 
domain is the most thermostable CE15 domain published to date. 
 

4.4.2.2 pH 
Enzyme activity is generally highly pH dependent, with enzymes often only effective 
over a narrow pH range (although there are exceptions) (276). The optimal pH for 
an enzyme can be difficult to predict, as it is not necessarily the same as the pH of 
its natural environment – in addition, there are also often microenvironments which 
have a different pH than the overall environment the enzyme is found in, further 
complicating matters (277). Ultimately, the pH dependence of the enzyme is 
determined by its overall fold and its amino acid side chains (277). Different amino 
acids have side chain pKa values of between 4 and 12.5, and the frequency and 
position of these amino acids can have a large impact on the enzyme’s pH stability 
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(278). These pKa values are for the amino acids in solution by themselves – within a 
protein, nearby amino acids can impact the pKa values (279). Therefore, while 
predictions of optimal pH based on the expected environment can be useful, 
ultimately, it is necessary to test each enzyme to find its optimal pH. 
 
Enzyme pH optima can be tested for in a similar way to the temperature optima 
discussed earlier (280). Activity measurements can be carried out at different pH 
values and the highest activity determined from these measurements (280). It is 
important to note that the buffering agent can often have an impact on enzyme 
activity, so ideally one should test multiple buffering agents at each pH (281). Paper 
I and Paper III both involve testing the pH optima of different enzyme domains. 
Paper I especially showed a somewhat interesting pH profile for CkXyn10C, which 
appeared to have a dual pH optimum. 
 

4.4.2.3 Inhibition 
Enzymes are often subject to inhibition, either through the presence of small 
molecules that interfere with the enzymes ability to catalyze a reaction, or from a 
buildup of products from the enzyme-catalyzed reaction (282). Both of these 
methods of inhibition can occur for CAZymes, but the more common type of 
inhibition faced by these enzymes is product inhibition (282,283). Inhibition can be 
determined and measured by adding potential inhibitors to an enzyme-catalyzed 
reaction and analyzing whether the rate decreases (283). By varying inhibitor 
concentrations in these measurements, one can determine the effectiveness of the 
inhibitor in preventing enzyme activity (283). 
 

4.4.3 Protein Structure Determination 
Information that comes from protein structure can be incredibly useful in 
understanding enzyme functions, substrate binding sites, catalytic residues, and 
more (77). A protein structure can even be determined for a protein or enzyme 
interacting with its ligand or substrate (although gaining structural information 
without allowing catalysis can be challenging), giving information about how this 
interaction occurs, and what residues mediate it. Such information is often key in 
helping a researcher understand key amino acid residues that can be substituted to 
improve or direct function in a desired manner or how a protein compares to related 
proteins (77). The following sections will discuss several methods of obtaining 
protein structure, their advantages and drawbacks, and when each might be 
preferable to use. It is important to note that none of the techniques is “better” than 
the others, just that one may be more relevant to obtain the information a researcher 
is attempting to discover. Used properly, the techniques can complement each other, 
giving more information together than any could separately. 
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4.4.3.1 X-Ray Crystallography 
The capacity of proteins to form crystals has been known for over 150 years (284). 
Only many decades later, however, did the use of x-ray crystallography to determine 
the three-dimensional structure of proteins come into use (and even then, decades 
more were required for it to become a more commonplace technique) (285). Some 
of the earliest protein structures would take researchers decades of working on the 
same problem to produce (286,287). Today, there are nearly 160	000 x-ray 
crystallography structures in the PDB, and numbers grow every year at an 
exponential rate (the work contained in this thesis contains five of the new structures 
added this year, in Paper II) (201). 
 
The process of x-ray crystallography first requires the production and isolation of a 
significant quantity of protein, the methods for which will not be discussed here 
(285). It is interesting to note that while protein crystallization was initially used as 
a technique to purify proteins, modern approaches require the starting protein to be 
pure, in order to limit the chances of crystallizing the wrong protein (285). Although 
the methods of producing crystals from purified proteins vary slightly, they involve 
slowly mixing the protein solution with that of a known precipitant solution (287). 
However, it is extremely difficult to predict whether a specific protein will produce 
a crystal when mixed with a given precipitant solution, so researchers often set up 
large screens involving dozens or hundreds of different conditions (287). 
 
This initial stage can take a significant amount of time to produce a protein crystal 
(Figure 4.6), if one can be produced at all, and numerous methods of protein 
modification can be performed to try to compensate for a poorly-crystallizing 
protein (287). However, assuming one is able to obtain a crystal, one is still a long 
way from solving a protein structure. The crystal itself must be frozen using liquid 
 
 

 
Figure 4.6: Protein crystals produced in experiments done to obtain the three-dimensional 
structure of CkGE15A (Paper II). Several crystals from the samples seen here were diffracted 
at the ESRF, and the data collected were used as the basis for structural modeling. 
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nitrogen, usually in some sort of cryoprotectant solution to prevent damage, then 
shot with an x-ray beam and if the crystal diffracts the x-rays, the diffraction pattern 
can be collected (288). The diffraction pattern alone unfortunately does not provide 
researchers with all the information needed to obtain a protein structure (288). 
While the physical reasons are beyond the scope of this thesis (for an excellent 
source of detailed information, see the textbook Biomolecular Crystallography by 
Bernhard Rupp), the diffracted x-rays give information about their amplitudes when 
collected, but not their phases, and both are required to reconstruct a protein 
structure from the collected diffraction pattern (Figure 4.7, example diffraction 
pattern). The phase information can be obtained either through incorporating heavy 
atoms into the crystal, either by soaking or by direct incorporation into the protein 
prior to crystallization, or through using the phase information from a known, 
previously discovered protein structure. With this information, it is “simply” 
(although the process seems anything but simple while undergoing it) a matter of 
effort and computational power to produce the end protein structure (288). 
 

 
Figure 4.7: Example x-ray scattering image. This image was taken from experiments performed 
at the ESRF in November of 2017. The diffraction pattern is one image from a set collected for 
CkGE15A. Several hundred of these images need to be collected and the data analyzed in 
combination to have diffraction data from all possible angles in order to begin to solve the 
protein structure. 
 
Although it can be challenging, x-ray crystallography presents a number of 
advantages to researchers interested in determining protein structure. For instance, 
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the vast majority of the highest resolution protein structures available have been 
determined by x-ray crystallography, and it is arguably the most mature of the 
protein structural determination methods (201,289). It also requires low start up 
investment, as most protein researchers will be trying to obtain large amounts of 
their protein of interest anyways (288). Since proteins are in crystal form when 
obtaining structural information, they can reasonably be expected to be somewhat 
homogeneous in their conformation, greatly simplifying data processing. X-ray  
crystallography is also not limited in the size or type of protein it can analyze (with 
perhaps the exception of intrinsically disorders proteins) (288). 
 
X-ray crystallography does present drawbacks that need to be taken into 
consideration. The process (very briefly) described above to obtain data can prove 
extremely challenging, and problems can occur at many of the steps involved 
(285,287,288). As the protein is trapped into a single state in the crystal, dynamic 
studies are not possible, and the structure obtained is merely a “snapshot” of the 
native protein (288). As well, the crystallization itself may introduce artefacts into 
the structure that are not naturally present, and can be overinterpreted if the 
researcher is not careful (288). 
 
In this work, x-ray crystallography was used to obtain several structures in Paper II. 
Structures of a CE15 domain as well as a CBM9 domain were obtained through 
crystallography. With the CBM9 structure, it was also possible to obtain the 
structure with various ligands in the binding site. The CBM9 structure was the 
second ever solved, and the CE15 domain showed a lack of several inserted regions 
that have previously been identified in all solved bacterial CE15 enzyme structures. 
 

4.4.3.2 Small Angle X-Ray Scattering 
Small angle x-ray scattering (SAXS) is a technique used to obtain the overall shape 
of a protein, rather than its detailed structure in high resolution (290). Compared to 
x-ray crystallography, sample preparation is relatively straightforward. The protein 
of interest must be as pure as possible, and ideally, prepared in several different 
concentrations (291). The concentration required is inversely related to the size of 
the protein – smaller proteins generally require a higher concentration to obtain a 
good signal (291). An x-ray beam is directed towards the protein sample, and the 
scattering of the x-rays by the sample is recorded (290). Through mathematical 
modeling of the obtained data, data points resulting from aggregation or protein 
interaction can be excluded, and a model of the protein shape determined (291). 
 
