
Thesis for the degree of doctor of philosophy

Decision-Making in
Autonomous Driving using
Reinforcement Learning

Introducing an uncertainty-aware approach

CARL-JOHAN HOEL

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2021

Decision-Making in Autonomous Driving using
Reinforcement Learning
Introducing an uncertainty-aware approach
CARL-JOHAN HOEL
ISBN 978-91-7905-584-4

© CARL-JOHAN HOEL, 2021

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5051
ISSN 0346-718X

Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE–412 96 Gothenburg
Sweden
Telephone: +46 (0)31–772 1000

Chalmers Digitaltryck
Gothenburg, Sweden 2021

Decision-Making in Autonomous Driving using Reinforcement Learning
Introducing an uncertainty-aware approach
CARL-JOHAN HOEL
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The main topic of this thesis is tactical decision-making for autonomous
driving. An autonomous vehicle must be able to handle a diverse set of
environments and traffic situations, which makes it hard to manually specify
a suitable behavior for every possible scenario. Therefore, learning-based
strategies are considered in this thesis, which introduces different approaches
based on reinforcement learning (RL).

A general decision-making agent, derived from the Deep Q-Network
(DQN) algorithm, is proposed. With few modifications, this method can be
applied to different driving environments, which is demonstrated for various
simulated highway and intersection scenarios. A more sample efficient agent
can be obtained by incorporating more domain knowledge, which is explored
by combining planning and learning in the form of Monte Carlo tree search
and RL. In different highway scenarios, the combined method outperforms
using either a planning or a learning-based strategy separately, while requir-
ing an order of magnitude fewer training samples than the DQN method.

A drawback of many learning-based approaches is that they create black-
box solutions, which do not indicate the confidence of the agent’s decisions.
Therefore, the Ensemble Quantile Networks (EQN) method is introduced,
which combines distributional RL with an ensemble approach, to provide an
estimate of both the aleatoric and the epistemic uncertainty of each decision.
The results show that the EQN method can balance risk and time efficiency in
different occluded intersection scenarios, while also identifying situations that
the agent has not been trained for. Thereby, the agent can avoid making un-
founded, potentially dangerous, decisions outside of the training distribution.

Finally, this thesis introduces a neural network architecture that is in-
variant to permutations of the order in which surrounding vehicles are listed.
This architecture improves the sample efficiency of the agent by the factorial
of the number of surrounding vehicles.

Keywords: Autonomous driving, reinforcement learning, tactical decision-
making, Monte Carlo tree search, aleatoric uncertainty, epistemic uncer-
tainty, neural networks.

i

To my family.

Acknowledgments

The road to a PhD degree is long and winding. Sometimes things work
out easier than expected, but more often than not, unexpected obstacles are
lurking behind the next corner. Therefore, I am highly grateful to all the
people who in different ways have taken part in this journey, by providing
guidance, support, or sometimes just a much-needed laugh.

First of all, I would like to express gratitude to my supervisors Prof. Kris-
ter Wolff and Prof. Leo Laine for guiding me through difficult choices and
always believing in me. I am also thankful to my examiner Prof. Mattias
Wahde for welcoming me as a PhD student and for raising the bar of my
scientific writing skills. I would not have been able to start my PhD studies
without the support from my former managers at Volvo, Inge Johansson and
Stefan Edlund. Later Anna Wrige Berling and currently Julia Nilsson have
also been excellent managers who continued to provide a solid base at Volvo.

I would like to thank my colleagues at AI Sweden, the VEAS division at
Chalmers, and the Driver and Vehicle analysis groups at Volvo for interest-
ing discussions and a friendly working environment. Especially during the
pandemic, the virtual ‘fika’ sessions have provided revitalizing breaks from
the long hours of writing. I am also very grateful to Prof. Mykel Kochender-
fer and Prof. Katie Driggs-Campbell at Stanford for welcoming me to SISL
for an inspiring semester, which gave me many valuable insights and new
perspectives.

Last but not least, this work was financially supported by Volvo Group,
the Wallenberg Artificial Intelligence, Autonomous Systems, and Software
Program (WASP), and Vinnova FFI. This support is gratefully acknowl-
edged.

v

List of included papers

The following publications form the foundation of this thesis. The author
of the thesis was the main contributor to Paper I - IV and VI. Paper V
was written in cooperation with Tommy Tram and both authors contributed
equally to this work.

I. C. J. Hoel, M. Wahde, and K. Wolff, An evolutionary approach to
general-purpose automated speed and lane change behavior, in Proceed-
ings of the 16th IEEE International Conference on Machine Learning
and Applications, Cancun, Mexico, 2017, pp. 743-748.

II. C. J. Hoel, K. Wolff, and L. Laine, Automated speed and lane change
decision making using deep reinforcement learning, in Proceedings of
the 21st IEEE International Conference on Intelligent Transportation
Systems, Maui, HI, USA, 2018, pp. 2148-2155.

III. C. J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, Combining planning and deep reinforcement learning in tactical
decision making for autonomous driving, in IEEE Transactions on In-
telligent Vehicles, vol. 5, no. 2, pp. 294-305, 2020.

IV. C. J. Hoel, K. Wolff and L. Laine, Tactical Decision-Making in Au-
tonomous Driving by Reinforcement Learning with Uncertainty Esti-
mation, in Proceedings of the IEEE Intelligent Vehicles Symposium,
Virtual conference, 2020, pp. 1563-1569.

V. C. J. Hoel, T. Tram, and J. Sjöberg, Reinforcement Learning with Un-
certainty Estimation for Tactical Decision-Making in Intersections, in

vii

Proceedings of the 23rd IEEE International Conference on Intelligent
Transportation Systems, Virtual conference, 2020, pp. 1-7.

VI. C. J. Hoel, K. Wolff, and L. Laine, Ensemble Quantile Networks:
Uncertainty-Aware Reinforcement Learning with Applications in Au-
tonomous Driving, submitted to IEEE Transactions on Neural Net-
works and Learning Systems, 2021.

viii

Table of Contents

Abstract i

Acknowledgments v

List of included papers vii

1 Introduction 1
1.1 Decision-making for autonomous driving 1
1.2 Approach . 2
1.3 Limitations . 5
1.4 Contributions . 5
1.5 Thesis outline . 6

2 Related work 7
2.1 Rule-based and planning-based methods 7
2.2 Learning-based methods . 9

3 Technical background 13
3.1 Markov decision processes . 13
3.2 Reinforcement learning . 15

4 Model-free RL approaches 17
4.1 Simulated driving scenarios 18
4.2 Value-based RL, DQN agent 19

4.2.1 Approach . 19
4.2.2 Results and discussion 21

ix

4.3 Policy-based RL, GA agent 24
4.3.1 Approach . 24
4.3.2 Results and discussion 26

5 Combining planning and RL 29
5.1 Approach . 30
5.2 Simulated experiments . 32
5.3 Results and discussion . 34

6 Uncertainty of RL-based agents 37
6.1 Approach . 38

6.1.1 Epistemic uncertainty 38
6.1.2 Aleatoric uncertainty 40
6.1.3 Aleatoric and epistemic uncertainty 42

6.2 Simulated experiments . 43
6.3 Results and discussion . 45

7 Discussion 51
7.1 Generality . 51
7.2 Sample and computational complexity 52
7.3 Safety . 54
7.4 MDP formulation . 54
7.5 Neural network architecture 55

8 Conclusions and future work 57
8.1 Concluding remarks . 57
8.2 Future research directions . 59

Bibliography 61

INCLUDED PAPERS

x

Chapter 1
Introduction

Autonomous driving technology is expected to have a massive effect on the
current transportation system and benefit society in many ways. For ex-
ample, over one million people are killed in traffic-related accidents each
year, where the vast majority of the accidents are caused by human mis-
takes [66, 59]. By removing humans from the control of the vehicles, au-
tonomous driving could significantly improve the traffic safety. Furthermore,
the productivity of commercial heavy vehicles is increased when fewer hu-
man drivers are required, and the road infrastructure could be utilized more
efficiently by scheduling transports outside of rush hours, for example during
nights [17].

Major progress towards deploying autonomous vehicles has been made
during the last decade. The perception systems have been remarkably im-
proved, largely due to the success of deep learning techniques [27]. The
low-level control of the vehicle is a mature research area and can be solved
with classical control theory methods [49]. However, how to approach the
high-level decision-making in complex traffic situations is less explored and
forms the main topic of this thesis.

1.1 Decision-making for autonomous driving

The decision-making task of an autonomous vehicle is commonly divided
into three different levels: strategic, tactical, and operational decision-
making [41], also referred to as navigation, guidance, and stabilization [70].

1

2 Chapter 1. Introduction

The strategic level considers the high-level goals of a transport mission and
handles the route planning, whereas the tactical decision-making level mod-
ifies the strategic plan in order to adapt to the current traffic situation.
The tactical decisions could for example consider when to change lanes in a
highway driving situation, or whether to stop at, or drive through, an inter-
section. Finally, the operational decision-making level translates the desired
maneuvers of the tactical level into a detailed trajectory, which is used to
control the actuators of the vehicle. The focus of this thesis is the tactical
decision-making level.

A tactical decision-making agent for an autonomous vehicle needs to man-
age a diverse set of environments, which could range from structured highway
driving to complex urban surroundings. To anticipate all possible traffic sit-
uations that an autonomous vehicle should be able to handle, and manually
code a suitable behavior for all of them, would be extremely time consuming
and error prone, if at all possible. Furthermore, a tactical decision-making
agent needs to interact with other traffic participants and consider a varying
degree of uncertainty of the current state. Sensor imperfections and occlu-
sions provide an incomplete view of the physical state of the environment,
while the intentions of the surrounding traffic participants are not directly
observable. This limited information results in a high uncertainty of the
future development of a traffic scene, which needs to be considered when
making decisions.

1.2 Approach

Many promising methods for tactical decision-making in autonomous driv-
ing already exist, see Chapter 2 for a broad overview. However, most of
these methods are tailored for limited driving scenarios and do not scale to
the complexity of the real world. Different methods could be combined for
different scenarios, but such an iterative approach, if at all feasible, would re-
sult in an extremely complex system. An illustrative analogy, partly adapted
from the book by Russell and Norvig [53], would be to try to reach the moon
by building a ladder. It may seem like the project makes progress every day
when a new section is added, but nevertheless, the ladder will never reach the
goal. Instead, one may take a step back and approach the task in a funda-
mentally different way, by building a rocket. The progress towards the goal
will be less apparent during the construction process, compared to extending

1.2. Approach 3

the ladder, but when finished, the rocket has the potential to actually reach
the moon.

This thesis is based on the assumption that it may not be feasible to cre-
ate a tactical decision-making agent by incrementally improving manually
specified systems. Instead, strategies that are based on learning a suitable
behavior from data are explored, which have the potential to generalize to all
types of driving scenarios. From a machine learning perspective, supervised
learning or reinforcement learning (RL) techniques could be considered. To
use a supervised learning approach for directly learning how to make deci-
sions from human driver demonstrations suffers from a distributional shift
between training and test data, which is further discussed in Chapter 2.
In contrast, RL deals with sequential decision-making problems where some
form of utility is maximized [63], which is a natural way to formulate the task
of a decision-making agent for autonomous driving. Therefore, the overarch-
ing purpose of this thesis is to investigate how RL methods can be used in
practice to create a tactical decision-making agent for autonomous vehicles,
and thereby supply a few early components to the rocket that will hope-
fully yield a general decision-making agent. More specifically, the following
research questions (RQs) are considered:

RQ 1: How can a general decision-making agent for autonomous
driving be created through RL? (Chapter 4, Paper I and II)
This thesis introduces, analyses, and compares a policy-based and a value-
based RL algorithm, which are tested in different simulated highway driving
scenarios. The first approach uses a genetic algorithm (GA) [24] to auto-
matically generate a rule based decision-making agent, whereas the second
approach is based on a Deep Q-Network (DQN) agent [42]. The second ap-
proach also introduces a new way of applying a convolutional neural network
architecture [38] to a high-level state description of interchangeable objects,
which significantly improves both the training speed and the quality of the
final agent. Both approaches manage to navigate around 10% faster through
dense traffic compared to a commonly used baseline method, consisting of
the Intelligent Driver Model (IDM) [67] for the longitudinal motion and Min-
imizing Overall Braking Induced by Lane changes (MOBIL) model [31] for
the lateral motion. However, the main benefit of the two approaches, com-
pared to classical methods, is that they are general, i.e., not limited to a
specific driving scenario.

4 Chapter 1. Introduction

RQ 2: In what way can domain knowledge be incorporated into an
RL agent? (Chapter 5, Paper III)
Model-free RL approaches to decision-making problems provide general
methods that use little domain knowledge. Nevertheless, in autonomous
driving, some kind of model of the surrounding traffic is often available and
could be exploited to improve the quality of the decisions. Therefore, this
thesis introduces a third approach, which incorporates more domain knowl-
edge and combines the concepts of planning and learning, in the form of
Monte Carlo tree search (MCTS) [9] and deep reinforcement learning. This
method is inspired by the AlphaGo Zero algorithm [58], which is here first
extended to a domain with a continuous state space and where self-play can-
not be used, and then adopted to the autonomous driving domain. A general
tactical-decision making framework is introduced and tested in different sim-
ulated highway driving scenarios, where it performs significantly better than
the IDM/MOBIL model. The strength of combining planning and learning
is also illustrated by a comparison to using the Monte Carlo tree search or
the learned policy separately.

RQ 3: How can an RL-based agent provide an uncertainty estimate
of its decisions? (Chapter 6, Paper IV, V, and VI)
Previous RL-based approaches provide black-box solutions, which do not of-
fer information on how confident the trained agent is about its decisions.
An estimate of the agent’s uncertainty is fundamental for real-world appli-
cations of autonomous driving. Uncertainty stem from stochasticity of the
environment (aleatoric uncertainty), e.g., in situations with occlusions, or
lack of knowledge (epistemic uncertainty) in situations that the agent has
not been trained for [33]. This thesis introduces the Ensemble Quantile Net-
works (EQN) method, which combines distributional RL with an ensemble
approach, to obtain an estimate of both the aleatoric and the epistemic uncer-
tainty. A criterion for classifying which decisions that have an unacceptable
uncertainty is also introduced. The results show that the EQN method can
balance risk and time efficiency in different occluded intersection scenarios,
by considering the estimated aleatoric uncertainty. Furthermore, in both
different highway and intersections scenarios, it is shown that the epistemic
uncertainty information of the trained agent can be used to identify situa-
tions that are outside of the training distribution. By applying a backup
policy in such situations, arbitrary decisions are avoided, which increases the
safety of the agent.

1.3. Limitations 5

1.3 Limitations

The following aspects of using RL to create a tactical decision-making agent
for autonomous driving are not considered in this thesis:

• Whether it is possible to guarantee safety through a learning-based
method is an open question, and out of the scope of this thesis. While
the uncertainty estimation methods of Chapter 6 can be used to in-
crease the safety, an underlying safety layer is assumed to always mon-
itor the decisions of the RL-based agents.

• The presented algorithms have been tested in simulated environments.
How an agent that has been trained in simulation can be transferred
into the real world is an interesting research topic, but is out of the
scope of this thesis, although some aspects are touched upon in Chap-
ter 6.

• This work only considers control of one vehicle and does not include
multi-agent control aspects.

• Simple Markov decision process (MDP) formulations have been used
in this thesis, to provide clear interpretations and analyses of the re-
sults. In a real-world application, the representation of the state, the
choice of action space, and the composition of the reward function will
likely require more complex design choices, which is further discussed
in Section 7.4.

1.4 Contributions

The main contributions of this thesis are:

• Two conceptually general approaches to creating a tactical decision-
making agent, which both show promising results by outperforming the
IDM/MOBIL model in different highway driving scenarios (Chapter 4
and Paper I, II).

• An extension of the AlphaGo Zero algorithm, which allows it to be used
in domains with a continuous state space and where self-play cannot
be used (Chapter 5 and Paper III).

6 Chapter 1. Introduction

• The extension of two RL methods, which provide an estimate of the
aleatoric or epistemic uncertainty, respectively, together with confi-
dence criteria, which can be used to identify situations with high un-
certainty (Chapter 6 and Paper IV, V, VI).

• The EQN algorithm, which simultaneously quantifies both the aleatoric
and epistemic uncertainty of a trained agent (Chapter 6 and Paper VI).

• A neural network architecture that is invariant to permutations of the
order in which surrounding traffic participants are listed, which speeds
up the training process and improves the quality of the trained agent
(Chapter 4 and Paper II).

• A comparison and analysis of the properties of the introduced ap-
proaches (Chapter 7).

1.5 Thesis outline

A review of related work is presented in Chapter 2, which is followed by a
brief background to Markov decision processes and reinforcement learning
in Chapter 3. This chapter also introduces the notation and terminology
that are used in the subsequent chapters. Chapters 4, 5, and 6 describe
the respective research questions of Section 1.2 in more detail and present
approaches to address them, together with an overview of the main results.
The properties of the different approaches are discussed and compared in
Chapter 7. Finally, Chapter 8 provides some concluding remarks and future
research directions.

Chapter 2
Related work

A large variety of approaches to the sequential decision-making task of au-
tonomous driving has been presented in the literature. This chapter gives a
broad introduction to the main research directions, but it does not aspire to
provide a comprehensive survey of each class of approaches.

2.1 Rule-based and planning-based methods

Early approaches to tactical decision-making for autonomous vehicles often
used rule-based methods, commonly implemented as handcrafted state ma-
chines. For example, during the DARPA Urban Challenge, a rule-based
approach was adopted by the winning team from the Carnegie Mellon Uni-
versity, where different modules handled the behavior for the different driving
scenarios that were encountered [72]. Other participants, such as Stanford
and Virginia Tech, used similar strategies [2, 43]. While successful for a
limited and controlled environment such as the Urban Challenge event, it is
unlikely that rule-based approaches could scale to handle the complexity and
diversity of real-world driving.

Another group of algorithms treats the decision-making task as a motion
planning problem. Commonly, a prediction model is used to predict the
motion of the other agents, and then the behavior of the vehicle that is being
controlled, henceforth referred to as the ego vehicle, is planned accordingly.
This results in a reactive behavior, since the predictions are independent of
the ego vehicle plan. Therefore, interaction between the ego vehicle and other

7

8 Chapter 2. Related work

agents is not explicitly considered, but may happen implicitly by frequent
replanning. Search-based planners typically discretize the state space and
then apply Dijkstra’s algorithm [15] or one of the algorithms from the A*
family [19]. These techniques were also commonly used during the DARPA
Urban Challenge [2, 43]. However, since real-time performance can be hard
to achieve with graph-search algorithms, sampling-based algorithms such as
rapidly-exploring random trees [37] have been used for motion planning, e.g.,
by Karaman et al. [28]. A third approach to solve the motion planning
problem is to use optimization-based techniques, for example optimal control,
which was applied to highway driving scenarios by Werling et al. [76]. Since
human behavior is complex and varies between individuals, some algorithms
use a probabilistic prediction as input to the motion planning. This is for
example shown in a study by Damerow et al. [14], which aims to minimize
the risk during an intersection scenario. Additional approaches to motion
planning for autonomous driving are provided in the surveys by Gonzáles et
al. [18] and Paden et al. [49].

It is common to model decision-making problems as Markov decision
processes or partially observable Markov decision processes (POMDPs) [34].
This mathematical framework allows modeling of uncertainty in the current
state, uncertainty in the future development of the traffic scene, and modeling
of an interactive behavior. The task of finding the optimal policy for a
POMDP is most often intractable, but many approximate methods exist.
One way to group these methods is in offline and online methods. There
are powerful offline algorithms for planning in POMDPs, which can solve
complex situations. One example is shown by Brechtel et al., which proposes
a solution to how measurement uncertainty and occlusions in an intersection
can be handled [8]. In their work, an offline planner precomputes the policy
by using a state representation that is learned for the specific scenario. A
similar approach is adopted by Bai et al. for an intersection scenario [3]. The
main drawback of these offline methods is that they are designed for specific
scenarios. Due to the large number of possible real-world scenarios, it is
challenging to precalculate a policy that is generally valid.

Online methods compute a policy during execution, which makes them
more versatile than offline methods. However, the limited available computa-
tional resources require a careful problem formulation and limit the solution
quality. Ulbrich et al. use a POMDP framework to make decisions on when
to change lanes during highway driving [69]. In order to make it possible to
solve the problem with an exhaustive search, a problem-specific high-level

2.2. Learning-based methods 9

state space is created, which consists of states that represent whether or not
a lane change is possible or beneficial. However, due to the specialized state
space, it is hard to generalize this method. Another online approach for
solving a POMDP is the family of Monte Carlo tree search algorithms [9],
which is used by Sunberg et al. to make lane changing decisions on a high-
way [62]. In order to handle the continuous state description, the tree search
is extended with a technique called progressive widening [11]. Furthermore,
other drivers’ intentions are estimated with a particle filter. A hybrid ap-
proach between offline and online planning is pursued in a study by Sonu et
al., where a hierarchical decision-making structure is used [60]. The decision-
making problem is modeled on two levels as MDPs, since full observability
is assumed. The high-level MDP is solved offline by value iteration and the
low-level MDP is solved online with MCTS.

2.2 Learning-based methods

In planning-based methods, different algorithms are used to find a policy that
maximizes the utility of the agent’s behavior by using a model of the system.
However, data-driven approaches are fundamentally different, since with this
class of methods, an agent instead learns how to behave from observing
data. This section describes different types of data-driven approaches that
have been explored for autonomous driving.

An intuitive approach is to collect data from when an expert is performing
a task and then use supervised learning to imitate the behavior of the expert.
This method is often referred to as behavioral cloning and was first applied
to autonomous driving in the ALVINN project [51]. Unfortunately, for many
cases, behavioral cloning suffers from compounding errors, which refers to the
problem when small mistakes gradually push the agent further away from the
training distribution, into states from which the agent does not know how to
recover. This problem can be mitigated by an active learning approach, where
an expert can be queried during the training process [52], which for example
has been applied to autonomous driving by Kelly et al. [29]. An alternative
is to synthesize data by perturbing the expert’s driving, which was done in
a study by Bansal et al. [4]. Generative adversarial imitation learning [21]
provides another method to handle the compounding error problem and has
showed promising results in different highway driving scenarios [36].

10 Chapter 2. Related work

Reinforcement learning is conceptually different from supervised learn-
ing, since labeled input-output samples are not available. Instead, the agent
learns how to make decisions from interacting with the environment. RL
methods are versatile, and have proven successful in various domains, such
as playing Atari games [42], in continuous control [40], reaching a super
human performance in the game of Go [58], and beating the best chess com-
puters [57]. One advantage of RL methods, compared to planning based
methods, is that a model of the environment is not required, i.e., the tran-
sition probabilities between different states are not assumed to be known.
Furthermore, many RL methods provide a general framework and an agent
could, in theory, learn how to behave correctly in all possible driving situ-
ations. During the last few years, many papers have addressed the task of
applying RL approaches to autonomous driving. For example, DQN-based
agents were used by Tram et al. [65] and Isele et al. [26] for navigating
through different intersection scenarios, with varying driver intentions and
occlusions. Commonly, a high-level action space is used together with the
DQN algorithm. Other studies use policy gradient RL methods to directly
control the speed and the steering angle of the vehicle, for example in lane
changing and urban scenarios [73, 10]. Safety of the RL-based agents has
been addressed by restricting dangerous actions, either by heuristics [44],
linear temporal logic [7], or using an underlying motion planner with hard
constraints [55]. A majority of these studies perform both the training and
evaluation in simulated environments, whereas some train the agent in a sim-
ulator and then apply the trained agent in the real world [50, 4], or for some
limited scenarios, the training itself is also performed in the real world [30].
Overviews of RL-based studies for autonomous driving are given by Kiran et
al. [32] and by Ye et al. [77].

Both planning-based and RL-based methods use a reward function to find
a policy that maximizes the cumulative future reward. However, for complex
tasks such as autonomous driving, the design of the reward function is in
itself a complicated task. For limited scenarios, the reward function can be
manually specified and tuned until the agent finds a desired behavior, which
is referred to as reward shaping [45]. However, for realistic scenarios, the
number of possible reward features is massive and how to balance rewards
related to, e.g., safety and efficiency is a complex issue. A practical approach
is to instead learn the reward function from the behavior of human drivers by
inverse reinforcement learning (IRL) [46]. An IRL approach was for example
used by Kuderer et al. to learn the individual preferences of human drivers

2.2. Learning-based methods 11

with different driving styles [35]. Sharifzadeh et al. combined IRL with DQN
and Wang et al. used an adversarial IRL approach to simultaneously obtain
both the reward function and the policy for different lane-changing scenar-
ios [56, 74]. Zhu et al. [78] provide an overview of IRL applied to autonomous
driving. Except for performing planning and RL, the learned reward function
can also be used to predict the behavior of other traffic participants. IRL
for predictions was for example used by Ziebart et al. for pedestrians [79], by
Sun et al. for human drivers in intersections [61], and by Sadigh for highway
driving situations [54].

Chapter 3
Technical background

This chapter provides a brief introduction to Markov decision processes and
reinforcement learning. The purpose of the chapter is to summarize the
most important concepts and introduce the notation that are used in the
subsequent chapters. A comprehensive overview of MDPs and RL is given in
the books by Kochenderfer [34] and Sutton and Barto [63], upon which this
chapter is based.

3.1 Markov decision processes

Sequential decision-making problems in stochastic environments are com-
monly modeled as MDPs. Importantly, an MDP satisfies the Markov prop-
erty, which requires that the probability distribution of the next state only
depends on the current state and the action taken by the agent, i.e., not on
the history of previous states or actions. An MDP is formally defined as the
tuple (S,A, T, R, γ), which is described in the following list [34, Ch. 4]:

• The state space S represents the set of all possible states of the envi-
ronment. This set could consist of both discrete and continuous states.

• The action space A represents the set of all valid actions the agent can
take. This set could also consist of both discrete and continuous actions.
However, since this thesis focuses on high-level decision-making, only
discrete actions are considered here.

13

14 Chapter 3. Technical background

• The state transition model T (s′|s, a) describes the probability that the
system transitions to state s′ ∈ S from state s ∈ S when action a ∈ A
is taken.

• The reward function R(s, a) returns a scalar reward r for each state-
action pair.

• The discount factor γ ∈ [0, 1) is a scalar that discounts the value of
future rewards. For a finite horizon MDP, γ could also take the value 1.

A policy π is a mapping from a state to an action, which could either be
deterministic a = π(s) or probabilistic a ∼ π(a|s). The value of being in a
state while following a policy is described by the value function

V π(s) = E

[∞∑

k=0

γkR(sk, ak)|s0 = s, π

]
. (3.1)

The goal of the agent is to find a policy which maximizes the value of each
state.

In many decision-making problems, the agent does not have direct access
to the state of the environment. Such a problem is commonly modeled as
a partially observable Markov decision process, which is an extension to the
MDP framework that also models state uncertainty. A POMDP is formally
defined as the tuple (S,A,O, T, O,R, γ), where the state space, action space,
transition model, reward function, and discount factor are defined as for an
MDP. A POMDP has two additional components [34, Ch. 6]:

• The observation space O, which is the set of possible observations.

• The observation model O(o|s′, a), which describes the probability of
observing o ∈ O in state s′ after action a has been taken.

Since the agent does not have direct access to the current state in a POMDP,
the agent needs to reason about the history of observations and actions. This
history is often merged in a belief state b, which represents a probability
distribution over the state space. In this case, the policy is a mapping from
beliefs to actions π(b).

For many real-world problems, it is not possible to represent the prob-
ability distributions T or O explicitly. For some solution approaches, only
samples are needed, and then it is sufficient to define a generative model

3.2. Reinforcement learning 15

G that samples a new state or observation from a given state and action,
i.e., s′ ∼ G(s, a) for the MDP case [34, Ch. 4] and (s′, o) ∼ G(s, a) for the
POMDP case [34, Ch. 6].

3.2 Reinforcement learning

If all the elements (S,A, T, R, γ) of an MDP are known, an agent can use
this model to directly compute an optimal policy. Such a problem is often
considered a planning problem. For small MDPs, dynamic programming1

techniques can provide an exact solution, which is calculated offline, i.e.,
before the agent is deployed in the environment. For example, in value
iteration [34, Ch. 4], the Bellman operator is iteratively applied to the value
function for all states,

Vn+1(s) = max
a

[
R(s, a) + γ

∑

s′

T (s′|, a, s)Vn(s′)

]
. (3.2)

As n goes to infinity, Vn converges to the unique optimal value function V ∗,
and an optimal policy (not necessarily unique) is extracted by

π(s) = arg max
a

[
R(s, a) + γ

∑

s′

T (s′|, a, s)V ∗(s′)
]
. (3.3)

However, for many real-world problems with high dimensional state spaces,
it is intractable to compute and store a policy offline. Contrarily to offline
methods, online search methods perform planning from the current state up
to some horizon, when the agent has been deployed. Thereby, the agent can
limit the computation to states that are reachable from the current state,
which is often significantly smaller than the full state space [34, Ch. 4].

In many problems, the state transition probabilities or the reward func-
tion are not known. These problems can be solved by reinforcement learning
techniques, in which the agent learns how to behave from interacting with the
environment [34, Ch. 5], see Figure 3.1. Compared to supervised learning,
reinforcement learning presents some additional challenges. Since the data
that are available to an RL-agent depends on its current policy, the agent

1Dynamic programming refers to simplifying a complex problem by breaking it down
into smaller sub-problems, often in a recursive manner.

16 Chapter 3. Technical background

Agent Environment

action, 𝑎

state, 𝑠

reward, 𝑟

Figure 3.1: In a reinforcement learning problem, an agent learns a policy π by
interacting with its environment. The agent collects experience by repeatedly taking
actions and then observing the resulting state and reward.

must balance exploring the environment and exploiting the knowledge it has
already gained. Furthermore, a reward that the agent receives may depend
on a crucial decision that was taken earlier in time, which makes it important
to assign rewards to the correct decisions.

RL algorithms can be divided into model-based and model-free ap-
proaches [34, Ch. 5]. In the model-based versions, the agent first tries
to estimate a representation of the state transition function T and then use
a planning algorithm to find a policy. On the contrary, as the name sug-
gests, model-free RL algorithms do not explicitly construct a model of the
environment to decide which actions to take. The model-free approaches
can be further divided into value-based and policy-based techniques. Value-
based algorithms, such as Q-learning, aim to learn the value of each state
and thereby implicitly define a policy. Policy-based techniques instead search
for the optimal policy directly in the policy space, either by policy gradient
methods or gradient-free methods, such as evolutionary optimization. There
are also hybrid techniques that are both policy and value-based, such as actor
critic methods.

RL algorithms generally assume that the environment is modeled as an
MDP, i.e., that the state of the environment is known by the agent. However,
in many cases of interest, only partial information about the state of the
environment is available, which is modeled in the POMDP framework. For
such cases, it is common to approximate the state by either the observation
or a finite history of observations [63, Ch. 17]. The latter is referred to
as a k-Markov approximation, where k defines the length of the included
history. For a sufficiently long history, the Markov property is assumed to
approximately hold, even though the environment is partially observable.

Chapter 4
Model-free RL approaches

RQ 1: How can a general decision-making agent
for autonomous driving be created through RL?

Returning to the analogy of constructing a rocket to reach the moon, this
chapter provides the first sketches of the outline of this rocket by adapt-
ing two existing RL methods to autonomous driving and investigating their
performance. To provide a broad comparison, a policy-based and a value-
based RL method are chosen. Q-learning has proven successful in tabular
settings [75], and with the renaissance of neural networks during the last
decade, the DQN algorithm extended the concept of Q-learning to high-
dimensional domains [42]. The DQN algorithm also showed a super-human
performance in a diverse set of Atari games. Due to this flexibility and high
performance, the DQN method is a natural candidate to consider for the
autonomous driving domain.

Genetic algorithms belong to a family of optimization methods that are
inspired by the evolutionary mechanisms of natural selection [24]. In general,
GAs are suitable for solving optimization problems where the objective func-
tion is non-differentiable, or even when an explicit mathematical model does
not exist and only a simulation is available. Due to its flexibility, a GA is
here used as a policy-based RL method, where the GA optimizes a structure
of rules and actions to form a general decision-making agent.

This chapter presents how a DQN and GA agent, respectively, can be
constructed to learn how to make tactical decisions in autonomous driving by
interacting with a simulated environment. Both methods provide a general

17

18 Chapter 4. Model-free RL approaches

(a)

(b)

Figure 4.1: This figure shows the two test scenarios that are used to evaluate the
GA and DQN agents. Panel (a) displays an example of an initial traffic situation
for the one-way highway driving scenario, whereas panel (b) shows an example of
a traffic situation for the overtaking scenario with oncoming traffic, displayed 10
seconds from the initial state. The ego vehicle, which consists of a truck-trailer
combination, is shown in green and black. The arrows represent the velocities of
the vehicles.

approach, which with few modifications could be applied to any type of
driving scenario.

4.1 Simulated driving scenarios

The DQN and GA agents are applied to and evaluated in different highway
driving scenarios in this study. The main scenario consists of continuous
driving on a one-way highway with three lanes (Figure 4.1a). To illustrate
the generality of these approaches, the agents are also tested on an overtaking
scenario with oncoming traffic (Figure 4.1b).

In all the test cases, the surrounding vehicles are randomly generated,
with random initial positions, velocities, and intentions. To create interest-
ing traffic situations, the vehicles that are initialized behind the ego vehicle
are driving faster than the ego vehicle, and the vehicles that start in front
of the ego vehicle are driving slower. The drivers of the surrounding vehi-
cles are modeled by using the Intelligent Driver Model [67] and Minimizing
Overall Braking Induced by Lane changes model [31]. The IDM is a type
of adaptive cruise control (ACC) model, which keeps a desired speed when
there is no vehicle in front of the ego vehicle, and otherwise maintains a
gap to the preceding vehicle. The MOBIL model is a lane changing model,
which makes lane changes with the aim of maximizing the acceleration of
all the vehicles that are involved in the traffic situation. A politeness factor

4.2. Value-based RL, DQN agent 19

controls the balance between the gains and losses of the ego vehicle and the
surrounding vehicles. The combination of the IDM and MOBIL model is also
used as a baseline method when evaluating the performance of the different
RL agents. Further details on exactly how the simulation environment of
the test scenarios is set up and how the episodes are initialized are given in
Paper I and II.

4.2 Value-based RL, DQN agent

Paper II introduces a model-free, value-based, RL approach to tactical
decision-making, based on the DQN algorithm, which is evaluated in two
different highway scenarios (Figure 4.1). This section outlines the method
and the main results, whereas further details are given in Paper II.

4.2.1 Approach

Q-learning [75] is a model-free and value-based branch of reinforcement learn-
ing, where the objective of the agent is to learn the optimal state-action value
functionQ∗(s, a). This function is defined as the expected return when taking
action a from state s and then following the optimal policy π∗, i.e.,

Q∗(s, a) = max
π

E

[∞∑

k=0

γkR(sk, ak)|s0 = s, a0 = a, π

]
. (4.1)

The optimal state-action value function follows the Bellman equation

Q∗(s, a) = Es′∼T (s′|s,a)
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
, (4.2)

which recursively defines the Q-values of the state-action pairs (s, a). The
equation can intuitively be understood by the fact that if Q∗ is known, the
optimal policy is to select the action a′ that maximizes Q∗(s′, a′).

In the DQN algorithm, a neural network with weights θ is used as a func-
tion approximator of the optimal state-action value function, Q(s, a; θ) ≈
Q∗(s, a) [42]. The weights of the network are adjusted to minimize the tem-
poral difference (TD) error in the Bellman equation, typically with some kind
of stochastic gradient descent (SGD) algorithm. Mini-batches with size M

20 Chapter 4. Model-free RL approaches

of experiences, e = (s, a, r, s′), are drawn from an experience replay memory,
and the loss is calculated as

L(θ) = EM

[
(r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ))2

]
. (4.3)

Here, θ− represents the neural network parameters of a target network, which
is kept fixed for a number of training steps, in order to stabilize the training
process. Several of improvements to this vanilla form of DQN have been
proposed and are compared by Hessel et al. [20]. See Paper II for the details
of the DQN implementation in this study.

Two different agents, which are based on different MDP formulations, are
compared in this work. Hereafter, they are referred to as Agent1 and Agent2.
Both agents use the same state description, which consists of the ego vehicle
state, a description of the lanes of the road, and the relative position and
speed of the up to Nmax surrounding vehicles. There are mego states that
describe the ego vehicle and the road, and mveh states that describe each
of the surrounding vehicles. Agent1 only controls the lane change decisions
and the longitudinal control is handled by the IDM, whereas Agent2 controls
both the speed and the lane changes. An overview of the available actions
is given in Table 4.1. Both agents take decisions every ∆t = 1 s. A positive
reward, proportional to the speed, is given for every time step, and a negative
reward is given for collisions or driving off the road. Additionally, to limit
the number of lane changes, a small negative reward is given when choosing
the lane changing action.

A natural assumption is that the policy of a trained agent should be invari-
ant to permutations of the order in which the surrounding traffic participants
are listed. The agent should also be able to handle a varying number of traf-
fic participants. A common way to address these requirements is to use an
occupancy grid, i.e., a discretized top view of the traffic scene with features
that contain presence information [26]. However, the quantisation step of this
approach results in a trade-off between accuracy and dimensionality. To ful-
fill the requirement of permutation invariance without limiting the accuracy,
this thesis instead proposes a new way of using a one-dimensional convolu-
tional neural network (CNN) [38] together with a maxpooling layer, applied
to the part of the input that describes interchangeable objects, see Figure 4.2.
The input that describes the surrounding vehicles is passed through convo-
lutional layers, which are designed to keep identical weights for the inputs of
each vehicle, and finally a max pooling layer makes the output independent

4.2. Value-based RL, DQN agent 21

Table 4.1: Action spaces of the two DQN agents.

Agent1

a1 Stay in current lane
a2 Change lanes to the left
a3 Change lanes to the right

Agent2

a1 Stay in current lane, keep current speed
a2 Stay in current lane, accelerate with −2 m/s2

a3 Stay in current lane, accelerate with −9 m/s2

a4 Stay in current lane, accelerate with 2 m/s2

a5 Change lanes to the left, keep current speed
a6 Change lanes to the right, keep current speed

on the ordering of the vehicles. This permutation invariant architecture re-
duces the input space that the RL agent needs to explore by a factor of 1

Nmax!
,

compared to an architecture where the ordering matters. Furthermore, the
problem of specifying a small fixed input vector size is mitigated. The input
vector can instead be made larger than necessary and padded with dummy
values for the extra slots, since this additional input will be filtered out by
the max pooling layer. Further details on this permutation invariant CNN
architecture are explained in Paper II. For comparison, Agent1 and Agent2
are trained with both the CNN architecture and a fully connected neural
network (FCNN) architecture.

4.2.2 Results and discussion

Five training runs with different random seeds were carried out for the two
agent variants and the two network architectures, here called Agent1FCNN,
Agent1CNN, Agent2FCNN, and Agent2CNN. The agents were trained for two
million training steps, where an experience is added to the experience replay
memory and the neural network weights are updated at every step. At every
50,000 training steps, the agents are evaluated on 1,000 random episodes,
which are not present during the training.

Figure 4.3 shows the average proportion of successfully completed
episodes for the four agent variants during the training process, in the one-

22 Chapter 4. Model-free RL approaches

𝑚ego + 𝑁max𝑚veh × 1

𝑚ego

𝑁max𝑚veh

𝑁max × 32 𝑁max × 32

1 × 32

𝑚ego + 32 × 1

32 filters
size 𝑚veh × 1
stride 𝑚veh

3 × 1
or

6 × 1

64 × 1

32 filters
size 1 × 32

stride 1

maxpool merge
fully con-

nected
fully con-

nected

𝐢𝐧𝐩𝐮𝐭

merge

𝐨𝐮𝐭𝐩𝐮𝐭

Figure 4.2: The proposed neural network architecture, which uses convolutional
layers and max pooling to make the output invariant to permutations of the vehicles
in the current traffic situation. The output consists of three and six Q-values for
Agent1 and Agent2, respectively, see the main text for further explanations.

way highway driving scenario. In Figure 4.4, the performance of the agents
is compared to the baseline method through a performance index p̃, defined
as

p̃ = (d/dmax)(v̄/v̄ref), (4.4)

where d is the distance driven by the ego vehicle, which is limited by a
collision or the episode length dmax = 800 m. The average speed of the ego
vehicle is denoted v̄, and v̄ref is the average speed of the ego vehicle when it
is controlled by the baseline IDM/MOBIL model.

Agent1CNN quickly learns to solve all the episodes without any collisions
(Figure 4.3) by always staying in its lane. Such a behavior leads to that
the ego vehicle often gets blocked by slower vehicles and therefore gives a
performance index below 1 (Figure 4.4). However, after around 600,000
training steps, Agent1CNN learns to perform lane changes to overtake slow
vehicles and performs similar to the IDM/MOBIL model.

Agent2CNN learns how to control the speed and make lane changes without
collisions in all of the episodes after around 400,000 training steps. At this
point, its performance index is on par with the IDM/MOBIL model. With
more training, the agent learns even better strategies and after 1,000,000
training steps, which corresponds to around 300 hours of simulated driving,
the performance index stabilizes at 1.1, i.e., Agent2CNN navigates through

4.2. Value-based RL, DQN agent 23

0 0.5 1 1.5 2 2.5 3

Training step 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

Agent1
FCNN

Agent2
FCNN

Figure 4.3: Proportion of episodes that are solved without collisions by the dif-
ferent agents during the training process.

0 0.5 1 1.5 2 2.5 3

Training step 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

Agent1
FCNN

Agent2
FCNN

IDM/MOBIL model

Figure 4.4: Performance index of the different agents during the training pro-
cess.

traffic around 10% faster than the baseline model. These results confirm the
intuition that an agent can learn more efficient strategies when controlling
both the longitudinal and lateral motions simultaneously.

The agents with the fully connected neural network, Agent1FCNN and
Agent2FCNN, perform worse than the CNN agents, both in aspects of sample
efficiency, proportion of collision free episodes, and in performance index.
This difference in performance illustrates the practical usefulness of applying
a permutation invariant neural network structure, compared to a standard
fully connected network structure. Table 4.2 sums up the results for the four

24 Chapter 4. Model-free RL approaches

Table 4.2: Performance of the DQN agents for the two test scenarios.

One-way highway scenario Overtaking scenario

Collision free
episodes

Performance
index, p̃

Collision free
episodes

Performance
index, p̃o

Agent1CNN 100% 1.01 100% 1.06

Agent2CNN 100% 1.10 100% 1.11

Agent1FCNN 98% 0.98 - -

Agent2FCNN 86% 0.96 - -

agent variants. It also shows that the CNN agents solve all of the test episodes
in the overtaking scenario, with a better performance than the IDM/MOBIL
model.

4.3 Policy-based RL, GA agent

Paper I introduces a model-free, policy based, RL approach to tactical
decision-making, where a genetic algorithm is used to optimize a structure of
rules and actions, and their parameters. The method and the main results
are outlined in this section, whereas further details are given in Paper I.

4.3.1 Approach

A GA with length-varying chromosomes is used to train a rule-based driver
model for the two highway scenarios that are introduced in Section 4.1. A
chromosome encodes a set of instructions, which are represented by four
genes, g1, . . . , g4, described in Table 4.3. Each instruction can encode either
a rule or an action. For example, the instruction [0, 1, 0.2, 0.7] would be
translated to the rule: If there is a vehicle in the left lane, in the interval −60
m to 40 m longitudinally, relative to the ego vehicle, then . . . A chromosome
is constructed from a variable set of instructions, which generates a driver

4.3. Policy-based RL, GA agent 25

Table 4.3: Encoding of instructions.

Gene Value Interpretation

0 Rule: If there is a vehicle in lane g2, in the interval
g3 to g4 longitudinally, relative to the ego vehicle

g1 1 Rule: If there is no vehicle in lane g2, in the interval
g3 to g4 longitudinally, relative to the ego vehicle

2 Action: Change to relative lane g2, brake or accele-
rate according to g3, using pedal level g4

−1 Right lane
g2 0 Current lane

1 Left lane

g3 v3 ∈ [0, 1] if g1 = 0 or 1, map value v3 to [−100, 100] m
if g1 = 2, g3 represents braking if v3 < 0.5 and
acceleration if v3 ≥ 0.5

g4 v4 ∈ [0, 1] if g1 = 0 or 1, map value v4 to [−100, 100] m
if g1 = 2, g4 represents pedal level

model on the following form:

- Rule 1
- Rule 2
. Action 1

- Rule 3
. Action 2

. Action 3

When the driver model that is generated by the chromosome is to make
a decision, it first considers the rules that precedes the first action. If all of
them are fulfilled, the first action is executed. If one rule is not fulfilled, the
rules that precedes the next action are considered, and so on. If there are no
rules associated with an action, as for Action 3 in the example above, this
action will be executed if no preceding action is chosen. Decisions are taken
at an interval of ∆tGA = 0.1 s.