While sample preparation for SAXS is vastly simpler than for other methods of 
structural determination, the major drawback is that the resolution is limited to 10	Å 
(compared to the possible sub-ångström resolution for x-ray crystallography) 
(285,291). SAXS data therefore only provides the overall shape of the protein, and 
no information on individual amino acid positions or interactions can be obtained 
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(291). The measurements are also sensitive to protein aggregation (although this can 
be somewhat compensated for), even when that aggregation is not noticeable 
beforehand. However, SAXS does have the advantages that there is no size 
limitation on the proteins being studied, and it provides insight into protein 
structures and behaviors in solution. This can be used to explore changes in protein 
conformation, as well as interactions between proteins (291). 
 
SAXS was used to explore the structure of the first three domains of CkXyn10C-
GE15A in Paper II. While the interaction of the three domains could be determined 
using this technique, and they were seen to be compact rather than elongated, the 
data ultimately did not answer all questions about the domains. SAXS, while not 
theoretically limited in application temperature, is limited by the equipment used. 
Most, if not all, SAXS capillaries (used for storing the protein sample when in the 
beamline) are incapable of handling temperatures above 50°C. Thus, CkXyn10C-
GE15A was unable to be tested at its natural environmental temperature of 80°C, 
which may have produced a different conformational result. 
 

4.4.3.3 Nuclear Magnetic Resonance 
Another method of obtaining protein structure is using nuclear magnetic resonance 
(NMR) spectroscopy (201). NMR is currently the second most common method of 
structural determination for structures deposited in the PDB (although there is a 
large gap between it and x-ray crystallography), with nearly 13	500 structures 
available to date (201). This technique works by exploiting the magnetic spin 
properties of atomic nuclei by placing the sample under the influence of an 
extremely strong magnet, and then probing it with radio waves and measuring their 
absorption (292). This gives information on the environment of each atomic nucleus, 
as well as which atomic nuclei are nearby, and from this (along with the protein 
sequence), researchers can build a three-dimensional model of the protein (293). 
 
NMR does have some significant drawbacks, including the expense and difficulty of 
sample preparation – in order to obtain NMR signals, radioisotopes must be used, 
commonly two of 1H, 13C, and 15N (although 31P is also possible) (293,294). 
Additionally, the data obtained from NMR techniques, especially on larger proteins, 
can be very difficult to interpret correctly (293). Finally, NMR has a significant size 
limitation – very few structures over 50 kDa in size have been solved by solution 
state NMR (the most common type) (295). While newer techniques such as solid 
state NMR promise – at least in theory – to overcome this limitation, more work 
needs to be done in the area for it to become a generally viable technique at larger 
protein sizes (295). However, despite these disadvantages, NMR offers several 
appealing qualities that make it favorable for some research applications. For 
instance, NMR can offer a high quality structure of a protein in solution (assuming 
solution state NMR and not solid state NMR is performed), and can also provide 
information on protein dynamics, conformational changes, and ligand binding (296). 
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4.4.3.4 Cryo-Electron Microscopy 
The last experimental method to be discussed in this thesis is cryogenic-electron 
microscopy (cryo-EM). The first structure released using electron microscopy only 
became available in 1991, and it took five years from that time for a second to be 
released (201). To date, fewer than 8 500 structures have been determined using 
cryo-EM, with over 75% of them being released in the past five years (201). 
Technological capability and availability for researchers to perform cryo-EM to 
obtain detailed protein structures has only begun to become more widely available 
in the last decade (297). To conduct cryo-EM experiments, a researcher will 
generally freeze their protein sample in a support mesh, and then using an electron 
microscope, collect between several hundred and 50	000 images of individual 
particles (298). These images are then constructed into a three dimensional model 
using computer software (298). 
 
The largest advantage for researchers choosing to pursue cryo-EM is that sample 
preparation is theoretically extremely simple – the researcher only needs to apply 
the protein sample to a support grid in a thin layer and freeze it (298). Individual 
proteins may prove to be more difficult, however, and the sample preparation step 
is incredibly important to have correct before moving on in the cryo-EM experiment  
(298). Cryo-EM also does not become more difficult with larger proteins (299). This, 
however, leads in to one of the major disadvantages of cryo-EM: small proteins are 
extremely difficult to work with, and there is a lower size limit of approximately 50 
kDa on the proteins that can be analyzed (299). While there are some techniques to 
help get around this size limitation, very few structures have been solved below 50 
kDa in size (and even structures at that size are rare) (300). Additionally, 
historically, resolution obtained with cryo-EM has been considered poor, however, 
this has improved greatly in recent years (201,300). 
 

4.4.3.5 Computer Modeling 
For a long time, the field of protein structure has had a significant “protein folding 
problem” – knowledge of a proteins primary structure was easy to come by, but 
understanding how the protein managed to fold into its three dimensional 
conformation is incredibly difficult (301). However, with the huge growth of known 
protein structures in recent years, the problem has come significantly closer to being 
solved (201,301). Using existing information, a number of different protein 
modelling solutions have become available to researchers to allow them to obtain 
an approximation of their protein structure of interest, taking only time on a 
computer rather than work in a lab. Several of these methods will be discussed 
briefly below, however, this is far from an exhaustive list of the programs available. 
 
SWISS-MODEL was the first fully automated protein homology server, where a 
researcher needs to only input the amino acid sequence of the protein of interest and 
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then wait for results (302). The software can perform sequence alignments to 
proteins of known structure and attempt to generate a structure for the inputted 
protein sequence based on close homologs. Energy minimization is performed by 
the software to resolve any clashes, and the model is output along with statistics 
estimating its accuracy (302). 
 
Another protein homology server that sees a significant amount of use by 
researchers is Phyre2, the successor to the original Phyre (Protein 
Homology/analogY Recognition Engine) server (303). Like SWISS-MODEL, 
Phyre2 is a homology modelling server in which a user inputs an amino acid 
sequence, and the server searches for homologs and attempts to build a model. In 
this case, a series of models are generated, and different templates can be used for 
different regions of the protein. Ab initio modelling is performed on regions without 
clear templates, and the models are output along with statistics to estimate their 
accuracy (on a per-residue basis) (303). Phyre2 was used to generate the models of 
BeCE15A-Rex8A in Paper III, which enabled several hypotheses to be generated 
and tested through mutational analysis. The non-crystallized CBM9 modules from 
CkXyn10C-GE15A were also modeled using Phyre2 in Paper II, revealing potential 
reasons for the differences in binding between them, and suggesting a significantly 
different structure for the first CBM9 domain. 
 
Rosetta, unlike the previous two examples, is a software package to perform de novo 
structure prediction on a target protein sequence (304). Rosetta is one of the most 
successful de novo modelling software packages and works by assembling the 
protein model as small blocks of short, modelled peptides. Multiple models can be 
generated at this stage (depending on user input), which then undergo significant 
refinement and energy minimization steps. The resulting models are output to the 
user, and can in many cases be more accurate than the homology modeling servers 
discussed above (304). 
 
The newest and perhaps most exciting development in the protein modelling field is 
the introduction of AlphaFold. AlphaFold uses trained AI neural networks to 
predict protein structures with incredible accuracy (305). In the past two Critical 
Assessment of protein Structure Prediction (CASP) competitions, CASP13 and 
CASP14, AlphaFold has shown to be a significant improvement over its competitors 
(CASP14 data to be formally published late 2021) (306). AlphaFold has since been 
used to generate a database of over 350	000 protein structure predictions which are 
freely available to researchers (307). While AlphaFold does not represent a 
complete solution to the protein folding problem, and a significant portion of its 
predictions are not perfect, it does represent a significant leap forward in protein 
prediction, and the improvements in version 2 (the version entered into CASP14) 
are exciting (305). Perhaps the biggest hurdles preventing AlphaFold from being 
more widely used are its lack of a web server for submissions (available for the 
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previous three methods), its rather specific computer hardware requirements, and 
that it is an extremely computationally intensive method (which should become less 
of an issue in the future, as computers continue to improve and prices lower). 
 

4.5 Enzyme Discovery 
The discovery of new enzymes with more beneficial properties for biorefineries and 
other industrial uses is a major driving force behind research into lignocellulose-
degrading organisms. Discovery of rapid and cost effective DNA sequencing has 
caused an explosion in the number of known or computationally predicted protein 
sequences (308). New sequences are being discovered at a torrid pace; the TrEMBL 
database currently houses over 200 million predicted sequences, with nearly fifteen 
million being added between April and June 2021 alone (the database itself was 
established in 1996 and has grown exponentially almost ever since) (309,310). With 
this information, it has become easier than ever to discover new enzymes with 
desirable characteristics, although researchers may still source organisms from field 
research (311). 
 