In a GA setting, the quality of an individual in a generation is referred
to as fitness, which in this case corresponds to the sum of rewards of an

26 Chapter 4. Model-free RL approaches

episode. The fitness of an evolved driver model is evaluated in a simulated
environment. In short, the agent gets a score of 1 if it completed a 500 m long
episode without collisions and at least as fast as the IDM/MOBIL model,
and less if it collides or drives slower than the IDM/MOBIL model. If the
agent solves an episode without collisions, it is presented with a new one, up
to 500 different episodes. The total fitness of the driver model is defined as
the sum of the individual episode scores.

In each GA run, the chromosomes are initialized randomly and the fitness
of each individual in the generation are evaluated. Tournament selection
with a non-homologous two-point crossover operator is used, which allows
the length of the chromosomes to vary over generations. Mutations of the
parameters and inserting or deleting instructions further diversifies the pop-
ulation. Finally, to guarantee that the performance does not degrade over
the generations, elitism is used, which means that the best individual of each
generation is copied to the next generation without modification.

4.3.2 Results and discussion

Three optimization runs were carried out for the one-way highway driving
scenario, with different random seeds of the GA. The fitness of the best
individual of each generation is shown in Figure 4.5. After 1,500 generations,
which corresponds to around 100,000 hours of driving, all of the three GA
runs solve all the 500 test episodes. The final driver models were then applied
to 500 new test episodes, which are different from the ones the agents saw
during training, and solved all of them without collisions.

The final decoded driver model from one of the GA runs is shown in
Table 4.4. In principle, the evolved driver model generates a behavior where
the vehicle stays in its lane and accelerates if no vehicle is close in front of it.
If a vehicle is present, but there is no vehicle in the left lane, it changes lanes
to the left lane. If also the right lane is occupied, it stays in its own lane and
brakes. Otherwise, it changes to the right lane. This behavior resembles a
gap acceptance model [1].

The same method was applied to the overtaking scenario, with the only
difference being a slightly modified fitness function. All test episodes, and
an additional 500 unseen episodes, were solved for this scenario too, but it
required around four times as many generations.

4.3. Policy-based RL, GA agent 27

0 200 400 600 800 1000 1200 1400 1600

Generation

0

100

200

300

400

500

F
it
n

e
s
s

Figure 4.5: Fitness variation of the best individual in the population for three
optimization runs with different random seeds.

Table 4.4: Evolved driver model.

- If no vehicle in ego lane is within [−3.4, 21.5] m
- If no vehicle in right lane is within [63.3, 99.7] m
. Keep lane, accelerate with pedal level 0.94

- If no vehicle in left lane is within [−17.8, 77.2] m
. Do lane change to the left, accelerate with pedal level 0.97

- If no vehicle in ego lane is within [−2.2, 38.1] m
. Keep lane, accelerate with pedal level 1.00

- If vehicle in right lane is within [−18.1, 40.9] m
. Keep lane, brake with pedal level 0.88

. Do lane change to the right, accelerate with pedal level 0.78
- If vehicle in left lane is within [−75.7, 46.6] m
. Keep lane, brake with pedal level 0.88

. Do lane change to the left, accelerate with pedal level 0.86

Chapter 5
Combining planning and RL

RQ 2: In what way can domain knowledge
be incorporated into an RL agent?

The methods presented in Chapter 4 can be used to create general decision-
making agents for autonomous driving. However, both methods require ex-
tensive training to learn a suitable policy. In practice, a lot of domain knowl-
edge is available for autonomous driving, often in the form of models of the
driving scenarios. These models can be used to perform a search for the
best sequence of actions. Unfortunately, the curse of dimensionality makes
an exhaustive search infeasible. Sampling bases search methods, such as
MCTS [9], reduce the search complexity and were applied to autonomous
driving by Sunberg et al. [62]. However, MCTS still requires a massive
amount of computation to search deep into the tree and thereby perform
planning over a long time horizon. Furthermore, such a purely model-based
search algorithm cannot improve its behavior by learning from data.

To mitigate the mentioned problems, Paper III introduces a general
framework for tactical decision-making, which combines the concepts of plan-
ning and learning in the form of MCTS and RL. This framework is based on
the AlphaGo Zero algorithm [58], which is first extended to a domain with
a continuous state space, a not directly observable state, and where self-play
cannot be used, and then applied to two different highway driving scenarios
(Figure 5.1). This chapter outlines the method and the main results, whereas
further details are presented in Paper III.

29

30 Chapter 5. Combining planning and RL

5.1 Approach

The decision-making framework of this study uses a neural network fθ, with
parameters θ, to improve the MCTS by guiding the search to the most
promising parts of the tree. At the same time, the MCTS improves the
training process of the neural network by finding long sequences of actions
that are necessary in situations that require a long planning horizon. For each
state s, the neural network estimates the value V (s, θ) and a prior probability
p(s, θ) of taking different actions,

(p(s, θ), V (s, θ)) = fθ(s). (5.1)

If P (s, a, θ) represents the prior probability of taking action a, then p(s, θ) =
(P (s, a1, θ), . . . , P (s, amact , θ)), for the mact possible actions.

The SelectAction function of Algorithm 1 is used to decide which
action to take from a given state s0. Through n iterations, the function
builds a search tree, in which the state-action nodes store the set {N(s, a),
Q(s, a), C(s, a)}, where N(s, a) is the number of node visits, Q(s, a) is the
estimated state-action value, and C(s, a) contains the set of child nodes.
When traversing the tree, the algorithm chooses to expand the action that
maximizes the UCB condition

UCB(s, a, θ) =
Q(s, a)

Qmax

+ cpuctP (s, a, θ)

√∑
bN(s, b) + 1

N(s, a) + 1
, (5.2)

where cpuct is a parameter that controls the exploration, and Qmax is a nor-
malization parameter.

A progressive widening criterion limits the growth of new state nodes
by sampling an old state note if |C(s, a)| > kN(s, a)α, where k and α are
parameters that control the width of the search tree. If |C(s, a)| ≤ kN(s, a)α,
a new state s′ is sampled from a generative model G(s, a) of the environment.
The new state and reward are added to the set of child nodes and the value
of this node is estimated by the neural network as V (s, θ). Finally, at the end
of each iteration, the visit count N(s, a) and Q-values Q(s, a) are updated
by a backwards pass through the tree.

When the tree search it completed, after n iterations, an action is sampled
proportionally to the visit count of the action nodes of the root node

π(a | s) =
N(s, a)1/τ∑
bN(s, b)1/τ

, (5.3)

5.1. Approach 31

Algorithm 1 Monte Carlo tree search, guided by a neural
network policy and value estimate.

1: function SelectAction(s0, n, θ)
2: for i ∈ 1 : n
3: Simulate(s0, θ)

4: π(a | s)← N(s,a)1/τ∑
bN(s,b)1/τ

5: a← sample from π
6: return a, π

7: function Simulate(s, θ)
8: if s is terminal
9: return 0

10: a← arg maxa

(
Q(s,a)
Qmax

+ cpuctP (s, a, θ)

√∑
bN(s,b)+1

N(s,a)+1

)

11: if |C(s, a)| ≤ kN(s, a)α

12: s′ ∼ G(s, a)
13: r ← R(s, a, s′)
14: C(s, a)← C(s, a) ∪ {(s′, r)}

15: v ←
{

0, if s′ is terminal

V (s′, θ), otherwise

16: q ← r + γv
17: else
18: (s′, r)← sample uniformly from C(s, a)
19: q ← r + γSimulate(s′, θ)

20: N(s, a)← N(s, a) + 1

21: Q(s, a)← Q(s, a) + q−Q(s,a)
N(s,a)

22: return q

where τ is a parameter that controls the exploration. During evaluation, the
most visited action is greedily chosen, which corresponds to τ → 0.

Training data are generated from a simulated environment. When an
episode ends, after Ns steps, the target values zi for each step i = 0, ..., Ns−1
are calculated as the received discounted return, according to

zi =
Ns−1∑

k=i

γk−irk + γNs−ivend, (5.4)

32 Chapter 5. Combining planning and RL

where vend = 0 if sNs is a terminal state, and otherwise vend = V (sNs , θ). The
target action distribution is given by the tree search as πi = (π(a1 | si), . . . ,
π(mact | si)). The tuples (si,πi, zi) are added to a memory, and then the
neural network is trained on the loss function

` = c1(z − V (s, θ))2 − c2π> logp(s, θ) + c3‖θ‖2, (5.5)

which consists of the sum of the mean-squared value error, the cross-entropy
loss of the policy, and an L2 weight regularization term. The parameters c1,
c2, and c3 balance the different parts of the loss function. A permutation in-
variant neural network architecture is used, similar to the architecture of the
DQN agent, described in Section 4.2. However, in this case, the network has
two output heads, which estimate both the value and the action distribution
of the input state.

5.2 Simulated experiments

The presented decision-making framework is tested in different highway driv-
ing scenarios, shown in Figure 5.1. The first scenario consists of continuous
driving on a one-way highway with four lanes, similar to the main test sce-
nario of the DQN and GA agents (Section 4.1). In the second scenario, the
same road and traffic is used, but the ego vehicle starts in the leftmost lane
and aims to reach an exit on the right side of the road after 1,000 m, which
requires planning over a longer time horizon compared to the continuous
driving scenario. The surrounding traffic is controlled by the combination
of the IDM and MOBIL model, with randomized driver parameters. More
information about the simulated environment is given in Section 4.1 and all
the details are given in Paper III.

A state description and reward model that is similar to the DQN agent,
described in Section 4.2, is used here. The agent can only observe the physical
state of the surrounding vehicles, but not the driver intentions. A particle
filter is therefore used to estimate the parameters of the surrounding drivers,
which are assumed to behave according to the IDM/MOBIL model. The
most likely state is then used as input to Algorithm 1 and to the generative
model. The action space consists of high-level actions, which can modify the
setpoint of an ACC (based on the IDM) or change lanes. An overview is
given in Table 5.1. The action space is also pruned at every time step, such

5.2. Simulated experiments 33

(a) Continuous highway driving scenario.

(b) Highway exit scenario.

Figure 5.1: The two test scenarios that are used to evaluate the MCTS/NN
agent. Panel (a) shows an initial state for the continuous highway driving scenario,
whereas panel (b) shows the exit scenario, when the ego vehicle is approaching the
exit on the right side of the road. The ego vehicle is the green truck, whereas
the colors of the surrounding vehicles represent the aggressiveness level of their
corresponding driver models. Red is an aggressive driver, blue is a timid driver, and
the different shades of purple represent levels in between. The exact interpretation
of aggressiveness level is given in Paper III.

Table 5.1: Action space of the MCTS/NN agent.

a1 Stay in current lane, keep current ACC setpoint
a2 Stay in current lane, decrease ACC setpoint
a3 Stay in current lane, increase ACC setpoint
a4 Change lanes to the right, keep current ACC setpoint
a5 Change lanes to the left, keep current ACC setpoint

that all actions that lead to collisions or driving off the road are removed in
the tree search.

The decision-making framework of Section 5.1, hereafter referred to as the
MCTS/NN agent, was trained in the two simulated highway environments
for 250,000 training steps. An evaluation phase was run at every 20,000
steps, where the agent was tested on 100 random episodes. The performance
of the MCTS/NN agent is compared to three baseline methods, consisting
of standard MCTS which is not guided by the trained neural network, the
combination of the IDM and MOBIL model, and only the IDM, which always
stays in its original lane and can therefore be viewed as a minimum perfor-
mance behavior. Unless stated otherwise, both the MCTS/NN and standard
MCTS use n = 2,000 iterations to build the search tree.

34 Chapter 5. Combining planning and RL

0 1 2

Training step 10
5

0.95

1.00

1.05

1.10

Empty road

MCTS/NN

MCTS

IDM/MOBIL

IDM

Figure 5.2: Mean speed v̄ during the evaluation episodes for the continuous
highway driving scenario, normalized with the mean speed of the IDM/MOBIL
agent v̄IDM/MOBIL. The error bars indicate the standard error of the mean for the

MCTS/NN agent, i.e., σsample/
√

100, where σsample is the standard deviation of
the 100 evaluation episodes.

5.3 Results and discussion

The results show that the agents that are obtained by applying the proposed
framework to the two different test scenarios outperform the baseline meth-
ods. First considering the continuous highway driving scenario, Figure 5.2
shows the average speed v̄ of the different agents in the evaluation episodes,
normalized with the mean speed of the IDM/MOBIL agent v̄IDM/MOBIL. The
IDM, which always maintains its original lane, is naturally slower than the
other agents, since it often gets blocked by slower vehicles. Since standard
MCTS performs planning, it finds better strategies and can navigate through
traffic faster than the IDM/MOBIL agent. The MCTS/NN agent quickly
learns to match the performance of the MCTS agent and outperforms it
after 60,000 training steps.

The highway exit scenario has a pass or fail outcome and is therefore con-
ceptually different from the continuous highway driving scenario. Figure 5.3
shows the proportion of evaluation episodes where the exit is reached during
the training of the MCTS/NN agent. The agent quickly learns how to suc-
ceed in most episodes and after 120,000 training steps, which corresponds to
around 30 hours of simulated driving, it manages to solve all of them. The
standard MCTS agent solves 70% and a modified IDM/MOBIL agent solves
54% of the episodes.

5.3. Results and discussion 35

0 1 2

Training step 10
5

0.0

0.5

1.0

S
u

cc
es

s

MCTS/NN

MCTS

IDM/MOBIL

Figure 5.3: Proportion of successful evaluation episodes, as a function of train-
ing steps, for the highway exit scenario.

A key difference between the compared agents is their planning ability,
which is crucial for the outcome in the highway exit scenario. Figure 5.4
shows a simplified situation where it is necessary to plan relatively far into
the future. In this example, the ego vehicle starts 300 m from the exit,
six other vehicles are placed in the other lanes, and all vehicles start with an
initial speed of 21 m/s. The ego vehicle can only reach the exit by first slowing
down and then performing multiple lane changes to the right. This strategy
is only found by the trained MCTS/NN agents, whereas the standard MCTS
agent does not discover that it can reach the exit and therefore remains in
its original lane, to avoid receiving negative rewards for changing lanes. The
modified IDM/MOBIL agent tries to accelerate and then change lanes to the
right, but is blocked by another vehicle and also fails to reach the exit.

The computational load of the MCTS/NN agent is proportional to the
number of iterations n that are used to build the search tree. As previ-
ously mentioned, n = 2,000 is used in the presented results. However, the
MCTS/NN agent is anytime capable, i.e., it can abort its search after any
number of steps, even after just one, which will then return the action given
by the neural network. More iterations generally improve the result, up to
a limit. The number of necessary iterations depends on how long planning
horizon the specific traffic situation requires. More results on how the number
of iterations affect the performance are shown and discussed in Paper III.

In contrast to the methods presented in Chapter 4, the decision-making
framework of this chapter uses a generative model of the environment. To

36 Chapter 5. Combining planning and RL

(a) Starting state (b) At exit, IDM/MOBIL

(c) At exit, MCTS (d) At exit, MCTS/NN

Figure 5.4: Example of when it is necessary to plan relatively far into the future
to solve a specific situation. The initial state, 300 m from the exit, is shown in
(a), and the state at the exit is shown for the three agents in (b), (c), and (d). The
dots show the position of the ego vehicle relative to the other vehicles during the
maneuver, i.e., in (b) and (c) the ego vehicle accelerates and overtakes the slower
vehicles, whereas in (d), the ego vehicle slows down and ends up behind the same
vehicles.

incorporate such domain knowledge in the agent has both advantages and
disadvantages regarding, e.g., training time, computational complexity, and
generality, which is discussed further in Chapter 7.

Chapter 6
Uncertainty of RL-based agents

RQ 3: How can an RL-based agent provide
an uncertainty estimate of its decisions?

Chapter 4 and 5 introduce RL methods for training tactical decision-
making agents. As discussed in Chapter 1, an important advantage of
learning-based approaches, compared to manually specified systems, is that
they could scale to all types of driving situations. However, a drawback of
many learning-based approaches is that they provide black-box solutions,
which do not indicate how confident the agent is about its decisions, or
equivalently, the uncertainty of the decisions.

Uncertainty is commonly divided in epistemic and aleatoric uncer-
tainty [33]. Epistemic uncertainty in a decision-making agent stems from
the fact that the agent has not experienced similar situations before, for ex-
ample, if an agent has been trained for ‘normal’ driving and then faces an
accident or a speeding driver. This type of uncertainty can be reduced by
further training of the agent. Contrarily, aleatoric uncertainty arises due to
stochasticity in the outcome of an action, for example in a situation where
there is an occlusion. Therefore, more training cannot reduce the aleatoric
uncertainty. Knowledge of the epistemic uncertainty allows the agent to
identify which situations it has not been trained for, which can increase the
safety of the decision-making system, and knowledge of the aleatoric uncer-
tainty allows the agent to make risk-aware decisions. Therefore, an estimate
of both types of uncertainty is essential for a safety-critical application such
as autonomous driving.

37

38 Chapter 6. Uncertainty of RL-based agents

Paper IV and V introduce a Bayesian RL approach that provides an es-
timate of the epistemic uncertainty and a method for classifying a decision
as trustworthy or not. The approach is tested in highway and intersection
scenarios, respectively. Paper VI extends this work by introducing the En-
semble Quantile Networks method, which provides an estimate of both the
aleatoric and the epistemic uncertainty of a trained RL agent. This chapter
presents a summary of how both the aleatoric and epistemic uncertainty can
be estimated, and displays the main results when the different methods are
applied to various highway and intersection scenarios. Implementations of
the described methods and simulated experiments are available on GitHub,
together with some animated results [22, 23].

6.1 Approach

The following sections describe how the aleatoric and epistemic uncertainty
of a trained RL agent can be estimated, which when combined forms the
EQN algorithm.

6.1.1 Epistemic uncertainty

Statistical bootstrapping can be used to extend the DQN algorithm by train-
ing an ensemble of neural networks on different subsets of the available ex-
periences [48]. The ensemble members then return a distribution over the
estimated Q-values. A better Bayesian posterior is obtained by adding differ-
ent randomized prior functions (RPFs) to each ensemble member [47]. The
Q-values of each ensemble member, index by k, is calculated as

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k), (6.1)

where f and p are neural networks with identical architecture. The param-
eters θk are updated during the training process, whereas, importantly, the
parameters θ̂k are fixed at their initial values. A hyperparameter β scales the
influence of the fixed prior network. The trainable network is then updated
from the TD-error

LRPF(θk) = EM
[
(rt + γmax

a
(fθ−k

+ βpθ̂k)(st+1, a)

− (fθk + βpθ̂k)(st, at))
2
]
, (6.2)

6.1. Approach 39

Algorithm 2 Ensemble RPF training process

1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1, K}
8: while episode not finished
9: at ← arg maxaQν(st, a)

10: st+1, rt ← StepEnvironment(st, at)
11: for k ← 1 to K
12: if p ∼ U(0, 1) < padd
13: mk ← mk ∪ {(st, at, rt, st+1)}
14: M ← sample from mk

15: update θk with SGD and loss LRPF(θk)

16: t← t+ 1

similarly as for the standard DQN method, described in Eq. 4.3.

The training process of the ensemble RPF method is outlined in Algo-
rithm 2. An ensemble of K neural networks is here used, with individual
experience replay buffers mk. For each new episode, a random ensemble
member ν is selected and used to take greedy actions throughout the episode,
which corresponds to an approximate Thompson sampling approach to the
exploration vs. exploration dilemma. Each new experience is then added to
the individual replay buffers with probability padd, and the weights are up-
dated with SGD. Finally, during testing, the trained agent follows the policy
which maximizes the mean Q-value of the ensemble members.

The ensemble variance of the Q-values gives an estimate of the epistemic
uncertainty of the available actions, and a threshold σ2

e can be used to clas-
sify whether a decision has an acceptable level of uncertainty. There are
many uses for an epistemic uncertainty estimate, which is further discussed
in Section 6.3. In this thesis, the benefit of this estimate is demonstrated by
applying a backup policy πbackup(s) if an action has an unacceptable level of

40 Chapter 6. Uncertainty of RL-based agents

uncertainty, i.e., the trained agent follows the policy

πσe(s) =

{
arg maxa Ek[Qk(s, a)], if Vark[Qk(s, a)] < σ2

e ,

πbackup(s), otherwise.
(6.3)

6.1.2 Aleatoric uncertainty

In contrast to Q-learning, distributional RL aims to learn not only the ex-
pected return, but the distribution over returns [5]. This distribution is
represented by the random variable

Zπ(s, a) =
∞∑

k=0

γkR(sk, ak), (6.4)

given s0 = s, a0 = a, and π, where the mean is the traditional value function,
Qπ(s, a) = E[Zπ(s, a)]. The distribution over returns represents the aleatoric
uncertainty of the outcome, which can be used to estimate the risk in different
situations and to train an agent in a risk-sensitive manner.

The implicit quantile networks (IQN) approach [12] to distributional RL
uses a neural network to implicitly represent the quantile function F−1Z (τ)
of the random variable Z and then update the weights of the network with
quantile regression. For ease of notation, define Zτ := F−1Z (τ), and note that
for τ ∼ U(0, 1) the sample Zτ (s, a) ∼ Z(s, a). The TD-error for two quantile
samples, τ, τ ′ ∼ U(0, 1), is

δτ,τ
′

t = rt + γZτ ′
(
st+1, π

∗(st+1); θ
−)− Zτ (st, at; θ), (6.5)

where π∗(s) = arg maxaQ(s, a). A sample-based estimate of π∗(s) is obtained
from Kτ samples of τ̃ ∼ U(0, 1), as

π̃(s) = arg max
a

1

Kτ

Kτ∑

k=1

Zτ̃k(s, a; θ). (6.6)

For a pair of quantiles τ, τ ′, the quantile Huber regression loss [13], with
threshold κ, is calculated as

ρκ(δ
τ,τ ′
t) = |τ − I{δτ,τ ′t < 0}|Lκ(δ

τ,τ ′
t)

κ
. (6.7)

6.1. Approach 41

Algorithm 3 IQN training process

1: Initialize θ randomly
2: m← {}
3: t← 0
4: while network not converged
5: st ← initial random state
6: while episode not finished
7: if e ∼ U(0, 1) < ε
8: at ← random action
9: else

10: τ1, . . . , τKτ
i.i.d.∼ U(0, α)

11: at ← arg maxa
1
Kτ

∑Kτ
k=1 Zτk(st, a)

12: st+1, rt ← StepEnvironment(st, at)
13: m← m ∪ {(st, at, rt, st+1)}
14: M ← sample from m
15: update θ with SGD and loss LIQN(θ)
16: t← t+ 1

Here, Lκ(δτ,τ
′

t) is the Huber loss [25], defined as

Lκ(δτ,τ
′

t) =

{
1
2
(δτ,τ

′
t)

2
, if |δτ,τ ′t | ≤ κ,

κ(|δτ,τ ′t | − 1
2
κ), otherwise,

(6.8)

which gives a smooth gradient as δτ,τ
′

t → 0. The full loss function LIQN(θ) is
obtained from a mini-batch M of sampled experiences, in which the quantiles
τ and τ ′ are sampled N and N ′ times, respectively, according to

LIQN(θ) = EM

[
1

N ′

N∑

i=1

N ′∑

j=1

ρκ

(
δ
τi,τ
′
j

t

)]
. (6.9)

The full training process of the IQN method is outlined in Algorithm 3.
Dabney et al. show that the IQN method can achieve state of the art

results on the Atari-57 benchmark and reason about the performance of risk-
sensitive training for a few of the Atari games [12]. However, the estimated
distribution over returns of the fully trained agent can also be used to quantify
the aleatoric uncertainty of a decision. One such uncertainty measure is
the variance of the estimated returns for the evenly distributed sample set

42 Chapter 6. Uncertainty of RL-based agents

τσ = {i/Kτ | i ∈ [1, Kτ]}. A threshold σ2
a can then be defined, such that

the agent classifies a decision with a higher variance in returns as uncertain.
In this thesis, the benefit of the uncertainty classification is demonstrated
by choosing a predefined backup policy πbackup(s) if the sample variance is
higher than the threshold, i.e., the fully trained agent follows the policy

πσa(s)=

{
arg maxa Eτσ [Zτ (s, a)], if Varτσ [Zτ (s, a)]<σ2

a,

πbackup(s), otherwise.
(6.10)

6.1.3 Aleatoric and epistemic uncertainty

In order to obtain a complete uncertainty estimation of both the aleatoric
and the epistemic uncertainty, this thesis introduces the Ensemble Quantile
Networks algorithm, which combines the properties of the IQN and ensemble
RPF methods. An agent that is trained by the EQN method can then take
actions that consider both the inherent uncertainty of the outcome and the
model uncertainty in each situation.

As the name suggests, the EQN method uses an ensemble of networks,
where each ensemble member k individually estimates the distribution over
returns as

Zk,τ (s, a) = fτ (s, a; θk) + βpτ (s, a; θ̂k). (6.11)

Similarly as for the RPF method, fτ and pτ are neural networks with identical
architecture, θk are trainable network parameters, whereas the parameters
θ̂k are fixed. The TD-error of ensemble member k and two quantile samples,
τ, τ ′ ∼ U(0, 1), is

δτ,τ
′

k,t = rt + γZk,τ ′(st+1, π̃k(st+1))− Zk,τ (st, at), (6.12)

where π̃k(s) = arg maxa
1
Kτ

∑Kτ
j=1 Zk,τ̃j(s, a) is a sample-based estimate of

the optimal policy. Quantile Huber regression is applied to a mini-batch of
experiences, which gives the loss function

LEQN(θk) = EM

[
1

N ′

N∑

i=1

N ′∑

j=1

ρκ

(
δ
τi,τ
′
j

k,t

)]
. (6.13)

For each new training episode, the agent follows the policy π̃ν(s) of a ran-
domly selected ensemble member ν. The full training process of the EQN
agent is outlined in Algorithm 4.

6.2. Simulated experiments 43

Algorithm 4 EQN training process

1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1, K}
8: while episode not finished

9: τ1, . . . , τKτ
i.i.d.∼ U(0, α)

10: at ← arg maxa
1
Kτ

∑Kτ
k=1 Zν,τk(st, a)

11: st+1, rt ← StepEnvironment(st, at)
12: for k ← 1 to K
13: if p ∼ U(0, 1) < padd
14: mk ← mk ∪ {(st, at, rt, st+1)}
15: M ← sample from mk

16: update θk with SGD and loss LEQN(θk)

17: t← t+ 1

The EQN agent provides an estimate of both the aleatoric and epis-
temic uncertainty, based on the variance of the returns and the variance
of the Q-values. The agent is considered confident about a decision if
Varτσ [Ek[Zk,τ (s, a)]] < σ2

a and Vark[Eτσ [Zk,τ (s, a)]] < σ2
e . The trained agent

then follows the policy

πσa,σe(s) =

{
arg maxa Ek[Eτσ [Zk,τ (s, a)]], if confident,

πbackup(s), otherwise.
(6.14)

6.2 Simulated experiments

The algorithms for estimating the aleatoric and epistemic uncertainty are
tested in different highway and occluded intersection scenarios in this thesis,
but could naturally be applied to any type of driving scenario. The highway
scenario is similar to the previously described one-way highway scenarios in
Section 4.1 and 5.2. Importantly, the training only includes surrounding
traffic with a ‘normal’ highway speed between 15 and 35 m/s.

44 Chapter 6. Uncertainty of RL-based agents

Figure 6.1: Example of the occluded intersection scenario. The ego vehicle is
shown in red, surrounding vehicle in yellow, and the areas that cause occlusions
are shown in gray.

The intersection scenario includes an occlusion, see Figure 6.1, which
together with the unknown intentions of the surrounding drivers result in
randomness in the outcome from a given state and policy, i.e., an aleatoric
uncertainty. The surrounding vehicles are controlled by a modified version of
the IDM and during the training process the speed is limited to 15 m/s. The
agent observes the position, speed, and heading of the non-occluded vehicles
within the sensor range, and can choose between the high-level actions ‘stop’,
‘cruise’, and ‘go’. Slightly simplified, these high-level actions are translated
to accelerations through the IDM model by either setting a target that makes
the ego vehicle stop at the intersection, maintaining its speed, or accelerating
to a set cruising speed. The agent receives a positive reward when the ego
vehicle manages to cross the intersection and a negative reward at collisions.
If the ego vehicle has not crossed the intersection within Nmax = 100 steps,
the episode is terminated, which is referred to as a timeout.

The backup policy πbackup(s) for the highway driving scenario consists of
staying in the current lane and full braking. For the intersection scenario, the
backup policy selects the action ‘stop’ if it is possible to stop before the inter-
section, considering the maximum braking capability. Otherwise, the backup
policy keeps the action that was recommended by the agent. A policy that
would always choose the action ‘stop’ could end up standing still in the in-
tersection and thereby cause more collisions. In a real-world implementation,
naturally more advanced backup policies would be considered [64].

6.3. Results and discussion 45

The different agents were trained for three million training steps and
evaluated in 1,000 randomly generated test episodes, which were not part of
the training process. Each simulation was run with 5 random seeds and the
results present the mean, together with the corresponding standard deviation.
A permutation invariant neural network architecture is used, similar to the
one presented in Section 4.2. For comparison, a DQN agent is also trained
for the same scenarios.

6.3 Results and discussion

The results of the experiments show that the IQN method can be used to
obtain an estimate of the aleatoric uncertainty and when applying the confi-
dence criterion, situations with high uncertainty are identified, which is used
to reduce the number of collisions. The results also illustrate that the en-
semble RPF method can provide an estimate of the epistemic uncertainty,
which together with the confidence criterion classifies situations as within or
without the training distribution. Finally, the results for the EQN method
demonstrate that it can estimate both types of uncertainty. This section
provides an overview of the main results, whereas more results on different
properties of the algorithms, such as risk-sensitive training and the effect of
changing hyperparameter values, are available in Paper IV, V, and VI.

An overview of the results for the intersection scenario is shown in Ta-
ble 6.1. The IQN agent clearly outperforms the standard DQN agent, with a
similar crossing time but only half as many collisions. The results also show
that the IQN method, combined with the aleatoric uncertainty criterion,
can be used to detect situations with a high aleatoric uncertainty. When
the bound on the allowed uncertainty is reduced, the number of collisions
is reduced while the crossing time increases. Figure 6.2 illustrate this nat-
ural trade-off between time efficiency and safety, which is controlled by the
parameter σa.

The RPF agent performs similar to the IQN agent within the training
distribution of the intersection scenario, see Table 6.1. The epistemic uncer-
tainty in the situations that are encountered in the test episodes naturally
decreases as the training progresses, which is illustrated in Figure 6.3. How-
ever, the interesting properties of the RPF agent are illustrated when the
agent is exposed to situations that are outside of the training distribution.
Figure 6.4 shows the result when the speed of the surrounding vehicles is

46 Chapter 6. Uncertainty of RL-based agents

Table 6.1: Intersection scenario, tested within the training distribution

algorithm parameter collisions (%) crossing time (s)

DQN - 4.0± 0.5 31.7± 1.1

IQN σa =∞ 1.7± 0.3 33.0± 1.1

σa = 4.0 0.9± 0.2 33.5± 1.2

σa = 3.0 0.5± 0.2 34.7± 1.3

σa = 2.0 0.2± 0.1 39.2± 1.0

σa = 1.0 0.0± 0.0 61.2± 3.4

RPF - 1.5± 0.3 38.0± 1.8

EQN σa =∞ 0.9± 0.1 32.0± 0.2

σa = 3.0 0.6± 0.2 33.8± 0.3

σa = 2.0 0.5± 0.1 38.4± 0.5

σa = 1.5 0.3± 0.1 47.2± 1.2

σa = 1.0 0.0± 0.0 71.1± 1.9

σa = 1.5,

σe = 1.0
0.0± 0.0 48.9± 1.6

increased in the intersection scenario. If the allowed epistemic uncertainty
is not limited, i.e., setting σe = ∞, the number of collisions increase signifi-
cantly. When the threshold is reduced, the number of collisions is reduced to
almost zero, at the expense of an increased number of timeouts. Also note
that the number of collisions at 15 m/s, which is within the training distribu-
tion, is slightly reduced with a tighter bound on the allowed uncertainty. We
hypothesize that the explanation for this effect is that some situations that
cause collisions are rarely seen during the training process, and therefore the
epistemic uncertainty remains high in such situations. A specific example
of an out-of-distribution situation is shown for the highway scenario in Fig-
ure 6.5, where a vehicle has stopped due to an accident and the agent cannot
change lanes due to other surrounding vehicles. As mentioned in Section 6.2,
the training was done with speeds between 15 and 35 m/s for the highway
scenario. The DQN agent does brake to avoid a collision with the stopped

6.3. Results and discussion 47

30 40 50 60 70
crossing time (s)

0

1

2
co

lli
si

on
s

(%
)

σa= 1.0
σa= 2.0

σa= 3.0

σa= 4.0

σa=∞

Figure 6.2: Number of collisions and crossing time for the IQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying the
parameter σa.

0 1 2 3
Training steps 1e6

0

5

10

√
Va

r k
[Q

k]

Figure 6.3: Epistemic uncertainty of the chosen actions for the ensemble RPF
agent, with parameters β = 300 and K = 10, during testing episodes within the
training distribution. The solid line shows the mean, while the shaded regions
indicate percentile 10 to 90 and 1 to 99.

vehicle, but too late, which makes a collision unavoidable. However, the RPF
agent indicates a high epistemic uncertainty at an early stage and therefore
manages to stop in time.

The EQN method can estimate both the aleatoric and epistemic uncer-
tainty simultaneously, and performs similarly to the IQN and RPF methods.

48 Chapter 6. Uncertainty of RL-based agents

15 20 25
speed (m/s)

0

2

4

6

co
lli

si
on

s
(%

)

σe= 1.0
σe= 2.0
σe= 3.0
σe= 4.0
σe=∞

(a) Collisions

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

σe= 1.0
σe= 2.0
σe= 3.0
σe= 4.0
σe=∞

(b) Timeouts

Figure 6.4: Number of collisions and timeouts for the RPF agent (β = 300,
K = 10), in situations outside the training distribution. The maximum speed of
the crossing vehicles is 15 m/s during the training process, and then the speed is
gradually increased in the testing episodes.

Figure 6.6 shows how the trade-off between the number of collisions and the
crossing time within the training distribution is controlled by the parame-
ter σa. Outside of the training distribution, a similar trade-off is shown in
Figure 6.7 when varying the parameter σe. Interestingly, a combination of a
moderate limit on both the aleatoric and the epistemic uncertainty removes
all the collisions within the training distribution, see Table 6.1. This result
illustrates the usefulness of considering the epistemic uncertainty even in sit-
uations that are similar to the training scenarios, since rare edge cases can
be detected.

6.3. Results and discussion 49

Figure 6.5: Example of a traffic situation that is outside of the training distri-
bution, where a collision occurs if the confidence of the agent is not considered.
The top panel shows the initial state, where the ego vehicle is displayed in green,
moving cars in yellow, and a stopped car in white. The two bottom panels show
the state for the DQN and ensemble RPF agents after 12 s.

30 40 50 60 70
crossing time (s)

0.0

0.5

1.01.0

co
lli

si
on

s
(%

)

σa= 1.0

σa= 1.5

σa= 2.0σa= 3.0

σa=∞

Figure 6.6: Number of collisions and crossing time for the EQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying the
parameter σa.

As the results show, the RPF and EQN methods can increase the safety of
a trained agent by estimating the epistemic uncertainty of the decisions and
switch to a backup policy if the uncertainty is too high. However, possibly
even more importantly, the epistemic uncertainty information could be used
to guide the training process to regions of the state space where the agent
needs more training. Furthermore, if an agent has been trained in a simulated
environment and then is deployed in real traffic, the epistemic uncertainty
information can be used to identify situations that the agent has not been
trained for, which need to be added to the simulated environment.

50 Chapter 6. Uncertainty of RL-based agents

15 20 25
speed (m/s)

0

2

4

co
lli

si
on

s
(%

)

σe= 0.5
σe= 1.0
σe= 2.0
σe=∞

(a) Collisions

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

σe= 0.5
σe= 1.0
σe= 2.0
σe=∞

(b) Timeouts

Figure 6.7: Number of collisions and timeouts for the EQN agent in situations
outside the training distribution. The maximum speed of the crossing vehicles is
15 m/s during the training process, and then the speed is gradually increased in
the testing episodes.

Chapter 7
Discussion

Chapter 4, 5, and 6 introduce different methods to create an RL-based
decision-making agent for autonomous driving, by addressing the research
questions from Section 1.2. This chapter highlights a few important differ-
ences and common features of these methods.

7.1 Generality

The results of Chapter 4 and 5 show that the GA, DQN, and MCTS/NN
agents outperform the baseline IDM/MOBIL model by taking decisions that
allow the ego vehicle to navigate through highway traffic between 5% and
10% faster. However, the main advantage of the presented methods is their
generality and ability to handle driving in different environments, which is
demonstrated by applying them to different types of highways and intersec-
tions. In order to apply the presented methods to a new environment, some
domain knowledge is required. First, a high-level state space S and action
space A need to be defined. Moreover, a reward model R that fulfills the
requirements of driving in the new environment also needs to be designed,
which is further discussed below. These components are enough to train the
DQN-based agents (DQN, IQN, RPF, and EQN), while the GA agent re-
quires more domain knowledge in the form of handcrafted features that the
GA can build its rules and actions structure from. Of the presented meth-
ods, the MCTS/NN agent requires the most domain knowledge, since it also
needs a generative model G of the environment, a belief state estimator, and
possibly knowledge on how to prune actions that lead to collisions.

51

52 Chapter 7. Discussion

The GA, DQN, and MCTS/NN agents only output a decision in each
state, whereas the uncertainty-aware approaches (IQN, RPF, and EQN) pro-
vide an additional estimate of the aleatoric or epistemic uncertainties. This
information allows the agent to make risk-sensitive decisions and detect sit-
uations that it has not been trained for. Therefore, the uncertainty-aware
approaches arguably provide more general solutions, since these methods are
applicable in scenarios where such information is required.

7.2 Sample and computational complexity

Table 7.1 shows a summary of the number of training samples that were
required to obtain the trained agents for the different methods. Although
the agents were trained in different highway and intersection scenarios, and
the point where an agent is considered fully trained is not well-defined, the
significant differences still allow a few qualitative conclusions. The DQN-
based agents require orders of magnitudes fewer training samples than the
GA agent. This difference is not surprising, since the GA agent only updates
its parameters after each generation, which consists of many episodes. The
MCTS/NN agent is even more sample-efficient and requires one order of mag-
nitude fewer training samples than the DQN-based agents. As mentioned in
Section 5.1, the planning component of the MCTS/NN improves and guides
the training process of the neural network. Furthermore, the pruning of ac-
tions that lead to collisions also helps to speed up the training. The required
100,000 training samples of the MCTS/NN agent corresponds to less than 30
hours of driving. However, when assessing the required number of simulated
driving hours, it is important to note that the training episodes are designed
to frequently expose the agent to interesting situations by initializing faster
vehicles behind the ego vehicle and slower vehicles in front of the ego vehi-
cle. Real-world highway driving often consists of monotone routine driving,
which means that training from real driving will likely require significantly
more data.

The computational complexity of the training process depends both on
the required number of training samples and the effort of each update. The
different agents were trained on a standard desktop computer and Table 7.1
provides an overview of the training time for the different methods. These
training times naturally depend on, e.g., the efficiency of the implementa-
tions and the hyperparameter settings, which means that the numbers only

7.2. Sample and computational complexity 53

Table 7.1: Required number of training samples and training time for the differ-
ent agents.

Training samples Training time

GA 400,000,0001 72 h
DQN 2,000,000 12 h
IQN 2,000,000 24 h
RPF 2,000,000 72 h
EQN 2,000,000 96 h
MCTS/NN 100,000 120 h

give a rough idea about the relative computational complexity. The DQN
and IQN methods require the same number of backward passes through the
neural network, which is often the most computationally expensive step, and
therefore the difference in training time is relatively small. The RPF and
EQN methods train an ensemble of neural networks, which require signifi-
cantly more resources than the DQN method. However, the training can be
parallelized, which reduces the difference compared to the DQN approach.
Osband et al. report as little difference as 20% between a similar version to
the RPF method and the DQN method, while presumably using an efficient
implementation and many computational units [48]. The most computation-
ally expensive algorithm is the the MCTS/NN method, due to the many
MCTS iterations that are performed for each decision. However, this process
can also be efficiently parallelized.

Besides computational complexity of the training process, the online com-
putational complexity of each decision is also important for an implementa-
tion in a real vehicle. The GA agent requires little resources, since it only
needs to check the conditions of its evolved rule structure to decide which
action to take. The DQN agent needs to make one forward pass through the
neural network for each decision, whereas the uncertainty aware approaches
require more forward passes. The IQN method needs Kτ passes for the de-
sired set of quantiles (here Kτ = 32) and the RPF method needs one pass for
each ensemble member, which sums up to K passes (here normally K = 10).
The EQN method combines the complexity of the IQN and RPF method,

1The GA agent is evaluated and updated after each generation, which consists of mul-
tiple episodes. To provide a fair comparison, this number refers to the required number
of time steps of ∆t = 1 s, which equals the decision interval of the other methods.

54 Chapter 7. Discussion

resulting in KτK forward passes. Fortunately, the neural networks are rel-
atively small compared to, e.g., networks that are used in computer vision
applications, and these computations can be performed efficiently in paral-
lel. The computational load when using the MCTS/NN agent is higher than
for the DQN-based methods, due to the many MCTS iterations. Every it-
eration needs to traverse through the search tree, use the generative model
once to sample a new state from a leaf node, and query the neural network
for the prior probabilities and the value of the new leaf node. However, the
MCTS/NN agent is anytime capable, i.e., it can return a result after any
number of iterations. As described in Section 5.3, the performance will in
general improve when more iterations are used, up to a limit, and the number
of iterations that are necessary varies for different traffic situations.

7.3 Safety

When training an RL-based decision-making agent, it is important to note
that the agent will only be able to solve the type of situations that it en-
counters during the training process. Therefore, it is crucial that the design
of the training environment covers the intended scenarios. Moreover, when
using machine learning to create a decision-making agent, it is difficult to
guarantee functional safety of the agent’s decisions. A common way to ad-
dress this problem is to use an underlying safety layer, which ensures that
the planned trajectory is safe before it is executed by the vehicle control
system [71, 68]. Since the uncertainty-aware approaches allow the agent to
make risk-sensitive decisions and detect situations outside of the training
distribution, these methods could reduce the frequency of the activation of
a safety layer, but they cannot independently guarantee safety.

7.4 MDP formulation

As mentioned in Section 1.3, a simple state and action space has been used
for the different driving scenarios in this thesis, to provide clear interpreta-
tions and analyses of the results. Other studies consider more elaborate and
generally applicable choices, and a survey of different state-action represen-
tations for autonomous driving is provided by Leurent et al. [39]. Naturally,
the design of the reward model has a strong effect of the resulting driving

7.5. Neural network architecture 55

behavior of the agent. A simple reward model proved to work satisfactory in
the scenarios considered here, but additional aspects, such as the effect on
the surrounding vehicles, energy efficiency, and comfort could be included. A
reward function that mimics human preferences is a compelling approach and
could be determined by using inverse reinforcement learning techniques [46].
The reward function could, in theory, also be used to create a risk-sensitive
policy by increasing the size of the negative rewards for collisions. How-
ever, rewards with different orders of magnitude create numerical problems,
which can disrupt the training process [42]. Furthermore, for a complex re-
ward function, it would be non-trivial to balance the different components
to achieve the desired result

7.5 Neural network architecture

The neural network architecture that is invariant to permutations of the
ordering of surrounding traffic participants, described in Section 4.2.1 and
introduced in Paper III, is used for all the presented methods, except for
the GA agent, which does not involve a neural network. As described in
Section 4.2.1, this network architecture reduces the input space that the
agent needs to explore by a factor of 1

Nmax!
, where Nmax is the maximum

number of considered traffic participants, compared to an architecture where
the ordering matters. The results for the DQN agent confirm the benefit of
this permutation invariant structure compared to a fully connected network.
In practice, it would likely not have been possible to train the more complex
agents with a fully connected network, although it was not tested in this
work. As further discussed in Section 8.2, it is important to increase the
sample efficiency of RL-based agents, and to use a permutation invariant
network structure helps to achieve this goal.

Chapter 8
Conclusions and future work

As mentioned in Chapter 1, to build a ladder in order to reach the moon
will show a steady progress, but this approach will never reach its goal. A
more appropriate strategy would instead be to build a rocket. This thesis
hypothesizes that a learning-based approach to tactical decision-making is
required, as opposed to incrementally improving manually specified systems.
A few components to this rocket are supplied by providing answers to the
posed research questions. However, the field of using RL for autonomous
driving is growing and considerable work remains until the approach can
lift off. This chapter provides some concluding remarks on the introduced
methods and points out a few interesting future research directions.

8.1 Concluding remarks

This thesis introduces a series of different RL-based methods for creating
a tactical decision-making agent and evaluates them in various simulated
driving scenarios. Although using RL for autonomous driving is at an early
stage, the results are encouraging. With more research and development, RL-
based approaches could potentially solve the problem of scaling the decision-
making of autonomous vehicles from predefined scenarios to the complexity
of the real world and remove the need to manually code solutions for the long
tail of edge cases.

Chapter 4 shows that the DQN and GA agents outperform the commonly
used baseline IDM/MOBIL model in different highway driving scenarios. Im-

57

58 Chapter 8. Conclusions and future work

portantly, these two methods provide a general approach that is not tailored
for a specific driving scenario, which is further demonstrated by applying
a family of DQN methods to different intersection scenarios in Chapter 6.
Little domain knowledge is required to adapt these methods to new driving
scenarios. However, one drawback that could make it challenging to scale
the DQN method to create an agent that solves all types of driving scenarios
is the relatively high number of required training samples. More properties
of the different algorithms are discussed in Chapter 7.

One way to reduce the sample complexity of a learning-based method is to
introduce more domain knowledge, which limits the policy search space. Such
an approach is exploited in this work by combining planning and learning,
in the form of MCTS and RL. The results show that the MCTS/NN method
requires an order of magnitude fewer training samples than the DQN method
and can learn strategies that consider long time horizons. Therefore, the
MCTS/NN method provides a practical alternative to model-free RL for
cases where a model of the intended driving scenario is available. The agent
can still learn to improve its behavior, but the policy can be constrained and
safety features could be incorporated in the design of the agent. However,
since more domain knowledge is exploited, the effort of applying this method
to a large number of different driving scenarios is higher than for model-free
RL approaches.

In a real-world application of autonomous driving, a black-box agent that
only outputs decisions is not sufficient. The agent also needs to provide an
estimate of its confidence in the recommended decisions. This information
can both be used to improve the performance of the agent itself and to im-
prove the interaction with lower-level decision-making functionality, such as
safety assurance layers. This thesis introduces the EQN method, which si-
multaneously estimates both the aleatoric and the epistemic uncertainty of
the agent’s decisions. The results demonstrate how the aleatoric uncertainty
information can increase the safety of the agent by taking risk into account,
and the method provides a natural way to balance the safety-efficiency trade-
off. The epistemic uncertainty information can be used to detect situations
that are outside the training distribution, in which the agent cannot be ex-
pected to make rational decisions. The results show that such information
can increase the safety of the agent. However, the main contribution of this
work is the method for providing the uncertainty estimate, since this informa-
tion could be used for other purposes. For example, the exploration process
of the agent could be modified to guide the training towards situations that

8.2. Future research directions 59

the agent is not yet confident about. Or, perhaps even more importantly, if
an agent is first trained in a simulated world with a limited set of available
traffic situations and then deployed in real traffic, the EQN method could be
used to identify situations that are different from what the agent experienced
during its training. These situations could then automatically be added to
the simulated environment to iteratively improve the distribution of scenarios
that the agent can handle.

8.2 Future research directions

The methods that are presented in this thesis are all trained and evaluated
in simulated environments. While testing the performance of the methods in
a larger variety of simulated driving scenarios would be interesting, a more
important challenge is to take the step into the real world. Simulated envi-
ronments provide many benefits, such as low-cost training samples, allowing
dangerous exploratory actions, and accelerated testing. However, simulations
seldom provide an entirely accurate description of the real world. Therefore,
a policy that has been trained in a simulated environment may not be directly
transferable to real driving. Simulated environments will likely be used for
pretraining policies in the future, Pan et al. provide an early approach [50],
but more research is required on how to adapt such a policy to the real world.

One of the motivations for using RL to create a tactical decision-making
agent is to avoid the need of manually designing policies. However, the RL
methods in this thesis still use several components that are manually spec-
ified, such as the reward function, the generative model of the MCTS/NN
agent, and the simulation environments. Instead, data-driven approaches
could be adopted to obtain these components. As discussed in Section 7.4,
inverse RL could be used to learn the reward function [46], driver models
could be learned from data [36, 6], or perhaps the whole simulation environ-
ment could be based on data.

The methods that are presented in this work require a moderate to large
amount of training samples to converge to a suitable policy for the tested
driving scenarios, see Table 7.1. If these methods would be trained for a large
number of different simulated driving scenarios, or if the training would be
performed in the real world, the required number of training samples may
be too high. The sample efficiency of model-free RL methods is in general
low, and how to improve the efficiency is another interesting future line of
research [16].

Bibliography

[1] K. I. Ahmed, Modeling drivers’ acceleration and lane changing behav-
ior, PhD thesis, Massachusetts Institute of Technology, 1999.

[2] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp,
C. Reinholtz, D. Hong, A. Wicks, T. Alberi, D. Anderson,
S. Cacciola, P. Currier, A. Dalton, J. Farmer, J. Hurdus,
S. Kimmel, P. King, A. Taylor, D. V. Covern, and M. Web-
ster, Odin: Team VictorTango’s entry in the DARPA urban challenge,
Journal of Field Robotics, 25 (2008), pp. 467–492.

[3] H. Bai, D. Hsu, and W. S. Lee, Integrated perception and planning
in the continuous space: A POMDP approach, International Journal of
Robotics Research, 33 (2014), pp. 1288–1302.

[4] M. Bansal, A. Krizhevsky, and A. Ogale, ChauffeurNet: Learn-
ing to drive by imitating the best and synthesizing the worst, in Proceed-
ings of Robotics: Science and Systems, 2019.

[5] M. G. Bellemare, W. Dabney, and R. Munos, A distributional
perspective on reinforcement learning, in Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), 2017, pp. 449–458.

[6] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Mor-
ton, A. Kuefler, and M. J. Kochenderfer, Multi-agent imitation
learning for driving simulation, in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2018,
pp. 1534–1539.

61

62 BIBLIOGRAPHY

[7] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. J.
Kochenderfer, and J. Tumova, Reinforcement learning with prob-
abilistic guarantees for autonomous driving, in Proceedings of the Work-
shop on Safety, Risk and Uncertainty in Reinforcement Learning, 34th
Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

[8] S. Brechtel, T. Gindele, and R. Dillmann, Probabilistic
decision-making under uncertainty for autonomous driving using contin-
uous POMDPs, in Proceedings of the 17th IEEE International Confer-
ence on Intelligent Transportation Systems (ITSC), 2014, pp. 392–399.

[9] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samoth-
rakis, and S. Colton, A survey of Monte Carlo tree search methods,
IEEE Transactions on Computational Intelligence and AI in Games, 4
(2012), pp. 1–43.

[10] J. Chen, B. Yuan, and M. Tomizuka, Model-free deep reinforce-
ment learning for urban autonomous driving, in Proceedings of the
22nd IEEE Intelligent Transportation Systems Conference (ITSC), 2019,
pp. 2765–2771.

[11] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and
N. Bonnard, Continuous upper confidence trees, in Proceedings of
the International Conference on Learning and Intelligent Optimization,
2011, pp. 433–445.

[12] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, Implicit
quantile networks for distributional reinforcement learning, in Proceed-
ings of the 35th International Conference on Machine Learning (ICML),
2018, pp. 1096–1105.

[13] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos,
Distributional reinforcement learning with quantile regression, in Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018,
pp. 2892–2901.

[14] F. Damerow and J. Eggert, Risk-aversive behavior planning under
multiple situations with uncertainty, in Proceedings of the 18th IEEE

BIBLIOGRAPHY 63

International Conference on Intelligent Transportation Systems (ITSC),
2015, pp. 656–663.

[15] E. W. Dijkstra, A note on two problems in connexion with graphs,
Numerische Mathematik, 1 (1959), pp. 269–271.

[16] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and
J. Clune, First return then explore, Nature, 590 (2021), pp. 580–586.

[17] D. J. Fagnant and K. Kockelman, Preparing a nation for au-
tonomous vehicles: Opportunities, barriers and policy recommenda-
tions, Transportation Research Part A: Policy and Practice, 77 (2015),
pp. 167–181.

[18] D. González, J. Pérez, V. Milanés, and F. Nashashibi, A re-
view of motion planning techniques for automated vehicles, IEEE Trans-
actions on Intelligent Transportation Systems, 17 (2016), pp. 1135–1145.

[19] P. Hart, N. Nilsson, and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Transactions on
Systems Science and Cybernetics, 4 (1968), pp. 100–107.

[20] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Os-
trovski, W. Dabney, D. Horgan, B. Piot, M. G. Azar, and
D. Silver, Rainbow: Combining improvements in deep reinforcement
learning, in Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, 2018, pp. 3215–3222.

[21] J. Ho and S. Ermon, Generative adversarial imitation learning, in
Proceedings of the 29th Conference on Neural Information Processing
Systems (NeurIPS), 2016.

[22] C. J. Hoel, Source code for ‘Tactical decision-making in au-
tonomous driving by reinforcement learning with uncertainty
estimation’, 2020. https://github.com/carljohanhoel/

BayesianRLForAutonomousDriving.

[23] C. J. Hoel, Source code for ‘Ensemble quantile networks:
Uncertainty-aware reinforcement learning with applications in au-
tonomous driving’, 2021. https://github.com/carljohanhoel/

EnsembleQuantileNetworks.

https://github.com/carljohanhoel/BayesianRLForAutonomousDriving
https://github.com/carljohanhoel/BayesianRLForAutonomousDriving
https://github.com/carljohanhoel/EnsembleQuantileNetworks
https://github.com/carljohanhoel/EnsembleQuantileNetworks

64 BIBLIOGRAPHY

[24] J. H. Holland, Adaptation in Natural and Artificial Systems, Univer-
sity of Michigan Press, 1975.

[25] P. J. Huber, Robust estimation of a location parameter, The Annals
of Mathematical Statistics, 35 (1964), pp. 73–101.

[26] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fu-
jimura, Navigating occluded intersections with autonomous vehicles us-
ing deep reinforcement learning, in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018, pp. 2034–
2039.

[27] J. Janai, F. Güney, A. Behl, and A. Geiger, Computer Vision
for Autonomous Vehicles: Problems, Datasets and State of the Art, Now
Publishers Inc., 2020.

[28] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and
S. Teller, Anytime motion planning using the RRT*, in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), 2011, pp. 1478–1483.

[29] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J.
Kochenderfer, HG-DAgger: Interactive imitation learning with hu-
man experts, in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2019, pp. 8077–8083.

[30] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M.
Allen, V.-D. Lam, A. Bewley, and A. Shah, Learning to drive in
a day, in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2019, pp. 8248–8254.

[31] A. Kesting, M. Treiber, and D. Helbing, General lane-
changing model MOBIL for car-following models, Transportation Re-
search Record, 1999 (2007), pp. 86–94.

[32] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sal-
lab, S. Yogamani, and P. Pérez, Deep reinforcement learning for
autonomous driving: A survey, IEEE Transactions on Intelligent Trans-
portation Systems, (2021), pp. 1–18.

BIBLIOGRAPHY 65

[33] A. D. Kiureghian and O. Ditlevsen, Aleatory or epistemic? Does
it matter?, Structural Safety, 31 (2009), pp. 105–112.

[34] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory
and Application, MIT Press, 2015.

[35] M. Kuderer, S. Gulati, and W. Burgard, Learning driving styles
for autonomous vehicles from demonstration, in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 2641–2646.

[36] A. Kuefler, J. Morton, T. Wheeler, and M. J. Kochender-
fer, Imitating driver behavior with generative adversarial networks, in
Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2017,
pp. 204–211.

[37] S. M. Lavalle, Rapidly-exploring random trees: A new tool for path
planning, tech. rep., Iowa State University, 1998.

[38] Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning, Nature,
521 (2015), pp. 436–444.

[39] E. Leurent, Y. Blanco, D. Efimov, and O.-A. Maillard, A
survey of state-action representations for autonomous driving. hal-
01908175, 2018.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, Continuous control with
deep reinforcement learning, in Proceedings of the 4th International Con-
ference on Learning Representations (ICLR), 2016.

[41] J. A. Michon, A critical view of driver behavior models: What do
we know, what should we do?, in Human Behavior and Traffic Safety,
L. Evans and R. Schwing, eds., Springer, 1985, pp. 485–524.

[42] V. Mnih et al., Human-level control through deep reinforcement learn-
ing, Nature, 518 (2015), pp. 529–533.

[43] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dol-
gov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoff-
mann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer,

66 BIBLIOGRAPHY

A. Levandowski, J. Levinson, J. Marcil, D. Orenstein,
J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun, Junior: The
Stanford entry in the urban challenge, Journal of Field Robotics, 25
(2008), pp. 569–597.

[44] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, Tacti-
cal decision making for lane changing with deep reinforcement learning,
in Proceedings of the Workshop on Machine Learning for Intelligent
Transportation Systems, 32nd Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2017.

[45] A. Y. Ng, D. Harada, and S. Russell, Policy invariance under
reward transformations: Theory and application to reward shaping, in
In Proceedings of the Sixteenth International Conference on Machine
Learning, Morgan Kaufmann, 1999, pp. 278–287.

[46] A. Y. Ng and S. J. Russell, Algorithms for inverse reinforcement
learning, in Proceedings of the 17th International Conference on Ma-
chine Learning (ICML), 2000, pp. 663–670.

[47] I. Osband, J. Aslanides, and A. Cassirer, Randomized prior func-
tions for deep reinforcement learning, in Proceedings of the 31st Con-
ference on Neural Information Processing Systems (NeurIPS), 2018.

[48] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, Deep
exploration via bootstrapped DQN, in Proceedings of the 29th Conference
on Neural Information Processing Systems (NeurIPS), 2016.

[49] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, A
survey of motion planning and control techniques for self-driving urban
vehicles, IEEE Transactions on Intelligent Vehicles, 1 (2016), pp. 33–55.

[50] X. Pan, Y. You, Z. Wang, and C. Lu, Virtual to real reinforcement
learning for autonomous driving, in Proceedings of the 28th British Ma-
chine Vision Conference (BMVC), 2017, pp. 11.1–11.13.

[51] D. A. Pomerleau, ALVINN: An autonomous land vehicle in a neural
network, in Proceedings of the 1st Conference on Neural Information
Processing Systems (NeurIPS), 1989, pp. 305–313.

BIBLIOGRAPHY 67

[52] S. Ross, G. Gordon, and D. Bagnell, A reduction of imitation
learning and structured prediction to no-regret online learning, in Pro-
ceedings of the 14th International Conference on Artificial Intelligence
and Statistics, 2011, pp. 627–635.

[53] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, 3 ed., 2010.

[54] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, Planning
for autonomous cars that leverage effects on human actions, in Proceed-
ings of Robotics: Science and Systems, 2016.

[55] S. Shalev-Shwartz, S. Shammah, and A. Shashua, Safe,
multi-agent, reinforcement learning for autonomous driving.
arXiv:1610.03295, 2016.

[56] S. Sharifzadeh, J. Chiotellis, R. Triebel, and D. Cremers,
Learning to drive using inverse reinforcement learning and deep Q-
networks, in Proceedings of the Workshop on Deep Learning for Ac-
tion and Interaction, 29th Conference on Neural Information Processing
Systems (NeurIPS), 2016.

[57] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Grae-
pel, T. Lillicrap, K. Simonyan, and D. Hassabis, A general rein-
forcement learning algorithm that masters chess, shogi, and Go through
self-play, Science, 362 (2018), pp. 1140–1144.

[58] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, Mastering the game of Go without
human knowledge, Nature, 550 (2017), pp. 354–359.

[59] S. Singh, Critical reasons for crashes investigated in the national motor
vehicle crash causation survey, Tech. Rep. DOT HS 812 506, National
Highway Traffic Safety Administration, 2018.

[60] E. Sonu, Z. Sunberg, and M. J. Kochenderfer, Exploiting hier-
archy for scalable decision making in autonomous driving, in Proceed-

68 BIBLIOGRAPHY

ings of the IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 2203–
2208.

[61] L. Sun, W. Zhan, C.-Y. Chan, and M. Tomizuka, Behavior plan-
ning of autonomous cars with social perception, in Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 207–213.

[62] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, The value of
inferring the internal state of traffic participants for autonomous free-
way driving, in Proceedings of the American Control Conference (ACC),
2017, pp. 3004–3010.

[63] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Intro-
duction, MIT Press, 2 ed., 2018.

[64] L. Svensson, L. Masson, N. Mohan, E. Ward, A. P. Bren-
den, L. Feng, and M. Törngren, Safe stop trajectory planning for
highly automated vehicles: An optimal control problem formulation, in
Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2018,
pp. 517–522.

[65] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg,
Learning negotiating behavior between cars in intersections using deep
Q-learning, in Proceedings of the 21st IEEE International Conference
on Intelligent Transportation Systems (ITSC), 2018, pp. 3169–3174.

[66] N. Tran et al., Global status report on road safety 2018, tech. rep.,
World Health Organization, 2018.

[67] M. Treiber, A. Hennecke, and D. Helbing, Congested traffic
states in empirical observations and microscopic simulations, Physical
Review E, 62 (2000), pp. 1805–1824.

[68] M. Törngren, X. Zhang, N. Mohan, M. Becker, L. Svensson,
X. Tao, D.-J. Chen, and J. Westman, Architecting safety super-
visors for high levels of automated driving, in Proceedings of the 21st
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 1721–1728.

BIBLIOGRAPHY 69

[69] S. Ulbrich and M. Maurer, Towards tactical lane change behavior
planning for automated vehicles, in Proceedings of the 18th IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2015, pp. 989–995.

[70] S. Ulbrich, A. Reschka, J. Rieken, S. Ernst, G. Bagschik,
F. Dierkes, M. Nolte, and M. Maurer, Towards a functional
system architecture for automated vehicles. arXiv:1703.08557, 2017.

[71] S. Underwood, D. Bartz, A. Kade, and M. Crawford, Truck
automation: Testing and trusting the virtual driver, in Road Vehicle
Automation 3, G. Meyer and S. Beiker, eds., Springer, 2016, pp. 91–
109.

[72] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner,
M. N. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer,
M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard,
S. Kolski, A. Kelly, M. Likhachev, M. McNaughton,
N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Ryb-
ski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz,
W. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown,
D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar,
W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Fergu-
son, Autonomous driving in urban environments: Boss and the urban
challenge, Journal of Field Robotics, 25 (2008), pp. 425–466.

[73] P. Wang, H. Li, and C.-Y. Chan, Continuous control for automated
lane change behavior based on deep deterministic policy gradient algo-
rithm, in Proceedings of the IEEE Intelligent Vehicles Symposium (IV),
2019, pp. 1454–1460.

[74] P. Wang, D. Liu, J. Chen, H. Li, and C. Chan, Decision mak-
ing for autonomous driving via augmented adversarial inverse reinforce-
ment learning, in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[75] C. J. C. H. Watkins and P. Dayan, Q-learning, Machine Learning,
8 (1992), pp. 279–292.

70 BIBLIOGRAPHY

[76] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, Optimal
trajectory generation for dynamic street scenarios in a Frenét frame,
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2010, pp. 987–993.

[77] F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, A survey of deep
reinforcement learning algorithms for motion planning and control of
autonomous vehicles. arXiv:2105.14218, 2021.

[78] Z. Zhu and H. Zhao, A survey of deep RL and IL for autonomous
driving policy learning. arXiv:2101.01993, 2021.

[79] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Pe-
terson, J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srini-
vasa, Planning-based prediction for pedestrians, in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2009, pp. 3931–3936.

Paper I

An evolutionary approach to
general-purpose automated speed and lane

change behavior

in

Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications, Cancun, Mexico, 2017, pp. 743-748.

An Evolutionary Approach to General-Purpose
Automated Speed and Lane Change Behavior

Carl-Johan Hoel∗†, Mattias Wahde∗, Krister Wolff∗
∗Chalmers University of Technology, 412 96 Göteborg, Sweden
†Volvo Group Trucks Technology, 405 08 Göteborg, Sweden

Email: {carl-johan.hoel, mattias.wahde, krister.wolff}@chalmers.se

Abstract—This paper introduces a method for automatically
training a general-purpose driver model, applied to the case of a
truck-trailer combination. A genetic algorithm is used to optimize
a structure of rules and actions, and their parameters, to achieve
the desired driving behavior. The training is carried out in a
simulated environment, using a two-stage process. The method is
then applied to a highway driving case, where it is shown that it
generates a model that matches or surpasses the performance of
a commonly used reference model. Furthermore, the generality
of the model is demonstrated by applying it to an overtaking
situation on a rural road with oncoming traffic.

I. INTRODUCTION

Technology for limited automation of vehicles has been
available for some time. Different functions exist to automate
specific driving tasks, such as adaptive cruise control, lane
keeping systems, automated parallel parking etc. One of the
more mature areas of automated driving is highway driving.
Much of the complexity from e.g. city driving is here reduced,
and during normal operation (excluding special events such as
road work etc.) the task is limited to adapt the vehicle speed,
follow the intended lane, and carry out lane changes.

Many algorithms for speed control exist; for an overview,
see e.g. [1]. One commonly used model for speed control is the
Intelligent driver model (IDM) [2], which is a simple but ro-
bust model that considers the relative distance to, and speed of,
the preceding vehicle. In order to decide whether or not a lane
change is feasible, different gap acceptance models are often
used; see, for example, [3] or [4]. Another algorithm, Minimize
overall braking induced by lane changes (MOBIL) [5], tries
to minimize the longitudinal acceleration of all participants in
a traffic situation. A so called politeness factor determines the
level of priority of the vehicle under consideration (henceforth
referred to as the ego vehicle) compared to that of surrounding
vehicles. There is also a variety of more advanced algorithms
for lane changing, taking into account the risk and utility
associated with a lane change [6] or solving the problem as a
partially observable Markov decision process [7].

However, most existing methods for automated driving, for
example the methods mentioned above, are tailored to handle
a specific case, such as highway driving. As soon as a dif-
ferent setting is considered, e.g. driving on a rural road with
oncoming traffic instead of a highway, an entirely different
method may be required. Moreover, human drivers do not in
general drive in a continuously error-minimizing way, as is
often assumed in methods based on classical control theory.
Instead, human driving is a more complex process involving

several cognitive tasks such as neuro-muscular control, moni-
toring, and decision-making, see [8] and [9].

Therefore, in this paper an alternative method for automated
driving is introduced, in which a genetic algorithm (GA) with
length-varying chromosomes is used for optimizing a set of
rules in simulation, in order to form a complete automated
driver model for a given situation, although the number of
available lanes, the speed of the vehicles, the presence or ab-
sence of oncoming traffic, etc. can differ. The GA is applied in
an open-ended manner, optimizing both the structure (i.e. the
number of rules, as well as the types of rules used) and the
parameters of the set of rules constituting the driver model.
For details of GAs in general, see e.g. [10]

The main strength of the proposed method is its ability for
generalization: It is shown that this approach is able to gener-
ate a driver model for highway driving with a performance that
matches the combination of the IDM and the MOBIL model.
Moreover, it is shown that a given rule set can, with some
tuning, be applied in an entirely different setting, namely (in
this case) driving on a rural road with oncoming traffic.

This paper is organized as follows: Sect. II gives an
overview of the IDM and the MOBIL model, which are used
for comparison, and describes how the simulations were set
up. The genetic algorithm is outlined in Sect. III. Next, in
Sect. IV, the results are presented, followed by a discussion
in Sect. V. Finally the conclusions are given in Sect. VI.

II. SIMULATION ENVIRONMENT

As a baseline for comparison, a reference driver model,
combined from the IDM and MOBIL model, was used for
longitudinal control and for lane change decisions. Highway
traffic was simulated, which included frequent speed changes
to accelerate the training process. This section describes the
reference model and how the simulations were set up.

A. Reference model
The IDM [2] has often been used for driver modeling, driver

assistance systems, and traffic simulations. It is a longitudinal
model of the ego vehicle’s speed, v, according to

v̇ = a

(
1−

(
v

v0

)δ
−
(
s∗(v,∆v)

s

)2)
, (1)

s∗(v,∆v) = s0 + vT + v∆v/(2
√
ab). (2)

Here v is the speed of the ego vehicle, ∆v is the speed
difference between the ego vehicle and the vehicle in front
(approach rate), and s is the distance to the vehicle in front of

the ego vehicle. These quantities act as the inputs to the model,
whereas the tuning parameters are the minimum gap distance,
s0, the safe time headway, T , the maximal acceleration, a, the
desired deceleration, b, the acceleration exponent δ, and the
desired free speed, v0.

The MOBIL model [5] uses incentives and safety criteria
to decide if a lane change should take place. The goal of the
model is to minimize the overall negative acceleration of all
participants in a traffic situation. In order to estimate the fu-
ture accelerations of both the ego vehicle and the surrounding
vehicles, when choosing to stay in lane or to change lane, the
IDM is applied to the different cases.

Two criteria need to be fulfilled to perform a lane change.
The first requires that the deceleration of the trailing vehicle
in the target lane, ãn, must not exceed a safe limit, bsafe,
i.e. ãn > −bsafe. The second criterion states that the incentive
to make a lane change should be larger than a specific thresh-
old. The incentive is calculated from the induced accelerations
of the surrounding vehicles both when performing, and when
not performing, a lane change. This criterion is described by

ãe − ae + p ((ãn − an) + (ão − ao)) > ath, (3)

where ãe, ãn and ão are the accelerations of the ego vehicle,
the trailing vehicle in the target lane, and the trailing vehicle in
the current lane, respectively, in the case where the lane change
is carried out. Similarly, ae, an and ao are the accelerations
of the ego vehicle, the trailing vehicle in the target lane, and
the trailing vehicle in the current lane, respectively, in the case
where the lane change does not occur. The politeness factor
p controls how much the effect on the surrounding vehicles
is considered. Furthermore, the threshold ath decides how
advantageous a potential lane change should be in order to be
executed. In summary, the model weighs the own advantage
(acceleration gain) versus the sum of the disadvantages for
other vehicles (acceleration losses).

The same criteria are applied both to the left and right
lanes, if they are both available. In cases where the criteria
are fulfilled both to the left and right, the most advantageous
option, in the form of the highest acceleration gain, is chosen.

In this study, the parameters (given in Table I) from the
original papers [2] and [5] were used.

B. Traffic simulation

The main case where the method presented in this paper
was applied involved highway driving. More specifically, a
straight three-lane highway was used, with U.S. passing rules,
i.e. such that it was allowed to overtake a vehicle both on
the left side and the right side. Each simulation consisted of
one ego vehicle to be controlled and 9 surrounding vehicles,
which followed the IDM model longitudinally and stayed in
their lanes. In all cases, the ego vehicle consisted of a 16.5 m
long truck-semitrailer combination, whereas the surrounding
vehicles were normal passenger cars.

Normal highway driving often involves traffic with more
or less constant speeds and small accelerations. However,
occasionally, vehicles have to brake hard, or even carry out
emergency braking to avoid collisions. In order to train a
model that can handle situations like these using machine

TABLE I
IDM AND MOBIL MODEL PARAMETERS.

Minimum gap distance, s0 2.0 m
Safe time headway, T 1.6 s
Maximal acceleration, a 0.7 m/s2

Desired deceleration, b 1.7 m/s2

Acceleration exponent, δ 4
Politeness factor, p 1
Changing threshold, ath 0.1 m/s2

Maximum safe deceleration, bsafe 4.0 m/s2

0 100 200 300 400 500

Position (m)

0

10

20

30

S
p
e
e
d
 (

m
/s

)

Fig. 1. Example of six different randomly generated speed trajectories, defined
for different positions along the highway. The solid lines are fast trajectories,
applied to vehicles starting behind the ego vehicle, whereas the dashed lines
are slow trajectories, applied to vehicles starting in front of the ego vehicle.

learning, naturally such events must be included in the training
simulations. All the vehicles in the simulation were assigned
different desired speed trajectories, some examples of which
are given in Fig. 1. With the aim of speeding up the training of
the model, traffic was simulated with frequent speed changes.

The ego vehicle always started in the middle lane. Then
the 9 surrounding vehicles were randomly positioned around
it, within a distance dlong longitudinally, set to 150 m. All
vehicles were separated with a minimum inter-vehicle distance
d∆, set to 20 m. The surrounding vehicles were assigned
desired speed trajectories, which were randomly generated by
the following procedure: If the vehicle was placed in front
of the ego vehicle, an initial speed was randomly chosen in
the range [v+

min, v
+
max], here taken as [5, 15] m/s. If instead

it was placed behind the ego vehicle, the initial speed was
chosen in the range [v−min, v

−
max], here taken as [15, 30] m/s.

Then, with a sampling time of 1 s, a choice was made (with
equal probability) either to keep the speed constant or to apply
a constant acceleration. With equal probability, a positive or
negative acceleration was used. The acceleration was drawn
from a normal distribution with mean 0 and variance σ m/s2.
In case of positive accelerations, negative values were rejected,
and vice versa for negative accelerations. σ was equal to 1 for
positive accelerations, and 5 for negative accelerations. The
modulus of the acceleration was limited to 2σ. This acceler-
ation was kept constant for a randomly selected duration in
the range [tmin, tmax], set to [2, 20] s for positive accelerations
and [0.4, 4] s for negative accelerations.

Furthermore, for vehicles initialized in front of the ego
vehicle, the speed was limited to the range [v+

min, v
+
max] (see

above), and for vehicles initialized behind the the ego vehicle,
to the range [v−min, v

−
max]. The initial desired ego vehicle speed,

vego
init, and maximum ego vehicle speed, vego

max, were set to 15
m/s and 20 m/s respectively. Finally, scenarios where any two
vehicles were placed too close together with a large speed
difference, thus causing an unavoidable collision, were deleted.

An example of an initial traffic situation is shown in Fig. 2.

Fig. 2. Example of an initial traffic situation. The ego vehicle (a truck-trailer combination) is shown in red, in the middle lane. The arrows represent the
velocities of the vehicles.

TABLE II
LATERAL CONTROL PARAMETERS.

Distance to near point 5 m
Distance to far point 100 m
Proportional gain far point, kf 20
Proportional gain near point, kn 9
Integral gain near point, kI 10 s−1

C. Vehicle and lateral control model
For each vehicle a lane-following controller was imple-

mented. A two-point visual control model [11] was used,

δ̇ = kf θ̇f + knθ̇n + kIθn, (4)

where δ̇ is the steering angle, and θn and θf are the perceived
angles to a near and far point in the intended lane, respectively.
kf , kn and kI are control parameters. The parameter values are
given in Table II.

The vehicles were modeled using a simple kinematic model.
Regardless of the desired acceleration (see Sect. II-B), the
actual acceleration of the vehicles was limited to the range
[aM

min, a
M
max], here taken as [−10, 2] m/s2, and the maximum

speed was limited to vM
max = 30 m/s.

III. GENETIC ALGORITHM

As mentioned in Sect. I, a GA with length-varying chromo-
somes was used to train a rule-based driver model in simu-
lation. GAs are suitable for optimization problems with non-
differentiable objective functions, or even problems that lack a
complete mathematical model, where instead a simulation has
to be used. Another strength of GAs is their ability to handle
complex problems that have irregular fitness landscapes with
many local optima, and a varying number of variables [10].

In GAs it is common to use chromosomes with lengths that
are preserved during the evolutionary process. However, it is
also possible to use a so called non-homologous crossover
operator that allows the chromosomes to vary in length during
the evolution [12]. Such a crossover operator was implemented
in this study, see Sect. III-C for details.

In the simulations, the ego vehicle is controlled by the
evolved driver model, whereas the 9 surrounding vehicles are
controlled by the standard IDM described in Sect. II-A. The
driver model of the ego vehicle consists of a sequence of
rules and actions (described below) which are executed with
a sampling interval of ∆t = 0.1 s.

A. Chromosome encoding
In the encoding used, a chromosome encodes a set of

instructions, each represented by 4 genes, g1, . . . , g4. The first
two numbers in each instruction are integers and represent
which rule or action that should be used, and which relative
lane that should be considered. The last two parameters
are floating-point numbers that have different meanings
for different instructions. The detailed interpretation of the
numbers is described in Table III. For example, the instruction
[0, 1, 0.2, 0.7] would be translated to the instruction (rule): If

there is a vehicle in the left lane, in the interval -60 m to 40 m
longitudinally, relative to the ego vehicle, then . . . A braking or
accelerating pedal level is linearly mapped to the allowed neg-
ative or positive acceleration ranges mentioned in Sect. II-C.

A chromosome is constructed from a variable number of
instructions such that, when decoded, it generates a driver
model in the form of a list of rule-action units. For example,
a case with three rule-actions units, could take the form:
- Rule 1

- Rule 2
. Action 1

- Rule 3
. Action 2

. Action 3

Note that every rule-action unit contains precisely one ac-
tion, and any number of rules. During evaluation of a chro-
mosome, when deciding which action to take, the first rule
is considered. If the conditions are satisfied, the next rule is
considered etc. If all rules preceding an action are fulfilled,
that action is performed and the evaluation is stopped. This
means that at most one action can be executed. If a rule is
not fulfilled, the evaluation jumps to the next group of rules
preceding the next action. In the example, if, for instance,
Rule 1 is not satisfied, Rule 3 would be considered next. If
there are no rules associated with an action, as in Action 3 in
the example, this action will be used if no preceding action
has been carried out. If there is no lane available in a given
direction, all rule-action units containing an action involving a
lane change in that direction are ignored. Moreover, if a lane
is not available, it is considered to contain no vehicles. For
actions with relative lane 0 (see Table III), no lane change is
performed and only acceleration is considered.

Furthermore, note that the evaluation of the chromosome al-
ways takes place every ∆t s, even if the chosen action involves
a lane change. In that case, the intended lane in the control
model, described in Sect. II-C, is immediately switched to the
desired lane, and kept there until any future action changes it.

B. Fitness measure

In order to evaluate the performance of an evolved driver
model controlling the ego vehicle, the simulation environment
described in Sect. II-B was used. Each scenario was initialized
randomly and run until a collision occurred or the ego vehicle
reached a maximum distance, dmax, in this case 500 m, solving
the scenario without collision.

The fitness measure was divided into a positive and a neg-
ative part. The positive fitness, ranging from 0 to 1, was

f+
i = (d/dmax)×min (v̄/v̄ref , 1) , (5)

where d is the distance driven by the ego vehicle, and dmax

is the maximum distance possible. v̄ is the average speed of
the ego vehicle and v̄ref is the average speed when applying
the reference model presented in Sect. II-A. As can be seen
in the equation, the speed part was limited to the range 0 to

TABLE III
ENCODING OF AN INSTRUCTION, CONSISTING OF 4 GENES

Gene Value Interpretation
0 Rule: If there is a vehicle in lane g2, in the interval

g3 to g4 longitudinally, relative to the ego vehicle
g1 1 Rule: If there is no vehicle in lane g2, in the interval

g3 to g4 longitudinally, relative to the ego vehicle
2 Action: Change to relative lane g2, brake or accele-

rate according to g3, using pedal level g4
-1 Right lane

g2 0 Current lane
1 Left lane

g3 v3 ∈ [0, 1] if g1 = 0 or 1, map value v3 to [-100,100] m
if g1 = 2, g3 represents braking if v3 < 0.5 and
acceleration if v3 ≥ 0.5

g4 v4 ∈ [0, 1] if g1 = 0 or 1, map value v4 to [-100,100] m
if g1 = 2, g4 represents pedal level

1, which means that no additional fitness score was given to
individuals driving faster than the reference model. This was
so, since the model is intended to emphasize safety.

Therefore, when a collision occurred, the distance driven by
the ego vehicle was the dominant limiting factor. By contrast,
if a model managed to drive without collision, the fitness was
determined by the average speed.

Regularization was implemented, in order to avoid overfit-
ting, as a negative fitness contribution depending on the length
of the chromosome. Here, up to n instructions were allowed
without penalty, but beyond that limit, a negative fitness con-
tribution was computed, somewhat arbitrarily, as

f− = βmax (0, L/4− n) , (6)

where L is the length of the chromosome. Since there are 4
genes per instruction, L/4 is the number of instructions. Based
on preliminary investigations, suitable values for n and β were
found to be 20 and 0.2, respectively.

In every GA run, each driver model was evaluated using
i0 = 10 random scenarios. Then, whenever all scenarios were
solved without collision and the speed part of the fitness was
greater than a given threshold (set to 0.85) in 95% of the
considered scenarios, an additional scenario was added. The
total fitness f was then calculated as the sum of the positive
fitness for every scenario minus the overall negative fitness
based on the chromosome length, as

f =
∑

i

f+
i − f−. (7)

C. Evolutionary operators and parameters
In each GA run, a population of m individuals was ran-

domly initialized with between 10 and 20 instructions each.
The individuals were encoded according to Sect. III-A and
were decoded and evaluated as described in Sect. III-B.

When a new generation had been evaluated, a standard tour-
nament selection procedure was applied, with tournament size
k and tournament selection parameter pt. Then crossover was
applied with probability pc to every pair of selected individu-
als. A non-homologous two-point crossover operator was used,
in which the section between the two crossover points was
swapped between the two selected individuals, thus allowing
the length of the chromosomes of the new individuals to be
different from their parents. The crossover points were chosen
between the instructions.

TABLE IV
PARAMETERS USED FOR THE EVOLUTIONARY ALGORITHM.

Population size, m 40
Tournament size, k 4
Tournament selection parameter, pt 0.8
Crossover probability, pc 0.8
Mutation rate 1/L

Following selection and crossover, the individuals were ex-
posed to random mutation. Mutations occurred with a proba-
bility computed as the inverse of the chromosome length L,
i.e. on average one gene per chromosome was mutated. Note
that this means that by mutating the first gene of an instruction,
a rule can change into an action and vice versa. In addition
to the parametric mutation just described, two additional mu-
tation types were used (also with probability 1/L). The first
one either inserted or deleted one instruction, i.e. one rule or
one action. The second one inserted or deleted a rule-action
unit. In case of addition, the rule-action unit was taken as a
mutated copy of one of the already existing rule-action units
in the chromosome.

Finally, elitism was used, meaning that a single copy of the
best individual in a given generation was inserted in the next
generation without modification. The numerical values of the
parameters are summarized in Table IV.

IV. RESULTS

Three different runs (Runs 1 - 3) were carried out with
different random seeds of the GA. The resulting fitness varia-
tion over the generations is shown in Fig. 3, showing an early
increase in fitness as more and more scenarios are solved.
However, in all three runs, when eventually a general solution
is found, which solves all 500 cases without collision at which
point, the fitness jumps to just below 500 (since the average
speed of the ego vehicle is generally smaller than that of the
reference model in a few scenarios). The final driver model
from one of these runs (Run 1) is shown in Table V. The
evolved driver model generates a behavior where the vehicle
stays in its lane and accelerates if no vehicle is close in front
of it. If a vehicle is present, but there is no vehicle in the left
lane, it changes lanes to the left lane. If also the right lane
is occupied, it stays in its own lane and brakes. Otherwise it
changes to the right lane.

It should be noted that some of the rules or rule-action units
do not have any effect on the behavior of the generated driver
model, i.e. they are never executed (see e.g. the second and
third rule in the fourth rule-action unit, and rule-action unit
7 in Table V). For a discussion on why they are kept, see
Sect. V. Furthermore, note that rule-action unit 7 and 8 can
only be considered when the vehicle is positioned in the right
lane, resulting in rule-action unit 6 being ignored.

In order to investigate whether or not an even simpler driver
model could be found, an additional run (Run 4) was carried
out, with negative fitness contribution applied from the be-
ginning (i.e. n = 0 in Eq. 6). For this run, the optimization
was initialized with a population consisting of mutated copies
of the the final best individual of Run 1. Furthermore, this
time, since a feasible structure for solving the problem was
already present in the population, the crossover operator was
removed. Evolution was therefore only done by selection and

0 200 400 600 800 1000 1200 1400 1600

Generation

0

100

200

300

400

500
F

it
n

e
s
s

Fig. 3. Fitness variation of the best individual in the population, for three
optimization runs (Runs 1 - 3) with different random seeds.

TABLE V
THE RESULTING DRIVER MODEL FROM RUN 1.

- If no vehicle in ego lane is within [-2.0, 21.5] m
- If no vehicle in right lane is within [28.5, 62.0] m
. Keep lane, accelerate with pedal level 0.94

- If no vehicle in left lane is within [-19.5, 80.5] m
. Do lane change to the left, accelerate with pedal level 0.65

- If no vehicle in left lane is within [-18.6, 82.3] m
. Do lane change to the left, brake with pedal level 0.12

- If vehicle in right lane is within [-92.0, 90.1] m
- If no vehicle in ego lane is within [-2.2, 37.1] m

- If no vehicle in ego lane is within [-2.2, 37.1] m
. Keep lane, accelerate with pedal level 0.94

- If vehicle in right lane is within [-67.6, 91.3] m
- If vehicle in right lane is within [-18.1, 81,7] m
. Keep lane, brake with pedal level 0.88

. Do lane change to the right, accelerate with pedal level 0.80
- If no vehicle in ego lane is within [-44.5,85.3] m
. Keep lane, brake with pedal level 0.88

- If vehicle in left lane is within [-77.1,46.6] m
- If no vehicle in ego lane is within [28.6,84.2] m
. Keep lane, brake with pedal level 0.88

TABLE VI
THE RESULTING DRIVER MODEL FROM RUN 4, WHICH PENALIZED THE

TOTAL NUMBER OF INSTRUCTIONS.

- If no vehicle in ego lane is within [-3.4, 21.5] m
- If no vehicle in right lane is within [63.3, 99.7] m
. Keep lane, accelerate with pedal level 0.94

- If no vehicle in left lane is within [-17.8, 77.2] m
. Do lane change to the left, accelerate with pedal level 0.97

- If no vehicle in ego lane is within [-2.2, 38.1] m
. Keep lane, accelerate with pedal level 1.00

- If vehicle in right lane is within [-18.1, 40.9] m
. Keep lane, brake with pedal level 0.88

. Do lane change to the right, accelerate with pedal level 0.78
- If vehicle in left lane is within [-75.7, 46.6] m
. Keep lane, brake with pedal level 0.88

. Do lane change to the left, accelerate with pedal level 0.86

mutation. Over 300 generations, the overall fitness improved
from 483 to 491. This was partly due to a shortening of the best
chromosome, reducing the negative part of the fitness measure,
and partly due to further optimization of the parameters of the
instructions. The final driver model is shown in Table VI.

The resulting driver model from Run 4 was finally applied
to 500 new scenarios, different from the ones over which it was
trained. Importantly, the model ran through all these scenarios
without collisions. Fig. 4 shows a histogram of the speed ratio
γ = v̄/v̄ref over the 500 test scenarios. This figure shows that,
even though the average speed of the evolved model generally
was close to that of the reference model, there are also some
outliers, which are either better or worse (in terms of average
speed) than the reference model. This is due to the randomness
of the scenarios, where even a reasonable action can lead
to a situation where the ego vehicle gets locked in, without
a possibility to overtake the surrounding vehicles. Since the

0.5 1 1.5 2 2.5

Speed ratio

0

50

100

150

200

N
u

m
b

e
r

o
f

s
c
e

n
a

ri
o

s

Fig. 4. Histogram of the speed ratio γ = v̄/v̄ref , obtained when applying
the resulting driver model from Run 4 to 500 new scenarios.

models behave differently, such situations can occur both for
the evolved model and the reference model, which explains
the outliers. Note that, even though no additional fitness was
given for models driving faster than the reference model, the
average of γ was 1.11, indicating that the evolved model is
slightly more efficient than the reference model.

V. DISCUSSION

The results show that useful driver models, whose perfor-
mance equals or surpasses that of the reference model in terms
of safety (at least over the scenarios considered; see below)
and average speed, can be obtained with the proposed method.
Reassuringly, the behavior shown by the driver models pre-
sented in Tables V and VI is similar to a gap acceptance
model for lane changes, as presented in e.g. [3] or [4], where a
lane change can be performed if the gap in the traffic is large
enough. Moreover, unlike most driver models, the approach
presented here is not limited only to a single, specific case
(e.g. one-way traffic). In order to illustrate this property, a
similar traffic simulation as that described in Sect. II-B was set
up, with two lanes but with oncoming traffic in the left lane, see
Fig. 5. The ego vehicle started in the right lane, with another
vehicle in front, following a slow speed profile. Two oncoming
vehicles were randomly placed between 200 and 1000 m ahead
of the ego vehicle in the oncoming lane. They both followed
a fast speed profile. The same evolutionary algorithm as de-
scribed in Sect. III was applied to this case, using the same
type of instructions as before (see Table III). Here, the fitness
measure was simply taken as f+

i = (d/dmax) × (v̄/v̄front),
where v̄front was the mean speed of the slow vehicle driving
ahead of the ego vehicle. This measure was chosen since, here,
there was a clear motivation for the ego vehicle to overtake
the slow-moving vehicle in front. With this measure, a driver
model that simply follows the slow vehicle will achieve a
fitness of (just) below one, whereas if the slow vehicle is
overtaken, the fitness value will be larger than 1 (if collisions
are avoided, of course). The variation of the fitness from three
GA runs for this case is shown in Fig. 6. As in the previous
case, all 500 scenarios were solved without collision. Also, no
collisions occurred in a re-evaluation involving 500 new sce-
narios (not used during training). In all cases, the ego vehicle
overtook the slower vehicle, resulting in fitness values above
1. This shows that the proposed method is able to solve other
cases, with a slight modification of the simulation environment
and the fitness measure.