Using databases such as UniProt (310) and CAZy (170), one can find an extensive 
list of proteins and enzymes with computationally predicted, but untested, 
characteristics. These databases are typically assembled computationally, analyzing 
new genome sequences as they are published for predicted genes, translating 
protein-encoding regions, and comparing the sequences to characterized proteins to 
predict function (170,310). Unfortunately, this approach does not always produce 
the correct results – in some enzyme classes, up to 78% of the database sequences 
have been shown to be misannotated (although the error rate is generally much 
lower) (312). Additionally, over 20% of predicted protein domains are described as 
being of “unknown function”, suggesting a significant shortage of experimental 
information to complement these computer-generated databases (313). 
 
Despite these drawbacks, the first stop of researchers searching for new enzymes is 
often these databases (although some researchers prefer using functional screening 
to find and isolate enzymes) (314,315). A database search, combined with analysis 
of the genomic context of the protein-encoding gene and the environmental context 
in which the encoding organism lives can help identify potential enzymes of interest. 
Continuing further, a sequence alignment with characterized enzymes of the same 
type (to confirm essential features are intact), model structure building using various 
software, and other bioinformatic analysis can significantly aid a researcher in 
identifying a new enzyme of interest (315). Of course, the identified enzyme or 
enzymes must still be characterized in a laboratory in order to confirm they have the 
desired function and properties (315). 
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If a researcher is looking for a novel enzyme function, discovery can be significantly 
more complex. This generally requires sampling of an environment in which the 
desired function is thought to exist within the microbial community (if it is already 
known that an organism with a sequenced genome can perform the function of 
interest, environmental sampling can be bypassed) (316,317). It is possible to enrich 
samples by adding a substrate of interest in abundance (for example, if a researcher 
were searching for a xylanase, adding xylan to the environmental sample), but this 
can have the drawback of encouraging growth of organisms that metabolize the end 
product of the desired enzyme, rather than the organism which produces said 
enzyme (316). After the desired activity has been verified in the sample, some sort 
of sequencing must be performed, either metagenomic, metatranscriptomic, or 
metaproteomic. From there, the proteins of unknown function can be analyzed in 
the laboratory to determine which of them has the desired function (316). 
 

4.6 Modern Enzyme Producers  
As mentioned in chapter three, enzymes are key tools utilized to degrade plant 
biomass. These enzymes are sourced from organisms that can be found in the natural 
environment. A plethora of organisms have evolved to survive off of and degrade 
lignocellulose, and are potential sources for these enzymes (130,318). While still 
highly debated in the scientific literature, recent data suggest that the ability to 
degrade lignocellulose has existed as long as there has been lignocellulose to degrade 
(130,319-321). These lignocellulose-degrading organisms (a group containing 
representatives from the bacterial and archaeal domains and the fungal kingdom) 
exist in all environments on earth that one can reasonably expect to find 
lignocellulose available, and have evolved a diverse set of characteristics to enable 
them to survive in these wildly different environments (322). Historically, fungi have 
been the best-studied of these organisms, however, recently focus on bacteria which 
can degrade lignocellulose has increased dramatically (130). In order for any of these 
organisms to degrade lignocellulose, they invariably need to use a diverse system of 
enzymes (323). An astonishing number of enzymes have evolved in different 
microorganisms to allow for the breakdown of every known bond within 
lignocellulosic materials (323). It is the lignocellulose-degrading enzymes from these 
organisms which are often exploited in industrial environments, and it is the search 
for these enzymes which largely fuels research into these organisms (324). 
 

4.6.1 Trichoderma reesei 
Currently, the undisputedly most important organism for enzyme production in a 
biorefinery context is Trichoderma reesei (325). T. reesei is a mesophilic filamentous 
fungus first identified during the Second World War, when it would destroy the 
cotton tents set up by the US army in the Solomon Islands (326,327). As early as the 
1960’s, this organism was used for industrial-scale production of cellulases (328). 
Although other fungi were used for similar reasons at the time, it was soon 
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discovered that T. reesei was a more efficient cellulase-producer than any other 
known organism, and work focused largely on improving yields from it (328,329). 
Starting in the early 1970’s, experiments to increase the yield of cellulase production 
from T. reesei were undertaken (327). Although researchers of the time lacked the 
sophisticated molecular biology tools available today, by the end of the decade the 
strain RUT-C30 was developed, which would serve as the basis for almost all 
cellulase production from T. reesei organisms going forward (327,330,331). Since 
having its genome sequenced in 2008, the potential for T. reesei genetic manipulation 
and directed improvements has exploded (332). Today, T. reesei remains a highly 
relevant organism for industrial cellulase production, and modern strains can 
produce over 100 g of enzyme per liter of culture (333,334).  
 

4.6.2 Caldicellulosiruptor 
Recently, bacteria from the genus Caldicellulosiruptor have been of great interest to 
researchers for their potentially desirable qualities for use in biorefineries. First 
discovered in 1987 in a New Zealand hot spring, Caldicellulosiruptor organisms 
displayed an ability to grow on cellulose, hemicelluloses, and other complex glycans 
(335). These Gram-positive, anaerobic bacteria, which have since been isolated from 
locations globally, naturally exist at temperatures in the 70-80°C range, making them 
an idea target to search for new thermostable lignocellulose-degrading enzymes 
(336). Since the initial discovery of the genus, at least 14 separate species have been 
identified worldwide, with genome sequences available for all of them (337). In 
addition, tools to manipulate the genome are available for two species of the genus 
(338-340). This is somewhat of a rarity, as few anaerobic organisms have had 
genome-editing tools developed for them (341). This has allowed 
Caldicellulosiruptor strains to be engineered to produce ethanol from cellulose, 
however, the yields appear to decrease drastically at higher temperatures, and the 
maximum obtained yield to date (with pure cellulose as a carbon source) is still an 
order of magnitude lower than what Saccharomyces cerevisiae is regularly able to 
achieve (with Kraft pulp as a carbon source) (342-345). 

 
Experimental evidence has shown these organisms to have many desirable qualities 
for biorefinery usage. For example, previous studies have shown that in their native 
environments, the microbial community is dominated by Caldicellulosiruptor at 
higher temperatures when grown on cellulose (337,346). This dominance suggests 
that it is very difficult for other organisms to grow at these temperatures, and that 
Caldicellulosiruptor are extremely efficient and effective at utilizing cellulose. 
Perhaps because of their incredibly challenging environment, organisms within the 
Caldicellulosiruptor genus have developed a truly impressive array of enzymes for 
degrading lignocellulose (347). The most studied of these is undoubtably the CelA 
cellulase from Caldicellulosiruptor bescii (226,348,349). This enzyme has been shown 
to be up to 6-fold more efficient than the most prominent T. reesei cellulase, Cel7A 
(226). It also remains more efficient even when both CelA and Cel7A are used under 
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the optimal reaction conditions for Cel7A (349). One of the reasons for this 
efficiency is a somewhat unique enzyme architecture, where multiple catalytic 
domains exist within the same protein (226). One of these multicatalytic 
Caldicellulosiruptor enzymes, CkXyn10C-GE15A from C. kristjanssonii, is studied 
in detail in Paper I and Paper II. Multicatalytic enzymes will be discussed in more 
detail in chapter five. 
 

4.6.3 Bacteroides 
Although Caldicellulosiruptor organisms are known for their production of 
multicatalytic enzymes, they are not the only genus to produce them. Organisms 
from the genus Bacteroides also have a demonstrated ability to produce various 
multicatalytic enzymes targeting the degradation of lignocellulose (350-352). While 
these organisms have previously been studied for other interesting lignocellulose-
degrading mechanisms, they are coming into more focus lately as producers of 
interesting and unique multicatalytic enzymes (200,350-352). 
 
Bacteroides are Gram-negative, anaerobic bacteria found in the intestinal tract of a 
variety of animals, including humans (350,353,354). They make up a substantial 
portion of the intestinal microflora wherever they are found; in humans they account 
for approximately 25% of all intestinal microbes (355). They are incredibly 
important organisms for human health, with implications in roles from obesity to 
brain development to bone strength (356-358). Bacteroides generally exist in a 
mutualistic relationship with their host organism, utilizing material that is not 
digestible by the host as a source of energy, and providing nutrients such as short-
chain fatty acids to the host in exchange (359-361). Not only do they have a symbiotic 
relationship with their host, Bacteroides have also been shown to provide nutrients 
to other gut bacteria, making them a valuable contributor to overall gut health (362-
364). Surprisingly, certain Bacteroides species have been observed to produce and 
secrete enzymes to aid in the degradation of polysaccharides that they themselves 
cannot utilize, suggesting this is done to benefit the overall microbial community, 
rather than the secreting organism (364). Within the gut itself, Bacteroides has access 
to a smorgasbord of lignocellulosic biomass (depending on the host diet). This 
biomass is typically consumed by the host organism, who is then unable to digest it, 
as no animal is currently known to be able to degrade lignocellulose to sugar 
monomers (365). This situation has led to Bacteroides developing very efficient 
strategies for breaking down lignocellulose into simple sugars that can be utilized by 
bacteria and host alike (366). 
 
A semi-unique strategy utilized by Bacteroides is the organization of genes related 
to polysaccharide utilization into polysaccharide utilization loci (PULs) (367). 
Although not the only genus of organism to organize genes into PULs (this is a trait 
that occurs throughout the phylum Bacteroidetes, and similar, although less 
sophisticated, genomic structures are being discovered in many other bacteria), 
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Bacteroides are the most prolific at it, with almost 30% of known or predicted PULs 
contained within their genomes, and some species devoting as much as 20% of their 
entire genome to PULs (368-370). This is despite them accounting for only 12% of 
sequenced genomes contained within PULdb, a database of all known and predicted 
PULs (368). 
 
The first discovered PUL was found to be involved in starch utilization in 
Bacteroides thetaiotaomicron, a human gut symbiont (371-374). To be classified as a 
complete PUL, the section of genome must encode proteins to bind polysaccharides, 
partially degrade them extracellularly, import the partially-degraded 
polysaccharides, complete the polysaccharide degradation inside the cell, and 
proteins which can act as regulators for the entire system (367). PULs can be 
predicted from genomic data by searching for the presence of SusC and SusD 
homologs (named from the first studied PUL, the Starch Utilization System). SusC 
and homologs in other PULs are TonB-dependent transporters importing partially 
degraded oligosaccharides into the cell, and SusD and homologs are responsible for 
polysaccharide recognition and capture (367,375). The presence of both of genes 
encoding both of these proteins in the same region of a genome on the same DNA 
strand is a very strong indication of the presence of a PUL (367). Analysis of PULs 
suggests that they are spread amongst Bacteroides via horizontal gene transfer (375). 
Additionally, evolutionary pressure has allowed for the adaptation of PULs to 
various polysaccharide substrates. Overall, these two features have allowed 
Bacteroides to develop an adaptable polysaccharide utilization strategy, which has 
likely contributed significantly to their evolutionary success (375). 
 
Although they are not found in every Bacteroides species, multicatalyic 
polysaccharide-targeting enzymes exist in many of the published Bacteroides 
genomes (170). Unlike with Caldicellulosiruptor, however, these have been studied 
relatively little by the scientific community. Only a few examples of publications 
highlighting multicatalytic enzymes from Bacteroides exist (Paper III)(352,376). 
Despite this, they remain a promising avenue for the development of novel enzyme 
cocktails for industrial use, especially when taken in the context of the overall 
efficiency of Bacteroides at degrading plant biomass.  
 

4.6.4 Industrial Enzyme Production 
Enzymes for industrial use are almost always microbial in origin, due to the fast 
growth rate, consistent production levels, and ease of enzyme production within 
microbes as compared to higher organisms, as well as difficulty in isolating 
mammalian or plant enzymes from source organisms and the limited range of 
temperature and pH those enzymes are generally active at (377,378). Microbes are 
also often simple to genetically modify, to increase production of the enzyme of 
interest in the natural organism, or to produce it in an entirely different organism 
instead (378). The ideal production host depends on a large number of factors, 
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including protein origin, available equipment, and end use of the enzyme being 
produced (377). Several (but certainly not all possible) production hosts will be 
discussed below. As T. reesei has already been discussed above, it will not be covered 
again here, but it is worth noting that several industrially important CAZymes are 
produced by it (378). 
 
Fungi from the genus Aspergillus have long been the most commonly used industrial 
enzyme producers (378-380). Aspergillus are generally used to produce native 
Aspergillus enzymes, with various research efforts focusing on strain improvement 
to increase yields of relevant enzymes (381). Species in this genus are known to be 
lignocellulose-degrading, and have been used to produce CAZymes for industrial 
purposes (381). Aspergillus has also shown increased enzyme yields when co-
cultured with other organisms – either multiple Aspergillus species, or one 
Aspergillus and another fungus such as T. reesei (381,382). 
 
Another highly useful genus of microorganisms, bacterial rather than fungal, is the 
Bacillus genus. Bacilli are easy to manipulate genetically, and also produce a number 
of industrially-relevant enzymes naturally (383). They are known to natively 
produce several CAZymes, and are able to easily be genetically modified to produce 
CAZymes from other bacterial species (378,383). 
 
While not often used for industrial production (although there are cases where it is 
used), Escherichia coli is one of the most important microorganisms for enzyme 
production, simply because it is quite often the first choice of researchers 
investigating a new enzyme (378,384). This organism has highly effective genetic 
manipulation methods available to researchers and is extremely quick to grow and 
produce protein. Its production levels rarely match those of industrial producers, but 
its significant advantages lead to it being utilized very often by researchers, and 
sometimes by industrial processes as well (384). 
 
Chapter 4: Summary 
 

• A large variety of CAZymes is responsible for the degradation of plant 
biomass 

• GH enzymes include cellulases, xylanases, and mannanases, and are 
responsible for the degradation of glycosidic bonds 

• CE enzymes break ester bonds within lignocellulosic biomass 
• CBMs have a variety of roles, not solely in carbohydrate binding 
• Enzymes can be characterized in a variety of ways, both biochemically and 

structurally 
• A variety of different CAZyme producers exist and can be exploited 
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Chapter 5: Multicatalytic Enzymes 

 
s briefly discussed in chapter four, multicatalytic enzymes are those in 
which multiple independently folded catalytic domains are present within 
the same polypeptide chain (385). These enzymes can present several 

distinct advantages over other enzyme architectures (discussed below) which make 
them extremely interesting targets for study. While they are not without their 
challenges, the potential of these enzymes to aid in lignocellulosic biorefineries is 
extremely exciting. This chapter will discuss different enzyme architectures, 
including multicatalytic enzymes, producers of multicatalytic CAZymes, and 
methods of producing these enzymes more effectively in the future. 
 

5.1 Enzyme Architectures 
With the overall size and diversity of CAZymes, it should come as no surprise that 
they present a variety of enzyme architectures which allow them to function 
successfully. Evolution has allowed organisms to develop three main enzymatic 
architectures to degrade lignocellulose, each with its own advantages and 
disadvantages (386,387). 
 

5.1.1 Free Enzymes 
Perhaps the most basic, and by far the most common, strategy used for lignocellulose 
degradation is the secretion of free enzymes into the extracellular environment 
(Figure 5.1 A) (387). This system is adopted with a high degree of success by aerobic 
cellulolytic fungi, some of the first cellulolytic organisms to be studied (388). In this 
system, the organism produces a large quantity of CAZymes suitable for the 
environment, and secretes them extracellularly (334). The enzymes must be 
secreted, as the overall polysaccharide to be degraded is far too large to bring into 
the cell. Typically, these consist of a single catalytic domain, at times appended with 
one or more CBMs. Free, secreted enzymes have the distinct advantage of being 
relatively simple to produce and secrete for the microorganism (389). Unlike with 
other architectures, they do not require extra domains for assembly, and they are 
fairly limited in size and complexity (386,387,389). Unfortunately for the microbes, 
this ease of production comes with the downside that there is nothing to force the 
free enzymes to exist together in one place on the polysaccharide. This means that 
enzymes which may work synergistically are not necessarily distributed on the 
polysaccharide for optimal degradation, and must rely on chance for the opportunity 
to work together (387). 
 

A 



 

 50 

 
Figure 5.1: Schematic diagram of the differences between free enzymes (A), cellulosomes (B) 
and multicatalytic enzymes (C). Enzymes are represented by circles with a missing wedge 
(xylanases in red, cellulases in blue, and CE domains in yellow), CBM domains are represented 
by triangles (xylan-interacting domains in red, cellulose interacting domains in blue, and mannan 
interacting domains in green), SLH domains represented by squares, and cohesin (dark green) 
and dockerin (light green) domains are represented by half circles. Linker regions are 
represented as black lines, and the bacterial cell as a light yellow curved and cut circle in (B). 
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5.1.2 Cellulosomes 
Significantly more complex than just free enzyme secretion, the cellulosome is a 
massive protein structure produced by some anaerobic fungi and bacteria (Figure 
5.1 B) (387,390). This structure consists of multiple enzyme domains, from as few as 
six to more than 100 in some cases, linked together through interactions with a large 
scaffold domain known as a scaffoldin (391,392). The scaffoldin contains multiple 
cohesin modules, which bind with dockerin modules integrated into the sequence of 
the enzyme domain containing polypeptides (388). Although the precise 
mechanisms behind cellulosomal arrangement are poorly understood (it is known, 
however, that assembly is not random), different classes of cohesin domains interact 
with different dockerins, allowing some selectivity in arrangement (393,394). As 
well, interactions between cohesin domains within the scaffoldin protein can impact 
which enzyme domains bind in which positions (395). It is important to note that 
cellulosomes are almost exclusively anchored to the outer membrane of the cell and 
are not freely diffused into the extracellular environment (226,388,389,393,395). 
 