As mentioned in Sect. IV, some duplicate rules and un-
reachable actions that cannot affect the result, see Table V,
were typically present in the obtained models. These non-
effective instructions, referred to as introns, often have positive

Fig. 5. Example of a traffic situation for an overtaking scenario with oncoming traffic, showing the situation after 10 seconds of driving. The ego vehicle (a
truck-trailer combination) is shown in red, in the bottom lane. The arrows represent the velocities of the vehicles.

effect on the progress of the evolutionary search progress, see
e.g. Ch. 7 in [13] for more details. Therefore, introns should
not be removed from the chromosomes during the evolution,
but instead, if desired, after that stage, when the generated
final individual will be operating the vehicle.

As described in Sect. IV, the training was carried out in
two stages: An initial stage (exemplified by Runs 1-3) aimed
at finding a successful driver model, and a second stage (ex-
emplified by Run 4) aimed at simplifying the model. Attempts
were also made to carry out the entire training in a single run,
with a length penalty already from the first instruction, but in
those cases the optimization algorithm typically got stuck in a
local optimum, and the corresponding driver model was then
unable to complete all scenarios. Thus, the proposed two-stage
optimization procedure brought clear benefits.

It is important to note that this method only solves the type
of situations to which it is exposed in the simulations. There-
fore, it is crucial to set up the simulations correctly, to ensure
that they cover the intended case. Furthermore, as with many
machine learning methods, it is hard to guarantee functional
safety with a learned driving model. One way to deal with this,
commonly proposed in literature, see e.g. [14], is to use an
underlying safety layer, which verifies that a planned trajectory
is safe before forwarding it to the vehicle control system.

For the highway case a test was made in which more com-
plex rules were added, involving the speed of the surrounding
vehicles. These would for example have the form If the relative
speed of the vehicle in the left lane is within the range 0 to 5
m/s, then . . . However, adding such rules did not improve the
performance. On the contrary, with these rule types added, the
optimization quickly got stuck in a local optimum, unable to
handle more than a few scenarios.

Thus, in the end, in all cases considered here, the instruction
encoding shown in Table III was used. This instruction set
would probably be applicable in some other cases as well.
However, a more general instruction set would be needed for
some cases, e.g. cases involving crossings. One must then be
careful to avoid the problems just described, where the opti-
mization gets stuck in a local optimum. Some more techniques
to avoid overfitting could possibly help in this regard. Defin-
ing more general instructions is, however, a topic for future
work. If additional instructions, including more action types,
are introduced, allowing more than one action to be executed

0 2000 4000 6000 8000 10000 12000 14000

Generation

0

500

1000

F
it
n

e
s
s

Fig. 6. Fitness variation of the best individual in the population, for three
optimization runs with different random seeds.

at every time interval could be considered. This would also
make it interesting to study alternative types of chromosome
representations. Moreover, investigating further the effects of
different choices of the fitness and evolutionary parameters,
presented in Sect. III, is also a topic for future work.

VI. CONCLUSION

In conclusion, the main result of this paper is that the
proposed method, involving a genetic algorithm with length-
varying chromosomes, can automatically produce successful
driver models in the form of a sequence of rules and actions.
Here, a highway driving case was considered, with a truck-
trailer combination as the ego vehicle. The resulting driver
models match or surpass the performance of a reference
model based on the IDM and the MOBIL model in terms of
average speed. Furthermore the generality of the model has
been demonstrated by applying it to a second case, in which
oncoming traffic was considered. In both cases, the evolved
driver model handled all scenarios without collision. Impor-
tant topics for future work is to extend the model to include
even more general instructions, and also to consider additional
safety aspects.

ACKNOWLEDGMENT

The authors would like to thank Adj. Prof. Leo Laine for
valuable comments on the manuscript. This work was partially
supported by the Wallenberg Autonomous Systems and Soft-
ware Program (WASP), and Vinnova FFI.

REFERENCES

[1] K. Aghabayk et al., “A state-of-the-art review of car-following models
with particular considerations of heavy vehicles,” Transport Reviews,
vol. 35, no. 1, pp. 82–105, 2015.

[2] M. Treiber et al., “Congested traffic states in empirical observations and
microscopic simulations,” Phys. Rev. E, vol. 62, pp. 1805–1824, 2000.

[3] P. Gipps, “A model for the structure of lane-changing decisions,” Trans-
portation Research Part B: Methodological, vol. 20, no. 5, pp. 403 –
414, 1986.

[4] K. I. Ahmed, “Modeling drivers’ acceleration and lane changing behav-
ior,” Ph.D. dissertation, Massachusetts Institute of Technology, 1999.

[5] A. Kesting et al., “General lane-changing model mobil for car-following
models,” Transportation Research Record: Journal of the Transportation
Research Board, vol. 1999, pp. 86–94, 2007.

[6] J. Eggert and F. Damerow, “Complex lane change behavior in the fore-
sighted driver model,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Sept. 2015, pp. 1747–1754.

[7] S. Ulbrich and M. Maurer, “Towards tactical lane change behavior
planning for automated vehicles,” in 2015 IEEE 18th International Con-
ference on Intelligent Transportation Systems, 2015, pp. 989–995.

[8] O. Benderius, “Modelling driver steering and neuromuscular behaviour,”
Ph.D. dissertation, Chalmers University of Technology, 2014.

[9] P. Nilsson et al., “A driver model using optic information for longitudinal
and lateral control of a long vehicle combination,” in Intelligent Trans-
portation Systems (ITSC), 2014 IEEE 17th International Conference on.
IEEE, 2014, pp. 1456–1461.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[11] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[12] M. F. Brameier and W. Banzhaf, Linear genetic programming. Springer
Science & Business Media, 2007.

[13] W. Banzhaf et al., Genetic Programming: An Introduction: on the Au-
tomatic Evolution of Computer Programs and Its Applications. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[14] S. Underwood et al., Truck Automation: Testing and Trusting the Virtual
Driver. Springer International Publishing, 2016, pp. 91–109.

Paper II

Automated speed and lane change decision
making using deep reinforcement learning

in

Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems, Maui, HI, USA, 2018, pp. 2148-2155.

Automated Speed and Lane Change Decision
Making using Deep Reinforcement Learning

Carl-Johan Hoel∗†, Krister Wolff∗, Leo Laine∗†
∗Chalmers University of Technology, 412 96 Göteborg, Sweden
†Volvo Group Trucks Technology, 405 08 Göteborg, Sweden
Email: {carl-johan.hoel, krister.wolff, leo.laine}@chalmers.se

Abstract—This paper introduces a method, based on deep
reinforcement learning, for automatically generating a general
purpose decision making function. A Deep Q-Network agent was
trained in a simulated environment to handle speed and lane
change decisions for a truck-trailer combination. In a highway
driving case, it is shown that the method produced an agent
that matched or surpassed the performance of a commonly used
reference model. To demonstrate the generality of the method,
the exact same algorithm was also tested by training it for an
overtaking case on a road with oncoming traffic. Furthermore,
a novel way of applying a convolutional neural network to
high level input that represents interchangeable objects is also
introduced.

I. INTRODUCTION

By automating heavy vehicles, there is potential for a
significant productivity increase, see e.g. [1]. One of the
challenges in developing autonomous vehicles is that they
need to make decisions in complex environments, ranging
from highway driving to less structured areas inside cities. To
predict all possible traffic situations, and code how to handle
them, would be a time consuming and error prone work, if
at all feasible. Therefore, a method that can learn a suitable
behavior from its own experiences would be desirable. Ideally,
such a method should be applicable to all possible environ-
ments. This paper introduces how a specific machine learning
algorithm can be applied to automated driving, here tested on
a highway driving case and an overtaking case.

Traditionally, rule based gap acceptance models are com-
mon to make lane changing decisions, see for example [2]
or [3]. More recent methods often consider the utility of a
potential lane change. Either the utility of changing to a spe-
cific lane is estimated, see [4] or [5], or the total utility (also
called the expected return) over a time horizon is maximized
by solving a partially observable Markov decisions process
(POMDP), see [6] or [7]. Two commonly used models for
speed control and to decide when to change lanes are the
Intelligent driver model (IDM) [8] and the Minimize overall
braking induced by lane changes (MOBIL) model [9]. The
combination of these two models was used as a baseline when
evaluating the method presented in this paper.

A common problem with most existing methods for au-
tonomous driving is that they target one specific driving case.
For example, the ones mentioned above are designed for
highway driving, but if a different case is considered, such as
driving on a road with oncoming traffic, a completely different
method is required. In an attempt to overcome this issue, we
introduced a more general approach in [10]. This method is

based on a genetic algorithm, which is used to automatically
train a general-purpose driver model that can handle different
cases. However, the method still requires some features to be
defined manually, in order to adapt its rules and actions to
different driving cases.

During the last years, the field of deep learning has made
revolutionary progress in many areas, see e.g. [11] or [12]. By
combining deep neural networks with reinforcement learning,
artificial intelligence has evolved in different domains, from
playing Atari games [13], to continuous control [14], reaching
a super human performance in the game of Go [15] and
beating the best chess computers [16]. Deep reinforcement
learning has also successfully been used for some special
applications in the field of autonomous driving, see e.g. [17]
and [18].

This paper introduces a method based on a Deep Q-
Network (DQN) agent [13] that, from training in a simulated
environment, automatically generates a decision making func-
tion. To the extent of the authors’ knowledge, this method
has not previously been applied to this problem. The main
benefit of the presented method is that it is general, i.e. not
limited to a specific driving case. For highway driving, it is
shown that it can generate an agent that performs better than
the combination of the IDM and MOBIL model. Furthermore,
with no tuning, the same method can be applied to a different
setting, in this case driving on a road with oncoming traffic.
Two important differences compared to our previous approach
in [10] is that the method presented in this paper does not need
any hand crafted features and that the training is significantly
faster. Moreover, this paper introduces a novel way of using
a convolutional neural network architecture by applying it to
high level sensor data, representing interchangeable objects,
which improves and speeds up the learning process.

This paper is organized as follows: The DQN algorithm
and how it was implemented is described in Sect. II. Next,
Sect. III gives an overview of the IDM and the MOBIL model,
and describes how the simulations were set up. In Sect. IV,
the results are presented, followed by a discussion in Sect. V.
Finally the conclusions are given in Sect. VI.

II. SPEED AND LANE CHANGE DECISION MAKING

In this paper, the task of deciding when to change lanes
and to control the speed of the vehicle under consideration
(henceforth referred to as the ego vehicle) is viewed as a
reinforcement learning problem. A Deep Q-Network (DQN)
agent [13] is used to learn the Q-function, which describes

how beneficial different actions are in a given state. The state
of the surrounding vehicles and the available lanes are known
to the agent, and its objective is to choose which action to
take, which for example could be to change lanes, brake or
accelerate. The details of the procedure are described in this
section.

A. Reinforcement learning
Reinforcement learning is a branch of machine learning,

where an agent acts in an environment and tries to learn a
policy, π, that maximizes a cumulative reward function. The
policy defines which action, a, to take, given a state, s. The
state of the environment will then change to a new state, s′,
and return a reward, r. The reinforcement learning problem is
often modeled as a Markov Decision Process (MDP), which
is defined as the tuple 〈S,A, T,R, γ〉, where S is the set
of states, A is the set of actions, T : S × A → S is the
state transition probability function, R : S × A × S → R
is the reward function and γ ∈ [0, 1] is a discount factor.
An MDP satisfies the Markov property, which means that
the probability distribution of the future states depends only
on the current state and action, and not on the history of
previous states. At every time step, t, the goal of the agent is
to maximize the future discounted return, defined as

Rt =
∞∑

k=0

γkrt+k, (1)

where rt+k is the reward given at step t + k. See [19] for
a comprehensive introduction to reinforcement learning and
MDPs.

B. Deep Q-Network
In the reinforcement learning algorithm called Q-learning

[20], the agent tries to learn the optimal action value function,
Q∗(s, a). This function is defined as the maximum expected
return when being in a state, s, taking some action, a, and
then following the optimal policy, π∗. This is described by

Q∗(s, a) = max
π

E [Rt|st = s, at = a, π] . (2)

The optimal action value function follows the Bellman equa-
tion, see [20],

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s′, a′)|s, a

]
, (3)

which is based on the intuition that if the values of Q∗(s′, a′)
are known, the optimal policy is to select an action, a′, that
maximizes the expected value of Q∗(s′, a′).

In the DQN algorithm [13], Q-learning is combined with
deep learning. A deep neural network with weights θ is used
as a function approximator of the optimal value function,
i.e. Q(s, a; θ) ≈ Q∗(s, a). The network is then trained by
adjusting its parameters, θi, at every iteration, i, to minimize
the error in the Bellman equation. This is typically done with
stochastic gradient descent, where mini-batches with size M
of experiences, described by the tuple et = (st, at, rt, st+1),
are drawn from an experience replay memory. The loss func-
tion at iteration i is defined as

Li(θi) = EM

[
(r + γmaxa′ Q(s′, a′; θ−i)−Q(s, a; θi))

2
]
. (4)

Here, θ−i are the network parameters used to calculate the
target at iteration i. In order to make the learning process more
stable, these parameters are held fixed for a number of itera-
tions and then periodically updated with the latest version of
the trained parameters, θi. The trade off between exploration
and exploitation is handled by following an ε-greedy policy.
This means that a random action is selected with probability
ε, and otherwise the action with the highest value is chosen.
For further details on the DQN algorithm, see [13].

Q-learning and the DQN algorithm are known to overesti-
mate the action value function under some conditions. A fur-
ther development is the Double DQN algorithm [21], which
aims to decouple the action selection and action evaluation.
This is done by updating Eq. 4 to

Li(θi) = EM

[(
r + γQ(s′, arg max

a
Q(s′, a; θi); θ

−
i)

−Q(s, a; θi)
)2]

. (5)

C. Agent implementation

The Double DQN algorithm, outlined above, was applied to
control a vehicle in two test cases, which are further described
in Sect. III-B. The details of the implementation of the agent
are presented below.

1) MDP formulation: Since the intention of other road
users cannot be observed, the speed and lane change decision
making problem can be modeled as a partially observable
Markov decision process (POMDP) [22]. To address the par-
tial observability, the POMDP can be approximated by an
MDP with a k-Markov approximation, where the state con-
sists of the last k observations, st = (ot−k+1, ot−k+2, . . . , ot)
[13]. However, for the method presented in this paper, it
proved sufficient to set k = 1, i.e. to simply use the last
observation.

Two different agents were investigated in this study, called
Agent1 and Agent2. They both used the same state input,
s, defined as a vector with 27 elements, which contained
information on the ego vehicle’s speed, existing lanes and
states of the 8 surrounding vehicles. Table I shows the con-
figuration of the state (see Sect. III for details on how the
traffic environment was simulated).

Agent1 only controlled the lane changing decisions,
whereas the speed was automatically controlled by the IDM.
This gave a direct comparison to the lane change decisions
taken by the MOBIL model, in which the speed also was
controlled by the IDM (see Sect. III-A for details). Agent2
controlled both the lane changing decisions and the speed.
Here, the speed was changed by choosing between four
different acceleration options: full brake (−9 m/s2), medium
brake (−2 m/s2), maintain speed (0 m/s2) and accelerate
(+2 m/s2). The action spaces of the two agents are given
in Table II. When a decision to change lanes was taken,
the intended lane of the lateral control model, described in
Sect. III-B, was changed. Both agents took decisions at an
interval of ∆t = 1 s.

A simple reward function was used. Normally, at every time
step, a positive reward was given, based on the distance driven
during that interval, ∆d, and normalized as ∆d/∆dmax. Here,
∆dmax = ∆tvego

max, and vego
max was the maximum possible

TABLE I
STATE INPUT VECTOR USED BY THE AGENTS. s1 , s2 AND s3 DESCRIBE

THE STATE OF THE EGO VEHICLE AND THE AVAILABLE LANES, WHEREAS
s3i+1 , s3i+2 AND s3i+3 , FOR i = 1,2,...8, REPRESENT THE STATE OF THE

SURROUNDING VEHICLES.

s1 Normalized ego vehicle speed, vego/vmax
ego

s2

{
1, if there is a lane to the left
0, otherwise

s3

{
1, if there is a lane to the right
0, otherwise

s3i+1 Normalized relative position of vehicle i, ∆si/∆smax

s3i+2 Normalized relative speed of vehicle i, ∆vi/vmax

s3i+3

−1, if vehicle i is two lanes to the right of the ego vehicle
−0.5, if vehicle i is one lane to the right of the ego vehicle

0, if vehicle i is in the same lane as the ego vehicle
0.5, if vehicle i is one lane to the left of the ego vehicle

1, if vehicle i is two lanes to the left of the ego vehicle

TABLE II
ACTION SPACES OF THE TWO AGENTS.

Agent1

a1 Stay in current lane
a2 Change lanes to the left
a3 Change lanes to the right

Agent2

a1 Stay in current lane, keep current speed
a2 Stay in current lane, accelerate with -2 m/s2

a3 Stay in current lane, accelerate with -9 m/s2

a4 Stay in current lane, accelerate with 2 m/s2

a5 Change lanes to the left, keep current speed
a6 Change lanes to the right, keep current speed

speed of the ego vehicle. This part of the reward function im-
plicitly encouraged lane changes to overtake slower vehicles.
However, if a collision occurred, or the ego vehicle drove
out of the road (it could choose to change lanes to one that
did not exist), a penalizing reward of −10 was given and
the episode was terminated. If the ego vehicle ended up in
a near collision, defined as being one vehicle length (4.8 m)
from another vehicle, a reward of −10 was also given, but the
episode was not terminated. Finally, to limit the number of
lane changes, a reward of −1 was given when a lane changing
action was chosen.

2) Neural network design: Two different neural network
architectures were investigated in this study. Both had 27 input
neurons, for the state described above. The final output layer
had 3 output neurons for Agent1 and 6 output neurons for
Agent2, where the value of neuron ni represented the value
function when choosing action ai, i.e. Q(s, ai).

The first architecture was a standard fully connected neural
network (FCNN), with two hidden layers. Each layer con-
sisted of nhidden neurons, set to 512, and rectified linear units
(ReLUs) were used as activation functions [23]. The final
output layer used a linear activation function.

The second architecture introduces a new way of applying
temporal convolutional neural networks (CNNs). CNNs are
inspired by the structure of the visual cortex in animals. By
their architecture and weight sharing properties, they create
a space and shift invariance, and reduce the number of pa-
rameters to be optimized. This has made them successful in

27x1

3

24

8x32 8x32

1x32

32 filters
size 3x1
stride 3

32 filters
size 1x32
stride 1

maxpool

64x1

merge

35x1

fully con-
nected

fully con-
nected

3x1
or

6x1

input

output

merge

Fig. 1. The second network architecture, which used convolutional neural
networks and max pooling to create translational invariance between the
input from different surrounding vehicles. See the main text for further
explanations.

the field of computer vision, where they have been applied
directly to low level input, consisting of pixel values. For
further details on CNNs, see e.g. [12].

In this study, a CNN architecture was applied to a high level
input, which described the state of identical, interchangeable
objects, see Fig. 1. Two convolutional layers were applied
to the part of the state vector that represented the relative
position, speed and lane of the surrounding vehicles. The first
layer had nconv1 filters, set to 32, with filter size 3, stride 3 and
ReLU activation functions. This structure created an output of
8×32 signals. Since there were 3 neighbouring input neurons
that described the properties of each of the 8 surrounding ve-
hicles, by setting the filter size and stride to 3, each row of the
output only depended on one vehicle. The second layer had
nconv2 filters, set to 32, with filter size 1, stride 1 and ReLU
activation functions. This further aggregated knowledge about
each vehicle in every row of the 8×32 output signal. After the
second convolutional layer, a max pooling layer was added.
This structure created a translational invariance of the input
that described the relative state of the different vehicles, i.e.
the result would be the same if e.g. the input describing
vehicle 3 and vehicle 4 switched position in the input vector.
This translational invariance, in combination with the reduced
number of optimizable parameters, simplified and sped up the
training of the network. See Sect. V for a further discussion
on why a CNN architecture was beneficial in this setting.

The output of the max pooling layer was then concatenated
with the rest of the input vector. A fully connected layer
with nfull units, here set to 64, and ReLu activation functions
followed. Finally, the output layer had 3 or 6 neurons, both
with linear activation functions.

3) Training details: The network was trained by using
the Double DQN algorithm, described in Sect. II-B. During
training, the policy followed an ε-greedy behavior, where ε
decreased linearly from εstart to εend over Nε−end iterations.
A discount factor, γ, was used for future rewards. The target
network was updated every Nupdate iterations by cloning the
online parameters, i.e. setting θ−i = θi, at the updating step.
Learning started after Nstart iterations and a replay memory
of size Mreplay was used. Mini-batches of training samples
with size Mmini were uniformly drawn from the replay mem-
ory and the network was updated using the RMSProp algo-
rithm [24], with a learning rate of η. In order to improve the
stability, error clipping was used by limiting the error term

TABLE III
HYPERPARAMETERS USED TO TRAIN THE DQN AGENTS.

Discount factor, γ 0.99

Learning start iteration, Nstart 50,000

Replay memory size, Mreplay 500,000

Initial exploration constant, εstart 1

Final exploration constant, εend 0.1

Final exploration iteration, Nε-end 500,000

Learning rate, η 0.00025

Mini-batch size, Mmini 32

Target network update frequency, Nupdate 30,000

r+γQ(s′, arg maxaQ(s′, a; θi); θ
−
i)−Q(s, a; θi) to [−1, 1].

The hyperparameters of the training are summarized in
Table III. Due to the computational complexity, a systematic
grid search was not performed. Instead, the hyperparameter
values were selected from an informal search, based upon the
values given in [13] and [21].

The state space, described above, did not provide any in-
formation on where in an episode the agent was at a given
time step, e.g. if it was in the beginning or close to the
end (Sect. III-B describes how an episode was defined). The
reason for this choice was that the goal was to train an agent
that performed well in highway driving of infinite length.
Therefore, the longitudinal position was irrelevant. However,
at the end of a successful episode, the future discounted
return, Rend, was 0. To avoid that the agent learned this, the
last experience eend was not stored in the experience replay
memory. Thereby, the agent was tricked to believe that the
episode continued forever.

III. SIMULATION SETUP

A highway case was used as the main way to test the
algorithm outlined above. To evaluate the performance of the
agent, a reference model, consisting of the IDM and MOBIL
model, was used. This section briefly summarizes the refer-
ence model, describes how the simulations were set up and
how the performance was measured. Moreover, in order to
show the versatility of the proposed method, it was further
tested in a secondary overtaking case with oncoming traffic,
which is also described here.

A. Reference model

The IDM [8] is widely used in transportation research
to model the longitudinal dynamics of a vehicle. With this
model, the speed of the ego vehicle, v, varies according to

v̇ = a

(
1−

(
v

v0

)δ
−
(
d∗(v,∆v)

d

)2)
, (6)

d∗(v,∆v) = d0 + vT + v∆v/(2
√
ab). (7)

The vehicle’s speed depends on the distance to the vehicle
in front, d, and the speed difference (approach rate), ∆v.
Table IV shows the parameters that are used to tune the model.
The values were taken from the original paper [8].

The MOBIL model [9] makes decisions on when to change
lanes by maximizing the acceleration of the vehicle in consid-
eration and the surrounding vehicles. For a lane change to be
allowed, the induced acceleration of the following car in the

TABLE IV
IDM AND MOBIL MODEL PARAMETERS.

Minimum gap distance, d0 2 m
Safe time headway, T 1.6 s
Maximal acceleration, a 0.7 m/s2

Desired deceleration, b 1.7 m/s2

Acceleration exponent, δ 4

Politeness factor, p 0

Changing threshold, ath 0.1 m/s2

Maximum safe deceleration, bsafe 4 m/s2

new lane, an, must fulfill a safety criterion, an > −bsafe. To
predict the acceleration of the ego and surrounding vehicles,
the IDM model is used. If the safety criterion is met, MOBIL
changes lanes if

ãe − ae + p ((ãn − an) + (ão − ao)) > ath, (8)

where ae, an and ao are the accelerations of the ego vehi-
cle, the trailing vehicle in the target lane, and the trailing
vehicle in the current lane, respectively, assuming that the
ego vehicle stays in its lane. Furthermore, ãe, ãn and ão are
the corresponding accelerations if the lane change is carried
out. The politeness factor, p, controls how the effect on other
vehicles is valued. To perform a lane change, the collective
acceleration gain must be higher than a threshold, ∆ath. If
there are lanes available both to the left and to the right,
the same criterion is applied to both options. If both criteria
are fulfilled, the option with the highest acceleration gain is
chosen. The parameter values of the MOBIL model are shown
in Table IV. They were taken from the original paper [9],
except for the politeness factor, here set to 0. This setting
provided a more fair comparison to the DQN agent, since
then neither method considered possible acceleration losses
of the surrounding vehicles.

B. Traffic simulation

1) Highway case: A highway case was used as the main
way to test the method presented in this paper. This case
was similar to the one used in the previous study [10]. For
completeness, it is summarized below.

A three-lane highway was used, where the ego vehicle to
be controlled was surrounded by 8 other vehicles. The ego
vehicle consisted of a 16.5 m long truck-semitrailer com-
bination and the surrounding vehicles were normal 4.8 m
long passenger cars. These surrounding vehicles stayed in
their initial lanes and followed the IDM model longitudinally.
Overtaking was allowed both on the left and the right side of
another vehicle. An example of an initial traffic situation is
shown in Fig. 2a.

Although normal highway driving mostly consists of traf-
fic with rather constant speeds and small accelerations, oc-
casionally vehicles brake hard, or even at the maximum of
their capability to avoid collisions. Drivers can also decide
to suddenly increase their speed rapidly. Therefore, in order
for the agent to learn to keep a safe inter-vehicle distance,
such quick speed changes need to be included in the training
process. The surrounding vehicles in the simulations were
assigned different desired speed trajectories. To speed up the

(a)

(b)
Fig. 2. (a) Example of an initial traffic situation for the highway case, which was used as the main way to test the algorithm. (b) Example of a traffic
situation for a secondary overtaking case with oncoming traffic, showing the situation 10 seconds from the initial state. In both cases, the ego vehicle (truck-
trailer combination) is shown in green and black. The arrows represent the velocities of the vehicles.

0 200 400 600 800

Position (m)

0

10

20

30

40

S
p
ee

d
 (

m
/s

)

Fig. 3. Example of six different randomly generated speed trajectories,
defined for different positions along the highway. The solid lines are fast
trajectories, applied to vehicles starting behind the ego vehicle, whereas the
dashed lines are slow trajectories, applied to vehicles starting in front of the
ego vehicle.

TABLE V
PARAMETERS OF THE SIMULATED HIGHWAY CASE.

Maximum initial vehicle spread, dlong 200 m
Minimum initial inter-vehicle distance, d∆ 25 m
Front vehicle minimum speed, v+

min 16.7 m/s (60 km/h)
Front vehicle maximum speed, v+

max 23.6 m/s (85 km/h)
Rear vehicle minimum speed, v−min 26.4 m/s (95 km/h)
Rear vehicle maximum speed, v−max 33.3 m/s (120 km/h)
Initial ego vehicle speed, vego

init 25 m/s (90 km/h)
Maximum ego vehicle speed, vego

max 25 m/s (90 km/h)
Episode length, dmax 800 m

training of the agent, these trajectories contained frequent
speed changes, which occurred more often than during normal
highway driving. Some examples are shown in Fig. 3.

The ego vehicle initially started in the middle lane, sur-
rounded by 8 other vehicles. These were randomly positioned
in the lanes, within dlong longitudinally and with a minimum
inter-vehicle distance d∆. The initial and maximum ego vehi-
cle speed was vego

init and vego
max respectively. Vehicles that were

positioned in front of the ego vehicle were assigned slower
speed trajectories, in the range [v+

min, v
+
max], whereas vehicles

placed behind the ego vehicle were assigned faster speed tra-
jectories, in the range [v−min, v

−
max]. This created traffic situa-

tions where the agent needed to make lane changes to overtake
slow vehicles, and at the same time consider faster vehicles
approaching from behind. Episodes where two vehicles were
placed too close together with a large speed difference, thus
causing an unavoidable collision, were deleted. Each episode
was dmax long. The values of the mentioned parameters are
presented in Table V. Further details on the setup of the
simulations, and how the speed trajectories were generated,
are described in [10].

2) Overtaking case: In order to illustrate the generality
of the method presented in this paper, a secondary overtak-
ing case, including two-way traffic, was also tested. Fig. 2b
shows an example of this case. The ego vehicle started in
the right lane, with an initial speed of vego

init, set to 25 m/s.
Another vehicle, which followed a random slow speed profile
(defined above), was placed 50 m in front of the ego vehicle.
Two oncoming vehicles, also following slow speed profiles,
were placed in the left, oncoming lane, at a random distance
between 300 and 1100 m in front of the ego vehicle.

3) Vehicle motion and lateral control models: In both the
highway and the overtaking case, the motion of the vehicles
was simulated by using kinematic models. A lane follow-
ing two-point visual control model [25] was used to control
the vehicles laterally. As mentioned in Sect. II-C, when the
agent decided to change lanes, the setpoint of this model was
changed to the new desired lane. The same procedure was
used if the MOBIL model decided to change lanes. With this
control model, a lane change normally took 2 to 3 s, depend-
ing on the longitudinal speed. See [10] for further details on
the vehicle motion and lateral control models.

C. Performance index

In order to evaluate how the DQN agent performed com-
pared to the reference driver model (presented in Sect. III-A)
in a specific episode of the highway case, a performance
index, p̃, was defined as

p̃ = (d/dmax)(v̄/v̄ref). (9)

Here, d is the distance driven by the ego vehicle (limited by a
collision or the episode length), dmax is the episode length, v̄
is the average speed of the ego vehicle and v̄ref is the average
speed when the reference model controlled the ego vehicle
through the episode. With this definition, the distance driven
by the ego vehicle was the dominant limiting factor when a
collision occurred. However, if the agent managed to complete
the episode without collisions, the average speed determined
the performance index. A value larger than 1 means that the
agent performed better than the reference model.

For the overtaking case, the reference model described
above cannot be used. Instead, the performance index was
simply defines as p̃o = (d/dmax)(v̄/v̄refIDM). Here, v̄refIDM

was the mean speed of the ego vehicle when it was controlled
by the IDM through the same episode, i.e. when it did not
overtake the preceding vehicle.

TABLE VI
SUMMARY OF THE RESULTS OF THE DIFFERENT AGENTS FOR THE

HIGHWAY CASE AND THE OVERTAKING CASE.

Highway case Overtaking case

Collision free
episodes

Performance
index, p̃

Collision free
episodes

Performance
index, p̃o

Agent1CNN 100% 1.01 100% 1.06

Agent2CNN 100% 1.10 100% 1.11

Agent1FCNN 98% 0.98 - -
Agent2FCNN 86% 0.96 - -

IV. RESULTS

This section focuses on the results that were obtained for
the highway case, described in Sect. III-B, which was the
main way of testing the presented method. It also briefly
explains and discusses some characteristics of the results,
whereas a more general discussion follows in Sect. V. The re-
sults regarding the overtaking case are collected in Sect. IV-C.

As described in Sect. II, two agents with different ac-
tion spaces were investigated. Agent1 only decided when to
change lanes, whereas Agent2 decided both the speed and
when to change lanes. Furthermore, two different neural net-
work architectures were used. In summary, the four variants
were Agent1FCNN, Agent1CNN, Agent2FCNN and Agent2CNN.

Five different runs were carried out for the four agent
variants, where each run had different random seeds for the
DQN and the traffic simulation. The networks were trained for
2 million iterations (3 million for Agent2FCNN), and at every
50,000 iterations, they were evaluated over 1,000 random
episodes. Note that these evaluation episodes were randomly
generated, and not presented to the agents during training.
During the evaluation runs, the performance index described
in Sect. III-C was used to compare the agents’ and the ref-
erence model’s behaviour. The results are shown in Fig. 4,
which presents the average proportion, p̂, of successfully com-
pleted, i.e. collision free, evaluation episodes of the four agent
variants, and in Fig. 5, which shows their average performance
index, p̃. The final performance of the fully trained agents is
summarized in Table VI.

A. Agents using a CNN

In Fig. 4, it can be seen that Agent1CNN solved all the
episodes already after 100,000 iterations, which is the first
evaluation after that the training started at 50,000 iterations.
At this point it had learned to always stay in its lane, in order
to avoid collisions. Since it often got blocked by slower vehi-
cles, its average performance index was therefore lower than 1
at this point, see Fig. 5. However, after around 600,000 itera-
tions, Agent1CNN had learned to carry out lane changes when
necessary, and performed similar to the reference model.

Fig. 4 shows that Agent2CNN quickly figured out how to
change lanes and increase its speed to solve most of the
episodes. Its performance index was on par with the reference
model (reached 1) early on during the training, at around
250,000 iterations, see Fig. 5. Then, at 400,000 iterations,
it solved all the evaluation episodes without collisions. With
more training, there were still no collisions, but the perfor-
mance index increased and stabilized at 1.1.

0 0.5 1 1.5 2 2.5 3

Iteration 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

Agent1
FCNN

Agent2
FCNN

Fig. 4. Proportion of episodes solved without collisions by the different
agents during training.

0 0.5 1 1.5 2 2.5 3

Iteration 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

Agent1
FCNN

Agent2
FCNN

Reference model

Fig. 5. Performance index of the different agents during training.

Mean: 1.01

0.8 1 1.2 1.4

Performance index

0

0.1

0.2

Mean: 1.10

0.8 1 1.2 1.4

Performance index

0

0.1

0.2

Fig. 6. Histogram of the performance index at the end of the training for
Agent1CNN (left) and Agent2CNN (right).

Fig. 6 shows a histogram of the performance index for
1,000 evaluation episodes, which were run by the final trained
version of Agent1CNN and Agent2CNN. Since all the episodes
were completed without collisions, the performance index was
simply the speed ratio v̄/v̄ref . In the figure, it can be seen that
most often there was a small difference between the average
speed of the agents and the reference model. There were also
some outliers, which were both faster and slower than the
reference model. The explanation for these is that the episodes
were randomly generated, which meant that even a reasonable
action could get the ego vehicle into a situation where it got
locked in and could not overtake the surrounding vehicles.
Therefore, a small difference in behaviour could lead to such
situations for both the trained agents and the reference model,
which explains the outliers. Furthermore, the peak at index 1
for Agent2CNN is explained by that there were some episodes
when the lane in front of the ego vehicle was free from the
start. Then both the reference model and the agents drove at
the maximum speed through the whole episode.

To further illustrate the properties of the agents, and how
they developed during training, the percentage of chosen ac-
tions is shown in Fig. 7. For Agent1CNN, it can be seen that it
quickly figured out that changing lanes can lead to collisions,
and therefore it chose to stay in its lane almost 100% of
the time in the beginning. This explains why it completed
all the episodes already from the first evaluation point after
its training started. However, as training proceeded, it figured
out when it safely could change lanes, and thereby perform

0 0.5 1 1.5 2

Iteration 10
6

0

0.005

0.01

0.015

0.02
A

ct
io

n
 p

ro
p

o
rt

io
n

a
2

a
3

0 0.5 1 1.5 2

Iteration 10
6

0

0.5

1

A
ct

io
n

 p
ro

p
o

rt
io

n a
1

a
2

a
3

a
4

a
5

a
6

Fig. 7. Top: proportion of actions chosen by Agent1CNN during training.
Due to the scale difference, a1, i.e. stay in the current lane, is here left out.
Bottom: proportion of actions chosen by Agent2CNN during training. Both
plots start at 100,000 iterations, since that is the first evaluation point after
that training started at 50,000 iterations.

better. At the end of its training, it chose to change lanes
around 1% of the time. Agent2CNN first learned a short sighted
strategy, where it accelerated most of the time to obtain a
high immediate reward. This naturally led to many rear end
collisions. However, when its training proceeded, it learned
to control its speed by braking or idling, and to change lanes
when necessary. Reassuringly, both agents learned to change
lanes to the left and right equally often.

B. Agents using a FCNN

Both Agent1FCNN and Agent2FCNN failed to complete
all the evaluation episodes without collisions, see Fig. 4
and Table VI. Naturally, Agent1FCNN solved a significantly
higher fraction of the episodes and performed better than
Agent2FCNN, since it only needed to decide when to change
lanes, and not control the speed. In the beginning, it learned to
always stay in its lane, and thereby solved all episodes without
collisions, but reached a lower performance index than the
reference model, see Fig. 5. With more training, it started to
change lanes and performed reasonably well, but sometimes
caused collisions. Agent2FCNN performed significantly worse
and collided in 14% of the episodes by the end of its training.
A longer training run was carried out for Agent1FCNN and
Agent2FCNN, but after 20 million iterations, the results were
the same.

C. Overtaking case

In order to demonstrate the generality of the method pre-
sented in this paper, the same algorithm was applied to an
overtaking situation, described in Sect. III-B. Fig. 8, Fig. 9
and Table VI show the proportion of successfully completed
evaluation episodes, p̂, and the modified performance index,
p̃o, of Agent1CNN and Agent2CNN. By the end of the training,
both agents solved all episodes without collisions. Further-
more, in all the episodes, the ego vehicle overtook the slower
vehicle, resulting in performance indexes above 1.

0 0.5 1 1.5 2

Iteration 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

Fig. 8. Proportion of overtaking episodes solved without collisions by the
different agents during training.

0 0.5 1 1.5 2

Iteration 10
6

0

0.5

1

Agent1
CNN

Agent2
CNN

IDM (no overtaking)

Fig. 9. Performance index of the different agents during training on the
overtaking case.

V. DISCUSSION

In Table VI, it can be seen that both Agent1 and Agent2
with the convolutional neural network architecture solved
all the episodes without collisions. The performance of
Agent1CNN was on par with the reference model. Since they
both used the IDM to control the speed, this result indicates
that the trained agent and the MOBIL model took lane chang-
ing decisions with similar quality. However, when adding
the possibility for the agent to also control its speed, as in
Agent2CNN, the trained agent had the freedom to find better
strategies and could therefore outperform the reference model.
This result illustrates that for a better performance, lateral and
longitudinal decisions should not be completely separated.

As expected, using a CNN architecture resulted in a signif-
icantly better performance than a FCNN architecture, see e.g.
Table VI. The reason for this is, as mentioned in Sect. II-C,
that the CNN architecture creates a translational invariance of
the input that describes the relative state of the different vehi-
cles. This is reasonable, since it is desirable that the agent re-
acts the same way to other vehicles’ behaviour, independently
of where they are positioned in the input vector. Furthermore,
since CNNs share weights, the complexity of the network is
reduced, which in itself speeds up the learning process. This
way of using CNNs can be compared to how they previously
were introduced and applied to low level input, often on pixels
in an image, where they provide a spatial invariance when
identifying features, see e.g. [26]. The results of this paper
show that it can also be beneficial to apply CNNs to high level
input of interchangeable objects, such as the state description
shown in Sect. II-C.

As mentioned in Sect. II-C, a simple reward function was
used. Naturally, the choice of reward function strongly affects
the resulting behaviour. For example, when no penalty was
given for a lane change, the agent found solutions where
it constantly demanded lane changes in opposite directions,
which made the vehicle drive in between two lanes. In this
study, a simple reward function worked well, but for other

cases a more careful design may be required. One way to
determine a reward function that mimics human preferences
is to use inverse reinforcement learning [27].

In a previous paper, [10], we presented a different method,
based on a genetic algorithm, that automatically can generate
a driving model for similar cases as described here. That
method is also general and it was shown that it is applicable
to different cases, but it requires some hand crafted features
when designing the structure of its rules. However, the method
presented in this paper requires no such hand crafted features,
and instead uses the measured state, described in Table I,
directly as input. Furthermore, the method in [10] achieved
a similar performance when it comes to safety and average
speed, but the number of necessary training episodes was
between one and two orders of magnitude higher than for the
method that was investigated in this study. Therefore, the new
method is clearly advantageous compared to the previous one.

An important remark is that when training an agent by
using the method presented in this paper, the agent will only
be able to solve the type of situations that it is exposed to
in the simulations. It is therefore important that the design
of the simulated traffic environment covers the intended case.
Furthermore, when using machine learning to produce a deci-
sion making function, it is hard to guarantee functional safety.
Therefore, it is common to use an underlying safety layer,
which verifies the safety of a planned trajectory before it is
executed by the vehicle control system, see e.g. [28].

VI. CONCLUSION AND FUTURE WORK

The main results of this paper show that a Deep Q-Network
agent can be trained to make decisions in autonomous driving,
without the need of any hand crafted features. In a highway
case, the DQN agents performed on par with, or better than,
a reference model based on the IDM and MOBIL model.
Furthermore, the generality of the method was demonstrated
by applying it to a case with oncoming traffic. In both cases,
the trained agents handled all episodes without collisions. An-
other important conclusion is that, for the presented method,
applying a CNN to high level input that represents inter-
changeable objects can both speed up the learning process
and increase the performance of the trained agent.

Topics for future work include to further analyze the gen-
erality of this method by applying it to other cases, such as
crossings and roundabouts, and to systematically investigate
the impact of different parameters and network architectures.
Moreover, it would be interesting to apply prioritized ex-
perience replay [29], which is a method where important
experiences are repeated more frequently during the training
process. This could potentially improve and speed up the
learning process.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg Artifi-
cial Intelligence, Autonomous Systems and Software Program
(WASP), funded by Knut and Alice Wallenberg Foundation,
and partially by Vinnova FFI.

REFERENCES

[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167 – 181,
2015.

[2] P. Gipps, “A model for the structure of lane-changing decisions,” Trans-
portation Research Part B: Methodological, vol. 20, no. 5, pp. 403 –
414, 1986.

[3] K. I. Ahmed, “Modeling drivers’ acceleration and lane changing behav-
ior,” Ph.D. dissertation, Massachusetts Institute of Technology, 1999.

[4] J. Eggert and F. Damerow, “Complex lane change behavior in the
foresighted driver model,” in 2015 IEEE 18th International Conference
on Intelligent Transportation Systems, 2015, pp. 1747–1754.

[5] J. Nilsson et al., “If, when, and how to perform lane change maneu-
vers on highways,” IEEE Intelligent Transportation Systems Magazine,
vol. 8, no. 4, pp. 68–78, 2016.

[6] S. Ulbrich and M. Maurer, “Towards tactical lane change behavior
planning for automated vehicles,” in 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, 2015, pp. 989–995.

[7] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The value of inferring
the internal state of traffic participants for autonomous freeway driving,”
in 2017 American Control Conference (ACC), 2017, pp. 3004–3010.

[8] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States
in Empirical Observations and Microscopic Simulations,” Phys. Rev. E,
vol. 62, pp. 1805–1824, 2000.

[9] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transportation Research Record, vol.
1999, pp. 86–94, 2007.

[10] C. J. Hoel, M. Wahde, and K. Wolff, “An evolutionary approach to
general-purpose automated speed and lane change behavior,” in 2017
16th IEEE International Conference on Machine Learning and Appli-
cations (ICMLA), 2017, pp. 743–748.

[11] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[12] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[13] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[15] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–359, 2017.

[16] D. Silver et al., “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” CoRR, vol. abs/1712.01815, 2017.

[17] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR, vol.
abs/1610.03295, 2016.

[18] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, no. 19, pp. 70–76, 2017.

[19] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
MIT Press, 1998.

[20] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[21] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, 2016, pp. 2094–2100.

[22] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, no. 1-2, pp. 99–134, 1998.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on International Conference on Machine Learning, 2010, pp.
807–814.

[24] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gra-
dient by a running average of its recent magnitude,” Coursera: Neural
Networks for Machine Learning, 2012.

[25] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[26] Y. LeCun et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[27] S. Zhifei and E. M. Joo, “A review of inverse reinforcement learning
theory and recent advances,” in 2012 IEEE Congress on Evolutionary
Computation, 2012, pp. 1–8.

[28] S. Underwood et al., Truck Automation: Testing and Trusting the Virtual
Driver. Springer International Publishing, 2016, pp. 91–109.

[29] T. Schaul et al., “Prioritized experience replay,” CoRR, vol.
abs/1511.05952, 2015.

Paper III

Combining planning and deep
reinforcement learning in tactical

decision making for autonomous driving

in

IEEE Transactions on Intelligent Vehicles, vol. 5, no. 2, pp. 294-305, 2020.

1

Combining Planning and Deep Reinforcement
Learning in Tactical Decision Making for

Autonomous Driving
Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J. Kochenderfer

Abstract—Tactical decision making for autonomous driving is
challenging due to the diversity of environments, the uncertainty
in the sensor information, and the complex interaction with other
road users. This paper introduces a general framework for tac-
tical decision making, which combines the concepts of planning
and learning, in the form of Monte Carlo tree search and deep
reinforcement learning. The method is based on the AlphaGo
Zero algorithm, which is extended to a domain with a continuous
state space where self-play cannot be used. The framework is
applied to two different highway driving cases in a simulated
environment and it is shown to perform better than a commonly
used baseline method. The strength of combining planning and
learning is also illustrated by a comparison to using the Monte
Carlo tree search or the neural network policy separately.

Index Terms—Autonomous driving, tactical decision making,
reinforcement learning, Monte Carlo tree search.