Cellulosomes present several major advantages for the producing organism. Within 
the cellulosome, enzyme domains that perform related functions are often located 
in close proximity in the overall structure, allowing for reaction synergy, and greatly 
increasing the rate of polysaccharide degradation (388,396). Secondly, by keeping 
the cellulosome cell-anchored, the microorganism ensures that any sugars released 
by the cellulosome are in close proximity, and easily available for uptake into the 
cell (389). This proximity of the cell to the polysaccharide being degraded also helps 
prevent any product inhibition of the enzymes within the cellulosome, as the 
products are taken up by the cell as they are produced (389). 
 
Cellulosomes, although they provide several advantages over free enzymes, are not 
without their drawbacks. The many non-enzymatic components involved in the 
cellulosome inevitably require more resource investment from the cell than simply 
secreting free enzymes, and a much higher energy cost to the cell before it starts to 
benefit. The proximity of the cellulosome to both the cell and the polysaccharide 
also precludes any community degradation of the substrate as discussed earlier, 
requiring the cell to produce most (or all) enzymatic components necessary on its 
own. Cellulosomes also have several disadvantages in the context of their use in 
lignocellulosic biorefineries. First, cellulosomes are generally limited to the surface 
of the producing cell, and are not freely diffused into the environment (397). 
Because of this, the overall number of cellulosomes produced is limited (397). 
Cellulosomes have also been seen to be incapable of two dimensional diffusion 
across the cell surface, further limiting their spatial distribution (398). Adapting 
natural cellulosomes for use also has the problem of cellulosome assembly – cohesin 
and dockerin domains are often species-specific, limiting their utilization and 
customization (399). Cellulosomes are also difficult to produce at an industrially-
relevant scale, which is a significant hurdle to their adaptation in biorefineries (400).  
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5.1.3 Multicatalytic Enzymes 
A third approach to CAZyme production is a somewhat hybrid strategy of the 
previous two. In this approach, the organism produces multicatalytic enzymes, 
where multiple catalytic domains exist within the same polypeptide chain (Figure 
5.1 C) (386). Indeed, enzymes with this character are some of the most efficient 
CAZymes discovered so far, indicating that this strategy is quite efficient (226). It is 
important at this point to note the distinction between multicatalytic and multi-
domain proteins: while multicatalytic enzymes have multiple active enzyme domains 
within one polypeptide chain, multi-domain proteins only need to have multiple 
distinct protein domains within the same polypeptide chain. These domains do not 
have to be enzymatically active. Thus, all multicatalytic enzymes are multi-domain 
proteins, but not all multi-domain proteins are multicatalytic enzymes. 
 
Utilizing this multicatalytic enzyme strategy, microorganisms are able to exploit 
many of the advantages of cellulosomes with the ease of production and mobility of 
free enzymes. For example, many multicatalytic enzymes show increased synergy 
between the catalytic domains when added to substrates as a full-length protein, as 
compared to the two catalytic domains added separately (349,352,401,402). 
Somewhat surprisingly, synergistic action of the included enzyme domains does not 
seem to be a general feature of multicatalytic enzymes, as there are many examples 
where no synergy has been observed, and in these cases, it is somewhat unclear what 
the advantage to the multicatalytic architecture is (261,403). Multicatalytic enzymes 
are able to be both freely secreted into the extracellular medium similar to free 
enzyme domains, as well as anchored to the cell surface like a cellulosome (this is 
seen in CkXyn10C-GE15A, studied in Paper I and Paper II (the cell anchoring 
domains themselves were not studied, however) (51,226,403). This allows flexibility 
to the producing organism in that it allows the enzymes to function in the most 
effective way possible, whether that is anchoring the organism to the polysaccharide, 
or burrowing into crystalline cellulose (226). 
 
The study of multicatalytic enzymes can present particular challenges to the 
researcher. Due to their typically large size, they can be extremely difficult to 
produce recombinantly (see Paper I, Paper II, Paper IV, and the section discussing 
challenges producing multicatalytic enzymes later in this thesis). It is therefore often 
necessary to divide the overall protein into its individual domains, and express and 
investigate them individually. This adds difficulty in the investigation of the synergy 
between enzyme domains. Studying multicatalytic enzymes should also involve 
studying the synergy between enzyme domains. As mentioned previously, domains 
linked in a multicatalytic fashion are expected to show synergy in their activities. In 
testing for this, the use of model substrates is often limited or impossible, as they 
may only interact with one of the enzyme domains (Paper I, Paper III). Therefore, 
an assay utilizing a natural substrate, or one as close to the natural substrate as 
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possible, must be devised. As previously mentioned, synergy studies are also better 
performed on the intact enzyme, but in some cases this is impossible (Paper I). Both 
enzyme domains can be added to the substrate together and observed for synergy, 
but this does not always produce synergistic results (Paper I, Paper III) (352). 
 
The structural study of multicatalytic enzymes can also be a particular challenge. 
Although x-ray crystallography is generally the most common way to obtain protein 
structures, multicatalytic proteins present difficulties with this technique, as the 
flexible linkers often render proper crystallization impossible (Paper I, Paper II). In 
this case, the use of other techniques, such as SAXS or cryo-EM might be used, 
however, both have their drawbacks (and may ultimately prove unsuccessful in this 
case) compared to x-ray crystallography, as discussed earlier. It can often be 
necessary to combine multiple structural techniques in order to obtain a full picture 
of the structure of the enzyme; for example, x-ray crystallography of the individual 
domains, and whole protein SAXS, similar to what was attempted in Paper II. 
 
Despite the challenges associated with their study, multicatalytic enzymes present 
an exciting prospect for industrial use. They often show superior stability and 
specific activity, without the need for non-covalent cohesin-dockerin interactions 
(386). They can also degrade lignocellulosic biomass more effectively than free 
enzymes (386). With their somewhat simplistic modular nature, they are also more 
straightforward to engineer, although small differences can have a large impact on 
enzyme synergy (402,404). 
 

5.2 Organisms That Produce Multicatalytic Enzymes 
Thus far, multicatalytic enzymes are not extremely common in the scientific 
literature, although reports on these enzymes appear to be increasing in frequency 
recently (51,352,385,405). However, in browsing through CAZy, one can find that 
many genomes appear to have at least one annotated multicatalytic enzyme (170). 
This suggests that this enzyme architecture is beneficial to many microorganisms, at 
least in some lignocellulose degradation processes. The presence of multicatalytic 
enzymes within several genera (for a more detailed discussion, see chapter four) 
which appear to have an elevated amount of these enzymes is discussed here. 
 

5.2.1 Multicatalytic Enzymes in Caldicellulosiruptor 
As of the time of writing, there are ten Caldicellulosiruptor genomes annotated 
within CAZy, containing a total of 40 multicatalytic enzymes (oddly, 
Caldicellulosiruptor hydrothermalis does not appear to encode any multicatalytic 
enzymes) (170). These multicatalytic enzymes appear to mostly contain GH 
enzymes, although there are also occasional CE and glycosyltransferase (GT) 
enzymes involved (170). A number of these enzymes have been studied, and most 
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display a synergy effect where the linked domains are more efficient linked together 
rather than separated (226,349,406-408). 
 
Although a few have shown the ability to degrade xylan, the majority of studied 
multicatalytic enzymes from Caldicellulosiruptor appear to be cellulose degrading 
(407). The most well-studied of these, CelA from C. bescii, is not only more efficient 
than leading industrial cellulases, but displays a novel mechanism of action that takes 
advantage of its multicatalytic architecture (226,349). In this mechanism, CelA was 
shown to dig cavities into polymeric substrates, degrading not only the top layer of 
polysaccharide, but also the layers underneath, enabling it to work much faster than 
traditionally used cellulases (226,349). While such in-depth studies have not been 
performed for other Caldicellulosiruptor multicatalytic enzymes, the synergies 
displayed by these enzymes is a promising indication of their biorefinery potential. 
 