I. INTRODUCTION

AUTONOMOUS vehicles are expected to bring many so-
cietal benefits, such as increased productivity, a reduc-

tion of accidents, and better energy efficiency [1]. One of
the technical challenges for autonomous driving is to be able
to make safe and effective decisions in diverse and complex
environments, based on uncertain sensor information, while
interacting with other traffic participants. A decision making
method should therefore be sufficiently general to handle the
spectrum of relevant environments and situations. The naive
approach of trying to anticipate all possible traffic situations
and manually code a suitable behavior for these is infeasible.
The topic of this paper is tactical decision making, which
considers high level decisions that adapts the behavior of the
vehicle to the current traffic situation [2], [3]. For example,
these decisions could handle when to change lanes, or whether
or not to stop at an intersection.

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems, and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation, and partially by Vinnova FFI. (Correspond-
ing author: Carl-Johan Hoel.)

C. J. Hoel and L. Laine are with the Department of Vehicle Automation,
Volvo Group, 40508 Gothenburg, Sweden, and with the Department of Me-
chanics and Maritime Sciences, Chalmers University of Technology, 41296
Gothenburg, Sweden (e-mail: {carl-johan.hoel, leo.laine}@volvo.com).

K. Driggs-Campbell is with the Electrical and Computer Engineering De-
partment, University of Illinois at Urbana-Champaign, IL 61801, USA (e-mail:
krdc@illinois.edu)

K. Wolff is with the Department of Mechanics and Maritime Sciences,
Chalmers University of Technology, 41296 Gothenburg, Sweden (e-mail:
krister.wolff@chalmers.se)

M. J. Kochenderfer is with the Aeronautics and Astronautics De-
partment at Stanford University, Stanford, CA 94305, USA (e-mail:
mykel@standford.edu).

Rule-based methods, implemented as handcrafted state ma-
chines, were successfully used during the DARPA Urban
Challenge [4], [5], [6]. However, a drawback with these rule-
based approaches is that they lack the ability to generalize to
unknown situations, which makes it hard to scale them to the
complexity of real-world driving. Another approach is to treat
the decision making task as a motion planning problem, which
has been applied to highway [7], [8] and intersection scenar-
ios [9]. While successful for some situations, the sequential
design of this method, which first predicts the trajectory of the
surrounding vehicles and then plan the ego vehicle trajectory
accordingly, results in a reactive behavior which does not
consider interaction during the trajectory planning.

It is common to model the tactical decision making task as a
partially observable Markov decision process (POMDP) [10].
This mathematical framework models uncertainty in the cur-
rent state, future evolution of the traffic scene, and interactive
behavior. The task of finding the optimal policy for a POMDP
is difficult, but many approximate methods exist. Offline meth-
ods can solve complex situations and precomputes a policy
before execution, which for example has been done for an
intersection scenario [11], [12]. However, due to the large
number of possible real world scenarios, it becomes impossible
to precalculate a policy that is generally valid. Online methods
compute a policy during execution, which makes them more
versatile than offline methods, but the limited computational
resources reduces the solution quality. Ulbrich et al. considered
a lane changing scenario on a highway, where they introduced
a problem-specific high level state space that allowed an ex-
haustive search to be performed [13]. Another online method
for solving a POMDP is Monte Carlo tree search (MCTS) [14],
which has been applied to lane changes on a highway [15].
Hybrid approaches between offline and online planning have
also been studied [16].

A fundamentally different approach to decision making
problems is to learn a suitable behavior from data. Rein-
forcement learning (RL) [17] has proved successful in various
domains, such as playing Atari games [18], in continuous
control [19], and reaching a super human performance in the
game of Go [20]. In a previous paper, we showed how a Deep
Q-Network (DQN) agent could learn to make tactical decisions
in two different highway scenarios [21]. A similar approach,
but applied to an intersection scenario, was presented by Tram
et al. [22]. Expert knowledge can be used to restrict certain
actions, which has been shown to speed up the training process
for a lane changing scenario [23]. A different approach, which

2

uses a policy gradient method to learn a desired behavior,
has been applied to a merging scenario on a highway [24].
A common drawback with RL methods is that they require
many training samples to reach convergence. RL methods may
also suffer from the credit assignment problem, which makes
it hard to learn long temporal correlations between decisions
and the overall performance of the agent [17].

This paper presents a general framework, based on the
AlphaGo Zero algorithm [20], that combines the concepts of
planning and learning to create a tactical decision making
agent for autonomous driving (Sect. III). The planning is done
with a variation of Monte Carlo tree search, which constructs a
search tree based on random sampling. The difference between
standard MCTS and the version used here is that a neural
network biases the sampling towards the most relevant parts of
the search tree. The neural network is trained by a reinforce-
ment learning algorithm, where the MCTS component both
reduces the required number of training samples and aids in
finding long temporal correlations. The presented framework is
applied to two conceptually different driving cases (Sect. IV),
and performs better than a commonly used baseline method
(Sect. V). To illustrate the strength of combining planning and
learning, it is compared to using the planning or the learned
policy separately.

In contrast to the related work, the approach that is intro-
duced in this paper combines the properties of planning and
RL. When used online, the planning can be interrupted any-
time with a reasonable decision, even after just one iteration,
which will then return the learned action. More computational
time will improve the result. The proposed approach is gen-
eral and can be adapted to different driving scenarios. Expert
knowledge is used to ensure safety by restricting actions that
lead to collisions. The intentions of other vehicles are con-
sidered when predicting the future and the algorithm operates
on a continuous state space. The AlphaGo Zero algorithm is
here extended beyond the zero-sum board game domain of
Go, to a domain with a continuous state space, a not directly
observable state, and where self-play cannot be used. Further
properties of the framework are discussed in Sect. VI.

The main contributions of this paper are:
• The extension of the AlphaGo Zero algorithm, which

allows it to be used in the autonomous driving domain.
• The introduction of a general tactical decision making

framework for autonomous driving, based on this ex-
tended algorithm.

• The performance analysis of the introduced tactical de-
cision making framework, applied to two different test
cases.

II. THEORETICAL BACKGROUND

This section introduces partially observable Markov deci-
sion processes and two solution methods: Monte Carlo tree
search, and reinforcement learning.

A. Partially Observable Markov Decision Process

A POMDP is defined as the tuple (S,A,O, T,O,R, γ),
where S is the state space, A is the action space, O is the

observation space, T is a state transition model, O is an obser-
vation model, R is a reward model, and γ is a discount factor.
At every time step t, the goal of the agent is to maximize the
future discounted return, defined as

Rt =
∞∑

k=0

γkrt+k, (1)

where rt+k is the reward at step t+ k [10].
The state transition model T (s′ | s, a) describes the proba-

bility that the system transitions to state s′ from state s when
action a is taken. The observation model O(o | s, a, s′) is
the probability of observing o in state s′, after taking action
a in state s. For many real world problems, it is not feasible
to represent the probability distributions T and O explicitly.
However, some solution approaches only require samples and
use a generative model G instead, which generates a new
sampled state and observation from a given state and action,
i.e., (s′, o) ∼ G(s, a). The reward model defines the reward
of each step as r = R(s, a, s′) [10].

Since the agent cannot directly observe the state s of the
environment, it can maintain a belief state b, where a proba-
bility b(s) is assigned to being in state s. In simple cases, the
belief can be exactly calculated using Bayes’ rule. However,
approximate methods, such as particle filtering, are often used
in practice [25].

B. Monte Carlo Tree Search

MCTS can be used to select approximately optimal actions
in POMDPs [14]. It constructs a search tree that consists of
alternating layers of state nodes and action nodes, in order
to estimate the state-action value function Q(s, a), which de-
scribes the expected return Rt when taking action a in state
s and then following the given policy. A generative model
G is used to traverse the tree to the next state, given a state
and an action. In the upper confidence tree version, the tree
is expanded by selecting the action node that maximizes the
upper confidence bound (UCB), defined as

UCB(s, a) = Q(s, a) + cuct

√
lnN(s)

N(s, a)
, (2)

where Q(s, a) is the current estimate of the state-action value
function, N(s, a) is the number of times action a has been
tried from state s, N(s) =

∑
a∈AN(s, a), and cuct is a

parameter that controls the amount of exploration in the tree.
The standard formulation of MCTS cannot handle problems

with a continuous state space, since then the same state may
never be sampled more than once from G, which would result
in a wide tree with just one layer. One way to address this
problem is to use progressive widening [26]. With this tech-
nique, the number of children of a state-action node is limited
to kN(s, a)α, where k and α are tuning parameters. When
there are less children than the limit, a new state is added
by sampling from G. Otherwise, a previous child is randomly
chosen. Thereby the number of children gradually grows as
N(s, a) increases.

3

C. Reinforcement Learning

Reinforcement learning is a branch of machine learning,
where an agent tries to learn a policy π that maximizes the
expected future return E(Rt) in some environment [17]. The
policy defines which action a to take in a given state s. In the
RL setting, the state transition model T (or G) of the POMDP
may not be known. Instead, the agent gradually learns by
taking actions in the environment and observing what happens,
i.e., collecting experiences (s, a, s′, r).

III. TACTICAL DECISION MAKING FRAMEWORK

This paper introduces a framework that combines planning
and learning for tactical decision making in the autonomous
driving domain. With this approach, a neural network is trained
to guide MCTS to the relevant regions of the search tree, and at
the same time, MCTS is used to improve the training process
of the neural network. This idea is based on the AlphaGo
Zero algorithm, originally developed for the game of Go [20].
However, such a zero-sum board game domain has several
properties that cannot be used in a more general domain, such
as a discrete state, symmetry properties, and the possibility
of using self-play. This section shows how the AlphaGo Zero
algorithm was generalized to a domain with a continuous state
space and where self-play cannot be used.

A. Tree search

A neural network fθ, with parameters θ, is used to guide the
MCTS. The network takes a state s as input, and outputs the
estimated value V (s, θ) of this state and a vector that repre-
sents the prior probabilities p(s, θ) of taking different actions,

(p(s, θ), V (s, θ)) = fθ(s). (3)

For mact possible actions, P (s, ai, θ) represents the prior
probability of taking action ai in state s, i.e., p(s, θ) =
(P (s, a1, θ), . . . , P (s, amact , θ)).

In order to select which action to take from a given state,
the SELECTACTION function from Algorithm 1 is used. This
function constructs a search tree, where each state-action node
stores a set of statistics {N(s, a), Q(s, a), C(s, a)}, where
N(s, a) is the number of visits of the node, Q(s, a) is the
estimated state-action value, and C(s, a) it the set of child
nodes. To build the search tree, n iterations are done, where
each iteration starts in the root node s0 and continues for time
steps t = 0, 1, . . . , L until it reaches a leaf node sL at step L.
At each step, the algorithm selects the action that maximizes
the UCB condition

UCB(s, a, θ) =
Q(s, a)

Qmax

+ cpuctP (s, a, θ)

√∑
bN(s, b) + 1

N(s, a) + 1
. (4)

Here, cpuct is a parameter that controls the amount of explo-
ration in the tree. In order to keep cpuct constant over environ-
ments, the Q-values are normalized by Qmax = rmax/(1−γ),
where rmax is the maximum possible reward in one time step.
The reward is also typically normalized, which then means
that rmax = 1. In order to perform additional exploration

Algorithm 1 Monte Carlo tree search, guided by a neural
network policy and value estimate.

1: function SELECTACTION(s0, n, θ)
2: for i ∈ 1 : n
3: SIMULATE(s0, θ)
4: π(a | s)← N(s,a)1/τ∑

bN(s,b)1/τ

5: a← sample from π
6: return a, π

7: function SIMULATE(s, θ)
8: if s is terminal
9: return 0

10: a← arg maxa UCB(s, a, θ)
11: if |C(s, a)| ≤ kN(s, a)α

12: s′ ∼ G(s, a)
13: r ← R(s, a, s′)
14: C(s, a)← C(s, a) ∪ {(s′, r)}

15: v ←
{

0, if s′ is terminal

V (s′, θ), otherwise
16: q ← r + γv
17: else
18: (s′, r)← sample uniformly from C(s, a)
19: q ← r + γSIMULATE(s′, θ)
20: N(s, a)← N(s, a) + 1

21: Q(s, a)← Q(s, a) + q−Q(s,a)
N(s,a)

22: return q

during the training phase (not during evaluation), Dirichlet
noise is added to the prior probabilities. Therefore, during
training, P (s, a, θ) is replaced with (1 − ε)P (s, a, θ) + εη,
where η ∼ Dir(β), and ε and β are parameters that control
the amount of noise.

When an action has been chosen, the progressive widen-
ing criterion is checked to decide whether a new child node
should be expanded. If the number of children is larger than
kN(s, a)α, a previous child node is uniformly sampled from
the set C(s, a), and the iteration continues down the search
tree. However, if |C(s, a)| ≤ kN(s, a)α, a new leaf node
is created. The state of this leaf node sL is sampled from
the generative model, sL ∼ G(sL−1, aL−1), and the transi-
tion reward rL−1 is given by the reward function rL−1 =
R(sL−1, aL−1, sL). The pair (sL, rL−1) is then added to the
set of child nodes C(sL−1, aL−1) and the estimated value of
the node V (sL, θ) is given by the neural network fθ. All the
action nodes {a∗} of the leaf state node are initialized such that
N(sL, a∗) = 0, Q(sL, a∗) = V (sL, θ), and C(sL, a∗) = ∅.

Finally, the visit count N(s, a) and Q-values Q(s, a) of the
parent nodes that were visited during the iteration are updated
through a backwards pass.

After n iterations, the tree search is completed and an action
a is sampled proportionally to the exponentiated visit count of
actions of the root node s0, according to

π(a | s) =
N(s, a)1/τ∑
bN(s, b)1/τ

, (5)

where τ is a temperature parameter that controls the level of
exploration. During the evaluation phase, τ → 0, which means
that the most visited action is greedily chosen.

4

Algorithm 2 Procedure for generating training data.
1: function GENERATETRAININGDATA
2: while network not converged
3: s0 ← GENERATERANDOMSTATE
4: i← 0
5: while episode not finished
6: ai, πi ← SELECTACTION(si, n, θ)
7: si+1, ri ← STEPENVIRONMENT(si, a)
8: i← i+ 1

9: Ns ← i

10: vend ←
{

0, if sNs is terminal

V (sNs , θ), otherwise
11: for i ∈ 0 : Ns − 1
12: zi ←

∑Ns−1
k=i γk−irk + γNs−ivend

13: ADDSAMPLETOMEMORY(si, πi, zi)

B. Training process

Algorithm 2 shows the process for generating training data,
for optimizing the neural network parameters. First, experi-
ences from a simulated environment are generated. For each
new episode, a random initial state is sampled and then the
episode is run until termination, at step Ns, with actions cho-
sen according to the SELECTACTION function of Algorithm 1.
Upon termination, the discounted return zi that was received
during the episode is calculated for each step i = 0, . . . , Ns−1
by summing the rewards ri of the episode, according to

zi =

Ns−1∑

k=i

γk−irk + γNs−ivend. (6)

If the final state sNs is a terminal state, its value is set to zero,
i.e., vend = 0. Otherwise, the value is estimated as vend =
V (sNs , θ). For each of the states si, the received discounted
return zi and the action distribution from the search tree, πi =
(π(a1 | si), . . . , π(mact | si)), are used as targets for training
the neural network. The tuples (si,πi, zi) are therefore added
to a memory of experiences.

In parallel to the collection of new training samples, the
neural network parameters θ are optimized from the stored
samples by using a gradient descent algorithm [27]. A loss
function ` is calculated as the sum of the mean-squared value
error, the cross entropy loss of the policy, and an L2 weight
regularization term,

` = c1(z − V (s, θ))2 − c2π> log p(s, θ) + c3‖θ‖2, (7)

where c1, c2, and c3 are parameters that balance the different
parts of the loss.

IV. IMPLEMENTATION

The presented framework for combining planning and rein-
forcement learning can be applied to autonomous driving. In
this study, the properties of the framework were investigated in
a simulated environment for two highway driving cases, which
are illustrated in Fig. 1. The first case involves navigating
in traffic as efficiently as possible, whereas the second case
involves exiting on an off-ramp. This section starts with de-
scribing the driver and physical modeling of the cases, which

is used both as a generative model and for simulating the
environment, and is then followed by a description of how the
proposed framework was applied, how the simulations were
set up, and how the baseline methods were implemented. The
design of the test cases was inspired by Sunberg et al. [15].

A. Driver Modeling

The Intelligent Driver Model (IDM) was used to govern
the longitudinal motion of each vehicle [28]. The longitudinal
acceleration v̇IDM is determined by

v̇IDM = a

(
1−

(
vx
vset

)4

−
(
d∗(vx,∆vx)

d

)2)
, (8)

where vx is the longitudinal speed of the vehicle, and d∗ is
the desired distance to the vehicle ahead, given by

d∗(vx,∆vx) = d0 + vxTset + vx∆vx/(2
√
ab). (9)

The acceleration is a function of the vehicle speed vx, the
distance to the vehicle ahead d, and the speed difference
(approach rate) ∆vx. The parameters of the model are the set
speed vset, the set time gap Tset, the minimum distance d0,
the maximum acceleration a, and the desired deceleration b.

Noise was added to the acceleration of the vehicles v̇x, by
setting

v̇x = v̇IDM +
σvel
∆t

w, (10)

where w is a normally distributed random variable with unit
standard deviation and zero mean, which is independent for
each vehicle. The parameter σvel is the standard deviation of
the velocity noise and ∆t is the time step of the simulation.
No noise was added to the ego vehicle acceleration.

The Minimizing Overall Braking Induced by Lane changes
(MOBIL) strategy was used to model the lane changes of the
surrounding vehicles [29]. This model makes lane changing
decisions with the goal of maximizing the acceleration of all
the involved traffic participants at every time step. A lane
change is only allowed if the induced acceleration of the
following vehicle in the new lane an fulfills a safety criterion,
an > −bsafe. The IDM is used to predict the accelerations of
the neighboring vehicles. Then, a lane change is performed if

ãe − ae + p ((ãn − an) + (ão − ao)) > ath, (11)

where ae, an, and ao are the accelerations of the ego vehicle,
the following vehicle in the target lane, and the following
vehicle in the current lane, respectively, if no lane change is
performed. Moreover, ãe, ãn, and ão are the corresponding ac-
celerations if the ego vehicle changes lane. A politeness factor
p controls how much the gains and losses of the surrounding
vehicles are valued. The lane change is done if the sum of
the weighted acceleration changes is higher than a threshold
ath. Finally, if lanes are available both to the left and to the
right, the same criterion is applied to both options. If these are
both fulfilled, the model chooses the option with the highest
acceleration gain.

5

(a) Continuous highway driving case.

(b) Highway exit case.

Fig. 1. Examples of the two test cases. (a) shows an initial state for the continuous highway driving case, whereas (b) shows the exit case, when the ego
vehicle is approaching the exit on the right side of the road. The ego vehicle is the green truck, whereas the color of the surrounding vehicles represent the
aggressiveness level of their corresponding driver models, see Sect. IV-E. Red is an aggressive driver, blue is a timid driver, and the different shades of purple
represent levels in between.

B. Physical Modeling

Both test cases took place on a straight one-way highway
with four lanes. The longitudinal dynamics assumed a constant
acceleration, which means that the longitudinal position and
speed of a vehicle, x and vx, were updated according to

x′ = x+ vx∆t+
1

2
v̇x∆t2, (12)

v′x = vx + v̇x∆t. (13)

Furthermore, the braking acceleration was limited to bmax.
The lateral dynamics assumed a constant lateral speed vy ,

which means that the lateral position of a vehicle y, was
updated according to

y′ = y + vy∆t. (14)

When a lane change was requested, vy was set to ±vlcy , where
the sign depends on the intended lane change direction. Other-
wise, it was set to 0. Table IV provides the parameter values.

C. POMDP Formulation

This section describes how the decision making problem for
the two highway driving cases was formulated as a POMDP,
how the state of the system was estimated from observations,
and how Algorithm 1 was used to make the decisions. Table IV
provides the parameter values.

1) State space, S: The state of the system,

s = (sterm, {(spi , sdi)}i∈0,...,Nveh
), (15)

consists of the physical state spi and the driver state (driver
model parameters) sdi of the ego vehicle, and the Nveh sur-
rounding vehicles in a traffic scene. There is also a Boolean
state sterm, which takes the value 1 when a terminal state is
reached, and otherwise 0. The physical state consists of the
longitudinal and lateral position, and speed, of each vehicle,

spi = (xi, yi, vx,i, vy,i). (16)

The driver state is described by the driver model parameters,

sdi = (vset,i, Tset,i, d0,i, ai, bi, pi, ath,i, bsafe,i), (17)

which are defined in Sect. IV-A.

TABLE I
ACTION SPACE OF THE AGENT.

a1 Stay in current lane, keep current ACC setpoint
a2 Stay in current lane, decrease ACC setpoint
a3 Stay in current lane, increase ACC setpoint
a4 Change lanes to the right, keep current ACC setpoint
a5 Change lanes to the left, keep current ACC setpoint

2) Action space, A: Since this study concerns tactical driv-
ing decisions, a high level action space is used. At every
time step, the agent can choose between mact = 5 different
actions; keep its current driver state a1, decrease or increase
the setpoint of the adaptive cruise controller (ACC) a2, a3,
and change lanes to the right or to the left a4, a5. Table I
provides a summary of the available actions. The decision is
then forwarded to a lower level operational decision making
layer, which handles the detailed execution of the requested
maneuver.

In this study, a simplified operational decision making layer
is used, where the ACC consists of the IDM. In short, increas-
ing the ACC setpoint corresponds to increasing the requested
speed or decreasing the time gap, whereas decreasing the ACC
setpoint has the opposite effect. More specifically, when a3 is
chosen and the set speed of the IDM vset is less than the speed
desired by a higher level strategic decision making layer vdes,
then vset is increased by ∆vset. However, if vset = vdes, then
the set time gap of the IDM Tset is decreased with ∆Tset.
Similarly, if a2 is chosen and Tset < Tmax, where Tmax is the
maximum allowed time gap of the ACC, then Tset is increased
by ∆Tset. However, if Tset = Tmax, then vset is decreased by
∆vset. When action a4 or a5 are chosen, the vehicle either
starts a lane change, continues a lane change or aborts a lane
change, i.e., moves to the right or the left respectively by
setting vy = ±vlcy . When a lane change is performed, the set
speed is reset to vset = vdes and the set time gap Tset is set to
the actual time gap. Decisions were taken at an interval of ∆t.

At every time step, the action space is pruned, in order to
remove actions that lead to collisions. A lane change action
is only allowed if the ego vehicle or the new trailing vehicle
need to brake with an acceleration lower than amin to avoid
a collision. Since the IDM itself is also crash-free, the ego
vehicle will never cause a collision. Furthermore, a minimum
time gap Tmin setpoint of the ACC is used. Therefore, if Tset =

6

Tmin, then a3 is not considered. Moreover, if a lane change
is ongoing, i.e., the vehicle is positioned between two lanes,
only actions a4 and a5 are considered, i.e., to continue the
lane change or change back to the previous lane.

3) Reward model, R: The objective of the agent is to
navigate the highway safely and efficiently. Since safety is
handled by a crash-free action set, a simple reward function
that tries to minimize the time and the number of lane changes
is used. Normally, at every time step, a positive reward of
1 − | vego−vdes

vdes
| is given, which penalizes deviations from the

desired speed. If a lane change is initiated, a negative reward
of clc is added. Finally, for the case with the highway exit, a
reward rterm is added when the agent transitions to a terminal
state. If the exit is reached at this time, then rterm = γ 1

1−γ ,
which (from a geometric sum) corresponds to that the vehicle
would have continued to drive forever and gotten the reward
1 at every subsequent step. If the exit is not reached, then
rterm = 0.

4) State transition model, T : The state transition model is
implicitly defined by a generative model.

5) Generative model, G: The combination of the IDM and
MOBIL model, and the physical model are used as a genera-
tive model G, where s′ ∼ G(s, a). The same generative model
is used in the tree search of Algorithm 1.

6) Observation space, O: The observations o consists
of the physical states of the surrounding vehicles, and the
physical and driver state of the ego vehicle, i.e., o =
(sp0, s

d
0, {spi }i∈1,...,Nveh

). The driver states of the surrounding
vehicles are not included in the observation.

7) Observation model, O: A simplified sensor model was
used in this study. The physical state of all vehicles that are
positioned closer than xsensor of the ego vehicle is assumed
to be observed exactly, whereas vehicles further away are not
detected at all.

8) Belief state estimator: The driver state of the surround-
ing vehicles cannot be directly observed, but it can be es-
timated from the vehicles’ physical state history by using a
particle filter [25]. A particle ŝd represents the value of the
driver model parameters of the observed surrounding vehicles.
At a given time step, a collection of M particles {ŝdk}Mk=1 and
their associated weights {Wk}Mk=1 describe the belief of the
driver model parameters. At the next time step, after action
a has been taken, the belief is updated by sampling M new
particles with a probability that is proportional to the weights.
Then, new states are generated by ŝ′k = G((sp, sd0, ŝ

d
k), a).

Note that there is a component of noise in G, see Sect. IV-A.
The new weights are calculated from the new observation, as
the approximate conditional probability

W ′k =

exp
(
− (v′−v̂′)2

2σ2
vel

)
if y′ = ŷ′

γlane exp
(
− (v′−v̂′)2

2σ2
vel

)
otherwise

∝∼ Pr (ŝk | o) ,

(18)

where v′ and y′ are given by the observation, v̂′ is taken from
ŝ′k, and γlane is a parameter that penalizes false lane changes.
Furthermore, Gaussian noise with a standard deviation that is
proportional to the sample standard deviation of the current
M particles is added to 10% of the new samples, in order to

TABLE II
INPUT TO THE NEURAL NETWORK ξ.

Ego lane ξ1 = 2y0/ymax − 1
Ego vehicle speed ξ2 = 2vx,0/vmax

x,0 − 1

Lane change state ξ3 = sgn (vy,0)
Ego vehicle set speed ξ4 = 2vset,0/vmax

x,0 − 1

Ego vehicle set time gap ξ5 =
Tset,0−(Tmax+Tmin)/2

(Tmax−Tmin)/2

Distance to exit ξ6 = 1− 2x0/xexit
Terminal state ξ7 = sterm
Relative long. position of vehicle i ξ7i+1 = (xi − x0)/xsensor
Relative lat. position of vehicle i ξ7i+2 = (yi − y0)/ymax

Relative speed of vehicle i ξ7i+3 =
vx,i−vx,0

vmax
set −vmin

set

Lane change state of vehicle i ξ7i+4 = sgn (vy,i)

prevent particle deprivation. The design of the particle filter
was inspired by Sunberg et al. [15].

In Algorithm 1, the estimated most likely state is used as
input. The function is called with SELECTACTION(s0, n, θ),
where s0 = (sterm, s

p, sd0, ŝ
d
max) consists of the terminal state,

the observed physical state, the observed ego driver state,
and the particle with the highest weight. This particle rep-
resents the most likely driver model state, given by ŝdmax =
ŝdargmaxkWk

.

D. Neural Network Architecture and Training Process
A neural network estimates the prior probabilities of taking

different actions and the value of the current state. In this
implementation, before the state s is passed through the neural
network, it is converted to ξ, where all states are normalized,
i.e., ξ∗ ∈ [−1, 1], and the positions and velocities of the
surrounding vehicles are expressed relative to the ego vehicle.
There are mego = 7 inputs that describe the ego vehicle
state and mveh = 4 inputs that describe the state of each
surrounding vehicle. The first elements, ξ1 to ξ7, describe
the state of the ego vehicle, whereas ξ7i+1, ξ7i+2, ξ7i+3, and
ξ7i+4, for i = 1, . . . , Nmax, represent the relative state of
the surrounding vehicles. If there are less than Nmax vehicles
in the sensing range, the remaining inputs are padded with
dummy values, ξ7i+1 = −1 and ξ7i+2 = ξ7i+3 = ξ7i+4 = 0,
which will not affect the output of the network, see below.
Table II describes how ξ is calculated and the values of the
normalization parameters are given in Table IV.

In a previous study [21], we introduced a temporal convo-
lutional neural network (CNN) architecture, which simplifies
and speeds up the training process by applying CNN layers to
the part of the input that consists of interchangeable objects,
in this case surrounding vehicles. The input that describes the
surrounding vehicles is passed through CNN layers, with a
design that results in identical weights for each vehicle, and
finally a max pooling layer creates a translational invariance
between the vehicles. With this structure, the output will not
depend on how the vehicles are ordered in the input vector. It
also removes the problem with a fix input vector size, since
it can simply be made larger than necessary and padded with
dummy values for the extra vehicle slots. The extra input will
then be removed by the max pooling layer.

The neural network architecture, shown in Fig. 2, was used
in this study and includes the described CNN architecture.

7

𝑚ego + 𝑁max𝑚veh × 1

𝑚ego

𝑁max𝑚veh

𝑁max × 32 𝑁max × 32

1 × 32

𝑚ego + 32 × 1

32 filters
size 𝑚veh × 1
stride 𝑚veh

64 × 1 64 × 1 32 × 1

32 × 1

5 × 1

1 × 1
32 filters

size 1 × 32
stride 1

maxpool merge
fully con-

nected
fully con-

nected

fully con-
nected

fully con-
nected

fully con-
nected

fully con-
nected

𝐢𝐧𝐩𝐮𝐭, ξ

𝐚𝐜𝐭𝐢𝐨𝐧
𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧, 𝒑

𝐯𝐚𝐥𝐮𝐞, 𝑣

merge

Fig. 2. The figure illustrates the neural network architecture that was used in this study. The convolutional and max pooling layers create a translational
invariance between the input from different surrounding vehicles, which makes the ordering and the number of vehicles irrelevant.

TABLE III
PARAMETERS OF THE MCTS AND THE NEURAL NETWORK TRAINING.

MCTS iterations n 2,000
Exploration parameter cpuct 0.1
Progressive widening linear param. k 1.0
Progressive widening exponent param. α 0.3
Temperature parameter, τ 1.1
Dirichlet noise parameter β 1.0
Noise proportion parameter ε 0.25

Training start Nstart 20,000
Replay memory size Mreplay 100,000
Mini-batch size Mmini 32
Loss function weights (c1, c2, c3) (100, 1, 0.0001)
Learning rate η 0.01
Momentum µ 0.9

In short, the input that describe the state of the surrounding
vehicles is passed through two convolutional layers, followed
by a max pooling layer. This is then concatenated with the
input that describes the ego vehicle state and passed through
two fully connected layers, before being split up into two
parallel heads, which estimate the action distribution p(s, θ)
and the value V (s, θ) of the input state s. All layers have
ReLU activation functions, except for the action head, which
has a softmax activation function, and the value head, which
has a sigmoid activation function. Finally, the value output is
scaled with the factor 1/(1 − γ) (since this is the maximum
possible value of a state).

Algorithm 2 was used to collect training samples. When
an episode was finished, the nnew samples were added to a
replay memory of size Mreplay. Learning started after Nstart

samples had been added. Then, after each finished episode, the
network was trained on nnew mini-batches, with size Mmini,
uniformly drawn from the memory. The loss was calculated
by using Eq. 7 and the neural network parameters θ were
optimized by stochastic gradient descent, with learning rate
η and momentum µ. The parameters of Algorithm 1 and the
training process are shown in Table III. In order to speed up
the training process, the algorithm was parallelized. Twenty
workers simultaneously ran simulations to generate training
data. They all shared the same neural network and update
process. Worker calls to fθ(s) were queued and passed to the
neural network in batches. The training was performed on a
desktop computer, which included a GPU.

TABLE IV
VARIOUS SIMULATION PARAMETERS.

Velocity noise standard deviation σvel 0.5 m/s
Physical braking limit bmax 8.0 m/s2

Simulation time step ∆t 0.75 s
Lateral lane change speed vlcy 0.67 lanes/s
Minimum set time gap Tmin 0.5 s
Maximum set time gap Tmax 2.5 s
Step set time gap ∆Tset 1.0 s
Step set speed ∆vset 2.0 m/s
Desired speed of strategic layer vdes 25 m/s
Lane change penalty clc −0.03
Discount factor γ 0.95
Surrounding sensor range xsensor 100 m
Maximum number of vehicles Nmax 20
Exit lane position xexit 1,000 m
Initial ego speed vx,0 20 m/s
Number of particles M 500
Particle filter lane factor γlane 0.2
State normalization lane ymax 4 lanes
Maximum ego vehicle speed vmax

x,0 25 m/s
Minimum set speed (timid driver) vmin

set 19.4 m/s
Maximum set speed (aggressive driver) vmax

set 30.6 m/s

E. Episode Implementation

As mentioned above, both the test cases consisted of a
straight one-way highway with four lanes. Overtaking was
allowed both on the left and the right side of another vehicle.
The continuous driving case ended after 200 time steps (with
sterm = 0), whereas the exit case ended when the ego vehicle
reached the exit position longitudinally, i.e., x0 ≥ xexit (with
sterm = 1). To successfully reach this exit, the ego vehicle had
to be in the rightmost lane at this point. The ego vehicle, a
12.0 m long truck, started in a random lane for the continuous
case and in the leftmost lane for the exit case, with an initial
velocity of vx,0. The allowed speed limit for trucks was 25
m/s, hence vdes = 25 m/s. In short, around 20 passenger cars,
with a length of 4.8 m, were placed on the road, where slower
vehicles were positioned in front of the ego vehicle and faster
vehicles were positioned behind. An example of an initial state
is shown in Fig. 1a. The details on how the initial states were
created are described below.

The surrounding vehicles were controlled by the IDM and
MOBIL model. The marginal distribution of the model param-
eters were uniformly distributed between aggressive and timid
driver parameters, which were slightly adapted from Kesting et
al. [30] and shown in Table V. The main difference is that the

8

TABLE V
IDM AND MOBIL MODEL PARAMETERS FOR DIFFERENT DRIVER TYPES.

Normal Timid Aggressive

Desired speed (m/s) vset 25.0 19.4 30.6
Desired time gap (s) Tset 1.5 2.0 1.0
Minimum gap distance (m) d0 2.0 4.0 0.0
Maximal acceleration (m/s2) a 1.4 0.8 2.0
Desired deceleration (m/s2) b 2.0 1.0 3.0

Politeness factor p 0.05 0.1 0.0
Changing threshold (m/s2) ath 0.1 0.2 0.0
Safe braking (m/s2) bsafe 2.0 1.0 3.0

politeness factor is here significantly reduced, to create a more
challenging task, where slow drivers do not always try to move
out of the way. In order to create a new driver model, values
were drawn from a Gaussian copula, which had a covariance
matrix with 1 along the diagonal and a correlation of ρ = 0.75
elsewhere. These values were then scaled and translated to the
range between aggressive and timid driver parameters.

In order to create the initial state of the simulation, at
first only the ego vehicle was placed on the road and the
simulation was run for ninit = 200 steps. During this phase,
the ego vehicle was controlled by the IDM and it made no
lane changes. At every time step, a new vehicle with random
parameters was generated. If it was faster than the ego vehicle,
it was inserted 300 m behind it, and if it was slower, 300
m in front of it. Furthermore, it was placed in the lane that
had the largest clearance to any other vehicle. However, if d∗

(see Eq. 9) of the new vehicle, or the vehicle behind it, was
less than the actual gap, the vehicle was not inserted. At most
Nmax vehicle were added. The state after these ninit steps
was then used as the initial state of the new episode. The ego
vehicle driver state was initialized to the same parameters as
a ‘normal’ driver (Table V).

F. Baseline Methods

The performance of the framework that is introduced in
this paper is compared to two baseline methods. For both test
cases, standard MCTS with progressive widening, described
in Sect. II-B, is used as a baseline, with the same POMDP
formulation that is described in Sect. IV-C. Furthermore, for
a fair comparison, the same parameter values as for the in-
troduced framework is used, described in Table III, and the
exploration parameter is set to cuct = cpuct. Rollouts are done
using the IDM and MOBIL model, with the ‘normal’ driver
parameters of Table V, and a rollout depth of 20 time steps.
After n iterations are performed, the action with the highest
visit count is chosen.

For the continuous highway driving case, a second baseline
is the IDM and MOBIL model, with the ‘normal’ driver pa-
rameters. A similar model is used as a second baseline for the
highway case with an exit. Then, the driver follows the IDM
longitudinally and changes lanes to the right as soon as the
safety criterion of the MOBIL model is fulfilled.

0 1 2

Training step 10
5

0.90

0.95

1.00

Fig. 3. Average reward per step r̄ during the evaluation episodes, as a function
of the number of training steps, for the continuous highway driving case.

0 1 2

Training step 10
5

0.95

1.00

1.05

1.10

Empty road

MCTS/NN

MCTS

IDM/MOBIL

IDM

Fig. 4. Mean speed v̄ during the evaluation episodes for the continuous
highway driving case, normalized with the mean speed of the IDM/MOBIL
model v̄IDM/MOBIL. The error bars indicate the standard error of the mean
for the MCTS/NN agent, i.e., σsample/

√
100, where σsample is the standard

deviation of the 100 evaluation episodes.

V. RESULTS

The results show that the agents that were obtained by
applying the proposed framework to the continuous highway
driving case and the highway exit case outperformed the base-
line methods. This section presents further results for the two
test cases, together with an explanation and brief discussion
on some of the characteristics of the results. A more general
discussion follows in Sect. VI. The decision making agent that
was created from the presented framework is henceforth called
the MCTS/NN agent (where NN refers to neural network),
whereas the baseline methods are called the standard MCTS
agent and the IDM/MOBIL agent.

For both test cases, the MCTS/NN agent was trained in a
simulated environment (Sect. IV-D). At every 20,000 added
training samples, an evaluation phase was run, where the
agent was tested on 100 different episodes. These evaluation
episodes were randomly generated (Sect. IV-E), but they were
identical for all the evaluation phases and for the different
agents.

A. Continuous Highway Driving Case

Fig. 3 shows the average reward r̄ per step that was received
during the evaluation episodes, as a function of the number of
added training samples, henceforth called training steps. The
maximum possible reward for every step is 1, and it is de-
creased when the agent deviates from the desired speed and/or
make lane changes. The agent performed relatively well even
before the training had started, due to its planning component.
However, with only 20,000 training steps, the agent learned to
perform significantly better. The average received reward then
increased slightly with more training, until around 100,000
steps, where the performance settled.

9

TABLE VI
ACTION DISTRIBUTION FOR THE CONTINUOUS HIGHWAY DRIVING CASE.

Idle ACC down ACC up Right Left
IDM/MOBIL 95.2% - - 2.3% 2.5%
MCTS 61.8% 12.4% 13.8% 6.0% 6.0%
MCTS/NN 90.4% 1.1% 3.9% 2.1% 2.5%

(a) t = 0 (b) t = 15 s, IDM/MOBIL

(c) t = 15 s, MCTS (d) t = 15 s, MCTS/NN

Fig. 5. Example of a situation where planning is necessary. The initial state
is shown in (a) and the state after 15 s is shown for the three agents in (b),
(c), and (d). The green truck is the ego vehicle.

A comparison of the average speed v̄ and the action dis-
tribution during the evaluation episodes was made for the
MCTS/NN agent and the baseline methods. Fig. 4 shows how
v̄ varies during the training of the agent, normalized with
the mean speed of the IDM/MOBIL model v̄IDM/MOBIL. For
reference, the figure displays the average speed when applying
the IDM, which always stays in its original lane during the
whole episode, and can therefore be considered as a minimum
performance. The ideal mean speed (25 m/s) for when the road
is empty is also indicated, which is naturally not achievable in
these episodes due to the surrounding traffic. The figure shows
that the standard MCTS agent outperformed the IDM/MOBIL
agent, and that the MCTS/NN agent quickly learned to match
the performance of the MCTS agent and then surpassed it
after around 60,000 training steps. Table VI shows the action
distribution for the baseline methods and for the MCTS/NN
agent after 250,000 training steps. The trained MCTS/NN
agent and the IDM/MOBIL agent performed lane changes at
about the same rate, whereas the standard MCTS agent made
significantly more lane changes. It also changed its ACC state
more than the trained MCTS/NN agent.

A key difference between the compared methods is high-
lighted in Fig. 5, which shows a situation where planning
is required. The ego vehicle is here placed behind two slow
vehicles in adjacent lanes, with timid driver parameters. The
best behavior for the ego vehicle is to make two lane changes
to the left, in order to overtake the slow vehicles. Both the
standard MCTS agent and the trained MCTS/NN agents solved
this situation, whereas the IDM/MOBIL agent got stuck in the
original lane.

Finally, the effect of the number of MCTS iterations n on
the performance of the trained agent was investigated, which
is shown in Fig. 6. To execute just one iteration corresponds to
using the policy that was learned by the neural network, which
performed better than the IDM/MOBIL agent. At around 30
iterations the MCTS/NN agent surpassed the standard MCTS
agent, which used 2,000 iterations, and at n = 1,000 the
performance settled.

10
0

10
1

10
2

10
3

10
4

0.98

1.00

1.02

1.04

1.06

MCTS/NN

MCTS

IDM/MOBIL

Fig. 6. Normalized mean speed as a function of the number of MCTS iter-
ations n for the trained MCTS/NN agent, in the continuous highway driving
case. The error bars indicate the standard error of the mean.

0 1 2

Training step 10
5

0.0

0.5

1.0

S
u

cc
es

s

MCTS/NN

MCTS

IDM/MOBIL

Fig. 7. Proportion of successful evaluation episodes, as a function of training
steps, for the highway exit case.

0 1 2

Training step 10
5

0.95

1.00

MCTS/NN

MCTS

IDM/MOBIL

Fig. 8. The average time T̄ it took to reach the exit during the evaluation
episodes, normalized with the time of the IDM/MOBIL agent T̄IDM/MOBIL,
as a function of training steps. The error bars indicate the standard error of
the mean.

B. Highway Exit Case

The highway exit case is conceptually different from the
continuous driving case, since it has a pass/fail outcome. In
this case, the most important objective is to reach the exit,
whereas a secondary objective is to do so in a time efficient
way. Fig. 7 shows the proportion of evaluation episodes where
the exit was reached, as a function of training steps for the
MCTS/NN agent. The agent quickly learned how to reach
the exit in most episodes, and after around 120,000 training
steps, it solved all of them. The success rate of the baseline
methods was 70% for the standard MCTS agent and 54% for
the modified IDM/MOBIL agent. The time it took to reach
the exit for the different methods is shown in Fig. 8. Only the
episodes where all methods succeeded to reach the exit are
included in the comparison.

Similarly to the continuous highway driving case, there are
situations for the highway exit case where it is necessary to
plan over a long time horizon. One such situation is shown in
Fig. 9. There, the ego vehicle starts in the leftmost lane, 300
m from the exit, and six vehicles are positioned in the other
lanes. Three of the vehicles have timid driver parameters and

10

(a) Initial state (b) At exit, IDM/MOBIL

(c) At exit, MCTS (d) At exit, MCTS/NN

Fig. 9. Example of when it is necessary to plan relatively far into the future
to solve a specific situation. The initial state is shown in (a) and the state at
the exit is shown for the three agents in (b), (c), and (d). The dots show the
position of the ego vehicle relative to the other vehicles during the maneuver,
i.e., in (b) and (c) the ego vehicle accelerates and overtakes the slower vehicles,
whereas in (d), the ego vehicle slows down and ends up behind the same
vehicles.

10
0

10
1

10
2

10
3

10
4

0.0

0.5

1.0

S
u

c
c
e
s
s

MCTS/NN

MCTS

IDM/MOBIL

Fig. 10. Proportion of successful episodes as a function of the number of
MCTS iterations n for the trained MCTS/NN agent, in the highway exit case.

the other three have aggressive driver parameters, except for
the set speed, which is vset = 21 m/s for all of them. All
vehicles also start with an initial speed of 21 m/s. The single
way the ego vehicle can reach the exit in this situation is to first
slow down and then make several lane changes to the right,
which was only discovered by the trained MCTS/NN agent.
The standard MCTS agent never found the way to the exit in
its tree search and therefore stayed in its original lane, to not
get negative rewards from changing lanes. The IDM/MOBIL
agent accelerated to 25 m/s and changed lanes to right as far
as it could, without reaching the exit.

The effect of the number of MCTS iterations n is shown in
Fig. 10. When using the learned policy from the neural net-
work, i.e., one iteration, the MCTS/NN agent only succeeded
in 14% of the evaluation episodes. With ten iterations, the
success rate matched the standard MCTS agent, which used
2,000 iterations. Then, when the MCTS/NN agent also used
2,000 iterations, it managed to plan far enough to solve all the
evaluation episodes.

In order to illustrate the behavior of the trained MCTS/NN
agent, Fig. 11 shows the learned value and the action that was
taken for different states when approaching the exit, with no
other vehicles present. The ego vehicle had an initial speed
of 25 m/s, vset = 25 m/s, and Tset = 2.5 s. For states
longitudinally far away from the exit, the agent learned that
the value is 20, which corresponds to expecting a reward of 1
for all future steps (since the geometric sum of Eq. 1 equals
20 for γ = 0.95). As expected, the learned value decreases
for all the lanes, except for the rightmost lane, for states close
to the exit. Far from the exit, the agent always chooses action

a1, i.e., to stay in the current lane and keep its current speed,
whereas closer to the exit, the agent changes lanes to the right,
to bring it to the rightmost lane.