5.2.2 Multicatalytic Enzymes in Bacteroides 
Significantly more Bacteroides genomes than Caldicellulosiruptor genomes are 
currently annotated in CAZy – 66 in total (170). The genus contains nearly 450 
multicatalytic enzymes, with each individual species having at least one, and some 
having up to 25 (170). Despite the large number of multicatalytic enzymes produced 
by this genus, they remain severely understudied, with far fewer published examples 
of Bacteroides multicatalytic enzymes than those from Caldicellulosiruptor. In fact, 
there are only two publications on the characterization of multicatalytic enzymes 
from Bacteroides species, a CE6-CE1 enzyme from Bacteroides ovatus (BoCE6-
CE1), and a GH8-CE15 enzyme from Bacteroides eggerthii (BeCE15A-Rex8A, the 
enzyme studied in Paper III) (200,352,385). 
 

5.2.3 Examples of Multicatalytic Enzymes in Other Organisms 
As previously mentioned, it is relatively common for the genomes of polysaccharide-
degrading organisms to encode at least one multicatalytic CAZyme. Although few 
characterized examples exist in the literature, there are several notable enzymes that 
will be discussed briefly here.  
 
ChiA from Flavobacterium johnsoniae is a multicatalytic chitinase which shows 
synergy between its two glycoside hydrolase family 18 catalytic domains (409). The 
synergy between these is remarkable, showing an approximately 20-fold increase in 
activity when the individual enzyme domains are added into solution together (as 
opposed to individually), and a further 6-fold increase in activity was shown for the 
full polypeptide (409). FjCE6-CE1 is another interesting enzyme produced by F. 
johnsoniae (352). It is one of only three  multicatalytic CAZymes in which all 
enzymatic domains are CE enzymes that have been characterized to date (the others 
being BoCE6-CE1 from B. ovatis and DmCE1-CE1 from Dysgonomonas mossii) 
(351,352). Oddly, this enzyme did not show synergy when tested, although it still 
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proved more effective than BoCE6-CE1 at increasing xylanase activity when 
combined with a GH11 xylanase (352). It is possible that the appropriate biomass 
was not selected for testing for this enzyme, but if this is the case, it highlights the 
complexity and variety of biomass, and the plethora of strategies that have evolved 
to degrade it (352). 
 

5.3 Production of Multicatalytic Enzymes 
Multicatalytic enzymes can of course be studied after homologous production by the 
encoding organisms, and has been demonstrated (226). Often, however, this is not a 
feasible approach due to the difficult conditions required to cultivate many of these 
organisms and the lack of expression control (226). The use of recombinant 
production methods is more common, but it too is not without difficulty 
(51,200,261,352). Often recombinant methods are only capable of producing 
individual domains, and not the full-length protein, suggesting that there is no one 
correct approach for the production of these enzymes (51,226,261). 
 

4.3.1 Challenges in Producing Multicatalytic Enzymes 
Production of multicatalytic enzymes can be extremely challenging, and is often 
unsuccessful (this was unceremoniously demonstrated in Paper I and Paper II, in 
which the full length enzyme was never successfully produced and purified) (51,261). 
As an example, in the case of CelA from C. bescii, almost all production of the 
protein discussed in the scientific literature involves using homologous expression 
of the enzyme or recombinant production within the native organism, rather than 
production in more common expression hosts (226,348,349). Even this production 
can prove to be highly challenging – Brunecky et al. required the use of a 600 L 
fermenter growing C. bescii (at 75°C and under anaerobic conditions, which are 
conditions that may prove difficult for many laboratories) in order to obtain enough 
CelA for their experiments (226). Attempts at production of full-length CelA in E. 
coli have repeatedly failed, although fragments have been successfully expressed 
(226,410). The only successful expression of recombinant full-length CelA so far has 
been in the uncommon expression host Bacillus megaterium (410). 
 
A major problem with recombinant production of multicatalytic enzymes tends to 
be the size of the enzyme itself. Using E. coli, the most common laboratory 
recombinant protein production system, the larger the protein being produced, the 
less likely it is to be produced successfully (411). Even with other systems, there is 
no simple answer to the problem of large protein production (412-414). 
 

5.4 Multicatalyic Enzymes Studied in This Thesis 
In this work, two multicatalytic enzymes have been studied in detail. In Paper I and 
Paper II, the enzyme CkXyn10C-GE15A from C. kristjanssonii was studied. This 
enzyme consists of two CBM22 domains, a GH10 domain, three CBM9 domains, 
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and a CE15 domain (Figure 5.2). An unstudied C-terminal portion also includes a 
cadherin domain and two SLH domains. This enzyme was studied, in part, because 
the CE15 domains in Caldicellulosiruptor organisms are rare (while the presence of 
GH10 members is extremely common) (170). Analysis of the enzyme domains 
revealed a different pH optimum for each, which was surprising, since they are 
physically linked together. Further activity analysis was unable to detect any synergy 
between the two enzyme domains. However, the rare enzyme architecture could 
indicate that there is something unique about the lignocellulosic biomass in the 
environment in which C. kristjanssonii is found that was not adequately replicated 
in the synergy experiments. 
 

 
Figure 5.2: Diagram of the domain layout for CkXyn10C-GE15A. CBM22 domains are in red, 
the GH10 domain in blue, CBM9 domains in cyan, and the CE15 domain in orange. Linker 
regions are in green. All domains are models generated with Phyre2 (303), with the exception of 
the GH10 and third CBM9 domain, which were crystalized and had structures solved in Paper 
II. 

 
Paper II was focused on the same enzyme, but with more emphasis on structural 
characterization. The structure of the CE15 domain, along with that of the third 
CBM9 domain were obtained, and the overall shape of the first three domains were 
obtained using SAXS. Combined with computer modeling, this was able to provide 
a picture of the whole enzyme (Figure 5.2). The extended conformation of the 
protein suggests that the enzyme domains can act at a significant distance from the 
cell surface, especially when the linker between the CE15 domain and the cadherin 
and SLH domains is taken into account. 
 
BeCE15A-Rex8A (Figure 5.3) studied in Paper III consists of a CE15 domain 
closely linked to a GH8 Rex domain. For this enzyme, the presence of a CE15 
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domain fused to a Rex domain was a surprise, as those enzymes are typically 
expected to function in different physical locations (the periplasm for a Rex domain 
and the extracellular environment for the CE15A domain) (194,195,239). The CE15 
domain also displayed an unusual active site, in which a normally-conserved arginine 
was substituted with a phenylalanine. Because of its poor activity, the phenylalanine 
was replaced with the arginine, but no activity was not recovered – in fact, no activity 
was seen at all with the arginine-containing variant. No synergy was seen between 
the two domains (wild-type Rex8A and CE15A) when tested on complex biomass 
substrates. It therefore seems possible that, in combination with the atypical active 
site residues present within the CE15 domain, the true target of this domain is not 
the typical CE15 target at all. 

 
Figure 5.3: Diagram of the domain layout for BeCE15A-Rex8A, generated using Phyre2 (303). 
The GH8 domain is seen in blue, the CE15 domain in orange, and the potential linker region in 
green. Catalytic residues are highlighted in yellow. 
 
Chapter 5: Summary 
 

• CAZymes can be found existing as single domain enzymes, multidomain 
enzymes (with one catalytic domain), multicatalytic enzymes, or 
cellulosomes 

• Multicatalytic enzymes provide an interesting new opportunity for more 
efficient biorefinery enzymes 

• A large number of organisms produce multicatalytic enzymes, but some 
produce more than others 

• Multicatalytic enzymes can present challenges in the production process 
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Chapter 6: Designer Enzymes 

 
nzymes in nature have evolved to help the producing organisms thrive in a 
large variety of situations (415). However, enzymes that are produced in 
nature to meet the needs of various organisms may not be appropriate to 

meet the needs of industrial processes (415). Additionally, as seen in the previous 
chapter, natural enzymes can be difficult to produce artificially, or in large 
quantities. While the field of protein engineering is still in its infancy, it has seen 
significant advances in recent years, and the production of unnatural enzymes for 
industrial purposes is closer than ever to being a reality (416). 
 