VI. DISCUSSION

The results show that the agents that were obtained by
applying the proposed framework to the two test cases out-
perform the baseline methods, and that the advantage is more
significant for the highway exit case, especially in the number
of solved test episodes (Fig. 7). The reason for that the differ-
ence is larger in the exit case is that it is a more complex case,
where the effect of the policy is more decisive. A suboptimal
action in the continuous highway driving case just means a
small time loss, whereas a mistake in the exit case can result
in that the exit is not reached. Moreover, in general, the exit
case requires a longer planning horizon than the continuous
case, which is exemplified in Fig. 9. Such a situation cannot be
resolved by the IDM/MOBIL agent, since it does not perform
any planning. The standard MCTS agent also fails, since in
the example situation, the MCTS does not reach deep enough
in the search tree to figure out how the ego vehicle could
reach the exit However, the prior action probabilities and the
value estimate of different states, which the MCTS/NN agent
obtained from the training, allows it to focus the tree search
to the most promising regions. Thus, for the same number of
MCTS iterations, it can search deeper in the tree and perform
planning over a longer time horizon than the standard MCTS.
In the example situation, the MCTS/NN agent is therefore able
to figure out which actions that are needed in order to reach
the exit.

The MCTS/NN agent is anytime capable, i.e., it can abort
its search after any number of iterations, even after just one,
which will then return the action given by the neural network.
More iterations will in general improve the result, up to a
limit, where the performance settles. In the cases considered in
this study, full performance was reached at around n = 1,000,
see Fig. 6 and 10. The number of searches that are necessary
depends on the complexity of the environment and the specific
traffic situation, which will require different planning depths,
as was discussed above.

As mentioned in Sect. IV-C, a simple reward model was
used, which promotes driving close to the desired speed and
penalizes lane changes. This model proved to work well in
this study, but a more careful design may be required for
other cases. Additional aspects, such as fuel efficiency or the
influence on the surrounding traffic, could also be included.
A reward model that mimics human preferences could be
determined by using inverse reinforcement learning [31].

In a previous paper [21], we introduced a different method,
where a DQN agent learned to make tactical decisions for
a case that was similar to the continuous highway driving
case described here. That method required around one order
of magnitude more training samples to reach a similar per-
formance as the MCTS/NN agent, which indicates the value
of letting a planning component guide the learning process,
from a sample efficiency perspective. However, each training
sample is more computationally expensive to obtain for the

11

Fig. 11. This figure displays the learned values of different states V (s, θ) when there were no other vehicles present, for the highway
exit case. The arrows represent which action that was taken for different states. An arrow that points to the right corresponds to action
a1, whereas downwards corresponds to a4 (Table I). Note that the axes do not have the same scale.

method presented here, due to the many MCTS iterations that
are done for each decision. If the training is carried out in a
simulated environment where training samples are cheap, the
advantage of the sample efficiency of the MCTS/NN agent
can be argued, but if the training samples are obtained from
real world driving where each sample is expensive, sample
efficiency is important. For the two test cases in this study,
the MCTS agent required around 100,000 training samples,
which corresponds to around 20 hours of driving.

The generality of the proposed decision making framework
was demonstrated by applying it to two different cases, that
are conceptually different. In the continuous highway driving
case, the only goal is to navigate in traffic as efficiently as
possible, whereas in the exit case, there is a terminal state
with a pass/fail outcome, i.e., if the exit was reached or not.
In order to apply the framework to other cases, the following
components need to be defined: the state space S, the action
space A, the reward model R, the generative model G, and
the belief state estimator. However, the tree search and training
process of Algorithm 1 and 2 would be identical for all cases.

When training a decision making agent by using the frame-
work presented in this paper, or any other machine learning
technique, it is important to note that the agent will only be
able to solve the type of situations it encounters during the
training process. Therefore, it is crucial to set up the training
episodes so that they cover the intended case. Moreover, when
using machine learning to create a decision making agent, it is
difficult to guarantee functional safety of the agent’s decisions.
A common way to avoid this problem is to use an underlying
safety layer, which ensures that the planned trajectory is safe
before it is executed by the vehicle control system [32].

In this paper, the AlphaGo Zero algorithm was extended to a
domain with a continuous state space, a not directly observable
state, and where self-play cannot be used. A generative model
replaced the self-play component, progressive widening was
added to deal with the continuous state space, and a state
estimation component was added to handle the unknown state.
Furthermore, the CNN architecture of AlphaGo Zero, which
due to Go’s grid-like structure can be used to extract important
features, was replaced by a CNN architecture that was applied
to features of the surrounding vehicles. One technical differ-
ence to the AlphaGo Zero algorithm is the UCB condition in
Eq. 4, which determines which action to expand in the tree
search. The numerator is here changed from AlphaGo Zero’s√∑

bN(s, b) to
√∑

bN(s, b) + 1, which means that when
the tree search reaches a leaf node, it will choose to expand
the action that is recommended by the neural network policy,
i.e., a = arg maxa P (s, a, θ), instead of a random action. This
proved to be beneficial in this study, but more investigations

are necessary to determine if it is beneficial in general. Two
other small technical differences are that the Q-value in the
UCB condition is normalized, in order to keep cpuct constant
for different environments, and that the Q-value of a leaf
node is initialized to the value that is estimated by the neural
network V (s, θ), which for this domain is a better estimate
than setting it to zero, as in AlphaGo Zero.

VII. CONCLUSIONS

The results of this paper show that the presented framework,
which combines planning and learning, can be used to create
a tactical decision making agent for autonomous driving. For
two conceptually different highway driving cases, the resulting
agent performed better than individually using planning, in the
form of MCTS, or learning, in the form of the trained neu-
ral network. The agent also outperformed a baseline method,
based on the IDM and MOBIL model. The presented frame-
work is flexible and can easily be adapted to other driving
environments. It is also sample efficient and requires one order
of magnitude less training samples than a DQN agent that was
applied to a similar case [21].

Future work includes to further investigate how the tactical
decision making problem can be formulated as a POMDP in
the most efficient way, to validate the presented framework on
more test cases, to investigate the effect of different parameters
choices, and to implement and test the framework in a real
vehicle.

REFERENCES

[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: Opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167–181,
2015.

[2] J. A. Michon, “A critical view of driver behavior models: What do
we know, what should we do?,” in Human Behavior and Traffic Safety
(L. Evans and S. R.C., eds.), pp. 485–524, Boston, MA: Springer US,
1985.

[3] R. Dı́az de León Torres, M. Molina, and P. Campoy, “Survey of Bayesian
networks applications on unmanned intelligent autonomous vehicles,”
CoRR, vol. abs/1901.05517, 2019.

[4] C. Urmson et al., “Autonomous driving in urban environments: Boss and
the urban challenge,” J. Field Robot., vol. 25, no. 8, pp. 425–466, 2008.

[5] M. Montemerlo et al., “Junior: The Stanford entry in the urban chal-
lenge,” J. Field Robot., vol. 25, no. 9, pp. 569–597, 2008.

[6] A. Bacha et al., “Odin: Team VictorTango’s entry in the DARPA urban
challenge,” J. Field Robot., vol. 25, no. 8, pp. 467–492, 2008.

[7] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,” in IEEE
International Conference on Robotics and Automation, pp. 987–993,
2010.

[8] P. Nilsson, L. Laine, N. van Duijkeren, and B. Jacobson, “Automated
highway lane changes of long vehicle combinations: A specific compar-
ison between driver model based control and non-linear model predic-
tive control,” in International Symposium on Innovations in Intelligent
SysTems and Applications (INISTA), pp. 1–8, 2015.

12

[9] F. Damerow and J. Eggert, “Risk-aversive behavior planning under
multiple situations with uncertainty,” in IEEE International Conference
on Intelligent Transportation Systems (ITSC), pp. 656–663, 2015.

[10] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[11] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making
under uncertainty for autonomous driving using continuous POMDPs,”
in IEEE International Conference on Intelligent Transportation Systems
(ITSC), pp. 392–399, 2014.

[12] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” Int. J. Rob. Res., vol. 33,
no. 9, pp. 1288–1302, 2014.

[13] S. Ulbrich and M. Maurer, “Towards tactical lane change behavior
planning for automated vehicles,” in IEEE International Conference on
Intelligent Transportation Systems (ITSC), pp. 989–995, 2015.

[14] C. Browne et al., “A survey of Monte Carlo tree search methods.,” IEEE
Trans. Comput. Intellig. and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[15] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The value of inferring
the internal state of traffic participants for autonomous freeway driving,”
in American Control Conference (ACC), pp. 3004–3010, 2017.

[16] E. Sonu, Z. Sunberg, and M. J. Kochenderfer, “Exploiting hierarchy for
scalable decision making in autonomous driving,” in IEEE Intelligent
Vehicles Symposium (IV), pp. 2203–2208, 2018.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, second ed., 2018.

[18] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” CoRR, vol. abs/1509.02971, 2015.

[20] D. Silver et al., “Mastering the game of Go without human knowledge,”
Nature, vol. 550, pp. 354–359, 2017.

[21] C. J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane
change decision making using deep reinforcement learning,” in IEEE
International Conference on Intelligent Transportation Systems (ITSC),
pp. 2148–2155, 2018.

[22] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning ne-
gotiating behavior between cars in intersections using deep Q-learning,”
in IEEE International Conference on Intelligent Transportation Systems
(ITSC), pp. 3169–3174, 2018.

[23] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
in NIPS Workshop on Machine Learning for Intelligent Transportation
Systems, 2017.

[24] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR,
vol. abs/1610.03295, 2016.

[25] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[26] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard,
“Continuous upper confidence trees,” in Learning and Intelligent Opti-
mization, pp. 433–445, 2011.

[27] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[28] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, pp. 1805–1824, 2000.

[29] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
MOBIL for car-following models,” Transportation Research Record,
vol. 1999, pp. 86–94, 2007.

[30] A. Kesting, M. Treiber, and D. Helbing, “Agents for traffic simulation,”
in Multi-Agent Systems: Simulation and Applications (A. M. Uhrmacher
and D. Weyns, eds.), pp. 325–356, CRC Press, 2009.

[31] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learn-
ing,” in International Conference on Machine Learning, pp. 663–670,
2000.

[32] S. Underwood, D. Bartz, A. Kade, and M. Crawford, “Truck automation:
Testing and trusting the virtual driver,” in Road Vehicle Automation 3
(G. Meyer and S. Beiker, eds.), pp. 91–109, Springer, 2016.

Carl-Johan Hoel Carl-Johan Hoel received the B.S.
and M.S degrees in physics from Chalmers Univer-
sity of Technology, Gothenburg, Sweden, in 2011.
He is currently working towards the Ph.D. degree
at Chalmers and Volvo Group, Gothenburg, Sweden.
His research interests include reinforcement learning
methods to create a general tactical decision making
agent for autonomous driving.

Katherine Driggs-Campbell Katie Driggs-
Campbell received her BSE in Electrical
Engineering from Arizona State University and
her MS and PhD in Electrical Engineering and
Computer Science from the University of California,
Berkeley. She is currently an Assistant Professor in
the ECE Department at the University of Illinois
at Urbana-Champaign. Her research focuses on
exploring and uncovering structure in complex
human-robot systems to create more intelligent,
interactive autonomy. She draws from the fields

of optimization, learning & AI, and control theory, applied to human robot
interaction and autonomous vehicles.

Krister Wolff Krister Wolff received the M.S. de-
gree in physics from Gothenburg University, Gothen-
burg, Sweden, and the Ph.D. degree from Chalmers
University of Technology, Gothenburg, Sweden. He
is currently an Associate Professor of adaptive sys-
tems, and he is also the Vice head of Department
at Mechanics and maritime sciences, Chalmers. His
research is within the application of AI in different
domains, such as autonomous robots and self-driving
vehicles, using machine learning and bio-inspired
computational methods as the main approaches.

Leo Laine Leo Laine received the Ph.D. degree from
Chalmers University of Technology, Gothenburg,
Sweden, within Vehicle Motion management. Since
2007, he has been with the Volvo Group Trucks
Technology in the Vehicle Automation department.
Since 2013, he has also been an Adjunct Professor in
vehicle dynamics with Chalmers Vehicle Engineer-
ing and Autonomous Systems. Since 2013, he is spe-
cialist within complete vehicle control. Since 2017,
he is technical advisor within Vehicle Automation
department.

Mykel J. Kochenderfer Mykel J. Kochenderfer re-
ceived the B.S. and M.S. degrees in computer sci-
ence from Stanford University, Stanford, CA, USA,
and the Ph.D. degree from The University of Ed-
inburgh, Edinburgh, U.K. He is currently an Assis-
tant Professor of aeronautics and astronautics with
Stanford University. He is also the Director of the
Stanford Intelligent Systems Laboratory, conduct-
ing research on advanced algorithms and analytical
methods for the design of robust decision-making
systems.

Paper IV

Tactical Decision-Making in Autonomous
Driving by Reinforcement Learning with

Uncertainty Estimation

in

Proceedings of the 31st IEEE Intelligent Vehicles Symposium, Virtual
conference, 2020, pp. 1563-1569.

Tactical Decision-Making in Autonomous Driving by
Reinforcement Learning with Uncertainty Estimation

Carl-Johan Hoel∗†, Krister Wolff∗, and Leo Laine∗†

Abstract— Reinforcement learning (RL) can be used to cre-
ate a tactical decision-making agent for autonomous driving.
However, previous approaches only output decisions and do
not provide information about the agent’s confidence in the
recommended actions. This paper investigates how a Bayesian
RL technique, based on an ensemble of neural networks with
additional randomized prior functions (RPF), can be used to
estimate the uncertainty of decisions in autonomous driving.
A method for classifying whether or not an action should be
considered safe is also introduced. The performance of the
ensemble RPF method is evaluated by training an agent on
a highway driving scenario. It is shown that the trained agent
can estimate the uncertainty of its decisions and indicate an
unacceptable level when the agent faces a situation that is
far from the training distribution. Furthermore, within the
training distribution, the ensemble RPF agent outperforms a
standard Deep Q-Network agent. In this study, the estimated
uncertainty is used to choose safe actions in unknown situations.
However, the uncertainty information could also be used to
identify situations that should be added to the training process.

I. INTRODUCTION

Autonomous driving has the potential to benefit society in
many ways, such as increase the productivity and improve
the energy efficiency of autonomous vehicles, and to reduce
the number of accidents [1]. The decision-making task of an
autonomous vehicle is challenging, since the system must
handle a diverse set of environments, interact with other
traffic participants, and consider uncertainty in the sensor
information. To manually predict all situations that can
occur and code a suitable behavior is infeasible. Therefore,
it is compelling to consider methods that are based on
machine learning to train a decision-making agent. A desired
property of such an agent is that it should not just output a
recommended decision, but also estimate the uncertainty of
the given decision. This paper investigates a way to create
a tactical1 decision-making agent that is also aware of its
limitations, for autonomous driving.

Traditional decision-making methods, which are based
on predefined rules and implemented as hand-crafted state

This work was partially supported by the Wallenberg Artificial Intel-
ligence, Autonomous Systems and Software Program (WASP), funded by
Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

∗Carl-Johan Hoel, Krister Wolff, and Leo Laine are with Chalmers
University of Technology, Gothenburg, Sweden {carl-johan.hoel,
krister.wolff, leo.laine}@chalmers.se

†Carl-Johan Hoel and Leo Laine are with Volvo Group, Gothenburg,
Sweden {carl-johan.hoel, leo.laine}@volvo.com

1The decision-making task of an autonomous vehicle is commonly
divided into strategic, tactical, and operational decision-making, also called
navigation, guidance and stabilization [2], [3]. In short, tactical decisions
refer to high level, often discrete, decisions, such as when to change lanes
on a highway.

machines, were successful during the DARPA Urban Chal-
lenge [4], [5], [6]. Other classical methods treat the decision-
making task as a motion planning problem [7], [8], [9].
Although these methods are successful in many cases, one
drawback is that they are designed for specific driving situ-
ations, which makes it hard to scale them to the complexity
of real-world driving.

Reinforcement learning (RL) techniques have been suc-
cessful in various domains during the last decade [10],
[11], [12]. Compared to non-learning based methods, RL
approaches are general and could potentially scale to all driv-
ing situations. RL has previously been applied to decision-
making for autonomous driving in simulated environments,
for example Deep Q-Network (DQN) approaches for high-
way driving [13], [14] and intersections [15], [16], policy
gradient techniques for merging situations [17], or combining
Monte Carlo tree search and RL [18]. A few studies have also
trained decision-making agents in a simulated environment
and then deployed them in a real vehicle [19], [20], or for a
limited case, trained an agent directly in a real vehicle [21].

The agents that were trained by RL in previous works can
naturally only be expected to output rational decisions in
situations that are close to the training distribution. However,
a fundamental problem with these methods is that no matter
what situation the agents are facing, they will always output
a decision, with no information on the uncertainty of the
decision or if the agent has experienced anything similar
during its training. If, for example, an agent that was trained
for a one-way highway scenario would be deployed in
a scenario with oncoming traffic, it would still output a
decision, without any warning. A more subtle difference
could be if the agent has been trained for nominal highway
driving, and suddenly faces a speeding driver or an accident
that creates standstill traffic. The importance of estimating
the uncertainty of decisions in autonomous driving is further
emphasized by McAllister et al. [22].

A common way to model uncertainty is through Bayesian
probability theory [23]. Bayesian deep learning has previ-
ously been used in the autonomous driving field for, e.g.,
image segmentation [24] and end-to-end learning [25]. Early
work on applying Bayesian approaches to RL, for balancing
the exploration vs. exploitation dilemma, was introduced
by Dearden et al. [26]. More recent studies have extended
this approach to deep RL, by using an ensemble of neural
networks with randomized prior functions [27].

In contrast to the related work, this paper investigates
an RL method for tactical decision-making in autonomous
driving that can estimate the uncertainty of its decision, based

on the work by Osband et al. [27] (Sect. II). A criterion
for when the agent is considered confident enough about its
decisions is introduced (Sect. II-C). A decision-making agent
is trained in a one-way highway driving scenario (Sect. III),
and the results show that it outperforms both a common
heuristic method and a standard DQN method (Sect. IV-A).
This study shows that the presented method can estimate
the uncertainty of the recommended actions, and that this
information can be used to choose less risky actions in
unknown situations (Sect. IV-B). Another potential use for
the uncertainty estimation is to identify situations that should
be added to the training process. Further properties of the
presented method are discussed in Sect. V.

The main contributions of this paper are:
1) A novel application of an RL method for tactical

decision-making in autonomous driving that can es-
timate the uncertainty of its decisions (Sect. III).

2) A criterion that determines if the trained agent is con-
fident enough about a particular decision (Sect. II-C).

3) A performance analysis of the introduced approach
in different highway driving scenarios, compared to a
commonly used heuristic method and a standard DQN
approach (Sect. IV).

II. APPROACH

This section gives a brief introduction to RL, and a
description of how the uncertainty of a recommended action
can be estimated. The details on how this approach was
applied to autonomous driving follows in Sect. III.

A. Reinforcement learning

Reinforcement learning is a subfield of machine learning,
where an agent interacts with some environment to learn a
policy π(s) that maximizes the future expected return [28].
The policy defines which action a to take in each state s.
When an action is taken, the environment transitions to a new
state s′ and the agent receives a reward r. The reinforcement
learning problem can be modeled as a Markov Decision
Process (MDP), which is defined by the tuple (S,A, T,R, γ),
where S is the state space, A is the action space, T is a state
transition model, R is a reward model, and γ is a discount
factor. At every time step t, the goal of the agent is to choose
an action a that maximizes the discounted return,

Rt =

∞∑

k=0

γkrt+k. (1)

In Q-learning [29], the agent tries to learn the optimal
action-value function Q∗(s, a), which is defined as

Q∗(s, a) = max
π

E [Rt|st = s, at = a, π] . (2)

The DQN algorithm uses a neural network with weights
θ to approximate the optimal action-value function as
Q(s, a; θ) ≈ Q∗(s, a) [10]. Since the action-value function
follows the Bellman equation, the weights can be optimized
by minimizing the loss function

L(θ) = EM
[
(r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ))2

]
. (3)

Algorithm 1 Ensemble RPF training process

1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: i← 0
5: while networks not converged
6: si ← initial random state
7: k ∼ U{1,K}
8: while episode not finished
9: ai ← arg maxaQk(si, a)

10: si+1, ri ← STEPENVIRONMENT(si, ai)
11: for k ← 1 to K
12: if p ∼ U(0, 1) < padd
13: mk ← mk ∪ {(si, ai, ri, si+1)}
14: M ← sample from mk

15: update θk with SGD and loss L(θk)

16: i← i+ 1

The loss is calculated for a mini-batch M , and a target
network θ− is updated regularly.

B. Bayesian reinforcement learning
The DQN algorithm returns a maximum likelihood esti-

mate of the Q-values, but gives no information about the
uncertainty of the estimation. The risk of an action could
be represented as the variance of the return when taking that
action [30]. One line of RL research focuses on obtaining an
estimate of the uncertainty by statistical bootstrap [31], [32].
An ensemble of models is then trained on different subsets
of the available data and the distribution that is given by the
ensemble is used to approximate the uncertainty. A better
Bayesian posterior is obtained if a randomized prior function
(RPF) is added to each ensemble member [27]. Then, each
individual ensemble member, here indexed by k, estimates
the Q-values as the sum

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k), (4)

where f and p are neural networks, with parameters θk that
can be trained, and parameters θ̂k that are kept fixed. The
factor β balances the importance of the prior function. When
adding the prior, the loss function of Eq. 3 is changed to

L(θk) = EM
[
(r + γmax

a′
(fθ−k

+ βpθ̂k)(s′, a′)

− (fθk + βpθ̂k)(s, a))2
]
. (5)

The full ensemble RPF method, which was used in this
study, is outlined in Algorithm 1. An ensemble of K train-
able neural networks and K fixed prior networks are first
initialized randomly. A replay memory is divided into K
parallel buffers mk, for the individual ensemble members
(although in practice, this can be implemented in a memory
efficient way that uses negligible more memory than a single
replay memory). To handle exploration, a random ensemble
member is chosen for each training episode. Actions are then
taken by greedily maximizing the Q-value of the chosen en-
semble member, which corresponds to a form of approximate

Fig. 1: Example of an initial state of the highway driving scenario. The ego vehicle is shown in green, whereas the color
of the surrounding vehicles represent their current speed. Yellow corresponds to 15 m/s, red to 35 m/s, and the different
shades of orange represent speeds in between.

Thompson sampling. The new experience (si, ai, ri, si+1) is
then added to each ensemble buffer with probability padd.
Finally, a minibatch M of experiences is sampled from each
ensemble buffer and the trainable network parameters of the
corresponding ensemble member are updated by stochastic
gradient descent (SGD), using the loss function in Eq. 5.

C. Uncertainty threshold

The coefficient of variation2 cv(s, a) of the Q-values that
are given by the neural networks can be used to estimate the
agent’s uncertainty of taking different actions from a given
state. In this study, a hard uncertainty threshold csafev is used
to classify if the agent is confident enough of its decision,
but a progressive scale could also be used, which is further
discussed in Sect. V. When cv(s, a) > csafev , action a is
considered unsafe in state s, which indicates that (s, a) is
far from the training distribution. The value of the parameter
csafev can be determined by observing the performance of
the agent and the variation in cv(s, a) for the chosen action
during testing episodes within the training distribution, see
Sect IV-A for further details.

When the training process is completed and the trained
agent is deployed (i.e., not during the training process), the
agent chooses actions by maximizing the mean Q-value of
the K neural networks, under the condition cv(s, a) < csafev ,
i.e.,

arg max
a

1

K

K∑

k=1

Qk(s, a),

s.t. cv(s, a) < csafev .

(6)

If no action fulfills the criteria, a fallback action asafe is used.

III. IMPLEMENTATION

A one-way highway driving scenario (Fig. 1) was used to
train and test the presented ensemble RPF algorithm. This
section describes how the scenarios were set up, how the
decision-making problem was formulated as an MDP, how
the neural networks were designed, and how the training
process was set up. The code that was used to implement
the algorithm and experiments is available on GitHub [33].

A. Simulation setup

The Simulation of Urban Mobility (SUMO) traffic sim-
ulator was used for the experiments in this study [34]. A
one-way highway with three lanes was simulated, where
the controlled vehicle consisted of a 16 m long truck-trailer

2The coefficient of variation is also known as the relative standard
deviations, which is defined as the ratio of the standard deviation to the
mean.

combination, with a maximum speed of vegomax = 25 m/s.
In the beginning of each episode, 25 passenger cars were
inserted into the simulation, with a random desired speed
in the range [vmin, vmax] = [15, 35] m/s. In order to create
interesting traffic situations, slower vehicles were positioned
in front of the ego vehicle, and faster vehicles were placed
behind the ego vehicle. Each episode was terminated after
N = 100 time steps, or earlier if a collision occurred or the
ego vehicle drove off the road. The simulation times step
was set to ∆t = 1 s. Fig. 1 gives an example of the initial
state of an episode.

The passenger vehicles were controlled by the standard
SUMO driver model, which consists of an adaptive cruise
controller for the longitudinal motion [35], and a lane change
model that makes tactical decisions to overtake slower ve-
hicles [36]. In the scenarios considered here, no strategical
decisions were necessary, so the strategical part of the lane
changing model was turned off. Furthermore, in order to
make the traffic situations more demanding, the cooperation
level of the lane changing model was set to 0. Overtaking
was allowed both on the left and right side of another vehicle,
and each lane change took tlc = 4 s to complete.

B. MDP formulation3

The decision-making problem was formulated according
to the following Markov decision process.

1) State space, S: The state of the system,

s = ({xi, yi, vx,i, vy,i}i∈0,...,Nveh
), (7)

consists of the positions (xi, yi) and speeds (vx,i, vy,i) of
each vehicle in a traffic scene, where index 0 refers to the ego
vehicle. The agent that controls the ego vehicle can observe
the state of all surrounding vehicles within the distance
xsensor = 200 m.

2) Action space, A: At every time step, the agent can
choose between any combination of three longitudinal ac-
tions and three lateral actions, which consist of setting the
acceleration to {−1, 0, 1} m/s2 and {‘stay in lane’, ‘change
left’, ‘change right’}. The final possible action is to brake
hard by setting the longitudinal acceleration to −4 m/s2. In
total, this results in 10 different possible actions. Once a
lane change is initiated, it cannot be aborted. The fallback
action asafe is set to ‘stay in lane’ laterally and −4 m/s
longitudinally.

3Technically, the problem is a Partially Observable Markov Decision
Process (POMDP) [37], since the ego vehicle cannot observe the internal
state of the driver models of the surrounding vehicles. However, the POMDP
can be approximated as an MDP with a k-Markov approximation, where
the state consists of the last k observations [10]. For this study, it proved
sufficient to use only the last observation.

TABLE I: Input ξ to the neural network.

Ego lane ξ1 = 2y0/ymax − 1
Ego vehicle speed ξ2 = 2vx,0/v

ego
max − 1

Lane change state ξ3 = sgn (vy,0)
Relative long. position of vehicle i ξ4i+1 = (xi − x0)/xsensor
Relative lat. position of vehicle i ξ4i+2 = (yi − y0)/ymax

Relative speed of vehicle i ξ4i+3 =
vx,i−vx,0

vmax−vmin

Lane change state of vehicle i ξ4i+4 = sgn (vy,i)

3) Reward model, R: The objective of the agent is to
navigate through traffic in a safe and time efficient way. A
simple reward model is used to achieve this goal. At every
time step, the agent receives a positive reward of 1− vmax−v0

vmax
,

which encourages a time efficient policy that, for example,
overtakes slow vehicles. However, if a collision occurs, or
the ego vehicle drives off the road (by changing lanes outside
of the road), a negative reward of rcol = −10 is added and
the episode is terminated. Furthermore, if the behavior of
the ego vehicle causes another vehicle to emergency brake,
defined by a deceleration with a magnitude greater than
ae = −4.5 m/s2, or if the ego vehicle drives closer to another
vehicle than a minimum time gap of tgap = 2.5 s, a negative
reward of rnear = −10 is added, but the episode is not
terminated. Furthermore, in order to discourage unnecessary
lane changes, a negative reward of rlc = −1 is added when
a lane change is initiated.

4) State transition model, T : The state transition prob-
abilities are implicitly defined by the generative simulation
model, and not known to the agent.

C. Neural network architecture

A neural network estimates the Q-values of the different
actions in a given state. The state s is transformed to the
normalized state vector ξ before it is passed to the network,
where all elements ξ∗ ∈ [−1, 1]. The positions and speeds of
the surrounding vehicles are expressed as relative to the ego
vehicle. Further details on how ξ is calculated are given in
Table I.

In a previous paper [14], we introduced a one-dimensional
convolutional neural network (CNN) architecture, which
makes the training faster and gives better results than a
standard fully connected architecture. By applying CNN
layers and a max pooling layer to the part of the input that
describes the surrounding vehicles, the output of the network
becomes independent of the ordering of the surrounding
vehicles in the input vector, and the architecture allows a
varying input vector size.

The neural network architecture that was used in this
study is shown in Fig. 2. Both convolutional layers have
32 filters. The size and stride of the first convolutional layer
is set to four, which equals the number of state inputs of
each surrounding vehicle, whereas the size and stride of the
second layer is set to one. The two fully connected (FC)
layers have 64 units each. Rectified linear units (ReLUs) are
used as activation functions for all layers, except the last,
which has a linear activation function. The architecture also

Su
rr

o
u

n
d

in
g

ve
h

ic
le

s

CNN CNN Max pool

Eg
o

 s
ta

te

FC FC

𝑉(𝑠)

𝐴 𝑠, 𝑎

𝑄 𝑠, 𝑎

M
er

ge

Fig. 2: The neural network architecture that was used in this
study.

TABLE II: Hyperparameters of Algorithm 1 and baseline
DQN.

Number of ensemble members, K 10

Prior scale factor, β 50

Experience adding probability, padd 0.5

Discount factor, γ 0.99

Learning start iteration, Nstart 50,000

Replay memory size, Mreplay 500,000

Learning rate, η 0.0005

Mini-batch size, Mmini 32

Target network update frequency, Nupdate 20,000

Huber loss threshold, δ 10

Initial exploration constant, εstart 1

Final exploration constant, εend 0.05

Final exploration iteration, Nε-end 1,000,000

includes a dueling structure that separates the state value and
action advantage estimation [38].

D. Training process

Algorithm 1 was used to train the ensemble of neural
networks, with the exception that the loss function of Double
DQN was used, which slightly changes the maximization
term of Eq. 3 to γQ(s′, arg maxa′ Q(s′, a′; θi); θ

−
i) [39].

Adam [40] was used to update the parameters θk of the
K ensemble members, and the update step was parallelized
in order to speed up the process. For episodes without
collisions, the last experience was not added to the replay
memory, in order to trick the agent that the episodes continue
forever [14]. Table II displays the hyperparameters of Algo-
rithm 1 and the training process. Due to the computational
complexity, the hyperparameter values were selected from an
informal search and not a systematic grid search.

E. Baseline methods

The Double DQN algorithm was used as a baseline method
(henceforth simply referred to as the DQN method). To
make a fair comparison, the same hyperparameters as for
Algorithm 1 were used, with additional hyperparameters for
an annealed exploration schedule, given in Table II. During
the testing episodes, the action with the highest Q-value was
greedily chosen. The standard SUMO driver model, which
is further described in Sect. III-A, was used as a second
baseline method.

IV. RESULTS

The results show that the ensemble RPF method outper-
forms the SUMO driver model and performs more consis-
tently than the baseline DQN method when tested on similar
scenarios as the agents were trained on. However, when the
trained agents were tested on scenarios outside of the training
distributions, the ensemble RPF method both indicates a high
uncertainty and chooses safe actions, whereas the DQN agent
causes collisions. This section presents more details on the
results, together with a brief analysis and discussion on some
of the characteristics of the results, whereas a more general
discussion follows in Sect. V.

Both the ensemble RPF and the DQN agents were trained
in a simulated environment (Sect. III). At every 50,000 added
training sample, henceforth called training step, the agents
were evaluated on 100 different test episodes. These test
episodes were randomly generated in the same way as the
training episodes, but not present during the training. The
test episodes were also kept identical for all the test phases
and agents. The safety criterion described in Sect II-C was
not active in the test episodes (since the uncertainty cv varies
during the training process), but used when the fully trained
agent was exposed to unseen scenarios, see Sect. IV-B.

A. Within training distribution

Fig. 3 shows the proportion of collision free test episodes
as a function of training steps for the ensemble RPF and
DQN agents. For 10 random seeds, the figure also shows
the mean and the standard deviation of the return during the
test episodes, normalized by the return of the SUMO driver.
Both the ensemble RPF and DQN agents quickly learn to
brake and thereby solve all test episodes without collisions,
although the DQN agent experience occasional collisions
later on during the training process. With more training, both
methods also learn to overtake slow vehicles and outperform
the SUMO driver model. The ensemble RPF agent receives
a slightly higher return and has a more stable performance
compared to the DQN agent. The small variation in final per-
formance between random seeds of the ensemble RPF agent
is likely due to that a close to optimal policy has been found.

To gain insight in the uncertainty estimation during the
training process, and to illustrate how to set the uncertainty
threshold parameter csafev (Sect. II-C), Fig. 4 shows the
coefficient of variation cv for the chosen action during the
test episodes as a function of training steps. Note that the
figure shows the uncertainty of the chosen action, whereas
the uncertainty for other actions could be higher. After
around four million training steps, the coefficient of variation
settles at around 0.01, with a small spread in values, which
motivates setting csafev = 0.02.

B. Outside training distribution

In order to illustrate the ability of the ensemble RPF
agent to detect unseen situations, the agent that was obtained
after five million training steps was deployed in scenarios
that were not included in the training episodes. In various
situations that involve an oncoming vehicle, the uncertainty

0 1 2 3 4 5
Training step 1e6

0%

50%

100%

Co
llis

io
n

fre
e

ep
iso

de
s

0.0

0.5

1.0

No
rm

al
ize

d
ep

iso
de

 re
tu

rn

DQN
ensemble RPF

Fig. 3: Proportion of collision free test episodes (dashed), and
mean normalized return over training steps for the ensemble
RPF and DQN agents (solid). The shaded areas show the
standard deviation for 10 random seeds.

0 1 2 3 4 5
Training step 1e6

0.00

0.05

0.10

Un
ce

rta
in

ty
, c

v

Fig. 4: Mean uncertainty, represented by the coefficient of
variation cv, of the chosen action during the test episodes.
The dark shaded area represent the standard deviation and
the bright shaded area represent percentiles 1 to 99.

estimate was consistently high, cv > 0.2. This level is one
order of magnitude larger than the uncertainty threshold csafev ,
and therefore clearly indicates that such situations are outside
of the training distribution.

For a deployed agent that has been trained in one-way
highway traffic, an arguably more representative situation
that the agent could be exposed to involves an accident,
which has caused a vehicle to stop on the highway, see
Fig. 5a. As mentioned in Sect. III-A, the surrounding vehicles
were simulated with a random speed in the range [15, 35] m/s
during the training, hence a vehicle that stands still is outside
of the training distribution. The ego vehicle starts with a
speed of 25 m/s and is placed in the rightmost lane, with the
stopped vehicle 300 m in front of it. There are several slower
vehicles in the center lane, which makes changing lanes
impossible. The DQN agent does brake when it approaches
the stopped vehicle, but since such a situation was not present
in the training episodes, the agent does not brake early
enough to avoid a collision. The ensemble RPF agent also
outputs the highest Q-value for maintaining its current speed
when the ego vehicle is far from the stopped vehicle, and
would have collided if that action had been chosen. However,
as soon as the stopped vehicle is within the ego vehicle’s
sensor range xsensor, the uncertainty cv > csafev , see Fig. 6.
Since this uncertainty level indicates that the situation is

(a) Accident situation with a stopped vehicle, shown in white.

(b) Situation with a speeding vehicle, shown in purple.

Fig. 5: Two situations that are outside of the training distribution and cause collisions if the confidence of the agent is not
considered. The top panel of each figure shows the initial state, whereas the two bottom panels show the state for the DQN
and ensemble RPF agents, after 12 s in (a) and 7 s in (b).

0 2 4 6 8 10
Time (s)

0.00

0.05

0.10

Un
ce

rta
in

ty
, c

v

csafe
v

v̇x, 0 = 0
v̇x, 0 = 1
v̇x, 0 = − 1
v̇x, 0 = − 4

0

10

20

Sp
ee

d
(m

/s
)

vx, 0

Fig. 6: Uncertainty cv for the ’stay in lane’ action with
different accelerations, and ego vehicle speed vx,0, during
the case with a stopped vehicle. The uncertainty for the other
possible actions are orders of magnitude larger. Due to the
sensor range limitation, the stopped vehicle is not observed
until t = 4 s.

outside of the training distributions, the agent chooses to
brake hard (Sect. II-C) early enough to avoid a collision.

The trained agent was also tested in a situation that
involves a speeding vehicle, see Fig. 5b, where a vehicle that
drives at 55 m/s is approaching the ego vehicle from behind,
in the neighboring lane. A slow vehicle is positioned in front
of the ego vehicle, which creates an incentive to overtake
it on the left. The DQN agent does change lanes to the
left, but then causes a collisions since the speeding vehicle
cannot brake fast enough. The ensemble RPF agent also
estimates the highest Q-values for the lane changing actions,
but estimates cv > 0.025 for changing lanes, which is larger
than the uncertainty threshold csafev , until the speeding vehicle
has passed. However, cv ≈ 0.015 for staying in the lane and
braking with −1 m/s2, which the agent then does, according
to the policy that was described in Sect. II-C. When the
speeding vehicle has passed, the ego vehicle changes lanes,
since cv has then decreased to below the threshold.

Videos of the presented scenarios and additional situations,

together with the code that was used to obtain the results,
are available on GitHub [33].

V. DISCUSSION

The results show that the ensemble RPF algorithm can be
used to train an agent that is aware of the uncertainty of its
decisions. The ensemble RPF agents outperforms both the
DQN agent and the heuristic SUMO driver model within the
training distribution (Fig. 3). In addition, the ensemble RPF
agent can also indicate its uncertainty when the agent is ex-
posed to situations that are far from the training distribution
(Fig. 5). In this study, the uncertainty information was used
to choose safe actions, by prohibiting actions with a level
of uncertainty that exceeds a defined threshold. However, to
formally guarantee functional safety with a learning-based
method is challenging and likely requires an underlying
safety layer in a real application [41]. While the presented
approach could reduce the activation frequency of such a
safety layer, a possibly even more important application
could be to improve the learning process. The uncertainty
information could be used to guide the training to situations
that the agent is currently not confident about, which could
improve the sample efficiency and broaden the distribution of
situations that the agent can handle. Furthermore, if an agent
is trained in a simulated environment and later deployed
in real traffic, the uncertainty information could be used to
detect situations that need to be added to the simulated world.

Since a simple safety function was used in this study, a
hard uncertainty threshold csafev was used to determine if the
agent is confident enough to take a particular action. If a
more advanced safety function would receive the information
from the agent, it could be beneficial to instead output a
continuous confidence measure. One option is to define such
a confidence measure as 1 − cv(s,a)−cmin

v

csafev −cmin
v

, where cmin
v is a

parameter that defines the minimum uncertainty. A value of 1
would then indicate maximum confidence, and values below
0 would be considered unsafe.

The main disadvantage of using the ensemble RPF method
compared to DQN is the higher computational cost, since K
neural networks need to be trained instead of one. However,
the design of the algorithm allows an efficient parallelization
of the training process, which in practice reduces the effect.
Both agents were trained on a desktop computer, where
the DQN agent required 36 hours and the ensemble RPF
agent required 72 hours to complete five million training
steps. Osband et al. reports that the difference can be further
reduced to 20% in wall-time with their implementation [32].

VI. CONCLUSION

The advantage of using Bayesian RL compared to standard
RL for tactical decision-making in autonomous driving has
been demonstrated in this paper. The ensemble RPF method
learns to make more efficient decisions and it has a more
stable performance compared to the DQN method within
the training distribution. Outside of the training distribution,
the ensemble RPF method is aware of the high uncertainty
and can fall back to taking safe actions, in order to avoid
collisions. However, since the DQN agent does not possess
the uncertainty information, collisions occur in unknown
situations.

A possibly even more important aspect when having
information on what the agent knows and does not know is
that the training can be adapted accordingly. To investigate
this further is a topic for future work. The performance of the
proposed method will also be further evaluated in different
types of traffic situations in a future paper.

REFERENCES

[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: Opportunities, barriers and policy recommendations,” Transp.
Res. Part A: Policy and Pract., vol. 77, pp. 167–181, 2015.

[2] J. A. Michon, “A critical view of driver behavior models: What do
we know, what should we do?” in Human Behav. and Traffic Saf.,
L. Evans and S. R.C., Eds. Boston, MA: Springer US, 1985, pp.
485–524.

[3] S. Ulbrich et al., “Towards a functional system architecture for
automated vehicles,” CoRR, vol. abs/1703.08557, 2017.

[4] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robot., vol. 25, no. 8, pp. 425–466,
2008.

[5] M. Montemerlo et al., “Junior: The Stanford entry in the urban
challenge,” J. Field Robot., vol. 25, no. 9, pp. 569–597, 2008.

[6] A. Bacha et al., “Odin: Team VictorTango’s entry in the DARPA urban
challenge,” J. Field Robot., vol. 25, no. 8, pp. 467–492, 2008.

[7] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,” in IEEE
Int. Conf. on Robot. and Automat., 2010, pp. 987–993.

[8] P. Nilsson, L. Laine, N. van Duijkeren, and B. Jacobson, “Automated
highway lane changes of long vehicle combinations: A specific com-
parison between driver model based control and non-linear model
predictive control,” in Int. Symp. on Innov. in Intell Syst. and Appl.
(INISTA), 2015, pp. 1–8.

[9] F. Damerow and J. Eggert, “Risk-aversive behavior planning under
multiple situations with uncertainty,” in IEEE Int. Conf. on Intell.
Transp. Syst. (ITSC), 2015, pp. 656–663.

[10] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[11] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[12] D. Silver et al., “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[13] P. Wang, C. Chan, and A. d. L. Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in IEEE Int.
Veh. Symp. (IV), 2018, pp. 1379–1384.

[14] C. J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in IEEE Int.
Conf. on Intell. Transp. Syst. (ITSC), 2018, pp. 2148–2155.

[15] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning
negotiating behavior between cars in intersections using deep Q-
learning,” in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), 2018,
pp. 3169–3174.

[16] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in IEEE Int. Conf. on Robot. and
Automat. (ICRA), 2018, pp. 2034–2039.

[17] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR, vol.
abs/1610.03295, 2016.

[18] C. J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J.
Kochenderfer, “Combining planning and deep reinforcement learning
in tactical decision making for autonomous driving,” IEEE Trans. on
Intell. Veh., 2019.

[19] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” in Proc. of the Brit. Machine Vision
Conf. (BMVC), 2017.

[20] M. Bansal, A. Krizhevsky, and A. S. Ogale, “ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst,” Robot: Sci.
& Syst. (RSS), 2019.

[21] A. Kendall et al., “Learning to drive in a day,” in IEEE Int. Conf. on
Robot. and Automat. (ICRA), 2019, pp. 8248–8254.

[22] R. McAllister et al., “Concrete problems for autonomous vehicle
safety: Advantages of Bayesian deep learning,” in Proc. of the 26th
Int. Joint Conf. on Artif. Intell., 2017, pp. 4745–4753.

[23] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[24] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” in Proc. of the Brit. Machine Vision Conf.
(BMVC), 2017, pp. 57.1–57.12.

[25] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncertainty
quantification in end-to-end autonomous driving control,” CoRR, vol.
abs/1811.06817, 2018.

[26] R. Dearden, N. Friedman, and S. Russell, “Bayesian Q-learning,” in
Proc. of the 15th Nat/10th Conf. on Artif. Intell./Innov. Appl. of Artif.
Intell., 1998, p. 761–768.

[27] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions
for deep reinforcement learning,” in Adv. in Neural Inf. Process. Syst.
31, 2018, pp. 8617–8629.

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. MIT Press, 2018.

[29] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3, pp. 279–292, 1992.

[30] J. Garcı́a and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” J. of Mach. Learn. Res., vol. 16, no. 42, pp.
1437–1480, 2015.

[31] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans.
Soc. for Ind. and Appl. Math., 1982.

[32] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Adv. in Neural Inf. Process. Syst. 29, 2016,
pp. 4026–4034.

[33] C. J. Hoel, “Source code for ‘Tactical decision-making
in autonomous driving by reinforcement learning with
uncertainty estimation’,” 2020. [Online]. Available: https:
//github.com/carljohanhoel/BayesianRLForAutonomousDriving

[34] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,” in
IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), 2018, pp. 2575–2582.

[35] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a micro-
scopic model of traffic flow,” Phys. Rev. E, vol. 55, pp. 5597–5602,
May 1997.

[36] J. Erdmann, “Lane-changing model in SUMO,” Proc. of the
SUMO2014 Model. Mob. with Open Data, vol. 24, pp. 77–88, 2014.