6.1 A Brief History 
Since the early 1980’s, enzyme modifications have been a tool widely used by 
researchers to study the role of individual amino acids in enzyme function, via 
substitution with other amino acid residues (416). Shortly after that, the first enzyme 
engineered to improve specific properties (in this case, resistance to oxidation by 
hydrogen peroxide) was reported (417). While this modification only required a 
single amino acid substitution (and resulted in a corresponding decrease in enzyme 
activity), it opened the door to the field of rational enzyme design (417). An early 
focus of enzyme design was based on evolution and mutation – large libraries of 
mutant genes were established, expressed, exposed to evolutionary pressures and 
tested to obtain functional variants of the enzyme of interest that displayed modified 
properties (308,418). This Nobel Prize-winning work led to the production of 
enzymes capable of withstanding organic solvents, enzymes with increased 
thermostability, activity towards novel substrates, and more desirable industrial 
properties (308). A key takeaway from this work was that often, beneficial mutations 
were found in unexpected areas of the gene of interest, suggesting an overall 
incomplete picture of how amino acid sequence and protein folding impart different 
properties on enzymes (308,419). 
 
While this directed evolutionary approach produced many important results, the 
method has a significant downside in that an overwhelming number of enzyme 
variants can be produced, and screening can be a massive time investment (308). 
Advances in knowledge surrounding enzyme function, as well as bioinformatic tools 
which can allow for the modeling of substrate interactions, as well as modeling of 
the enzyme behavior in solution, have allowed for the targeting of specific regions 
of genes for mutation, greatly lowering the number of variants that need to be 
screened (308). Even de novo enzyme design has proved possible (the Rosetta 
software, described earlier, is an excellent tool for this), although these 
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computationally designed enzymes are still often slow acting (308,420,421). With the 
knowledge gained over four decades of protein engineering, and advances in 
bioinformatics and protein modeling, the field appears to be heading towards 
rational design of enzymes for engineering favorable properties (421). By moving 
much of the work to in silico methods, enzyme engineering can be performed 
quicker, and with much less laboratory screening to obtain the same results (421). 
 

6.2 Potential for Engineering of CAZymes 
Despite their industrial importance, literature on CAZyme engineering is scarce, 
perhaps because of the abundance of CAZymes from natural sources. The few 
examples that exist in the literature are mostly done through rational design rather 
than directed evolution and show both successes and failures regarding increased 
enzyme activity, thermostability, and environmental tolerance (422-428). It is 
important to remember that despite the relative lack of enzyme engineering in the 
CAZyme field, the enzymes evolved to the needs of the producing organism likely 
do not have all desired properties sought for industrial processes, so engineering may 
become a necessity in the near future. 
 

6.3 Split Inteins for Producing and Designing Enzymes 
One of the earlier base hypotheses of molecular biology, the one gene one enzyme 
(later one gene one polypeptide) hypothesis states that one gene is transcribed into 
RNA, translated by ribosomes, and becomes one complete protein (minus any 
posttranslational modifications such as glycosylation) (429). While certainly true in 
many cases, there are a large number of exceptions, such as instances of alternative 
splicing, where this does not hold true (430). 
 
A more recently discovered and less investigated exception to the one gene, one 
polypeptide hypothesis is the presence of “split inteins” within the genome of an 
organism (431-433). Regular inteins are polypeptide sequences contained within a 
protein which have the ability to excise themselves from the protein they are 
contained in, and then rejoin the two remaining parts of the protein through a 
normal peptide bond (Figure 6.1) (434,435). While the existence of such motifs is 
fascinating, split inteins perform much the same function, but are split across two 
separate genes (431). When these genes are transcribed and translated, the two split 
intein segments are capable of binding each other in solution, excising themselves 
from their polypeptide chains, and simultaneously joining those chains together 
through a new peptide bond (431). 
 
Although the identification of split intein pairs within a genome can be challenging, 
multiple such pairs have been found in nature (432,436,437). Interestingly, the first 
split intein mentioned in the scientific literature is not naturally occurring, but was 
artificially split by the researchers who reported it (438). Shortly thereafter, the first  
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Figure 6.1 : Diagram of split intein mechanism. Panel A shows an overall diagram of the use of 
split inteins, in which an intein pair comes together and creates a fused protein and the excised 
tags. Panel B shows the detailed mechanism of the fusion of the two polypeptides and the intein 
excision. 

 
naturally split intein was discovered (439). While the rate of reaction for these initial 
split inteins was quite slow (with a t1/2 of between 6 minutes and 722 minutes), split 
inteins have since been discovered with t1/2 values as little as 16 seconds (436,440). 
While many of the initially-discovered split inteins are cross reactive with one 
another, more recent work has identified many fast-acting split inteins that are 
specific to their partners, and not cross reactive with other sets of split inteins (436). 
 
There are many examples in the scientific literature of split inteins being used for 
various different purposes. For example, split inteins have been used to label 
proteins with isotopes for NMR, in some cases ensuring only one domain of a 
multidomain protein was labelled (441,442). They have been used for allowing 
double plasmid selection from one antibiotic marker, the tagless purification of 
recombinantly-expressed proteins, and the selective killing of antibiotic-resistant 
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bacteria within mixed bacterial populations, among many other applications (443-
445). Methods have even been developed to allow for selective triggering of the split 
intein reaction, so that combination of protein fragments does not occur 
spontaneously, but only on cue (446). 
 

6.3.1 Applications of Split Inteins within the CAZyme Field 
When it comes to multicatalytic CAZymes, designing desired functions can be done 
in a rational manner using split inteins. To date, however, there is no information in 
the literature about attempts to use split inteins with CAZymes. In Paper IV, split 
inteins were used to construct multicatalytic CAZymes, including combinations that 
do not exist in nature. This has allowed for the difficulty in recombinant production 
of large multicatalytic enzymes discussed earlier in chapter six to be bypassed, by 
producing each individual domain separately. The combination of different 
CAZyme domains proved possible using multiple different split intein pairings, as 
well as multiple CAZyme domain families, and tested domains remained active after 
combining. 
 
The work described in Paper IV represents a starting point in the construction of 
customized multicatalytic CAZymes. Although not all split intein pairs tested in 
Paper IV were successful in creating combinations, the majority did appear to work. 
Several different proteins were created using split inteins, and multiple pairs were 
tested successfully. There still remain several pairs to test, and more work can be 
done to find conditions in which the seemingly non-functional (in these experiments) 
pairs will work correctly. It also remains to be seen how large the final proteins can 
be, but theoretically there is no limit to the final size. More investigation is necessary 
to determine the efficiency of conducting multiple split intein reactions at once, and 
to determine the effect of linker regions on the final constructed proteins. 
 
Previously, if a researcher were interested in making a designed multicatalytic 
CAZyme, it would require manipulation at a genetic level, using molecular biology 
techniques to combine the domains into a single reading frame, and then expressing 
the chimeric protein. As mentioned, this would also mean a very likely risk of no 
expression of the target protein due to the protein size limitations discussed 
previously. By utilizing split inteins, this process is extremely simplified – as an 
example, producing every possible linear combination of six different domains 
would require producing, and then expressing, 720 different genes. To do so using 
different split intein pairs would only require 36. In this way, split inteins can greatly 
simplify the process of creating and testing novel multicatalytic enzymes for 
industrial processes, and potentially uncovering previously unknown intramolecular 
synergy between catalytic domains. 
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Chapter 6: Summary 
 

• Enzyme modifications have been pursued since at least the 1980’s 
• Engineering of CAZymes presents an interesting possibility to improve 

many of their properties 
• Split inteins are protein segments that are capable of joining two 

polypeptides together 
• Split inteins have proven useful for the assembly of multicatalytic 

CAZymes 
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Chapter 7: Conclusions 

 
he work presented in this thesis focused primarily on the investigation and 
characterization of multicatalytic enzymes containing a CE15 catalytic 
domain. To this end, a thorough investigation of the enzyme CkXyn10C-

GE15A from C. kristjanssonii was conducted. The xylanase and glucuronoyl 
esterase domain were both biochemically characterized, with the xylanase showing 
by far its highest activity on wheat arabinoxylan, and the glucuronoyl esterase 
domain showing limited activity on tested model substrates (Paper I). Oddly, 
investigation into potential synergy between the two enzymatic domains did not 
reveal any. This result was unexpected, as it was expected that there would be a 
measurable advantage to the combination of the two domains, where the proximity 
of these domains would provide synergistic action on the targeted biomass. It is still 
possible, however, that synergy would be seen if tested on a biomass that C. 
kristjanssonii could be realistically expected to encounter in its natural environment. 
As the CE15 family of enzymes has only recently been of more focus in the scientific 
literature, it is also possible that this enzyme has unexpected substrate specificities 
that have yet to be determined. 
 
As the CE15 domain of CkXyn10C-GE15A was the first thermostable CE15 domain 
studied (Paper I), a structural investigation of the domain was conducted (Paper II). 
While the study did not reveal any direct explanations of the thermostability of the 
enzyme, it did reveal that the enzyme does not completely align with previously 
characterized bacterial or fungal CE15 domains, and appears to be a hybrid of both, 
showing only one of the three insert regions that are otherwise present in bacterial 
CE15 domains when contrasted with their fungal counterparts. A structural 
investigation of this insert suggests it may be involved in binding to or coordinating 
the lignin component of the LCC. Additionally, substitution of a previously 
identified substrate stabilizing tryptophan with a glycine residue was observed in the 
active site of CkCE15A, suggesting a preference for larger substrates when 
compared with other CE15 domains. 
 
A second multicatalytic enzyme containing a CE15 domain, BeCE15A-Rex8A, was 
also biochemically characterized (Paper III). Again, the observed lack of synergy 
between the two catalytic domains was unexpected. In this case, while the CE15 
domain did have activity on model substrates, it was significantly less active than 
what is typically seen for enzymes in this family. A normally conserved arginine 
residue was observed to be substituted with a phenylalanine, which was thought to 
be a contributing factor to the low activity levels. However, replacement of this 
phenylalanine with an arginine did not restore activity as was predicted, and instead 
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removed it entirely. This again suggests that there is more about the function of these 
domains that is unknown, and hints that there may be a different activity present 
within the family that has yet to be fully uncovered. 
 
Two more main goals of this thesis work were the attempt to produce novel 
multicatalytic enzymes not found in nature, and to successfully produce large 
multicatalytic enzymes recombinantly. These goals were addressed in Paper IV. 
Although production of novel multicatalytic enzymes was initially planned to be 
done with a DNA library, the project was adapted to utilize split inteins instead, in 
order to address the challenges posed by recombinant expression of multicatalytic 
enzymes. This production did show some difficulties, as not all split intein 
combinations proved to work successfully, and not all CAZyme domains were able 
to be expressed with split intein tags attached. Importantly, the work presented in 
Paper IV represents a proof of concept for this approach, and a solid starting point 
for the work to be expanded upon in the future. 
 
Overall, the majority of goals set out at the beginning of this work were completed. 
Large, multicatalytic enzymes were investigated, and the roles of CE15 enzyme 
domains within multicatalytic enzymes were probed, providing insights into this 
fascinating group of multicatalytic enzymes. While a custom multicatalytic enzyme 
library was not set up, the techniques and tools to do so were investigated and 
prepared, and several domains with split intein tags were prepared as a start to the 
library. 
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Chapter 8: Future Perspectives 

 
espite the advances presented in this thesis, there is still significant work to 
be done in the investigation of multicatalytic CAZymes. The overall lack 
of synergy seen in any of the enzymes investigated (Paper I, Paper II, 

Paper III) is a very curious result, and certainly warrants further study. From an 
evolutionary perspective, it is difficult to conceive of a purpose for multicatalytic 
architecture that does not provide some benefit to the producing organism. If the 
enzyme domains are not working to benefit each other in some way, the cell is 
expending considerable effort in producing the whole polypeptide for no apparent 
benefit. It also loses the ability to regulate the expression of the different enzyme 
domains separately, so it may even be detrimental. It therefore stands to reason that 
there is, in fact, some purpose behind this multicatalytic architecture, and it simply 
hasn’t been discovered yet. 
 
Perhaps an explanation for the observed lack of synergy, and also an avenue for 
further investigation, is the presence of CE15 domains in both studied enzymes. 
Compared to many other CAZyme families, CE15 enzymes have been studied 
relatively little. While model substrates for the enzymes exist and can be used to 
characterize them to some extent, natural substrates are incredibly difficult to isolate 
and even more so characterize reactions on. Furthermore, the model substrates do 
not cover the substrate diversity that is assumed to exist in nature. It is assumed that 
the enzymes are significantly more efficient on bulkier components within LCCs 
(which is supported by their universally increased activity on the larger model 
substrates), but what those substrates are exactly, how the activity is impacted by 
different lignin components, and how efficient the CE15 enzymes are in their natural 
environment all remain to be elucidated. 
 
Some of the work presented here on CE15 domains would seem to suggest that the 
model substrates do not always accurately reflect the role of the domains in vivo. 
Besides the lack of synergy, looking at BeCE15A-Rex8A from Paper III, the 
enzyme domain combination does not make sense if the CE15 domain is acting on 
bonds within lignin. Previously characterized Rex domains have been shown to not 
be secreted by the cell, and act on xylooligosaccharides imported into the cell. The 
CE15 domains, on the other hand, are all secreted extracellularly by their producing 
organism, as lignin is too large to be brought into the cell. This makes the domain 
combination seen in BeCE15A-Rex8A somewhat of a mystery, as these domains 
would not be expected to function in the same physical location. This would suggest 
that further study on the CE15, the Rex, or both is needed to elucidate the natural 
substrate of these enzymes, as well as what environment they function in. 
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A large part of the work in this thesis was performed in order to build towards the 
construction of a library of both natural and artificially designed multicatalytic 
enzymes. While no such library was completed, the techniques to build one were 
established, and many domains of interest for inclusion in the library were identified. 
The use of split inteins represents an exciting prospect for the construction of this 
library, and the rapid construction of novel multicatalytic enzymes. Ideally this 
method could be used to produce difficult enzymes, such as CkXyn10C-GE15A 
from Paper I, which are unable to be produced as full length enzymes through other 
means. In this specific case, it would allow a more complete study of the potential 
synergy between the two catalytic domains. 
 
While the initial functionality of the split intein method for multicatalytic enzyme 
construction was demonstrated in Paper IV, much work is left to be done in order 
to perfect the technique and construct desired libraries. While many split intein pairs 
were used, not all proved to be successful, and there are still more available to be 
tested. The pairs were also not tested for cross-reactivity. A lack of cross-reactivity 
has previously been reported in literature, but this has not been tested in a 
multicatalytic enzyme context, and would still need to be verified before library 
construction begins in earnest (436,437). 
 
The chaining together of split intein reactions is another untested component of the 
library construction process. Currently, it is assumed that the presence of different 
split intein tags on the same protein will not interfere with the fusion process. There 
is, however, little experimental verification of this assumption. While there are 
several examples in the literature of the use of dual split intein pairs in protein 
construction (and in Paper IV, components with multiple intein tags were 
successfully used in protein construction), but data on the use of three or more intein 
pairs remains elusive. 
 
A factor that was not explored in Paper IV, but remains extremely important for 
construction of custom multicatalytic enzymes, is the analysis of linker regions 
between the enzyme domains. These linker regions can have a significant impact on 
the distance between catalytic domains, their orientation, and potentially how well 
they work together. Linker regions for one multicatalytic enzyme were briefly 
discussed in Paper II, and even in that one enzyme it was clear that the linkers can 
have radically different lengths and compositions. The effects of these linkers on 
their associated catalytic domains are little studied, and need to be examined in 
detail for the multicatalytic enzyme library to be effective. Ideally, different linkers 
will be able to be produced with split intein tags, and then can be swapped into 
customized enzymes as needed. This split intein method could also be used to 
investigate the presence of multiple CBM domains within CAZymes. This is a 
commonly occurring architecture, where multiple CBM domains of the same family 
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are present attached to a single CAZyme domain (seen in Paper I and Paper II). 
The split intein construction method would allow for the simple inclusion or 
exclusion of one or more CBM domains, and even the inclusion of CBM domains 
not natively found in the enzyme studied, in order to better elucidate their functions. 
 
Perhaps the most intriguing possibility for this split intein technique would be its 
application to the construction of unnatural multicatalytic enzymes. A clear example 
of this would be the inclusion of lytic polysaccharide monooxygenases (LPMOs) 
within a multicatalytic architecture. These relatively newly discovered enzymes have 
shown to be incredibly efficient at preparing crystalline cellulose for degradation, 
and have significant industrial relevance, however, their inclusion in natural 
multicatalytic enzymes is rare (170). While there is still much debate pertaining to 
LPMOs in the literature, their inclusion in a multicatalytic architecture would allow 
for the possibility to construct highly efficient multicatalytic cellulases, and possibly 
give more insight into the mechanism and function of LPMOs as they relate to other 
catalytic domains. 
 
Utilizing split inteins with the overall goal of producing unnatural multicatalytic 
enzymes for industrial use should allow for significantly increased efficiency of 
industrial processes. Enzymes currently used are those that have evolved to benefit 
their producing organisms first and foremost, and any benefit to industrial processes 
is merely a side effect of their evolutionary purpose. The ability to design enzymes 
specifically tailored for industrial use, and the ability to combine and (hopefully) 
instill synergy between enzymes from unrelated species is expected to be of great 
benefit to any lignocellulosic biorefinery. 
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