[37] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, no. 1-2, pp. 99–134, 1998.

[38] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. of the 33rd Int. Conf. on Mach. Learn., vol. 48, 2016, pp. 1995–
2003.

[39] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. of the 39th AAAI Conf. on Artif.
Intell., 2016, pp. 2094–2100.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Int. Conf. on Learn. Repr., 12 2014.

[41] S. Underwood, D. Bartz, A. Kade, and M. Crawford, “Truck automa-
tion: Testing and trusting the virtual driver,” in Road Veh. Automat. 3,
G. Meyer and S. Beiker, Eds. Springer, 2016, pp. 91–109.

Paper V

Reinforcement Learning with Uncertainty
Estimation for Tactical Decision-Making

in Intersections

in

Proceedings of the 23rd IEEE International Conference on Intelligent
Transportation Systems, Virtual conference, 2020, pp. 1-7.

Reinforcement Learning with Uncertainty Estimation
for Tactical Decision-Making in Intersections

Carl-Johan Hoel*,1,3,4, Tommy Tram*,2,3,4 and Jonas Sjöberg3

Abstract— This paper investigates how a Bayesian reinforce-
ment learning method can be used to create a tactical decision-
making agent for autonomous driving in an intersection sce-
nario, where the agent can estimate the confidence of its
decisions. An ensemble of neural networks, with additional
randomized prior functions (RPF), are trained by using a boot-
strapped experience replay memory. The coefficient of variation
in the estimated Q-values of the ensemble members is used to
approximate the uncertainty, and a criterion that determines if
the agent is sufficiently confident to make a particular decision
is introduced. The performance of the ensemble RPF method
is evaluated in an intersection scenario and compared to a
standard Deep Q-Network method, which does not estimate
the uncertainty. It is shown that the trained ensemble RPF
agent can detect cases with high uncertainty, both in situations
that are far from the training distribution, and in situations
that seldom occur within the training distribution. This work
demonstrates one possible application of such a confidence
estimate, by using this information to choose safe actions in
unknown situations, which removes all collisions from within
the training distribution, and most collisions outside of the
distribution.

I. INTRODUCTION

To make safe, efficient, and comfortable decisions in
intersections is one of the challenges of autonomous driving.
A decision-making agent needs to handle a diverse set of
intersection types and layouts, interact with other traffic par-
ticipants, and consider uncertainty in sensor information. The
fact that around 40% of all traffic accidents during manual
driving occur in intersections indicates that decision-making
in intersections is a complex task [1]. To manually predict all
situations that can occur and tailor a suitable behavior is not
feasible. Therefore, a data-driven approach that can learn to
make decisions from experience is a compelling approach. A
desired property of such a machine learning approach is that
it should also be able to indicate how confident the resulting
agent is about a particular decision.

Reinforcement learning (RL) provides a general approach
to solve decision-making problems [2], and could potentially
scale to all types of driving situations. Promising results have
been achieved in simulation by applying a Deep Q-Network
(DQN) agent to intersection scenarios [3], [4], and highway

* Both authors contributed equally to this work.
This work was partially supported by the Wallenberg Artificial Intel-

ligence, Autonomous Systems, and Software Program (WASP), funded by
the Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

1 Affiliated with Volvo Group, Gothenburg, Sweden.
2 Affiliated with Zenuity AB, Gothenburg, Sweden.
3 Affiliated with Chalmers University of Technology, Gothenburg,

Sweden. {carl-johan.hoel,tommy.tram,jonas.sjoberg}
@chalmers.se

4 Affiliated with AI Innovation of Sweden, Gothenburg, Sweden.

driving [5], [6], or a policy gradient method to a lane merging
situation [7]. Some studies have trained an RL agent in a
simulated environment and then deployed the agent in a real
vehicle [8], [9], and for a limited case, trained the agent
directly in a real vehicle [10].

Generally, a fundamental problem with the RL methods
in previous work is that the trained agents do not provide
any confidence measure of their decisions. For example, if
an agent that was trained for a highway driving scenario
would be exposed to an intersection situation, it would still
output a decision, although it would likely not be a good
one. A less extreme example involves an agent that has been
trained in an intersection scenario with nominal traffic, and
then faces a speeding driver. McAllister et al. further discuss
the importance of estimating the uncertainty of decisions in
autonomous driving [11].

A common way of estimating uncertainty is through
Bayesian probability theory [12]. Bayesian deep learning has
previously been used to estimate uncertainty in autonomous
driving for image segmentation [10] and end-to-end learn-
ing [13]. Dearden et al. introduced Bayesian approaches
to RL that balances the trade off between exploration and
exploitation [14]. In recent work, this approach has been
extended to deep RL, by using an ensemble of neural
networks [15]. However, these studies focus on creating an
efficient exploration method for RL, and do not provide a
confidence measure for the agents’ decisions.

This paper investigates an RL method that can estimate
the uncertainty of the resulting agent’s decisions, applied to
decision-making in an intersection scenario. The RL method
uses an ensemble of neural networks with randomized prior
functions that are trained on a bootstrapped experience replay
memory, which gives a distribution of estimated Q-values
(Sect. II). The distribution of Q-values is then used to
estimate the uncertainty of the recommended action, and a
criterion that determines the confidence level of the agent’s
decision is introduced (Sect. II-C). The method is used
to train a decision-making agent in different intersection
scenarios (Sect. III), in which the results show that the intro-
duced method outperforms a DQN agent within the training
distribution. The results also show that the ensemble method
can detect situations that were not present in the training
process, and thereby choose safe fallback actions in such
situations (Sect. IV). Further characteristics of the introduced
method is discussed in Sect. V. This work is an extension to
a recent paper, where we introduced the mentioned method,
but applied to a highway driving scenario [16].

II. APPROACH

This section gives a brief introduction to RL, describes
how the uncertainty of an action can be estimated by an
ensemble method, and introduces a measure of confidence
for different actions. Further details on how this approach
was applied to driving in an intersection scenario follows in
Sect. III.

A. Reinforcement learning

Reinforcement learning is a branch of machine learning,
where an agents explores an environment and tries to learn
a policy π(s) that maximizes the future expected return,
based on the agent’s experiences [2]. The policy determines
which action a to take in a given state s. The state of
the environment will then transitions to a new state s′ and
the agent receives a reward r. A Markov Decision Process
(MDP) is often used to model the reinforcement learning
problem. An MDP is defined by the tuple (S,A, T,R, γ),
where S is the state space, A is the action space, T is a state
transition model, R is a reward model, and γ is a discount
factor. At each time step t, the agent tries to maximize the
future discounted return

Rt =
∞∑

k=0

γkrt+k. (1)

In a value-based branch of RL called Q-learning [17],
the objective of the agent is to learn the optimal state-
action value function Q∗(s, a). This function is defined as
the expected return when the agent takes action a from state
s and then follow the optimal policy π∗, i.e.,

Q∗(s, a) = max
π

E [Rt|st = s, at = a, π] . (2)

The Q-function can be estimated by a neural network with
weights θ, i.e., Q(s, a) ≈ Q(s, a; θ). The weights are
optimized by minimizing the loss function

L(θ) = EM
[
(r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ))2

]
, (3)

which is derived from the Bellman equation. The loss is
obtained from a mini-batch M of training samples, and θ−

represents the weights of a target network that is updated
regularly. More details on the DQN algorithm are presented
by Mnih et al. [18].

B. Bayesian reinforcement learning

One limitation of the DQN algorithm is that only the
maximum likelihood estimate of the Q-values is returned.
The risk of taking a particular action can be approximated
as the variance in the estimated Q-value [19]. One ap-
proach to obtain a variance estimation is through statistical
bootstrapping [20], which has been applied to the DQN
algorithm [21]. The basic idea is to train an ensemble of
neural network on different subsets of the available replay
memory. The ensemble will then provide a distribution of Q-
values, which can be used to estimate the variance. Osband
et al. extended the ensemble method by adding a randomized
prior function (RPF) to each ensemble member, which gives

Algorithm 1 Ensemble RPF training process

1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: i← 0
5: while networks not converged
6: si ← initial random state
7: ν ∼ U{1,K}
8: while episode not finished
9: ai ← arg maxaQν(si, a)

10: si+1, ri ← STEPENVIRONMENT(si, ai)
11: for k ← 1 to K
12: if p ∼ U(0, 1) < padd

13: mk ← mk ∪ {(si, ai, ri, si+1)}
14: M ← sample mini-batch from mk

15: update θk with SGD and loss L(θk)

16: i← i+ 1

a better Bayesian posterior [15]. The Q-values of each
ensemble member k is then calculated as the sum of two
neural networks, f and p, with equal architecture, i.e.,

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k). (4)

Here, the weights θk of network f are trainable, and the
weights θ̂k of the prior network p are fixed to the randomly
initialized values. A parameter β scales the importance of
the networks. With the two networks, the loss function in
Eq. 3 becomes

L(θk) = EM
[
(r + γmax

a′
(fθ−k

+ βpθ̂k)(s′, a′)

− (fθk + βpθ̂k)(s, a))2
]
. (5)

Algorithm 1 outlines the complete ensemble RPF method,
which was used in this work. An ensemble of K trainable
and prior neural networks are first initialized randomly. Each
ensemble member is also assigned a separate experience
replay memory buffer mk (although in a practical imple-
mentation, the replay memory can be designed in such a
way that it uses negligible more memory than a shared
buffer). For each new training episode, a uniformly sampled
ensemble member, ν ∼ U{1,K}, is used to greedily select
the action with the highest Q-value. This procedure handles
the exploration vs. exploitation trade-off and corresponds
to a form of approximate Thompson sampling. Each new
experience e = (si, ai, ri, si+1) is then added to the separate
replay buffers mk with probability padd. Finally, the trainable
weights of each ensemble member are updated by uniformly
sample a mini-batch M of experiences and using stochastic
gradient descent (SGD) to backpropagate the loss of Eq. 5.

C. Confidence criterion

The agent’s uncertainty in choosing different actions can
be defined as the coefficient of variation1 cv(s, a) of the

1Ratio of the standard deviation to the mean.

Q-values of the ensemble members. In previous work, we
introduced a confidence criterion that disqualifies actions
with cv(s, a) > csafe

v , where csafe is a hard threshold [16].
The value of the threshold should be set so that (s, a)
combinations that are contained in the training distribution
are accepted, and those which are not will be rejected. This
value can be determined by observing values of cv in testing
episodes within the training distribution, see Sect. IV-A for
further details.

When the agent is fully trained (i.e., not during the
training phase), the policy chooses actions by maximizing
the mean of the Q-values of the ensemble members, with
the restriction cv(s, a) < csafe

v , i.e.,

arg max
a

1

K

K∑

k=1

Qk(s, a),

s.t. cv(s, a) < csafe
v .

(6)

In a situation where no possible action fulfills the confidence
criterion, a fallback action asafe is chosen.

III. IMPLEMENTATION

The ensemble RPF method, which can obtain an uncer-
tainty estimation of different actions, is tested on different
intersection scenarios. In this work, the uncertainty informa-
tion is used to reject unsafe actions and reduce the number
of collisions. This section describes how the simulation of
the scenarios is set up, how the decision-making problem
is formulated as an MDP, the architecture of the neural
networks, and the details on how the training is performed.

A. Simulation setup

The simulated environment consists of different intersec-
tion scenarios, and is based on previous work [22]. For
completeness, an overview is presented here. Each episode
starts by randomly selecting a single or bi-directional inter-
section, shown in Fig. 1, and placing the ego vehicle to the
left with a random distance pc,j

e to the intersection and a
speed of 10 m/s. A random number N of other vehicles are
positioned along the top and bottom roads with a random
distance pc,jo to the intersection, and a random desired speed
vjd. The other vehicles follow the Intelligent Driver Model
(IDM) [23], with a set time gap of tjd = 1 s. One quarter
of the vehicles stop at the intersection and three quarters
continue through the intersection, regardless of the behavior
of the ego vehicle. When a vehicle has passed the intersection
and reached the end of the road, it is moved back to the other
side of the intersection, which creates a constant traffic flow.
The simulator is updated at 25 Hz, and decisions are taken
at 4 Hz. The goal of the ego vehicle is to reach a position
that is located 10 m to the right of the last crossing point.

Fig. 1: The two intersection scenarios considered in this
work; single directional to the left and bidirectional to the
right. The agent controls the red car.

TABLE I: Parameters for simulator

Number of other vehicles, N {1, 2, 3, 4}
Starting position ego, pc,je [50, 60] m
Starting position target, pc,jo [10, 55] m
Desired velocity, vjd [8, 12] m/s

B. MDP formulation2

The following Markov decision process is used to model
the decision-making problem.

1) State space, S: The design of the state of the system,

s = (pg
e , ve, ae, {ps,j

e , pc,j
e , ps,j

o , pc,j
o , vjo, a

j
o}j∈0,...,N), (7)

allows the description of intersections with different lay-
outs [4]. The state, illustrated in Fig. 2, consists of the
distance from the ego vehicle to the goal pg

e , the velocity
and acceleration of the ego vehicle, ve, ae, and the other
vehicles, vjo, ajo, where j denotes the index of the other
vehicles. Furthermore, ps,j

e and pc,j
e are the distances from

the ego vehicle to the start of the intersection and crossing
point, relative to target vehicle j respectively. The distances
ps,j

o and pc,j
o are the distance from the other vehicles to the

start of the intersection and the crossing point.
2) Action space, A: The action space consists of

six tactical decisions: {‘take way’, ‘give way’, ‘follow
car {1, . . . , 4}’}, which set the target of the IDM controller.
The ‘take way’ action treats the situation as an empty road,
whereas the ‘give way’ action sets a target distance of ps,je
and a target speed of 0 m/s. The ‘follow car j’ actions sets
the target distance to pc,j

e − pc,j
o and target speed to vjo. In

cases where pc,j
o > pc,j

e , the target distance is set to a value
that corresponds to timegap 0.5 s. The output of the IDM
model is further limited by a maximum jerk jmax = 5 m/s3

and maximum acceleration amax = 5 m/s2. If less than four
vehicles are present, the actions that correspond to choosing
an absent vehicle are pruned by using Q-masking [25].

2The full state is not directly observable, since the intentions of the
surrounding vehicles are not known to the agent. Therefore, the problem is
a Partially Observable Markov Decision Process (POMDP) [24]. However,
by using a k-Markov approximation, where the state consists of the k last
observations, the POMDP can be approximated as an MDP [18]. For the
scenarios that were considered in this work, it proved sufficient to simply
use the last observation.

ve, ae

vjo, a
j
o

crossing point

pc,je

ps,je

pc,jo
ps,jo

Fig. 2: The state space definitions for a single crossing
scenario, where subscript e and o denotes ego and other
vehicle, respectively.

3) Reward model, R: The objective of the agent is to
reach the goal on the other side of the intersection, without
colliding with other vehicles and for comfort reasons, with
as little jerk jt as possible. Therefore, the reward at each
time step rt is defined as

rt =

1 at reaching the goal,
−1 at a collision,

−
(

jt
jmax

)2
∆τ
τmax

at non-terminating steps.

The non-terminating reward is scaled with the maximum
time of an episode, τmax, and the step time ∆τ = 0.04 s, to
ensure

∑t=τmax

t=0 ∈ [−1, 0]. Further details about the reward
function can be found in previous research [22].

4) Transition model, T : The state transition probabilities
are not known to the agent. However, the true transition
model is defined by the simulation model, described in
Sect. III-A.

C. Fallback action

As mentioned in Sect. II-C, a fallback action asafe is
used when cv > csafe

v for all available actions. This fallback
action is set to ‘give way’, with the difference that no jerk
limitation is applied and with a higher acceleration limit
amax = 10 m/s2.

D. Network architecture

In previous studies, we have showed that a network
architecture that applies the same weights to the input
that describes the surrounding vehicles results in a better
performance and speeds up the training process [6], [4].
Such an architecture can be constructed by applying a one-
dimensional convolutional neural network (CNN) structure
to the surrounding vehicles’ input. The network architecture
that is used in this work is shown in Fig. 3. The first
convolutional layer has 32 filters, with size and stride set
to six, which equals the number of state inputs of each
surrounding vehicle, and the second convolutional layers
has 16 filter, with size and stride set to one. The fully
connected (FC) layer that is connected to the ego vehicle
input has 16 units, and the joint fully connected layer has

Fig. 3: The neural network architecture that was used in this
work.

64 units. All layers use rectified linear units (ReLUs) as
activation functions, except for the last layer, which has a
linear activation function. The final dueling structure of the
network separates the estimation of the state value V (s)
and the action advantage A(s, a) [26]. The input vector is
normalized to the range [−1, 1]. The input vector contains
slots for four surrounding vehicles, and if less vehicles are
present in the traffic scene, the empty input is set to −1.

E. Training process

Algorithm 1 is used to train the agent. The loss
function of Double DQN is applied, which subtly
modifies the maximization operation of Eq. 3 to
γQ(s′, arg maxa′ Q(s′, a′; θi); θ

−
i) [27]. The Adam

optimizer is used to update the weights [28], and K
parallel workers are used for the backpropagation step.
The hyperparameters of the training process are shown in
Table II, and the values were selected by an informal search,
due to the computational complexity.

If the current policy of the agent decides to stop the
ego vehicle, an episode could continue forever. Therefore,
a timeout time is set to τmax = 20 s, at which the episode
terminates. The last experience of such an episode is not
added to the replay memory. This trick prevents the agent
to learn that an episode can end due to a timeout, and
makes it seem like an episode can continue forever, which
is important, since the terminating state due to the time limit
is not part of the MDP [6].

F. Baseline method

The Double DQN method, hereafter simply referred to
as the DQN method, is used as a baseline. For a fair
comparison, the same hyperparameters as for the ensemble
RPF method is used, with the addition of an annealing ε-
greedy exploration schedule, which is shown in Table II.
During test episodes, a greedy policy is used.

TABLE II: Hyperparameters of Algorithm 1 and baseline
DQN.

Number of ensemble members, K 10

Prior scale factor, β 1

Experience adding probability, padd 0.5

Discount factor, γ 0.99

Learning start iteration, Nstart 50,000

Replay memory size, Mreplay 500,000

Learning rate, η 0.0005

Mini-batch size, Mmini 32

Target network update frequency, Nupdate 20,000

Huber loss threshold, δ 10

Initial exploration constant, εstart 1

Final exploration constant, εend 0.05

Final exploration iteration, Nε-end 1,000,000

IV. RESULTS

The results show that the ensemble RPF method outper-
forms the DQN method, both in terms of training speed and
final performance, when the resulting agents are tested on
scenarios that are similar to the training scenarios. When the
fully trained ensemble RPF agent is exposed to situations that
are outside of the training distribution, the agent indicates
a high uncertainty and chooses safe actions, whereas the
DQN agent collides with other vehicles. More details on
the characteristics of the results are presented and briefly
discussed in this section, whereas a more general discussion
follows in Sect. V.

The ensemble RPF and DQN agents were trained in the
simulated environment that was described in Sect. III. After
every 50,000 training steps, the performance of the agents
were evaluated on 100 random test episodes. These test
episodes were randomly generated in the same way as the
training episodes, but kept fixed for all the evaluation phases.

A. Within training distribution

The average return and the average proportion of episodes
where the ego vehicle reached the goal, as a function of
number of training steps, is shown in Fig. 4, for the test
episodes. The figure also shows the standard deviation for
5 random seeds, which generates different sets of initial
parameters of the networks and different training episodes,
whereas the test episodes are kept fixed. The results show that
the ensemble RPF method both learns faster, yields a higher
return, and causes less collisions than the DQN method.

Fig. 5 shows how the coefficient of variation cv of the
chosen action varies during the testing episodes. Note that
the uncertainty of actions that are not chosen can be higher,
which is often the case. After around one million training
steps, the average value of cv settles at around 0.04, with a
99 percentile value of 0.15, which motivates the choice of
setting csafe

v = 0.2.
As shown in Fig. 4, occasional collisions still occur during

the test episodes when deploying the fully trained ensemble
RPF agent. The reasons for these collisions are further
discussed in Sect. V. In one particular example of a collision,

0 1 2
Training step 1e6

0.0

0.5

1.0

Su
cc

es
s r

at
e

0.0

0.5

1.0

Ep
iso

de
 re

tu
rn

DQN
ensemble RPF

Fig. 4: Proportion of test episodes where the ego vehicle
reached its goal (dashed), and episode return (solid), over
training steps for the ensemble RPF and DQN methods. The
shaded areas show the standard deviation for 5 random seeds.

0 1 2 3
Training step 1e6

0.0

0.2

0.4

Un
ce

rta
in

ty
, c

v

Fig. 5: Mean coefficient of variation cv for the chosen
action during the test episodes. The dark shaded area shows
percentiles 10 to 90, and the bright shaded area shows
percentiles 1 to 99.

−3 −2 −1 0
Time (s)

0.0

0.5

1.0

1.5

Un
ce

rta
in

ty
, c

v

csafe
v

Fig. 6: Uncertainty cv during the time steps before one of the
collisions in the test episodes, within the training distribution.
The collision occurs at t = 0 s.

the agent fails to brake early enough and ends up in an
impossible situation, where it collides with another vehicle in
the intersection. However, the estimated uncertainty increases
significantly during the time before the collision, when the
incorrect actions are taken, see Fig. 6. When applying the
confidence criterion (Sect. II-C), the agent instead brakes
early enough, and can thereby avoid the collision. The
confidence criterion was also applied to all the test episodes,
which removed all collisions.

10 15 20
Set speed v j

d (m/s)

0.0

0.1

0.2

0.3
Co

llis
io

n
ra

te

W
ith

in
 tr

ai
ni

ng
 d

ist
rib

ut
io

n

Ou
ts

id
e

tra
in

in
g

di
st

rib
ut

io
n

DQN
ensemble RPF
ensemble RPF, confidence

(a) Proportion of collisions.

10 15 20
Set speed v j

d (m/s)

0.0

0.5

1.0

Ac
tiv

at
io

n
ra

te

(b) Proportion of episodes where asafe was used at least once.

Fig. 7: Performance of the ensemble RPF agent, with and
without the confidence criterion, and the DQN agent, in test
episodes with different set speeds vjd for the surrounding
vehicles.

B. Outside training distribution

The ensemble RPF agent that was obtained after three
million training steps was tested in scenarios outside of the
training distribution, in order to evaluate the agent’s ability
to detect unseen situations. The same testing scenarios as
for within the distribution was used, with the exception that
the speed of the surrounding vehicles was set to a single
deterministic value, which was varied during different runs in
the range vjd = [10, 20] m/s. The proportion of collisions as
a function of set speed of the surrounding vehicles is shown
in Fig. 7, together with the proportion of episodes where the
confidence criterion was violated at least once. The figure
shows that when the confidence criterion is used, most of
the collisions can be avoided. Furthermore, the violations
of the criterion increase when the speed of the surrounding
vehicles increase, i.e., the scenarios move further from the
training distribution.

An example of a situation that causes a collision is shown
in Fig. 8, where an approaching vehicle drives with a speed
of 20 m/s. The Q-values of both the trained ensemble RPF
and DQN agents indicate that the agents expect to make it
over the crossing before the other vehicle. However, since
the approaching vehicle drives faster than what the agents
have seen during the training, a collision occurs. When the
confidence criterion is applied, the uncertainty rises to cv >
csafe
v for all actions when the ego vehicle approaches the

critical region, where it has to brake in order to be able to
stop, and a collision is avoided by choosing action asafe.

(a) t = 0, initial situation. (b) t = 1, DQN and ensemble
RPF without confidence crite-
rion.

(c) t = 1, ensemble RPF with
confidence criterion.

(d) t = 1.5, ensemble RPF with
confidence criterion.

Fig. 8: Example of a situation outside of the training dis-
tribution, where there would be a collision if the confidence
criterion is not used. The vehicle at the top is here approach-
ing the crossing at 20 m/s.

V. DISCUSSION

The results show that the ensemble RPF method can
indicate an elevated uncertainty for situations that the agent
has been insufficiently trained for, both within and outside
of the training distribution. In previous work by the authors
of this paper, we observed similar results when using the
ensemble RPF method to estimate uncertainty outside of the
training distribution in a highway driving scenario [16]. In
contrast, this paper shows that, in some cases, the ensemble
RPF method can even detect situations with high uncertainty
within the training distribution. Such situations include rare
events that seldom or never occur during the training process,
which makes it hard for the agent to provide an accurate
estimate of the Q-values for the corresponding states. Since
these states are seldom used to update the neural networks of
the ensemble, the weights of the trainable networks will not
adapt to the respective prior networks, and the uncertainty
measure cv will remain high for these rare events. This
information is useful to detect edge cases within the training
set and indicate when the decision of the trained agent is not
fully reliable.

In this work, the estimated uncertainty is used to choose a
safe fallback action if the uncertainty exceeds a threshold
value. For the cases that are considered here, this confi-
dence criterion removes all collisions within the training
distribution, and almost all collisions when the speed of the
surrounding vehicles is increased to levels outside of the
training distribution. However, to guarantee safety by using
a learning-based method is challenging, and an underlying
safety layer is often used [29]. The presented method could
decrease the number of activations of such a safety layer,

but possibly more importantly, the uncertainty measure could
also be used to guide the training process to focus on
situations that the current agent needs to explore further.
Moreover, if an agent is trained in simulation and then
deployed in real traffic, the uncertainty estimation of the
agent could detect situations that should be added to the
simulated world, in order to better match real-world driving.

The results show that the ensemble RPF method performs
better and more stable than a standard DQN method within
the training distribution. The main disadvantage is the in-
creased computational complexity, since K neural networks
need to be trained. This disadvantage is somewhat mitigated
in practice, since the design of the algorithm allows an
efficient parallelization. Furthermore, the tuning complexity
of the ensemble RPF and DQN methods are similar. Hy-
perparameters for the number of ensemble members K and
prior scale factor β are introduced, but the parameters that
control the exploration of DQN are removed.

VI. CONCLUSION

The results of this paper demonstrates the usefulness of
using a Bayesian RL technique for tactical-decision making
in an intersection scenario. The ensemble RPF method can be
used to estimate the confidence of the recommended actions,
and the results show that the trained agent indicates high
uncertainty for situations that are outside of the training
distribution. Importantly, the method also indicates high
uncertainty for rare events within the training distribution.
In this work, the confidence information was used to choose
a safe action in situations with high uncertainty, which
removed all collisions from within the training distribution,
and most of the collisions in situations outside of the training
distribution.

The uncertainty information could also be used to identify
situations that are not known to the agent, and guide the
training process accordingly. To investigate this further is
a topic for future work. Another subject for future work
involves how to set the parameter value csafe

v in a more
systematic way, and how to automatically update the value
during training.

REFERENCES

[1] “Traffic safety facts,” National Highway Traffic Safety Administration,
Tech. Rep. DOT HS 812 261, 2014.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. MIT Press, 2018.

[3] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in IEEE Int. Conf. on Robot. and
Automat. (ICRA), 2018, pp. 2034–2039.

[4] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning
negotiating behavior between cars in intersections using deep Q-
learning,” in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), 2018,
pp. 3169–3174.

[5] P. Wang, C. Chan, and A. d. L. Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in IEEE Int.
Veh. Symp. (IV), 2018, pp. 1379–1384.

[6] C. J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in IEEE Int.
Conf. on Intell. Transp. Syst. (ITSC), 2018, pp. 2148–2155.

[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR, vol.
abs/1610.03295, 2016.

[8] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” in Proc. of the Brit. Machine Vision
Conf. (BMVC), 2017.

[9] M. Bansal, A. Krizhevsky, and A. S. Ogale, “ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst,” Robot: Sci.
& Syst. (RSS), 2019.

[10] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” in Proc. of the Brit. Machine Vision Conf.
(BMVC), 2017, pp. 57.1–57.12.

[11] R. McAllister et al., “Concrete problems for autonomous vehicle
safety: Advantages of Bayesian deep learning,” in Proc. of the 26th
Int. Joint Conf. on Artif. Intell., 2017, pp. 4745–4753.

[12] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[13] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncertainty
quantification in end-to-end autonomous driving control,” CoRR, vol.
abs/1811.06817, 2018.

[14] R. Dearden, N. Friedman, and S. Russell, “Bayesian Q-learning,” in
Proc. of the 15th Nat/10th Conf. on Artif. Intell./Innov. Appl. of Artif.
Intell., 1998, p. 761–768.

[15] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions
for deep reinforcement learning,” in Adv. in Neural Inf. Process. Syst.
31, 2018, pp. 8617–8629.

[16] C. J. Hoel, K. Wolff, and L. Laine, “Tactical decision-making in
autonomous driving by reinforcement learning with uncertainty es-
timation,” submitted to IEEE Intell. Veh. Symp. (IV) 2020.

[17] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3, pp. 279–292, 1992.

[18] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] J. Garcı́a and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” J. of Mach. Learn. Res., vol. 16, no. 42, pp.
1437–1480, 2015.

[20] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans.
Soc. for Ind. and Appl. Math., 1982.

[21] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Adv. in Neural Inf. Process. Syst. 29, 2016,
pp. 4026–4034.

[22] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to
drive in intersections by combining reinforcement learning and model
predictive control,” in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC),
Oct 2019, pp. 3263–3268.

[23] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, pp. 1805–1824, 2000.

[24] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, no. 1-2, pp. 99–134, 1998.

[25] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
Decision Making for Lane Changing with Deep Reinforcement Learn-
ing,” Neural Information Processing Systems (NIPS), 2017.

[26] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. of the 33rd Int. Conf. on Mach. Learn., vol. 48, 2016, pp. 1995–
2003.

[27] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. of the 39th AAAI Conf. on Artif.
Intell., 2016, pp. 2094–2100.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Int. Conf. on Learn. Repr., 12 2014.

[29] S. Underwood, D. Bartz, A. Kade, and M. Crawford, “Truck automa-
tion: Testing and trusting the virtual driver,” in Road Veh. Automat. 3,
G. Meyer and S. Beiker, Eds. Springer, 2016, pp. 91–109.

Paper VI

Ensemble Quantile Networks:
Uncertainty-Aware Reinforcement

Learning with Applications in Autonomous
Driving

submitted to

IEEE Transactions on Neural Networks and Learning Systems, 2021.

1

Ensemble Quantile Networks: Uncertainty-Aware
Reinforcement Learning with Applications in

Autonomous Driving
Carl-Johan Hoel, Krister Wolff, and Leo Laine

Abstract—Reinforcement learning (RL) can be used to cre-
ate a decision-making agent for autonomous driving. However,
previous approaches provide only black-box solutions, which do
not offer information on how confident the agent is about its
decisions. An estimate of both the aleatoric and epistemic un-
certainty of the agent’s decisions is fundamental for real-world
applications of autonomous driving. Therefore, this paper intro-
duces the Ensemble Quantile Networks (EQN) method, which
combines distributional RL with an ensemble approach, to obtain
a complete uncertainty estimate. The distribution over returns
is estimated by learning its quantile function implicitly, which
gives the aleatoric uncertainty, whereas an ensemble of agents is
trained on bootstrapped data to provide a Bayesian estimation
of the epistemic uncertainty. A criterion for classifying which de-
cisions that have an unacceptable uncertainty is also introduced.
The results show that the EQN method can balance risk and
time efficiency in different occluded intersection scenarios, by
considering the estimated aleatoric uncertainty. Furthermore, it
is shown that the trained agent can use the epistemic uncertainty
information to identify situations that the agent has not been
trained for and thereby avoid making unfounded, potentially
dangerous, decisions outside of the training distribution.

Index Terms—Reinforcement learning, aleatoric uncertainty,
epistemic uncertainty, autonomous driving, decision-making.

I. INTRODUCTION

ADECISION-MAKING agent for an autonomous vehicle
needs to handle a diverse set of environments and sit-

uations, while interacting with other traffic participants and
considering uncertainty. A machine learning approach for cre-
ating a general decision-making agent is compelling, since it
is not feasible to manually predict all situations that can occur
and code a suitable behavior for each and every one of them.
However, a drawback of learning-based agents is that they
typically provide a black-box solution, which only outputs a
decision for a given situation. It would be desirable if the
agent also could provide an estimate of its confidence level,
or equivalently, the estimated uncertainty of its decisions.

Uncertainty can be divided into two categories: aleatoric
and epistemic uncertainty [1], [2], where both are important
to consider in many decision-making problems. Aleatoric un-
certainty refers to the inherent randomness of an outcome and

This work was partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems, and Software Program (WASP), funded by the
Knut and Alice Wallenberg Foundation

C. J. Hoel and L. Laine are with Chalmers University of Technology,
Gothenburg, Sweden and with Volvo Group, Gothenburg, Sweden (e-mail:
{carl-johan.hoel, leo.laine}@chalmers.se).

K. Wolff is with Chalmers University of Technology, Gothenburg, Swe-
den (e-mail: krister.wolff@chalmers.se)

can therefore not be reduced by observing more data. For
example, when approaching an occluded intersection, there is
an aleatoric uncertainty in if, or when, another vehicle will
enter the intersection. To estimate the aleatoric uncertainty is
important, since such information can be used to make risk-
aware decisions. Contrarily, epistemic uncertainty arises due
to a lack of knowledge and can be reduced by observing more
data. For example, epistemic uncertainty appears if a decision-
making agent has been trained to only handle ‘normal’ driving
situations and then faces a speeding driver or an accident.
An estimate of the epistemic uncertainty provides insight into
which situations the trained agent does not know how to handle
and can be used to increase the safety [3]. The epistemic uncer-
tainty estimate could also be used to concentrate the training
process to situations where the agent needs more training [4].

Reinforcement learning (RL) provides a learning-based ap-
proach to create decision-making agents, which could poten-
tially scale to all driving situations. Many recent studies have
applied RL to autonomous driving, for example, by using
the Deep Q-Network (DQN) algorithm in intersections and
highway situations [5]–[7], by using a policy gradient method
for lane merging [8], or combining RL with Monte Carlo tree
search [9]. A majority of these studies perform both the train-
ing and evaluation in simulated environments, whereas some
train the agent in simulations and then apply the trained agent
in the real world [10], [11], or for some limited cases, the train-
ing itself is also performed in the real world [12]. Overviews of
RL for autonomous driving are given by Kiran et al. [13] and
by Zhu et al. [14]. However, previous studies do not estimate
the aleatoric or the epistemic uncertainty of the decision that
the trained agent recommends. One exception is the study by
Bernhard et al., where a distributional RL approach is used to
create a risk-sensitive decision-making agent [15]. However,
the method is not applied in a theoretically consistent way
and can therefore cause arbitrary decisions, which is further
discussed in Sect. V of this paper.

Bayesian probability theory can be used to estimate the
epistemic uncertainty [16]. In the autonomous driving field,
Bayesian deep learning has been used for, e.g., image segmen-
tation [17] and end-to-end learning [18]. For RL, Bayesian
techniques have been used to balance the exploration vs. ex-
ploitation trade-off [19], and more recent work has addressed
similar problems in deep RL [20]. Furthermore, the aleatoric
uncertainty of a decision can be obtained through distributional
RL, which aims to model the distribution over returns, instead
of only the mean return, as in standard RL [21], [22]. For

2

example, Bellemare et al. introduced a method for estimating
the probability of a discrete set of returns [23], which also has
been further developed for continuous control tasks [24].

In contrast to the related work, this paper presents methods
for training an RL agent for autonomous driving, in which the
trained agent provides an estimate of the epistemic and the
aleatoric uncertainty of its decisions. The epistemic uncertainty
estimate is obtained through a Bayesian RL approach, which
extends and further analyses the approach from two studies
by the authors of this paper [25], [26]. This method, based on
the work by Osband et al. [20], uses an ensemble of neural
networks with additive random prior functions to obtain a
posterior distribution over the expected return (Sect. II-C). The
aleatoric uncertainty is obtained through a distributional RL
approach, based on the work by Dabney et al. [27], which
estimates the probability distribution over returns by implicitly
learning its quantile function1. This method also allows the
agent to be trained in a risk-aware manner (Sect. II-B). Further-
more, this paper introduces the Ensemble Quantile Networks
(EQN) method, which combines the two previously mentioned
approaches, in order to provide a complete uncertainty esti-
mate of both the aleatoric and epistemic uncertainty of an
agent’s decisions (Sect. II-D). The performance of the pro-
posed methods is tested and analyzed in different intersection
scenarios (Sect. III), where the results show that while they
outperform the standard DQN method, the epistemic uncer-
tainty estimate can be used to choose less risky actions in
unknown situations, and the distributional risk-aware approach
allows a trade-off between risk and time efficiency (Sect. IV).
Another potential use for the epistemic uncertainty information
is to identify situations that should be added to the training
process. Further properties of the proposed approaches are
discussed in Sect. V. The code that was used to implement the
different algorithms and the simulated scenarios is available
on GitHub [28].

The main contributions of this paper are:
1) Methods for estimating either the aleatoric or the epis-

temic uncertainty of a trained agent, together with con-
fidence criteria, which can be used to identify situations
with high uncertainty (Sect. II-B2, II-C1).

2) The introduction of the EQN algorithm, which simulta-
neously quantifies both the aleatoric and the epistemic
uncertainty of a trained agent (Sect. II-D).

3) A detailed description of how the proposed methods can
be applied to an autonomous driving setting (Sect. III).

4) A qualitative and quantitative performance analysis of
the proposed methods for different intersection scenarios
(Sect. IV).

II. APPROACH

This section first gives a brief introduction to RL and its
notation, followed by a description of how an aleatoric and
epistemic uncertainty estimate can be obtained. The details
on how these approaches can be applied to driving in an
intersection scenario follows in Sect. III.

1The quantile function is the inverse of the cumulative distribution func-
tion for a continuous random variable.

A. Reinforcement learning

Reinforcement learning is a branch of machine learning,
where an agent learns a policy π(s) from interacting with an
environment [29]. The policy describes which action a to take
in state s. The environment then transitions to a new state
s′ and the agent receives a reward r. The decision-making
problem that the RL agent tries to solve is often modeled
as a Markov decision process (MDP), defined by the tuple
(S,A, R, T, γ), where S is the state space, A is the action
space, R is a reward model, T is the state transition model,
and γ is a discount factor. The goal of the agent is to maximize
the expected future discounted return E[Rt], for every time
step t, where

Rt =

∞∑

k=0

γkrt+k. (1)

The value of taking action a in state s and then following
policy π is defined by the state-action value function

Qπ(s, a) = E[Rt|st = s, at = a, π], (2)

where the Q-values for the optimal policy π∗ are defined
as Q∗(s, a) = maxπ Q

π(s, a). The DQN algorithm aims to
approximate the optimal state-action value function Q∗ by a
neural network with weights θ, such that Q(s, a; θ) ≈ Q∗(s, a)
[30]. Based on the Bellman equation, the temporal difference
(TD) error

δt = rt + γmax
a

Q(st+1, a; θ−)−Q(st, at; θ) (3)

is used to optimize the weights by iteratively minimizing the
loss function LDQN(θ) = EM [δ2t]. The loss is calculated for a
mini-batch M of experiences, where each experience consists
of the tuple (st, at, rt, st+1), and the network weights θ are
updated by stochastic gradient descent (SGD). Finally, θ− is
a target network that is updated regularly.

B. Aleatoric uncertainty estimation

In contrast to Q-learning, distributional RL aims to learn
not only the expected return, but the distribution over re-
turns [23]. This distribution is represented by the random
variable Zπ(s, a) = Rt, given st = s, at = a, and pol-
icy π, where the mean is the traditional value function, i.e.,
Qπ(s, a) = E[Zπ(s, a)]. The distribution over returns repre-
sents the aleatoric uncertainty of the outcome, which can be
used to estimate the risk in different situations and to train an
agent in a risk-sensitive manner.

The implicit quantile networks (IQN) approach [27] to dis-
tributional RL uses a neural network to implicitly represent the
quantile function F−1Z (τ) of the random variable Z and then
update the weights of the network with quantile regression.
For ease of notation, define Zτ := F−1Z (τ), and note that for
τ ∼ U(0, 1) the sample Zτ (s, a) ∼ Z(s, a). The TD-error for
two quantile samples, τ, τ ′ ∼ U(0, 1), is

δτ,τ
′

t = rt + γZτ ′
(
st+1, π

∗(st+1); θ−
)
− Zτ (st, at; θ), (4)

3

Algorithm 1 IQN training process
1: Initialize θ randomly
2: m← {}
3: t← 0
4: while network not converged
5: st ← initial random state
6: while episode not finished
7: if e ∼ U(0, 1) < ε
8: at ← random action
9: else

10: τ1, . . . , τKτ
i.i.d.∼ U(0, α)

11: at ← arg maxa
1
Kτ

∑Kτ
k=1 Zτk(st, a)

12: st+1, rt ← STEPENVIRONMENT(st, at)
13: m← m ∪ {(st, at, rt, st+1)}
14: M ← sample from m
15: update θ with SGD and loss LIQN(θ)
16: t← t+ 1

where π∗(s) = arg maxaQ(s, a). A sample-based estimate of
π∗(s) is obtained from Kτ samples of τ̃ ∼ U(0, 1), as

π̃(s) = arg maxa
1

Kτ

Kτ∑

k=1

Zτ̃k(s, a; θ). (5)

For a pair of quantiles τ, τ ′, the quantile Huber regression
loss [31], with threshold κ, is calculated as

ρκ(δτ,τ
′

t) = |τ − I{δτ,τ
′

t < 0}|Lκ(δτ,τ
′

t)

κ
. (6)

Here, Lκ(δτ,τ
′

t) is the Huber loss [32], defined as

Lκ(δτ,τ
′

t) =

{
1
2 (δτ,τ

′

t)
2
, if |δτ,τ

′

t | ≤ κ,
κ(|δτ,τ

′

t | − 1
2κ), otherwise,

(7)

which gives a smooth gradient as δτ,τ
′

t → 0. The full loss
function LIQN(θ) is obtained from a mini-batch M of sampled
experiences, in which the quantiles τ and τ ′ are sampled N
and N ′ times, respectively, according to

LIQN(θ) = EM

 1

N ′

N∑

i=1

N ′∑

j=1

ρκ

(
δ
τi,τ

′
j

t

)

. (8)

The full training process of the IQN method is outlined in
Algorithm 1.

1) Risk-sensitive RL: In the present context, risk refers to
the aleatoric uncertainty of the potential outcome of an action.
Eq. 5 represents a risk-neutral policy, which maximizes the Q-
values. An alternative risk-averse policy is obtained by instead
choosing the action that maximizes the conditional value-at-
risk (CVaR) [33], where

CVaRα(Z(s, a)) = Eτ̃∼U([0,α])[Zτ̃ (s, a)]. (9)

The CVaR approach selects actions that maximize the mean
outcome of quantiles less than α, which is graphically illus-
trated in Fig. 1. A detailed description of the CVaR approach
and its use in solving MDPs is presented by Chow et al. [34].
Majumdar et al. further discuss the use of different distortion
risk measures in robotics [35].

-10 10[Z]CVaRα(Z)
z

0.0

0.3
fZ(z)

(a) Probability density function.

-10 10[Z]CVaRα(Z)
z

0.0

0.5

1.0

α

FZ(z)

(b) Cumulative distribution function.

0.0 0.5 1.0α
τ

-10

0

10

[Z]

CVaRα(Z)

Zτ= F−1Z (τ)

(c) Quantile function.

Fig. 1. Illustration of the CVaRα risk measure. The shaded regions represent
quantiles τ ∈ [0, α], here for α = 0.3.

2) Uncertainty criterion: Dabney et al. show that the IQN
method can achieve state-of-the-art results on the Atari-57
benchmark and reason about the performance of risk-sensitive
training for a few of the Atari games [27]. However, as in-
troduced in this paper, the estimated distribution over returns
of the fully trained IQN agent can also be used to quantify
the aleatoric uncertainty of a decision. One such uncertainty
measure is the variance of the estimated returns for the evenly
distributed sample set τσ = {i/Kτ | i ∈ [1,Kτ]}. A threshold
σ2
a can then be defined, such that the agent classifies a decision

with a higher variance in returns as uncertain. In this study, the
benefit of the introduced uncertainty classification is demon-
strated by choosing a predefined backup policy πbackup(s) if
the sample variance is higher than the threshold, i.e., the fully
trained agent follows the policy

πσa
(s)=

{
arg maxa Eτσ [Zτ (s, a)], if Varτσ [Zτ (s, a)]<σ2

a ,

πbackup(s), otherwise.

(10)

C. Epistemic uncertainty estimation

The DQN algorithm gives a maximum likelihood estimate
of the Q-values, and the IQN algorithm outputs a maximum
likelihood estimate of the distribution over returns. However,
neither of these algorithms considers the epistemic uncertainty
of the recommended actions. Statistical bootstrapping [36] can
be used to train an ensemble of neural networks on different
subsets of the available data, which provides a distribution
over the estimated Q-values [4]. A better Bayesian posterior
can be obtained by adding a randomized prior function (RPF)
to each ensemble member, which creates a larger output di-
versity outside of the training distribution [20]. The Q-values

4

Algorithm 2 Ensemble RPF training process
1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1,K}
8: while episode not finished
9: at ← arg maxaQν(st, a)

10: st+1, rt ← STEPENVIRONMENT(st, at)
11: for k ← 1 to K
12: if p ∼ U(0, 1) < padd
13: mk ← mk ∪ {(st, at, rt, st+1)}
14: M ← sample from mk

15: update θk with SGD and loss LRPF(θk)

16: t← t+ 1

of ensemble member k is then given by the sum of two neural
networks, f and p, with identical architecture, i.e.,

Qk(s, a) = f(s, a; θk) + βp(s, a; θ̂k). (11)

The parameters θk are trained, whereas, importantly, the pa-
rameters of the prior function θ̂k are fixed during the training
process. A hyperparameter β scales the relative importance
of the networks. The additional prior network of the RPF
method gives a slightly modified TD-error compared to the
DQN method (Eq. 3), which results in the loss function

LRPF(θk) = EM
[
(rt + γmax

a
(fθ−k

+ βpθ̂k)(st+1, a)

− (fθk + βpθ̂k)(st, at))
2
]
. (12)

Algorithm 2 outlines the training process of the ensemble
RPF method. An ensemble of K prior and trainable networks
is first initialized randomly. Each ensemble member is also
assigned an individual experience replay buffers mk (although
in a practical implementation, the replay buffers can be con-
structed such that they use negligible more memory than a
single shared buffer). For each new training episode, an en-
semble member ν is chosen uniformly at random and is then
used to greedily select the actions with the highest Q-values
throughout the episode. This procedure, which corresponds to
an approximate Thompson sampling of the actions, efficiently
balances the exploration vs. exploitation trade-off. Each new
experience, (st, at, rt, st+1), is added to the individual replay
buffers mk with probability padd. The trainable parameters
θk of each ensemble member are then updated through SGD,
using a mini-batch M of experiences from the corresponding
replay buffer and the loss function in Eq. 12. Finally, when the
training process is finished and the agent is tested, the trained
agent applies a policy which maximizes the mean Q-value of
all the ensemble members.

1) Uncertainty criterion: Osband et al. illustrate the ef-
ficient exploration properties of the ensemble RPF algo-
rithm [20], but do not use the estimated distribution over Q-
values further. In a similar approach as for the aleatoric uncer-
tainty (Sect. II-B2), the variance of the estimated Q-values of

the ensemble RPF agent can be used to quantify the epistemic
uncertainty of a decision, which we introduced in a recent
paper [25]. With this approach, decisions that has a higher
variance than a predefined threshold σ2

e are classified as un-
certain. The benefit of the epistemic uncertainty classification
is here demonstrated by choosing a predefined backup policy
πbackup(s) if the sample variance is higher than the threshold,
which means that a trained agent follows the policy

πσe(s) =

{
arg maxa Ek[Qk(s, a)], if Vark[Qk(s, a)] < σ2

e ,

πbackup(s), otherwise.

(13)

Further applications of an epistemic uncertainty classification
are discussed in Sect. V.

D. Aleatoric and epistemic uncertainty estimation

A complete uncertainty estimation of both the aleatoric and
the epistemic uncertainty can be obtained by combining the
properties of the IQN and ensemble RPF methods into a new
algorithm, which we call the Ensemble Quantile Networks
method. An agent that is trained by the EQN method can then
take actions that consider both the inherent uncertainty of the
outcome and the model uncertainty in each situation.

As the name suggests, the EQN method uses an ensemble
of networks, where each ensemble member k individually
estimates the distribution over returns as

Zk,τ (s, a) = fτ (s, a; θk) + βpτ (s, a; θ̂k). (14)

Similarly as for the RPF method, fτ and pτ are neural net-
works with identical architecture, θk are trainable network pa-
rameters, whereas the parameters θ̂k are fixed. The TD-error of
ensemble member k and two quantile samples, τ, τ ′ ∼ U(0, 1),
is

δτ,τ
′

k,t = rt + γZk,τ ′(st+1, π̃k(st+1))− Zk,τ (st, at), (15)

where π̃k(s) = arg maxa
1
Kτ

∑Kτ
j=1 Zk,τ̃j (s, a) is a sample-

based estimate of the optimal policy. Quantile Huber regres-
sion is applied to a mini-batch of experiences, which gives the
loss function

LEQN(θk) = EM

 1

N ′

N∑

i=1

N ′∑

j=1

ρκ

(
δ
τi,τ

′
j

k,t

)

. (16)

For each new training episode, the agent follows the policy
π̃ν(s) of a randomly selected ensemble member ν. The full
training process of the EQN agent is outlined in Algorithm 3.

1) Uncertainty criterion: The EQN agent provides an es-
timate of both the aleatoric and epistemic uncertainty, based
on the variance of the returns and the variance of the
Q-values. The agent is considered confident about a decision if
Varτσ [Ek[Zk,τ (s, a)]] < σ2

a and Vark[Eτσ [Zk,τ (s, a)]] < σ2
e .

The trained agent then follows the policy

πσa,σe
(s) =

{
arg maxa Ek[Eτσ [Zk,τ (s, a)]], if confident,

πbackup(s), otherwise.

(17)

5

Algorithm 3 EQN training process
1: for k ← 1 to K
2: Initialize θk and θ̂k randomly
3: mk ← {}
4: t← 0
5: while networks not converged
6: st ← initial random state
7: ν ∼ U{1,K}
8: while episode not finished
9: τ1, . . . , τKτ

i.i.d.∼ U(0, α)
10: at ← arg maxa

1
Kτ

∑Kτ
k=1 Zν,τk(st, a)

11: st+1, rt ← STEPENVIRONMENT(st, at)
12: for k ← 1 to K
13: if p ∼ U(0, 1) < padd
14: mk ← mk ∪ {(st, at, rt, st+1)}
15: M ← sample from mk

16: update θk with SGD and loss LEQN(θk)

17: t← t+ 1

III. IMPLEMENTATION

The presented algorithms, for estimating the aleatoric or
epistemic uncertainty of an agent, are tested in simulated in-
tersection scenarios in this study. However, these algorithms
provide a general approach and could in principle be applied
to any type of driving scenarios. This section describes how
the different test scenarios are set up, the MDP formulation of
the decision-making problem, the design of the neural network
architecture, and the details of the training process.

A. Simulation setup

Two occluded intersection scenarios are used in this study,
shown in Fig. 4a and 7a. The first scenario includes sparse
traffic and aims to illustrate the qualitative difference between
risk-neutral and risk-averse policies. The second scenario in-
cludes dense traffic and is used to compare the different al-
gorithms, both qualitatively and quantitatively. The scenarios
were parameterized to create complicated traffic situations,
where an optimal policy has to consider both the occlusions
and the intentions of the other vehicles, sometimes drive
through the intersection at a high speed, and sometimes wait
at the intersection for an extended period of time.

The Simulation of Urban Mobility (SUMO) was used to run
the simulations [37]. The controlled ego vehicle, a 12 m long
truck, aims to pass the intersection, in which it must yield
to the crossing traffic. In each episode, the ego vehicle starts
sstart = 200 m south from the intersection, with its desired
speed vset = 15 m/s. Passenger cars are randomly inserted into
the simulation from the east and west end of the road network,
with an average rate of ρs = 0.1 and ρd = 0.5 inserted
vehicles per second for the sparse and dense traffic scenarios,
respectively. The cars intend to either cross the intersection or
turn to the right. The desired speed of the cars is uniformly
distributed in the range [vmin, vmax] = [10, 15] m/s, and the
longitudinal speed is controlled by the standard SUMO speed
controller (which is a type of adaptive cruise controller, based
on the intelligent driver model (IDM) [38]), with the exception

that the cars ignore the presence of the ego vehicle. Normally,
the crossing cars would brake to avoid a collision with the ego
vehicle, even when the ego vehicle violates the traffic rules
and does not yield. With this exception, however, more colli-
sions occur, which gives a more distinct quantitative difference
between different policies. Each episode is terminated when
the ego vehicle has passed the intersection, when a collision
occurs, or after Nmax = 100 simulation steps. The simulations
use a step size of ∆t = 1 s.

Note that the setup of these scenarios includes two impor-
tant sources of randomness in the outcome for a given pol-
icy, which the aleatoric uncertainty estimation should capture.
From the viewpoint of the ego vehicle, a crossing vehicle can
appear at any time until the ego vehicle is sufficiently close to
the intersection, due to the occlusions. Furthermore, there is
uncertainty in the underlying driver state of the other vehicles,
most importantly in the intention of going straight or turning
to the right, but also in the desired speed.

Epistemic uncertainty is introduced by a separate test, in
which the trained agent faces situations outside of the training
distribution. In these test episodes, the maximum speed vmax

of the surrounding vehicles are gradually increased from 15
m/s (which is included in the training episodes) to 25 m/s.
To exclude effects of aleatoric uncertainty in this test, the ego
vehicle starts in the non-occluded region close to the intersec-
tion, with a speed of 7 m/s.

B. MDP formulation
The following Markov decision process describes the

decision-making problem.
1) State space, S: The state of the system,

s = ({xi, yi, vi, ψi}i∈0,...,Nveh
), (18)

consists of the position xi, yi, longitudinal speed vi, and
heading ψi, of each vehicle, where index 0 refers to the ego
vehicle. The agent that controls the ego vehicle can observe
other vehicles within the sensor range xsensor = 200 m, unless
they are occluded.

2) Action space, A: At every time step, the agent can
choose between three high-level actions: ‘stop’, ‘cruise’, and
‘go’, which are translated into accelerations through the IDM.
The action ‘go’ makes the IDM control the speed towards vset
by treating the situation as if there are no preceding vehicles,
whereas ‘cruise’ simply keeps the current speed. The action
‘stop’ places an imaginary target vehicle just before the inter-
section, which causes the IDM to slow down and stop at the
stop line. If the ego vehicle has already passed the stop line,
‘stop’ is interpreted as maximum braking. Finally, the output
of the IDM is limited to [amin, amax] = [−3, 1] m/s2. Note that
the agent takes a new decision at every time step ∆t and can
therefore switch between, e.g., ‘stop’ and ‘go’ multiple times
during an episode.

3) Reward model, R: The objective of the agent is to
drive through the intersection in a time efficient way, without
colliding with other vehicles. A simple reward model is used
to achieve this objective. The agent receives a positive reward
rgoal = 10 when the ego vehicle manages to cross the inter-
section and a negative reward rcol = −10 if a collision occurs.

6

identical network,
fixed weights

EQN/RPF

EQN/IQN

convolution
maxpooling

convolution

fully
connected

fully connected

dueling
structure

or

add

mult

elementwise
product

ego
state

su
rr

ou
n

d
in

g
ve

hi
cl

es
’ s

ta
te

fully connected

fully
connected

Fig. 2. The neural network architecture that is used for the different agents.
The red part is included for the EQN and IQN agents, whereas the green part
is included for the EQN and RPF agents.

If the ego vehicle gets closer to another vehicle than 2.5 m
longitudinally or 1 m laterally, a negative reward rnear = −10
is given, but the episode is not terminated. At all other time
steps, the agent receives 0 as reward.

4) Transition model, T : The state transition probabilities
are not known by the agent, and they are implicitly defined
by the simulation model, described in Sect. III-A.

C. Backup policy

A simple backup policy πbackup(s) is used together with
the uncertainty criteria. This policy selects the action ‘stop’ if
the vehicle is able to stop before the intersection, considering
the braking limit amin. Otherwise, the backup policy selects
the action that is recommended by the agent. If the backup
policy would always consist of ‘stop’, the ego vehicle could
end up standing still in the intersection and thereby cause more
collisions. Naturally, more advanced backup policies would
be considered in a real-world implementation, for example
based on optimal control [39], but such a policy would not
significantly change the results of this study.

D. Neural network architecture

In previous work, we introduced a one-dimensional convo-
lutional neural network architecture, which improves both the
training speed and final performance, compared to a standard
fully connected architecture [7]. By applying convolutional
layers and a maxpooling layer to the input that describes the
state of the surrounding vehicles, the output becomes both
invariant to the ordering of the surrounding vehicles in the
input vector and independent of the number of surrounding
vehicles. A more detailed description of this architecture is
provided in the previous work [7].

Fig. 2 shows the neural network architecture that is used in
this study. The size and stride of the first convolutional layers
are set to four, which is equal to the number of states that
describe each surrounding vehicle, whereas the second convo-
lutional layer has a size and stride of one. Both convolutional
layers have 256 filters each, and all fully connected layers have
256 units. Finally, a dueling structure [40], which separates
the estimation of the value of a state and the advantage of
an action, outputs Zτ (s, a) or Q(s, a), depending on which
algorithm that is used. All layers use rectified linear units
(ReLUs) as activation functions, except for the dueling layer,

TABLE I
HYPERPARAMETERS OF THE DIFFERENT ALGORITHMS

IQN, Number of quantile samples, N,N ′,Kτ 32

EQN CVaR parameter, α 1

RPF, Number of ensemble members, K 10

EQN Prior scale factor, β 300

Experience adding probability, padd 0.5

DQN, Discount factor, γ 0.95

IQN, Learning start iteration, Nstart 50,000

RPF, Replay memory size, Nreplay 500,000

EQN Learning rate, η 0.0005

Mini-batch size, |M | 32

Target network update frequency, Nupdate 20,000

Huber loss threshold, κ 10

DQN, Initial exploration parameter, ε0 1

IQN Final exploration parameter, ε1 0.05

Final exploration iteration, Nε 500,000

which has a linear activation function. Before the state s is fed
to the network, each entry is normalized to the range [−1, 1]
by considering the possible minimum and maximum values.

The network architecture for the IQN agent has an ad-
ditional input for the sample quantile τ , shown in Fig. 2.
As proposed by Dabney et al. [27], an embedding from τ
is created by setting φ(τ) = (φ1(τ), . . . , φ64(τ)), where
φj(τ) = cos (πjτ), and then passing φ(τ) through a fully
connected layer with 512 units. The output of the embedding
is then merged with the output of the concatenating layer as
the element-wise (Hadamard) product.

E. Training process

Algorithm 1, 2, and 3 were used to train the IQN, RPF, and
EQN agents, respectively. Additionally, the Double DQN trick
was used to reduce overestimation of the Q-values [41], which
subtly changes the maximization part in Eq. 3 and 12. During
the training of the DQN and IQN agents, an ε-greedy explo-
ration policy was followed, where ε was linearly decreased
from ε0 to ε1 over Nε training steps. Huber loss was applied
to the TD-error of all the algorithms, in order to improve
the robustness of the training process, and the neural network
weights were updated by the Adam optimizer [42]. The train-
ing process was parallelized for the ensemble-based versions,
in order to reduce the training time. Table I displays the
hyperparameters that were used for the different algorithms.
Due to the computational complexity, a systematic grid search
was not performed. Instead, the hyperparameter values were
selected from an informal search, based upon the values given
by Mnih et al. [30], Dabney et al. [27], and Osband et al. [20].
Additional results are also presented for a set of different
values of α, β, and K, in order to demonstrate how the choice
of these parameters influence the behavior of the agent.

As mentioned in Sect. III-A, an episode is terminated due
to a timeout after maximally Nmax steps, since otherwise the
current policy could make the ego vehicle stop at the inter-
section indefinitely. However, since the time is not part of the
state space, a timeout terminating state is not described by
the MDP. Therefore, in order to make the agents act as if the

7

episodes have no time limit, the last experience of a timeout
episode is not added to the experience replay buffer.

All the agents are trained for 3,000,000 training steps, at
which point the agents’ policies have converged, and then the
trained agents are tested on 1,000 randomly initialized test
episodes. The test episodes are generated in the same way as
the training episodes, described in Sect. III-A, but they are
not present during the training phase. Furthermore, the set of
test episodes is identical for all the trained agents, in order to
provide an appropriate comparison. Each agent is trained with
five random seeds and the mean results are presented, together
with the corresponding standard deviation.

IV. RESULTS

The results show that the IQN method can be used to
estimate the aleatoric uncertainty in a traffic situation and the
uncertainty criterion can be used to identify situations with
high uncertainty, in order to prevent collisions. The results
also illustrate that the ensemble RPF method can provide an
estimate of the epistemic uncertainty and use the uncertainty
criterion to classify situations as within or outside the train-
ing distribution. Furthermore, the results of the EQN method
demonstrate that this approach provides a complete estimate
of both types of uncertainty. This section presents the results
in detail, together with an analysis of the characteristics of the
results, whereas a broader discussion on the properties of the
algorithms follows in Sect. V. Animations of the presented
scenarios are available on GitHub [28].

A. Aleatoric uncertainty estimation

To illustrate the behavior of the trained IQN agent and
provide intuition on how risk-sensitive training affects the
obtained policy, results for the sparse traffic scenario are first
displayed. Table II shows nearly identical quantitative results
for a trained risk-neutral IQN agent and a DQN agent. Both
agents find a policy that drives through the intersection at
the maximum speed if no crossing vehicles are observed, see
Fig. 3. Since crossing traffic is sparse, this policy maximizes
the expected return, but causes collisions in around one out
of ten test episodes. An IQN agent that is trained in a risk-
sensitive way, by setting the CVaR parameter α = 0.5, instead
slows down and passes the occluded area with a low speed,
which allows the ego vehicle to stop before the intersection if
a crossing vehicle appears. Such a policy solves almost all test
episodes without collisions, but increases the mean duration of
an episode, hereafter referred to as crossing time, with around
50%. An example of a situation that causes a collision with
risk-neutral training but is collision-free with risk-sensitive
training, is shown in Fig. 4a. In this situation, the ego vehicle
is driving at 15 m/s, while an occluded vehicle is approaching
from the west. Fig. 4b and 4c display the estimated quantile
function of the return distribution Zτ (s, a), which reveal that
both agents are aware of the risk of a collision, indicated by
the small probability (τ < 0.1) of a negative return. However,
different policies are obtained, due to the difference in risk-
sensitivity. The reason for the high aleatoric uncertainty in
actions ‘go’ and ‘cruise’ of the risk-averse agent (Fig. 4c) is

−100 −50 0 30
Position (m)

0

5

10

15

S
pe

ed
 (

m
/s

)

α=1
α=0.5

Fig. 3. Speed of the ego vehicle as a function of distance to the occluded
intersection, positioned at the dotted vertical line, for a sparse traffic scenario.
In this episode, no crossing vehicles are observed.

TABLE II
SPARSE TRAFFIC SCENARIO

collisions (%) crossing time (s)

IQN α = 1 10.8± 0.2 15.8± 0.1

IQN α = 0.5 0.1± 0.1 24.0± 0.4

DQN 10.7± 0.2 15.9± 0.1

(a) The ego vehicle is shown in red, the occluded vehicle in yellow, and the
areas that cause occlusions are displayed in gray.

0.0 0.5 1.0
τ

−10

0

10

Z τ
(s
,a
)

stop
cruise
go

(b) α = 1

0.0 0.5 1.0
τ

−10

0

10

Z τ
(s
,a
)

stop
cruise
go

(c) α = 0.5

Fig. 4. Example of a situation that results in a collision for an agent with risk-
neutral training (α = 1) but is solved without collisions with risk-sensitive
training (α = 0.5). The estimated quantile function of the random variable
Zτ (s, a) is shown for both cases and indicates that both agents are aware of
the aleatoric uncertainty in the situation.

that the agent will not be able to later decide to stop before
the intersection, due to the limited braking capacity.

Table III shows how the trained IQN agent performs in
the second test scenario, in which traffic is dense and the
occluding objects are placed further from the intersection. The
results illustrate the natural trade-off between time efficiency
and safety. With a more risk-averse training (lower value of the
CVaR parameter α), the number of collisions is reduced, but

8

30 35 40 45 50
crossing time (s)

0

1

2
co

lli
si

on
s

(%
)

α= 1.00

α= 0.75

α= 0.50 α= 0.25

α= 0.10

Fig. 5. Number of collisions and crossing time for different levels of risk-
sensitive training, which is achieved by varying the CVaR parameter α.

30 40 50 60 70
crossing time (s)

0

1

2

co
lli

si
on

s
(%

)

σa= 1.0
σa= 2.0

σa= 3.0

σa= 4.0

σa=∞

Fig. 6. Number of collisions and crossing time for the IQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying
the parameter σa.

the time it takes to cross the intersection increases, see Fig. 5.
Furthermore, the results in Table III and Fig. 6 demonstrate

that the IQN method, combined with the aleatoric uncertainty
criterion, can be used to detect situations with high aleatoric
uncertainty. When the maximum allowed uncertainty is re-
duced (lower values of σa), the number of collisions is re-
duced. However, similarly to training in a risk-averse manner,
a more conservative policy increases the time it takes to cross
the intersection. An example situation with high aleatoric un-
certainty, due to uncertainty in the intention of another vehicle,
is shown in Fig. 7a. The car that is approaching the intersection
from the west has here slowed down due to a preceding car,
which turned to the south. Due to the low speed, the IQN
agent expects that the approaching car will also turn to the
south. Therefore, the agent estimates that in most cases it
would be best to choose the action ‘go’, to immediately cross
the intersection, see Fig. 7b. However, the agent also estimates
that with a low probability, this action can cause a collision,
which is indicated by the negative values of the estimated
return distribution Zτ . Since the sample variance is high in this
situation, Varτσ [Zτ (s, ago)] = 12.0, an uncertainty criterion
with σ2

a < 12.0 prevents a collision by choosing the backup
policy, i.e., stopping at the intersection.

B. Epistemic uncertainty estimation

The trained RPF agent performs similarly as the risk-neutral
IQN agent in the dense traffic scenario, see Table III. The
parameter β, which scales the importance of the random prior
network and thereby influences the exploration strategy, has a
relatively small effect on the performance within the training
distribution. Even setting β = 0, which completely removes

(a) The ego vehicle is shown in red and has a speed of 1 m/s.

0.00 0.25 0.50 0.75 1.00
τ

−10

−5

0

5

10

Z τ
(s
,a
)

stop
cruise
go

(b) Estimated quantile function of the random variable Zτ (s, a).

Fig. 7. Example of a situation with high aleatoric uncertainty for the actions
‘go’ and ‘cruise’, due to uncertainty in the intention of the vehicle that is
about to enter the intersection from the west.

0 1 2 3
Training steps 1e6

0

5

10

√
Va

r k
[Q

k]

Fig. 8. Epistemic uncertainty of the chosen actions for the ensemble RPF
agent, with parameters β = 300 and K = 10, during testing episodes within
the training distribution. The solid line shows the mean, while the shaded
regions indicate percentile 10 to 90 and 1 to 99.

the effect of the random prior network and only relies on sta-
tistical bootstrapping for exploration, gives reasonable results.
Similarly, the number of networks K have a low effect on the
performance. Fig. 8 shows how the epistemic uncertainty of
the chosen actions during the test episodes is reduced during
the training process.

To illustrate that the RPF agent can estimate the epistemic
uncertainty and detect situations that are outside of the training
distribution, the trained agent is exposed to crossing traffic
with a higher speed than during the training episodes, see
Sect. III-A. Fig. 10 shows that if no epistemic uncertainty
threshold is used, i.e., setting σe = ∞, the number of colli-
sions increases significantly when the speed of the crossing
vehicles increases. If the threshold σe is reduced, the number
of collisions is reduced to almost zero, whereas the number of
timeouts increases. An example of a situation with high epis-
temic uncertainty, in which a collision is avoided by limiting
the allowed uncertainty, is shown in Fig. 9.

9

TABLE III
DENSE TRAFFIC SCENARIO, TESTED WITHIN THE TRAINING DISTRIBUTION

algorithm, variable collisions (%) crossing time (s)
fixed param. parameter

DQN - 4.0± 0.5 31.7± 1.1

IQN, α = 1.0 1.7± 0.3 33.0± 1.1

σa =∞ α = 0.75 1.0± 0.3 34.2± 0.6

α = 0.5 0.6± 0.1 37.0± 0.8

α = 0.25 0.4± 0.2 40.6± 0.8

α = 0.1 0.2± 0.1 45.0± 0.6

IQN, σa =∞ 1.7± 0.3 33.0± 1.1

α = 1 σa = 4.0 0.9± 0.2 33.5± 1.2

σa = 3.0 0.5± 0.2 34.7± 1.3

σa = 2.0 0.2± 0.1 39.2± 1.0

σa = 1.0 0.0± 0.0 61.2± 3.4

RPF, β = 0 3.0± 0.2 29.4± 0.3

K = 10 β = 100 2.8± 0.4 32.1± 0.5

β = 300 1.5± 0.3 38.0± 1.8

β = 1000 1.8± 0.4 44.6± 1.0

RPF, K = 3 3.0± 1.0 34.8± 1.6

β = 300 K = 10 1.5± 0.3 38.0± 1.8

K = 30 1.9± 0.4 34.6± 1.4

EQN, σa =∞ 0.9± 0.1 32.0± 0.2

α = 1.0, σa = 3.0 0.6± 0.2 33.8± 0.3

K = 10, σa = 2.0 0.5± 0.1 38.4± 0.5

β = 300 σa = 1.5 0.3± 0.1 47.2± 1.2

σa = 1.0 0.0± 0.0 71.1± 1.9

σa = 1.5,
σe = 1.0

0.0± 0.0 48.9± 1.6

(a) t = 0, Vark[Qk(s, ago)] = 57.8

(b) t = 3 s, σe =∞ (c) t = 3 s, σe = 4

Fig. 9. Example of a situation with high epistemic uncertainty (a), in which
the eastmost vehicle approaches the intersection with a speed of 23 m/s.
Without the epistemic uncertainty threshold, the RPF agent chooses to cross
the intersection, which causes a collision (b), whereas the collision is avoided
when the uncertainty criterion is applied (c).

The result at 15 m/s, which is included in the training distri-
bution, shows that the number of collisions is also somewhat
reduced within the training distribution. We hypothesize that
the reason for this effect is that some situations that cause

15 20 25
speed (m/s)

0

2

4

6

co
lli

si
on

s
(%

)

σe= 1.0
σe= 2.0
σe= 3.0
σe= 4.0
σe=∞

(a) Collisions

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

σe= 1.0
σe= 2.0
σe= 3.0
σe= 4.0
σe=∞

(b) Timeouts

Fig. 10. Number of collisions and timeouts for the RPF agent (β = 300,
K = 10), in situations outside the training distribution. The maximum speed
of the crossing vehicles is 15 m/s during the training process, and then the
speed is gradually increased in the testing episodes.

collisions are seldom seen during the training process, and
therefore the epistemic uncertainty in those situations remains
high.

As previously mentioned, the scaling factor β and the num-
ber of networks K do not substantially influence the perfor-
mance of the RPF agent inside the training distribution. How-
ever, these parameters determine how well the agent can esti-
mate the epistemic uncertainty and detect dangerous situations,
which is illustrated in Fig. 11. In short, β and K need to be suf-
ficiently large to give a reasonable uncertainty estimate. How
to set these parameter values are further discussed in Sect. V.

C. Aleatoric and epistemic uncertainty estimation

The EQN agent performs better than the RPF agent and
similar to the IQN agent within the training distribution, see
Table III. Importantly, the EQN agent combines the advantages
of the other two agents and can estimate both the aleatoric
and epistemic uncertainty of a decision. When the aleatoric
uncertainty criterion is applied, the number of situations that
are classified as uncertain depends on the parameter σa, see
Fig. 12. Thereby, the trade-off between risk and time effi-
ciency, here illustrated by number of collisions and crossing
time, can be controlled by tuning the value of σa.

The performance of the epistemic uncertainty estimation of
the EQN agent is illustrated in Fig. 13, where the speed of
the surrounding vehicles is increased. Similarly as for the RPF
agent, a sufficiently strict epistemic uncertainty criterion, i.e.,
sufficiently low value of the parameter σe, prevents the number
of collisions to increase when the speed of the surrounding
vehicles increases. The result at 15 m/s also indicates that
the number of collisions within the training distribution is

10

15 20 25
speed (m/s)

0

5

10

15

20

co
lli

si
on

s
(%

)

β= 0

β= 100

β= 300

β= 1000

(a) Collisions, fixed K = 10.

15 20 25
speed (m/s)

0

5

10

15

20

co
lli

si
on

s
(%

)

K= 3
K= 10
K= 30

(b) Collisions, fixed β = 300.

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

β= 0

β= 100

β= 300

β= 1000

(c) Timeouts, fixed K = 10.

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

K= 3
K= 10
K= 30

(d) Timeouts, fixed β = 300.

Fig. 11. Number of collisions and timeouts for the RPF agent, with uncer-
tainty threshold σe = 2, varying values of the prior scaling factor β and
the number of ensemble members K, in situations outside of the training
distribution.

30 40 50 60 70
crossing time (s)

0.0

0.5

1.01.0

co
lli

si
on

s
(%

)

σa= 1.0

σa= 1.5

σa= 2.0σa= 3.0

σa=∞

Fig. 12. Number of collisions and crossing time for the EQN algorithm for
different levels of allowed aleatoric uncertainty, which is achieved by varying
the parameter σa.

somewhat reduced when the epistemic uncertainty condition
is applied. Interestingly, when combining moderate aleatoric
and epistemic uncertainty criteria, by setting σa = 1.5 and
σe = 1.0, all the collisions within the training distribution are
removed, see Table III. These results show that it is useful
to consider the epistemic uncertainty even within the training
distribution, where the detection of uncertain situations can
prevent collisions in rare edge cases.

V. DISCUSSION

The results show that the IQN and RPF agents can provide
estimates of the aleatoric and epistemic uncertainties, respec-
tively. When combined with the uncertainty criteria, situations
with high uncertainty are identified, which can be used to
make safer decisions. Further use and characteristics of the
uncertainty information are discussed below. The results also
demonstrate that the EQN agent combines the advantages of

15 20 25
speed (m/s)

0

2

4

co
lli

si
on

s
(%

)

σe= 0.5
σe= 1.0
σe= 2.0
σe=∞

(a) Collisions

15 20 25
speed (m/s)

0

25

50

75

100

tim
eo

ut
s

(%
)

σe= 0.5
σe= 1.0
σe= 2.0
σe=∞

(b) Timeouts

Fig. 13. Number of collisions and timeouts for the EQN agent in situations
outside the training distribution. The maximum speed of the crossing vehicles
is 15 m/s during the training process, and then the speed is gradually increased
in the testing episodes.

the individual components and provides a full uncertainty es-
timate, including both the aleatoric and epistemic dimensions.

The aleatoric uncertainty estimate, given by the IQN or
EQN algorithms, can be used to balance risk and time ef-
ficiency, either by training in a risk-sensitive way (varying
the CVaR parameter α, see Fig. 5) or applying the aleatoric
uncertainty criterion (varying the allowed variance σ2

a , see
Fig. 6 and 12). An important advantage of the uncertainty
criterion approach is that its parameter σa can be tuned after
the training process has been completed, whereas the agent
needs to be retrained for each CVaR parameter α. However,
the uncertainty criterion only works in practical applications,
such as autonomous driving, where a backup policy can be
defined. The CVaR approach does not require a backup policy
and is therefore suitable for environments where such a policy
is hard to define, e.g., the Atari-57 benchmark [27]. Bernhard
et al. first trained a risk-neutral IQN agent, then lowered the
CVaR threshold after the training process had been completed,
and showed a reduction of collisions in an intersection driving
scenario [15]. However, such a procedure does not provide
the correct estimate of the return distribution Zτ (s, a) for
a risk-averse setting (α < 1) and could lead to arbitrary
decisions. The problem with this approach is easily seen for
the simple MDP shown in Fig. 14. The risk-neutral policy
is πrn(s1) = a1 and πrn(s2) = a1, whereas the risk-averse
policy is πra(s1) = a1 and πra(s2) = a2, for CVaR parameter
α < 0.75. For this risk-averse policy, the return of the initial
state is Zπra(s1, πra(s1)) = 1, with probability 1. However, if
Zτ (s, a) is first estimated for the risk-neutral policy, and then
the action that maximizes the CVaR for α < 0.6 is chosen,
this risk-averse policy gives π̃ra(s1) = a2, and the return of

11

𝑎1
𝑎2

𝑟 = 1
𝑟 = 0

𝑎1
𝑎2 𝑟 = 0

50%𝑟 = 4
𝑟 = –250%

𝑠1 𝑠2

Fig. 14. A simple MDP, which illustrates that a risk-sensitive IQN policy
needs to be retrained for each value of the CVaR parameter α.

the initial state is Z π̃ra(s1, π̃ra(s1)) = 0, with probability 1. In
short, the policy π̃ra becomes sub-optimal, since it considers
the aleatoric uncertainty of the risk-neutral policy, which is
irrelevant in this case.

An alternative to estimating the distribution over returns
and still consider aleatoric risk in the decision-making is to
adapt the reward function. Risk-sensitivity could be achieved
by, for example, increasing the size of the negative reward for
collisions. However, rewards with different orders of magni-
tude create numerical problems, which can disrupt the training
process [30]. Furthermore, for a complex reward function, it
would be non-trivial to balance the different components to
achieve the desired result.

The epistemic uncertainty information provides insight into
how far a situation is from the training distribution. In this
study, the usefulness of an epistemic uncertainty estimate is
demonstrated by increasing the safety, through classifying the
agent’s decisions in situations far from the training distribution
as unsafe and then instead applying a backup policy. If it is
possible to formally guarantee safety with a learning-based
method is an open question, and likely an underlying safety
layer is required in a real-world application [43]. The RPF
and EQN agents can reduce the activation frequency of such a
safety layer, but possibly even more importantly, the epistemic
uncertainty information could be used to guide the training
process to regions of the state space in which the current agent
requires more training. Furthermore, if an agent is trained in a
simulated world and then deployed in the real world, the epis-
temic uncertainty information can identify situations with high
uncertainty, which should be added to the simulated world.

The algorithms that were introduced in this paper include
a few hyperparameters, whose values need to be set appro-
priately. The aleatoric and epistemic uncertainty criteria pa-
rameters, σa and σe, can both be tuned after the training
is completed and allow a trade-off between risk and time
efficiency, see Fig. 6, 10, 12, and 13. Note that both these
parameters determine the allowed spread in returns, between
quantiles or ensemble members, which means that the size of
these parameters are closely connected to the magnitude of
the reward function. In order to detect situations with high
epistemic uncertainty, a sufficiently large spread between the
ensemble members is required, which is controlled by the
scaling factor β and the number of ensemble members K. The
choice of β scales with the magnitude of the reward function.
A too small parameter value creates a small spread, which
makes it difficult to classify situations outside of the training

distribution as uncertain, see Fig. 11a and 11c. On the other
hand, a too large value of β makes it difficult for the trainable
network to adapt to the fixed prior network. Furthermore, an
increased number of ensemble members K naturally increases
the accuracy of the epistemic uncertainty estimate, see Fig. 11b
and 11d, but induces a higher computational cost.

All the tested methods have a similar sample complexity, but
the uncertainty-aware approaches require more computational
resources than the baseline DQN method. The IQN method
uses N quantile samples in the loss function, the RPF method
trains an ensemble of K neural network, and the EQN method
combines these two features. However, the design of the al-
gorithms allows a parallel implementation, which in practice
reduces the difference in training time. All agents were trained
on a standard desktop computer, where the DQN agent re-
quired 12 hours, the IQN agent 24 hours, the RPF agent 72
hours, and the EQN agent 96 hours. However, since the focus
of this study is not to optimize the implementation, the time
efficiency can be significantly improved.

VI. CONCLUSION

The results show that the proposed EQN algorithm com-
bines the advantages of the IQN and RPF methods, and can
thereby provide a complete uncertainty estimate of its deci-
sions, including both the aleatoric and the epistemic uncer-
tainty. The aleatoric uncertainty criterion allows an agent to
balance risk and time efficiency after the training is completed
and achieves similar results as an agent that is trained in a risk-
sensitive way, with the benefit that the agent does not need to
be retrained for each uncertainty threshold. Furthermore, the
results show that the epistemic uncertainty criterion can be
used to identify situations that are far from the training dis-
tribution, in which the agent could make dangerous decisions.
The awareness of such situations can be used to enhance the
safety of the trained agent and to improve the training process.

The EQN algorithm provides a general approach to create
an uncertainty-aware decision-making agent for autonomous
driving. However, in order to apply the method to other driving
scenarios than the intersections that were considered in this
study, the MDP formulation needs to be adapted to the new
scenarios, or an MDP that covers multiple scenarios needs
to be constructed. While the DQN-family of methods have
proved to work well for different types of driving scenar-
ios [14], [44], future work involves to test the EQN method
in more scenarios and other simulation environments, before
performing tests in the real world. It would also be interesting
to investigate how the algorithm would handle different aspects
of noise in the sensor signals. Another topic of future work is
to investigate how the epistemic uncertainty estimation can be
used to bridge the gap between simulators and reality. An RPF
or EQN agent that has been trained in a simulated world could
potentially detect traffic situations in the real world where the
epistemic uncertainty is high and then automatically add these
situations to the simulated environment.

REFERENCES

[1] A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it
matter?,” Struct. Saf., vol. 31, no. 2, pp. 105–112, 2009.

12

[2] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods,” Mach.
Learn., vol. 110, no. 3, pp. 457–506, 2021.

[3] R. McAllister et al., “Concrete problems for autonomous vehicle safety:
Advantages of Bayesian deep learning,” in Proc. 26th Int. Joint Conf.
on Artif. Intell., pp. 4745–4753, 2017.

[4] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via
bootstrapped DQN,” in Adv. in Neural Inf. Process. Syst. 29, pp. 4026–
4034, 2016.

[5] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning ne-
gotiating behavior between cars in intersections using deep Q-learning,”
in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), pp. 3169–3174, 2018.

[6] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using deep
reinforcement learning,” in IEEE Int. Conf. on Robot. and Automat.
(ICRA), pp. 2034–2039, 2018.

[7] C. J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in IEEE Int. Conf.
on Intell. Transp. Syst. (ITSC), pp. 2148–2155, 2018.

[8] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, re-
inforcement learning for autonomous driving.” arXiv:1610.03295, 2016.

[9] C. J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, “Combining planning and deep reinforcement learning in tactical
decision making for autonomous driving,” IEEE Trans. on Intell. Veh.,
vol. 5, no. 2, pp. 294–305, 2020.

[10] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” in Proc. of the Brit. Machine Vision
Conf. (BMVC), 2017.

[11] M. Bansal, A. Krizhevsky, and A. S. Ogale, “ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst,” Robot: Sci.
& Syst. (RSS), 2019.

[12] A. Kendall et al., “Learning to drive in a day,” in IEEE Int. Conf. on
Robot. and Automat. (ICRA), pp. 8248–8254, 2019.

[13] B. R. Kiran et al., “Deep reinforcement learning for autonomous driving:
A survey,” IEEE Trans. on Intell. Transp. Syst., 2021.

[14] Z. Zhu and H. Zhao, “A survey of deep RL and IL for autonomous
driving policy learning.” arXiv:2101.01993, 2021.

[15] J. Bernhard, S. Pollok, and A. Knoll, “Addressing inherent uncertainty:
Risk-sensitive behavior generation for automated driving using distribu-
tional reinforcement learning,” in IEEE Intell. Veh. Symp. (IV), pp. 2148–
2155, 2019.

[16] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[17] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” in Proc. of the Brit. Mach. Vision Conf.
(BMVC), pp. 57.1–57.12, 2017.

[18] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating un-
certainty quantification in end-to-end autonomous driving control.”
arXiv:1811.06817, 2018.

[19] R. Dearden, N. Friedman, and S. Russell, “Bayesian Q-learning,” in
Proc. 15th AAAI Conf. on Artif. Intell., p. 761–768, 1998.

[20] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions
for deep reinforcement learning,” in Adv. in Neural Inf. Process. Syst.
31, pp. 8617–8629, 2018.

[21] M. J. Sobel, “The variance of discounted markov decision processes,”
J. of Appl. Prob., vol. 19, no. 4, pp. 794–802, 1982.

[22] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka,
“Nonparametric return distribution approximation for reinforcement
learning,” in Proc. 27th Int. Conf. on Mach. Learn. (ICML), p. 799–806,
2010.

[23] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” in Proc. 34th Int. Conf. on Mach. Learn.
(ICML), pp. 449–458, 2017.

[24] G. Barth-Maron et al., “Distributed distributional deterministic policy
gradients,” in Int. Conf. on Learn. Repr. (ICLR), 2018.

[25] C. J. Hoel, K. Wolff, and L. Laine, “Tactical decision-making in au-
tonomous driving by reinforcement learning with uncertainty estima-
tion,” in IEEE Intell. Veh. Symp. (IV), pp. 1563–1569, 2020.

[26] C. J. Hoel, T. Tram, and J. Sjöberg, “Reinforcement learning with
uncertainty estimation for tactical decision-making in intersections,” in
IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), pp. 318–324, 2020.

[27] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile
networks for distributional reinforcement learning,” in Proc. 35th Int.
Conf. on Mach. Learn. (ICML), pp. 1096–1105, 2018.

[28] C. J. Hoel, “Source code for ‘Ensemble quantile networks: Uncertainty-
aware reinforcement learning with applications in autonomous driving’.”
https://github.com/carljohanhoel/EnsembleQuantileNetworks, 2021.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[30] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distribu-
tional reinforcement learning with quantile regression,” in Proc. 32nd
AAAI Conf. on Artif. Intell., pp. 2892–2901, 2018.

[32] P. J. Huber, “Robust estimation of a location parameter,” The Ann. of
Math. Statist., vol. 35, no. 1, pp. 73–101, 1964.

[33] R. Rockafellar and S. Uryasev, “Conditional value-at-risk for general
loss distributions,” J. of Banking & Finance, vol. 26, no. 7, pp. 1443–
1471, 2002.

[34] Y. Chow and M. Ghavamzadeh, “Algorithms for CVaR optimization in
MDPs,” in Adv. in Neural Inf. Process. Syst. 27, pp. 3509–3517, 2014.

[35] A. Majumdar and M. Pavone, “How should a robot assess risk? Towards
an axiomatic theory of risk in robotics.” arXiv:1710.11040, 2017.

[36] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans.
Soc. for Ind. and Appl. Math., 1982.

[37] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,” in
IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), pp. 2575–2582, 2018.

[38] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, pp. 1805–1824, 2000.

[39] L. Svensson et al., “Safe stop trajectory planning for highly automated
vehicles: An optimal control problem formulation,” in IEEE Intell. Veh.
Symp. (IV), pp. 517–522, 2018.

[40] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. 33rd Int. Conf. on Mach. Learn. (ICML), pp. 1995–2003, 2016.

[41] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. 39th AAAI Conf. on Artif. Intell.,
pp. 2094–2100, 2016.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Int. Conf. on Learn. Repr., 12 2014.

[43] S. Underwood, D. Bartz, A. Kade, and M. Crawford, “Truck automa-
tion: Testing and trusting the virtual driver,” in Road Veh. Automat. 3
(G. Meyer and S. Beiker, eds.), pp. 91–109, Springer, 2016.

[44] F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, “A survey of deep reinforce-
ment learning algorithms for motion planning and control of autonomous
vehicles.” arXiv:2105.14218, 2021.

Carl-Johan Hoel received the B.S. and M.S. de-
grees in physics from Chalmers University of Tech-
nology, Gothenburg, Sweden. He is currently work-
ing towards the Ph.D. degree at Chalmers Univer-
sity of Technology, together with the Volvo Group,
Gothenburg, Sweden. His research focuses on robust
reinforcement learning methods for creating general
decision-making agents, applied to autonomous driv-
ing.

Krister Wolff received the M.S. degree in physics
from Gothenburg University, Gothenburg, Sweden
and the Ph.D. degree from Chalmers University of
Technology, Gothenburg, Sweden. He is currently
an Associate Professor of adaptive systems, and he
is also the Vice head of Department at Mechanics
and maritime sciences, Chalmers. His research is
within the application of AI in different domains,
such as autonomous robots and self-driving vehicles,
using machine learning and bio-inspired computa-
tional methods as the main approaches.

Leo Laine received the Ph.D. degree from Chalmers
University of Technology, Gothenburg, Sweden,
within Vehicle Motion management. Since 2007, he
has been with the Volvo Group Trucks Technol-
ogy (VGTT) in the Vehicle Automation department.
Since 2013, he has also been an Adjunct Professor
in vehicle dynamics with Chalmers Vehicle Engi-
neering and Autonomous Systems. Since 2013, he
is a specialist within complete vehicle control. Since
2019, he is a technical advisor within Vehicle Motion
and Energy Management within VGTT.

	Abstract
	Acknowledgments
	List of included papers
	Table of Contents
	Introduction
	Decision-making for autonomous driving
	Approach
	Limitations
	Contributions
	Thesis outline

	Related work
	Rule-based and planning-based methods
	Learning-based methods

	Technical background
	Markov decision processes
	Reinforcement learning

	Model-free RL approaches
	Simulated driving scenarios
	Value-based RL, DQN agent
	Approach
	Results and discussion

	Policy-based RL, GA agent
	Approach
	Results and discussion

	Combining planning and RL
	Approach
	Simulated experiments
	Results and discussion

	Uncertainty of RL-based agents
	Approach
	Epistemic uncertainty
	Aleatoric uncertainty
	Aleatoric and epistemic uncertainty

	Simulated experiments
	Results and discussion

	Discussion
	Generality
	Sample and computational complexity
	Safety
	MDP formulation
	Neural network architecture

	Conclusions and future work
	Concluding remarks
	Future research directions

	Bibliography
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI

