
The use of incentives to promote technical debt management

Downloaded from: https://research.chalmers.se, 2025-07-08 06:06 UTC

Citation for the original published paper (version of record):
Besker, T., Martini, A., Bosch, J. (2022). The use of incentives to promote technical debt
management. Information and Software Technology, 142.
http://dx.doi.org/10.1016/j.infsof.2021.106740

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Information and Software Technology 142 (2022) 106740

Available online 7 October 2021
0950-5849/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The use of incentives to promote technical debt management

Terese Besker a,*, Antonio Martini b, Jan Bosch c

a RISE Research Institutes of Sweden AB, Gothenburg, Sweden
b University of Oslo Programming and Software Engineering, Oslo, Norway
c Computer Science and Engineering, Software Engineering, Chalmers University of Technology, Gothenburg, Sweden

A R T I C L E I N F O

Editor: Dr Jeff Carver

Keywords:
Technical debt
Software development
Software incentive programs
Empirical study

A B S T R A C T

Context: When developing software, it is vitally important to keep the level of technical debt down since, based
on several studies, it has been well established that technical debt can lower the development productivity,
decrease the developers’ morale and compromise the overall quality of the software, among others. However,
even if researchers and practitioners working in today’s software development industry are quite familiar with
the concept of technical debt and its related negative consequences, there has been no empirical research
focusing specifically on how software managers actively communicate and manage the need to keep the level of
technical debt as low as possible.
Objective: This study aims to understand how software companies give incentives to manage technical debt. This
is carried out by exploring how companies encourage and reward practitioners for actively keeping the level of
technical debt down add whether the companies use any forcing or penalising initiatives when managing technical
debt.
Method: As a first step, this paper reports the results of both an online survey providing quantitative data from
258 participants and interviews with 32 software practitioners. As a second step, this study sets out to specifically
provide a detailed assessment of additional and in-depth analysis of technical debt management strategies based
on an encouraging mindset and attitude from both managers and technical roles to understand how, when and by
whom such strategies are adopted in practice.
Results: Our findings show that having a technical debt management strategy (specially based on encouragement)
can significantly impact the amount of technical debt related to the software.
Conclusion: The result indicates that there is considerable unfulfilled potential to influence how software prac
titioners can further limit and reduce technical debt by adopting a strategy based explicitly on an encouraging
mindset from managers where they also specifically dedicate time and resources for technical debt remediation
activities.

1. Introduction

When developing software, it is vitally important to keep the level of
technical debt (TD) down since it is well established from several pre
vious studies that TD can, for example, lower development productivity
[1], decrease the developers’ morale [2] and compromise the overall
software quality [3] and even lead to a crisis point when a huge, costly
refactoring or replacement of the whole software needs to be undertaken
[4].

The TD metaphor was first introduced by Ward Cunningham [5] to
illustrate the need to recognise the potential long-term negative effects
of immature code that is sub-optimally implemented during the software

development lifecycle. This debt must be repaid with interest over the
long term [6].

Even if the concept of TD and its negative consequences is quite well
known to software engineering (SE) practitioners today, there is always
a risk that TD remediation tasks are down-prioritised or neglected by
practitioners since today’s software practitioners face increased pressure
from management to reduce the development time and, thereby, to
reduce the costs of development [7].

On the other hand, at the same time, it is important to deliver high-
quality software with as little TD as possible. There is a balancing act
that becomes particularly demanding; to implement and deliver the
software as quickly as possible while also spending time and effort

* Corresponding author.
E-mail addresses: Terese.Besker@ri.se (T. Besker), antonima@ifi.uio.no (A. Martini), Jan.Bosch@chalmers.se (J. Bosch).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2021.106740
Received 29 December 2020; Received in revised form 23 September 2021; Accepted 28 September 2021

mailto:Terese.Besker@ri.se
mailto:antonima@ifi.uio.no
mailto:Jan.Bosch@chalmers.se
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2021.106740
https://doi.org/10.1016/j.infsof.2021.106740
https://doi.org/10.1016/j.infsof.2021.106740
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106740&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 142 (2022) 106740

2

avoiding the introduction of TD in the first place, as well as conducting
TD refactoring activities for software that has already been
implemented.

Like other professionals, software engineers’ work outcomes, atti
tudes, and work behaviors are influenced by their company’s corporate
culture and the managers’ mindset [8]. This means that managers can
have an outsized impact on the overall software development process by
adopting different management strategies and using techniques for
controlling and directing software engineers to achieve predetermined
goals.

In recent years, the use of different strategies in behavioral in
terventions has become more prevalent [9]. In our literature review (see
Section 2.2), this study initially identifies four different strategies that
managers can adopt to impact how practitioners work with TD. Besides
encouraging employees by, for example, introducing training programs
that focus on raising awareness and enhancing knowledge about specific
desired behavior, there are also other strategies managers can imple
ment to impact [10] and motivate [11,12] their employees. In general,
one mechanism managers use to impact practitioners’ work is an
incentive program, where a specific behavior is recognised and rewarded
[13,14]. To have the opposite effect, managers can also use disincentive
programs to penalize an undesired or destructive behaviour [15].
Furthermore, managers can similarly implement explicitly forced re
quirements and rules, with all employees concerned expected to fulfil
and adapt to these in order to continue their work or, for example, to
deploy their implementations and continue developing new tasks [16].

However, to the best of our knowledge, this is the first study to
investigate empirically how common and important different manage
ment strategies are when specifically managing TD in today’s software
development industry.

This study is carried out in two steps. Firstly, we will study four
different TD management incentive strategies to manage TD (addressing
RQ 1-4). Secondly, based on the findings in the first step, we provide a
detailed assessment of additional in-depth analysis of one of these
strategies (encouragement) in order to understand how, when and by
whom such a strategy is adopted in practice (addressing RQ 5-7).

In particular, this study examines the following seven main research
questions:

RQ1: How common is an encouraging attitude to keep the level of TD
down?

RQ1.1: Do software engineering practitioners perceive this TD
management strategy as an effective or desirable strategy?

RQ2: How common are rewarding incentives to keep the level of TD
down?

RQ2.1: Do software engineering practitioners perceive this TD
management strategy as an effective or desirable strategy?

RQ3: How common is it to use a forcing mechanism to keep the level
of TD down?

RQ3.1: Do software engineering practitioners perceive this TD
management strategy as an effective or desirable strategy?

RQ4: How common are penalising disincentives to keep the level of
TD down?

RQ4.1: Do software engineering practitioners perceive this TD
management strategy as an effective or desirable strategy?

RQ5: What specific TD management activities/tasks are encouraged
and who encourages these activities?

RQ6: In what situations or under what circumstances are practi
tioners encouraged to address TD?

RQ7: How are practitioners encouraged to address TD?
This paper reports the results of two sets of surveys: The first is an

online survey providing quantitative data from 258 respondents, and the
second survey provides data from 72 respondents. The result is also
based on qualitative data from interviews with initially 32 software
practitioners from seven software companies, followed by yet another
round of four interviews. All surveys used are included in Appendix A.

To the best of our knowledge, no known empirical research has

focused on exploring the relationships between TD and different man
agement strategies. The contribution to this subject in this paper is
fourfold: Firstly, we show how common it is to use each of the investi
gated strategies within today’s software industry. Secondly, our result
shows that a TD management strategy can significantly impact the
amount of TD in the software. Thirdly, when surveying how commonly
it is to use different TD management strategies, we found that only the
encouraging strategy is, to some extent, adopted in today’s software
industry. Lastly, our result clearly shows that there is a misalignment
between how and when managers perceive they encourage the devel
opment teams to address TD in comparison to how and in what situa
tions or under what circumstances the teams perceive being encouraged
by their managers.

Taken together, these findings provide valuable insights into the role
that management has on the way practitioners address TD during their
software development work.

The rest of this paper is organised as follows. Section 2 introduces the
background and the related work. Section 3 describes the research
methods in detail. Section 4 presents the research results. Section 5
discusses the findings, Section 6 presents threats to the study’s validity
and Section 7 concludes the study.

Since encouragement was found to be the most important activity
used in practice by practitioners (see Section 4.2), this strategy en
compasses a more detailed perspective where further aspects are
covered related to how, when, and by whom encouragement is carried out
in practice.

2. Background and related work

This section presents related work concerning incentive and disin
centive programmes in today’s software engineering field, followed by
the different management strategies, as illustrated in the conceptual
framework in Fig. 1.

2.1. Incentives and disincentive programmes in SE

An incentive programme addresses a planned activity designed to
motivate employees (individuals or teams) to achieve specified and
predetermined organisational goals or objectives within a specific
timeframe. At the same time, a disincentive programme is the antonym
of the incentive programme and discourages employees (individuals or
teams) from performing specific activities [17].

Commonly, software development projects are measured using
financial indicators. Typically, the incentive programme aims to give
bonuses to managers who run their projects with a high profit margin or
within the budget timeframe [18]. There is no research to date on how
other software engineering roles, such as those of developers, testers,
and architects, are included in incentive or disincentive programmes in
general and, more specifically, in TD management.

2.2. Conceptual framework

Organisations can use different management strategies to influence
employees’ working behaviours. Initially, as a rational for understand
ing more about these different strategies, we search for research publi
cations addressing different strategies that managers can use for
influencing practitioners’ working behaviours and attitudes in both SE-
related research sources and also in other disciplines using a conceptual
review approach [19],[20].

By using a conceptual review approach, where the design strategy
was inspired by Hulland [20], our search was not limited to searches by
strict terms/words as described by Ayala [19]. Thus, we were able to
conduct a broader search for different strategies on how to manage and
impact practitioners seen from a manager’s point of view. This approach
was useful when constructing our conceptual framework: “In building
conceptual families, a typology begins to form for the retrieved sources

T. Besker et al.

Information and Software Technology 142 (2022) 106740

3

grouped according to the social and historical contexts that they stem from.
This is very helpful in theoretically framing the research problem” [19].
However, it is important to acknowledge that since we did not fully
adopt the strategy suggested by Hulland [20] using a fully systematic
search approach, there may potentially be more strategies that unwit
tingly were left out of the framework.

Based on this conceptual review’s outcome, we have depicted a
conceptual model presented in Fig.1 and formulated the research
questions based on this framework. The framework illustrates four main
different management strategies; a) Encouraging, b) Rewarding, c)
Forcing, d) Penalising.

The conceptual framework with its four main strategies is proposed
under the rationale that these four strategies are potentially important
and can influence the reduction of TD. Potentially, they are being used
by managers to manage the amount of TD during the software devel
opment work. The sources of each of the identified strategies are pre
sented in next sections.

2.2.1. Encouraging activities
Encouraging employees is an important part of being a leader where

the leader highlights and complements specific desired actions and
where the leader also provides constructive criticism if needed. Man
agers’ behaviours provide an important message to employees, mean
ing, for example, that a high level of creativity and innovation result
from managerial behaviours [21] where the relationship between em
ployees and their managers has a significant bearing on employees’
work-related attitudes and behaviours [10]. By default, simply encour
aging employees does not include any direct rewards.

2.2.2. Rewarding incentive
Several studies show that reward and recognition programmes can

positively influence motivation, performance, and interest within an
organisation [13,14]. The overall goal with reward and/or recognition
programmes is to foster teamwork, boost employee loyalty, and ulti
mately facilitate the development of a desired culture that rewards a
specific behaviour [13]. The practitioners (individuals or teams) who
fulfil the goals receive a predefined reward. A reward programme can,
for example, recognise developers who adopt suggested techniques, and
thereby the reward incentive gives a significant boost to those who
deploy best practices, where the achievement, for example, can be
rewarded by a badge [22], by a gift card or a monetary reward.

2.2.3. Forcing mechanisms
The strategy based on forcing mechanisms refers to mandatory rules

and requirements that need to be fulfilled and followed by the practi
tioners to demonstrate adherence to methodologies, rules, regulations,
guidelines or best practices [16]. This could be exemplified by a situa
tion where mandatory rules and requirements are not met. Hence,
practitioners are forced to go back and alter the software before being
allowed to continue with, for example, adding additional features or
deploying the software. Examples of commonly adopted rules and re
quirements from an SE perspective include:

• Not allowing any bugs in the software
• Requiring that the software be thoroughly tested before deployment
• Ensure code is fully reviewed
• Ensuring the code follows the coding standards

2.2.4. Penalising disincentive
Organisational penalties or punishments are part of a pervasive

phenomenon in many companies and organisations [23] that yield
penalties for undesired behaviour and are also part of a disincentive
strategy. Penalisation refers to when managers apply a negative conse
quence or the removal of a positive consequence following an em
ployee’s undesirable behaviour, intending to decrease the frequency of
that behaviuor [15]. According to Wang and Zhang [23], some software
development organisations have adopted punishment measures in an
attempt to improve software developers’ performance, reduce software
defects and thereby ensure software quality. The result of penalty
mechanisms shows that while these help to reduce software defects in
daily coding activities, they fail to achieve programmers’ maximum
work potential. In their study [23], penalty rules were introduced when
software developers were tracked by submitting unsuccessful sub
missions, which caused monetary fines for the individual developer.

Since there is a current gap in research addressing how different TD
management strategies impact upon how practitioners work with TD,
this study built on research conducted in other domains and examines
the current state of different management strategies in the SE field. Our
work is, therefore, different from the studies mentioned above in several
aspects:

(a) We provide results derived from data from a real software
development environment rather than discussion without
empirical evidence as support

(b) We combine both qualitative and quantitative methods

Fig. 1. Conceptual framework.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

4

(c) Our study investigates four different management strategies
(d) Our investigation primarily focuses on TD.

2.3. TD management activities

TD management facilitates decision-making about the need to
remove or avoid a TD item and the most appropriate time to do so [24].
There are several different TD management activities, which may
significantly impact the amount of TD within a software system. Based
on our previous studies addressing this topic, we have identified below
the activities that may impact the amount of TD in a system.

Since TD has a significant negative impact on software development
work from several different perspectives, our previous research [25]
show that it is essential to actively prevent the introduction of TD into
the software in the first place and to iteratively and continuously
conduct TD tasks when it has already been introduced into the software.
This means that targeting and encouraging software practitioners to
perform such activities (e.g., avoiding and removing TD) may signifi
cantly impact reducing the harmful effects of TD [26].

However, to remediate or refactor TD, its identified elements first
need to be tracked and prioritised, preferably using an official backlog.
Our previous research [7] indicates that when practitioners use so-called
“shadow backlogs", TD items may potentially be overlooked during the
prioritisation process, the result being that TD items will remain in the
software.

Moreover, there are situations where deliberately taking on TD may
be a strategically sound move since such conscious decisions sometimes
may increase the ability to cut development time, thereby enable fast
feedback from customers and increase revenue [27–29]. Therefore, in
addition to investigate strategies to keep the level of TD down, this study
also addresses the extent to which management does exactly the oppo
site by assessing whether teams are encouraged to deliberately take on
additional TD.

Besides encouraging the avoidance and the remediation of TD, it is
also essential to address when TD refactoring activities should occur and
whether the practitioners are empowered to make such decisions on
their own or if such decisions must be taken together with managers [7].
The activities and situations presented above are used in the survey in
step 2 of the study.

2.4. Our previous work

This manuscript was originally and partly published at the Third
International Conference on Technical Debt, held jointly with the ICSE
[30]. The delta of this manuscript over the prior published paper is
based on an additional empirical extension of the previous study where
this manuscript includes an in-depth value-added analysis of the results
derived from the first study to provide a more detailed and compre
hensive understanding and perception of the first sets of results. This
extended study also addresses the comments we received from the
anonymous reviewers during the first submission.

This manuscript has been extended to include three additional
research questions (RQ5-7) where the results of these questions are
derived from a totally new set of independent data collection.

The related Research section has been extended to be broader and to
more carefully cover additional related research publications to address
the additional research question.

The Methodology section is updated to also includes the additional
step of the study together with an illustration and description of how the
different steps of this study relate to each other.

Furthermore, in both the Result and the Discussion sections of this
extended version of the study, several new findings and results have
been added and discussed. These additional results highlight the pre
vious results and further strengthen the ability to understand the first set
of results, thereby bringing a finer granularity to our understanding of
the practice.

3. Methodology

As visualised in Fig. 2, this study used a combination of quantitative
and qualitative research approaches. The research design was divided
into two main steps, including a total of 11 different phases. As illus
trated in the Fig., the first six phases were conducted in step 1, which
refers to this publication’s original study [30]. The following phases (7
to 11) were conducted as an extension to that study.

The research approach used in step 1 is characterised by an explor
atory approach where several different incentive strategies are studied.
This step’s outcome is used as input to the following step 2. This is
characterised by a conclusive study approach where this step primarily
focuses on one type of incentive programme from step 1.

The following sections describe each step with its phase together
with its related research methods.

3.1. Step 1 – The exploratory part of the study

The first step of this study’s exploratory nature aims to answer RQ1-
RQ4 and is described in the following six sub-sections.

3.1.1. Phase 1 – Contextual analysis and design
The study was first presented and discussed during a workshop with

software practitioners from seven software companies within our in
dustrial network. All companies had an extensive range of software
development work. The goal of the workshop was to create a research
design, and the outcome is the research model shown in Fig. 2, which
directed the design, data collection, and analysis of the following phases.

This step of the study adopted a selection of respondents using
mainly a purposive sampling technique [31] of software professionals. The
aim of primarily using a purposive sampling technique was to select
relevant and suitable candidates for the study. Altogether, out of the 258
respondents in the survey, 21 respondents came from LinkedIn in
vitations from software engineering groups and the remaining 247 re
spondents came from our network of seven of our industrial software
partners. All these seven companies had an outspoken strategy and goal
of enhancing their TD remediation work and thereby strived to reduce
the negative effects of TD. Characteristics of the sample survey is pre
sented in Table 3.

3.1.2. Phase 2 – Quantitative data collection (DC1)
The data collected in this phase was supported by an online web

survey designed and hosted by SurveyMonkey. The motivation for using
a survey in this part of the study was to reach a high level of general
isation based on a large population of software professionals [32]. Ac
cording to the guidance provided by Czaja and Blair [33], the first draft
of the survey was tested by four industrial practitioners (a developer,
manager, project owner, and software architect) and by two Ph.D.
candidates to evaluate the understanding of the questions and the use of
common terms and expressions [33]. During this evaluation, we also
monitored the time needed to complete the survey.

The survey invitations were emailed to the same seven companies
that participated in Phase 1, all located in Scandinavia, having an
extensive range of software development experience. The invitations
were also published on software engineering-related networks on Link
edIn. The surveys were anonymous and participation in the surveys was
voluntary.

The first part of the survey gathered descriptive statistics to sum
marise the respondents’ backgrounds and their companies.

The second part of the survey included the four survey statements
(ST) presented in Table 1 to facilitate quantitative answers for the RQs
presented in Section 1 (when fully answering the RQs, we used quan
titative data from this phase combined with qualitative data as described
in section 3.1.6), and using survey design guidelines provided by Díaz de
Rada [34].

For each of the statements, the respondents were asked to indicate

T. Besker et al.

Information and Software Technology 142 (2022) 106740

5

their level of agreement on the 6-point Likert scale; Strongly Agree,
Agree, Somewhat Agree, Somewhzat Disagree, Disagree, and Strongly
Disagree.

Phase 3 – Analysis and synthesis (AS1)
The survey data was analysed quantitatively, that is, by interpreting

the numbers obtained from the answers. The data was analysed using
descriptive statistics and graphically visualised using diverging stacked
bar charts. The motivation for using diverging stacked is based on the
guidelines from Heiberger and Robbins [43] who state that “We
recommend diverging stacked bar charts as the primary graphical display
technique for Likert and related scales”, also, research conducted by
Indratmo et al. [44] conclude that diverging stacked bar charts are
easier-to-use and Streit and Gehlenborg [45] state that “Bar charts and box
plots are omnipresent in the scientific literature. They are typically used to
visualize quantities associated with a set of items.”

To further quantitatively test our findings, we have also conducted a
chi-squared test of independence. This was used especially to test if
different roles answering the questionnaire gave significantly different
answers, which was relevant for our research questions. In particular,
we have analyzed the answers in pairs, always using the answers to the
“role” as a variable and the agreement answers to different statements as
the other variable. Given the low amount of respondents in some specific
roles, the roles were grouped in “managerial” and “technical” to miti
gate threats related to running chi-square with too few data points. If the
test of independence would show a low p-value, it means that we would
have enough evidence to statistically claim that there is a significant
difference between the chosen variables. In the specific cases, it would
confirm (or not) that different roles had answered differently to the

different statements.

3.1.3. Phase 4 – Qualitative data collection (DC2)
In this stage, the second round of data was collected, where 32

software practitioners were focus-group-interviewed. As suggested by
Runeson and Höst [35], this study employed the technique of
semi-structured interviews, where the questions were planned but not
necessarily asked in the same order as they were listed. These interviews
were used to obtain detailed information about the interviewees’ per
ceptions and interpretations of the study topics. Examples of interview
questions are presented in Table 4.

All interviews were focus-group interviews based on guidelines by
Krueger and Casey [36], stating that this method is specifically suitable,
serving as a source of follow-up data to assist a prior used data collection
method: "The researchers need the information to help shed light on quan
titative data already collected."

In total, we interviewed seven companies where each interview
included between four to seven interviewees. Altogether, we inter
viewed 32 experienced software development professionals with roles as
architects, developers, product owners, and managers. All interviewees
had participated in the previous survey. For confidentiality, in
terviewees and their companies were anonymised.

All interviewees were asked for recording permission before starting
and they all agreed to be recorded and to be anonymously quoted for this
paper. Each interview lasted between 105 and 120 minutes and was
digitally recorded and transcribed verbatim. Examples of interview
questions for each RQ are presented in Appendix A.

Before the interviews started, the previous survey’s compiled results
were presented to the respondents (using graphical illustrations such as
bar diagrams and graphs). This presentation allowed the respondents to
relate the interview questions to the results of the survey more easily.

The interview questions were designed to a) increase the under
standing of the survey results, b) ensure that the survey questions were
understood and interpreted as intended and uniformly, c) confirm the
survey results, and d) understand the survey results’ implications. The
questions were developed to cover the same taxonomies as the previous
survey to validate the findings of the survey.

3.1.4. Phase 5 – Analysis and synthesis (AS2)
This stage focused on analysing the data collected in the previous

Fig. 2. Research Design.

Table 1
Characteristics of the sample survey – all roles in Step 1.

ID Statement Addressing
RQ

ST1 Our team is or I am explicitly rewarded if TD is kept down. 2
ST2 Our team is or I am explicitly penalised if TD is not kept

down.
4

ST3 Our team is or I am explicitly forced to keep the level of TD
down (i.e., to be allowed for deployment)

3

ST4 Our team is or I am explicitly encouraged if TD is kept
down.

1

T. Besker et al.

Information and Software Technology 142 (2022) 106740

6

phase. The data analysis and synthesis were performed using thematic
analysis [37]. Thematic analysis is a reliable data analysis method for
capturing and reporting themes and the analysis is especially suitable for
studying the attitudes and behavior of people [38].

When analysing the qualitative data, the guidelines provided by
Braun and Clarke [39] were used to conduct the analysis in a thorough
manner.

First, the audio-recorded interviews were transcribed into a written
form so we were also able to familiarise ourselves with the data. The
second step involved producing initial codes from the data, where we
organised the data into suitable groups. Next, we focused on searching
for themes by sorting the different codes into potential themes and
collecting all the relevant coded data extracts within each identified
theme. In this phase of the analysis, a qualitative data analysis (QDA)
software package called Atlas.ti was used. For example, the citation "I
think it sounds like the reward would be the best way of keeping the measure
of technical debt down" was coded as "Rewarding."

To ensure that the coding was performed consistently and reliably,
two authors of this study synchronised the coding output as suggested by
Campbell et al. [40]. The coding process was performed iteratively until
reaching a state of saturation (due to the richness of the data and we
stopped at the point where no additional codes or categories were
identified).

The outcome of this analysis process (where the mapping between
the different hierarchical categories and individual codes is presented
graphically) is illustrated in Fig. 3.

3.1.5. Phase 6 – Combined analysis and synthesis (AS3)
In the sixth phase of the study, we combined the results we received

in the previous quantitative and qualitative data collection and analysis
phases.

3.2. Step 2 – The conclusive part of the study

The second step of this study’s conclusive nature aims to answer RQ5,
RQ6, and RQ7. The background of the research conducted in this step is

based on the results derived in Step 1, where about 60% of the survey
respondents state that they were directly encouraged by managers to
keep the level of TD down (see Section 4.2.1).

As a result of this finding, in step 2, therefore, we further specifically
investigate a TD management strategy based on explicit encouragement
to better understand how and by whom this encouragement is carried
out in practice.

In this step of the study, we conducted a single, case study, following
the guidelines provided by Runeson and Höst [35]. We consider the case
as embedded as multiple units of analysis were studied within the case
(different groups of roles). The selected case company is a large tech
nological development supplier with around 385,000 employees oper
ating worldwide. The participating respondents work at several different
sites, operate in different countries, and have different managers. This
case study company was selected due to its ongoing initiative addressing
TD during their software development work, making it suitable for
studying an incentive strategy based on encouragement. For confiden
tiality reasons, the company name has been anonymised in this study.

3.2.1. Phase 7 – Quantitative data collection (DC3)
The data in this phase was collected using a similar approach as in

phase 2, Step 1 where the quantitative data was collected using the
online service provided by Surveymonkey. However, this phase
collected quantitative data using two totally new sets of surveys; one for
managers and one for technical roles.

The first parts of each of the surveys gathered descriptive statistics to
summarise the backgrounds of the respondents. This data is presented in
detail in Appendix A. Altogether, 26 managers and 46 technical roles
participated in the surveys.

In these two surveys, all respondents were asked to indicate their
agreement level on a 4-point Likert scale (Strongly Agree, Agree,
Disagree, and Strongly Disagree). The statements assessed in both sur
veys were of similar character but were phrased in slightly different
ways. The goal of the questions was to address the same topics but
represented from both a manager’s and a technical operative’s
perspective.

Fig. 3: Thematical Coding Scheme – Step 1.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

7

The surveys included other questions on other topics related to TD
management (designed with an additional purpose) such as processes,
tools, etc., which are not relevant for this study (also including another
survey design, e.g. using 4-Likert scales).

As illustrated in Table 2, we used the same statements but altered the
phrasing depending on whether managers or technical roles were asked
the questions.

3.2.2. Phase 8 – Analysis and synthesis (AS4)
This phase’s data was collected using a similar approach as in phase

3, Step 1, where the survey data was analysed quantitatively. In this
phase, the data from the managers and technical roles from the two sets
of surveys were first analysed separately and then meta-analysed
together.

3.2.3. Phase 9 – Qualitative data collection (DC4)
For this phase’s data collection, four different semi-structured in

terviews were conducted using the same settings and approaches as
described in Section 3.1.4.

We interviewed two interviewees with technical roles (developers),
followed by three additional interviews with four managers (Project
owner, Chief Product Owner, Process Manager, and Head of Architects).
All interviewees had previously taken the survey in part 2 and the results
from the surveys were presented to the interviewees during the
interviews.

3.2.4. Phase 10 – Analysis and synthesis (AS5)
This stage focused on analysing the data collected in phase 9 using

the same approach as in phase 5, Step1.

3.2.5. Phase 11 – Combined analysis and synthesis (AS6)
This phase combined the previous quantitative and qualitative data

collection results using the same approach as in phase 6, Step 1.
Tables 3–5

Table 2
Characteristics of the sample survey – all roles in Step 2.

Manager Roles
phasing:

Technical Roles
phrasing:

Statements

I encourage the
software
development teams
to:

My manager
encourages my
team to:

• Avoid and Remove TD
• Assess and report TD in the

official backlogs to prioritise
and remove it

• Deliberate taking on TD if
they get benefits from (e.g.,
to speed up delivery)

My team colleagues
encourage me to:

• Avoid and Remove TD
• Assess and report TD in the

official backlogs to prioritise
and remove it

• Deliberate taking on TD if
they get benefits from it (e.g.,
to speed up delivery)

When is my team
encouraged to
remove TD?

When is my team
encouraged to
remove TD?

• Whenever they/we want
• When they/we have extra

time, budget, or human
resources to be allocated

• When they/we have a
specific amount of time
dedicated to TD removal (e.
g., 10, 20%, etc.)

• When they/we provide a
business case for removing
TD (e.g., reporting on costs,
risks, and benefits of
removing or keeping TD)

Table 3
Characteristics of the sample survey in Step 1.

Factor Percentage split Factor

Experience < 2 years
2 - 5 year
5 - 10 year
> 10 years

3.90%
10.50%
17.40%
68.20%

Roles Developer/Program/Software Engineer
Software Architect
Manager
Project Manager
Product Manager
Expert

49.20%
24.80% 6.20%
6.20%
5.0%
5.0%
3.50%

Team size 1–5 members
6–10 members
11–20 members
21–40 members
> 40 members

23.30%
36.00%
15.90%
6.60%
18.20%

Table 4
Examples of interview questions step 1.

TD Management
Strategy

Examples of Interview Questions

Encouragement
(RQ1)

• How do you perceive encouragement from managers for
keeping the level of TD down?

• How could such a strategy be implemented?
• Do you agree with the results of the survey?

Rewarding incentive
(RQ2)

• How do you perceive a rewarding incentive for keeping
the level of TD down?

• Do you have this or a similar strategy in place or planned
for the future?

• How could such a strategy be implemented?
Forcing

(RQ3)
• How do you perceive a forcing mechanism for keeping

the level of TD down?
• Do you have this or a similar strategy in place or planned

for the future?
Penalising

disincentive
(RQ4)

• How do you perceive a penalising disincentive for
keeping the level of TD down?

• How could such a strategy be implemented?
• Does your company have a team and/or personal

incentive/disincentive system for any other kind of
quality criteria related to your software development
process?

Other • Which strategy of keeping the TD down do you consider
to be the most/least successful (and why) and under
what circumstances?

Table 5
Characteristics of the sample survey step 2.

Technical Roles Managers

Percentage split Factor
(%)

Percentage split Factor
(%)

Experience < 2 years
2 - 5 year
5 - 10 year
10 – 20 years
< 20 Years

4.3%
6.5%
4.3%
84.4
0

< 2 years
2 - 5 year
5 - 10 year
10 – 20 years <
20 Years

11.5%
0%
7.7%
46.2%
34.6%

Roles Developer
Team /
FunctionalArchitect
Test / Quality
Platform / Chief
Architect

13%
23.9%
8.7%
54.3%

R&D manager
Product manager
CPO
Product Owner
Other managers

38.5%
26.9%
15.4%
11.5%
7.7%

Team size Size of team:
1–5 members
6–10 members
11–20 members
> 20 members

23.9%
23.9%
52.2%
0

Managing
numbers of
teams:
1–2 teams
3-5 teams
6–10 teams
11-15 teams
>15

53.8%
11.5%
7.7%
7.7%
19.2%

T. Besker et al.

Information and Software Technology 142 (2022) 106740

8

4. Results and findings

This section presents the results of this study where the first four sub-
sections (4.2 - 4.5) present the result for RQ1-4, followed by Sections 4.6
and 4.7, which address RQ 5-7. For more in-depth details about the
result in this step of the study, we refer to our earlier publication [41].

In the survey used in Step 1, the participants were asked to rate their
agreement with four statements

(ST1-ST4) using a 6-point Likert Scale. The ratings provided by the
respondents for each of the survey statements are presented in Fig. 4 and
further described in the following Sections 4.2 to 4.5.

4.1. Demographics data

In the first step of the study and across all collaborators, 258 re
spondents answered all questions. The demographics detail data is re
ported in Appendix A. Characteristics of the sample survey in this step
are presented in Table 5.

4.2. Encouraging strategy (RQ1)

The first research question investigates how common an encouraging
strategy is to keep the level of TD down and how software engineering
practitioners perceive this TD management strategy.

4.2.1. 4.2. Survey results
When looking at the results from the different statements in Fig. 4, it

is evident that one of the statements excels compared to the others.
What stands out in the Fig. is the statement assessing whether the

respondents are encouraged to keep the level of TD down (ST4) where
151 respondents i.e. 60.3% (9.3% strongly agree, 24.4% agree, 26.6%
somewhat agee) of the respondents agree to some extent that they are
encouraged, and 97 respondents i.e. 39.7% disagree to some extent that
they are encouraged to keep the level of TD down.

A remarkable result of this statement is that 29 respondents, i.e.
11.9%, strongly disagree that they are encouraged to keep the level of
TD down.

4.2.2. Effective or desirable strategies (RQ1.1)
The practitioners’ attitudes towards introducing TD or conducting

TD remediation tasks were described as being guided and targeted by

the mindset and the attitudes of the management where recognition of
leaders and peers was important. This meant that when management
focused its attention on the importance of TD, the employee was
encouraged to focus his or her work in the same direction.

All the interviewees considered an encouraging managing strategy
concerning TD to be highly effective and impactful. Several of them
described that this strategy could clearly have more emphasis within
their organisations and thereby, also have a more significant impact on
the amount of TD in their software.

4.2.3. Tactics for encouragement
Several of the interviewed companies strived to continuously raise

awareness about the concept of TD and its related negative conse
quences as an encouragement to keep the level of TD down. Some
companies ran satisfyingly dedicated educational sessions to explicitly
address how to avoid the introduction of TD in the first place.

The managers of some teams in one of the interviewed companies
had set aside a specific amount of working time within each sprint to
allow for explicitly spending time on TD remediation activities (without
imposing this on the developers) together with other software-
improving activities. This dedicated time slot encouraged the involved
engineers (such as testers, developers, and architects) to focus on TD
issues in every sprint as an incorporated part of their overall working
process.

4.3. Rewarding incentives (RQ2)

The second research question addresses how common rewarding
incentives are to keep the level of TD down and how software engi
neering practitioners perceive this TD management strategy.

4.3.1. Survey results
As illustrated in the first statement (ST1) in Fig. 4, only 35 re

spondents, i.e.14.3%, of the respondents agree to some extent (0.8%
strongly agree, 3.7% agree, 9.8% somewhat agree) with being explicitly
rewarded when keeping the level of TD down. Thus, 212 respondents, i.
e. 87.7% of the respondents state that they are not explicitly rewarded
for this. What stands out in this data is that only two (2) respondents
state that they strongly agree with being rewarded when keeping the
level of TD down; meanwhile, a hundred (100) respondents state that
they strongly disagree with being explicitly rewarded if they keep the

Fig. 4. Summary of the responses to the survey statements in Step 1.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

9

level of TD down.

4.3.2. Effective or desirable strategies (RQ2.1)
None of the interviewed companies had an incentive programme

where employees were rewarded for any explicit behaviour (not just
specifically TD). The interviewees’ thoughts differed as to whether
adopting rewarding incentives is an effective or desirable strategy to
keep the level of TD down.

Some interviewees were skeptical about explicitly highlighting and
rewarding specific working activities and behaviours such as TD re
mediations since they thought keeping the level of TD down should be
an activity that comes with the craftsmanship of software development
and the working pride of software engineers. On the other hand, several
other interviewees argued that a TD managing strategy based on re
wards could be effective since rewards can motivate practitioners to
manage TD further.

4.3.3. Tactics for rewards
Concerns regarding the different appropriate types of rewards were

widespread. Some proposed rewards such as monetary compensation,
extra holidays, and pizzas to the teams (since none of them had any
incentive programs in place). Meanwhile, other interviewees said a
reward does not have to be tangible; it could be a simple acknowledg
ment since official praise and, therefore, an enhanced reputation is
considered equally important: "A reward does not have to be money. You
could achieve some level of reputation that will actually be enough of a
reward in itself."

Nevertheless, even if a rewarding incentive has the best intention of
decreasing the amount of TD in the software, such initiatives could
easily be misused by causing a counterproductive backlash where, for
example, practitioners primarily focus on TD remediation tasks to get
rewards or only focus on the TD items that are easy to refactor. There
fore, they would focus less on other tasks and goals, which can harm the
overall implementation or delivery of the software.

Yet another concern that was expressed by several interviewees re
fers to the possibility of manipulating such reward systems by first
introducing a large amount of TD and then refactoring this to get the
reward.

Taken together, if an incentive programme for TD remediation
should be introduced, such a programme must be carefully designed to
avoid counterproductive results that instead generate even more TD;
also, it is important to incorporate an impartial way into the design that
is not easy to manipulate.

4.4. Forcing mechanisms (RQ3)

The third research question aims to assess the forcing mechanism to
keep the level of TD down and how software engineering practitioners
perceive this TD management strategy.

4.4.1. Survey results
When assessing whether the respondents are being forced to keep the

level of TD down, the result from the second statement (ST3) in Fig. 4
shows that 39 respondents, i.e. 15.6%, agree to some extent with this
statement (2.4% strongly agree, 4.4% plus agree, plus 8.8% somewhat
agee) and that 84.4% of the respondents disagree to some extent with
being forced to keep the level of TD down.

4.4.2. Effective or desirable strategies (RQ3.1)
None of the interviewed companies had any forcing rules or re

quirements related to TD. Notably, all the companies had other forcing
rules related to their software development processes such as following
code standards, documentation requirements, and performing tests.
These rules applied primarily to specified mandatory activities and re
quirements that had to be fulfilled for the delivery to be viewed as
complete and further activities to take place.

Even if the TD and its negative effects are known to the software
engineers, it can be challenging to get the time and budget from man
agement to refactor the software. Here, a positive side to forcing a TD
management strategy was described in terms of empowerment. Such a
strategy would give the practitioners authority to conduct mandatory
TD remediation tasks without arguing and motivating managers to
perform the action. Yet another finding was that forcing TD remediation
activities seems to become more vital for companies adopting shared
ownership of their software product portfolio where several teams
collaborate on the same software without having strict ownership of the
components.

4.4.3. Tactics for implementing a forcing strategy
Another view on the enforcement of TD activities was described as a

transition from an encouraging strategy to a forcing strategy.
Several interviewees recommended that a company should first focus

on encouraging initiatives and if such a strategy were conceived as not
enough, this forcing strategy could be implemented. Directly imple
menting a forcing strategy was not recommended by the interviewed
companies. One company described its history as moving from an
encouraging strategy to adopting a forcing strategy (however, the target
here was related to TD): "It depends on the scale on the organisation. A
couple of years ago, we didn’t force that much. We were encouraged, and that
was because we had some sort of concept of ownership. I would say that pride
in our product was sort of our encouragement. It was your baby and you
wanted to be proud of it. This is what partially drives you forwards."

4.5. Penalising disincentives (RQ4)

The fourth research question set out to investigate how common
penalising disincentives are to keep the level of TD down and how soft
ware engineering practitioners perceive this TD management strategy.

4.5.1. Survey results
Looking at the third statement (ST2) in Fig. 4, it is apparent that 43

respondents, i.e 17.5%, agree to some extent (1.2% strongly agree, 5.3%
agree, 11% somewhat agree) with being explicitly penalised when not
keeping the level of TD down. Therefore, 205 respondents, i.e., 82.5%,
state that they are not penalised for failing to do so.

4.5.2. Effective or desirable strategies (RQ4.1)
Even if the survey showed that respondents are being penalised, none

of the interviewees in the study were familiar with any penalising ac
tivities within their companies, using, for example, monetary fines and
salary reductions. All of the interviewees had direct negative attitudes
towards implementing a TD management strategy based on penalising
practitioners or teams who fail in keeping the level of TD down.

4.5.3. Tactics for penalisation
There are several different issues to consider if a penalising strategy

should be implemented to facilitate the management of TD. Several
interviewees raised the importance of establishing fair, adequate, and
succinct rules that should be clearly conveyed, understood, and followed
by all employees concerned.

4.6. The perception of encouragement - survey results

This section reports the findings from the second step of the study,
based on the first step’s findings. One of the key findings in the first step
was that about 60% of the survey respondents stated that they were
encouraged by managers to keep the level of TD down (see Section
4.2.1). This section addresses the research questions RQ5, RQ6, and
RQ7, which all provide a more detailed assessment and an additional in-
depth analysis of the TD management strategy based on encouragement.

Since encouragement is a human activity based on communication
that involves both a "sender" and a "receiver", wherein the sender

T. Besker et al.

Information and Software Technology 142 (2022) 106740

10

conveys a message, and the receiver gets that message, we have asked
both managers and technical roles to state to what extent they perceive
that they send the message (managers) and to what extent they receive
the message (technical roles).

4.6.1. The perception of receiving or providing encouragement (RQ5)
This sub-section addresses the fifth research question to understand

the extent to which different specific TD management activities are
encouraged and who encourages these activities, using three different
role perspectives:

a) How managers perceive providing encouragement to technical roles
b) How technical roles perceive receiving encouraged by managers
c) How colleagues with technical roles encourage each other within the

teams to address TD.

Furthermore, to provide a higher granularity for the encouragement
of TD management activities, we collected data using the three different
TD encouraging activities:

1) Avoid and remove TD
2) Assess and report TD in the official backlogs to prioritise and remove

it
3) Deliberately take on TD if they get benefits from it (e.g., to speed up

delivery)

The respondents’ quantitative summary statistics for each of the
survey statements are presented in Fig. 5 and further reported and
described together with the qualitative results from the interviews in the
following sections.

Encouraged to avoid and to remove TD: The first three upper stack
bars in Fig. 5 (ST18, ST8, and ST5) address the encouragement to avoid
or remove TD. By looking at these bars, it is apparent that the results
illustrating this activity differ significantly between the different groups
of respondents.

As illustrated in the first stack bar (ST18), about 91% (19.1 %
strongly agree, 71.4 % agree) of the managers who took the survey agree
that they should encourage software development teams to avoid or
remove TD. In comparison to this, "only" 46% of the technical roles (in
bar ST8) (2.3% strongly agree 44.2% agree) perceive that they are
encouraged by their managers. However, about 79% of the technical
roles (in bar ST5) (16.3% strongly agree, 62.8% agree) perceive that
they are encouraged by their team colleagues to avoid or to remove TD.

Our chi-square test of independence, yielding a very low p-value
(0.0003605), which statistically confirms that there is a significant dif
ference between the answers given by managers and technical roles.

This is a rather remarkable result indicating that the managers
perceive that they encourage the teams with a technical role to avoid or
remove TD. However, the technical roles do not seem to receive this
encouragement to the same extent. However, it is apparent from the
results that the technical roles perceive they are encouraged by their
team colleagues to avoid and remove TD.

Assess and report TD in the official backlogs to prioritise and
remove it: As illustrated in Fig. 5, bar ST19, about 86% of managers
(23.8% strongly agree, 61.9% agree) stated in the survey that they
encourage the teams to assess and report TD in the official backlogs to
prioritise and remove it.

When surveying the technical roles to see to what extent they
perceive receiving encouragement from managers to perform this ac
tivity, about 56% of the technical roles (in bar ST9) (4.7% strongly
agree, 51.2% agree) perceive that they are encouraged by their man
agers, while also 14% of the respondents strongly disagree with this
statement.

Furthermore, by looking at the results in bar ST6, it is apparent that
about 72% (18.6% strongly agree 53.5% agree) of the technical roles
perceive that they are encouraged by their team colleagues to avoid or to
remove TD and to assess and report TD in the official backlogs.

Our chi-square test of independence, yielding a very low p-value
(0.0007684), which statistically confirms that there is a significant dif
ference between the answers given by managers and technical roles.

Deliberate taking on TD if they get benefits from it: As shown in
Fig. 5, bar ST20, about 67% (4.8% strongly agree, 61.9% agree) of
managers stated in the survey that they encourage their teams to
deliberate taking on TD if they get benefits out of it. This encouragement
from the managers was received by 56% of the technical roles (in bar
ST10), and 65% of the technical roles also perceive that they are
encouraged in this activity by their team colleagues (bar ST7).

Despite these visual observations, our chi-square test of indepen
dence did not find a statistically significant difference between the an
swers of different roles, although the p-value (0.1418) is rather low.

When summarising and analysing the three different activities
together, it becomes clear that managers perceive they encourage the
technical roles to avoid and remove TD to the greatest extent. However,
this result is thought to be quite contrary to how technical roles perceive
this activity since it is actually perceived by those in technical roles as
being the least encouraged by managers among the three different listed

Fig. 5. Summary of the responses to the survey statements reflecting the perception of receiving or providing encouragement.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

11

activities. However, this activity seems to be the most common activity
that team colleagues encourage each other to address.

Furthermore, the activity that managers most strongly agree to was
that they encourage the technical roles to assess and report TD in the
official backlogs (23.8% strongly agree). Meanwhile, as seen from the
technical role perspective, this activity was the one they most strongly
disagree with in terms of being encouraged to address it (14% strongly
disagree).

Taken together, these results suggest that there is quite an extensive
and misalignment between how managers perceive that they encourage
the technical roles to address TD and how the technical roles perceive
being encouraged by their managers. However, it is clear that the
technical roles encourage each other to address TD to a relatively large
extent. It is notable that both the interviewed developers and the
interviewed managers came from the same departments and worked in
and shared the same working environment and settings.

Individual professions – grouped as technical roles (RQ5)
To further study how the technical roles’ teams are encouraged by

their managers to address TD, this section presents the survey results
from each of the individual roles in the earlier reported results where
they were analysed as a group. These results are illustrated in Fig. 6.

The distinct roles that we earlier grouped as “technical roles” (in
Section 4.6.1) are a) developers, b) team-functional architects, c) test
and quality engineers, and d) platform-chief architects.

Further, we use the same TD encouragement activity as earlier re
ported in Section 4.6.1.

Encouraged to avoid and remove TD: The first four upper stack bars
in Fig. 6 (ST8) visualise the extent to which the different individual roles
agree with their teams being encouraged by their managers to avoid or
remove TD.

From the data, it is apparent that the different investigated pro
fessions perceive being encouraged (from managers) quite differently to
avoid or remove TD. What stands out when comparing the result is, for
example, that none (0%) of the developers strongly agree with this
statement and that only 20% of them agree to be encouraged by their
managers to avoid or to remove TD.

Furthermore, when looking at these results, it is also apparent that
test and quality engineers perceive being encouraged to a limited extent
by their managers, where 25% agree and the remaining 75% disagree
with being encouraged to avoid or removed TD.

Meanwhile, about 64% of the team and functional architects agree
(9.1% strongly agree plus 54.5% agree) to the same statement. However,
this profession’s results are quite spread out, where, for example, 18.2%

strongly disagree with this statement.
Assess and report TD in the official backlogs to prioritise and

remove it: As illustrated in Fig. 6, bars ST9, 0% of both the developers
and the team and functional architects strongly agree that they are
encouraged to assess and report TD in the official backlogs and also quite
a few of these professions strongly disagree with this statement (40% as
opposed to 27.3%). However, three-thirds (75%) of the surveyed test
and quality engineers agree to be encouraged by their managers to
assess and report TD in the official backlogs.

Deliberately taking on TD if they get benefits out of it: As shown in
Fig. 6, bars ST10, 60% of the developers perceive that they are being
encouraged by their managers to deliberate taking on TD if they get
benefits from it (0% strongly agree plus 60% agree). However, the re
sults of this activity show that only about 27% of the team and functional
architects agree (9.1% strongly agree, 18.2% agree) with this statement.
Also, 18.2% of them strongly disagree with being encouraged to delib
erately take on TD if they benefit from it.

Taken together, when looking at these results, it is clear that different
individual roles perceive the extent of their managers’ encouragement
differently, where, for instance, developers commonly strongly disagree
with all three statements. However, a word of caution is needed here
since, despite these observations, our chi-square test of independence
did not find a statistically significant difference between the answers of
different roles.

4.6.2. The situation when the teams are encouraged to remove TD (RQ6)
This section reports the survey results, addressing different situations

or under what circumstances when the managers perceive that they
encourage the teams to remove TD and receive such encouragement.

As illustrated in Fig. 6, we assess four different situations and cir
cumstances where the encouragement of removing TD may take place;
a) whenever the team wants, b) when the team has extra time, budget, or
human resources, c) when the team has a specific amount of time
dedicated to TD removal, and d) when the team provides a business case
for removing TD.

Encouraged to remove TD whenever we/the team want: As shown in
Fig. 7, bar ST24, about one-third of the managers perceive they
encourage the teams to remove TD (4.8% strongly agree, 28.6% agree)
whenever they want. This view is shared by about 21% of the technical
roles (4.76% strongly agree plus 16.67% agree), as illustrated in ST11.
However, one should also note that a substantial part of the technical
roles (about 79%) disagree with being encouraged by managers to
remove TD whenever they want (47.6% disagree, 31% strongly

Fig. 6. Summary of the individual professions responses to the survey statements reflecting the perception of receiving encouragement.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

12

disagree).
Encouraged to remove TD when we/the team have extra time,

budget, or human resources: When assessing the result of ST25 and
ST12 in Fig. 7, the results show quite interestingly that the technical
roles perceive receiving more encouragement to remove TD when they
have extra time, budget, or human resources compared to what the
managers report that they actually encourage the teams to. This result is
the only one among all the assessed statements where the managers
perceive that they encourage less than how the technical roles perceive
their managers encourage them.

Encouraged to remove TD when we/the team have a specific
amount of time dedicated to TD removal: Bar ST26 and ST13 in Fig. 7
shows that about two-thirds of the managers agree that they encouraged
the teams to remove TD when they have a specific amount of time
dedicated to TD removal (9.5% strongly agree plus 57.1% agree).
However, only about 45% of the technical roles report that their man
agers encouraged them to do so (7.1% strongly agree plus 38.1% agree),
meaning that about 55% of the technical roles disagree with this
statement.

Encouraged to remove TD when we/the team provide a business
case for removing TD: The last two stack bars (ST27 and ST14) in Fig. 7
report the result related to the encouragement of removing TD when the
teams provide a business case for doing so. By looking at these stack
bars, it is evident that by comparing this result with the previous com
parisons, the perception of these statements seems to differ less between
the managers and technical roles. ST27 shows, for instance, that 71% of
the managers agree (19.1% strongly agree, 52.4% agree) that this action
should be encouraged. Meanwhile, about 63% of the technical roles
perceive this type of encouragement from their managers.

Our chi-square test of independence did not find statistically signif
icant difference between the answers of managers and technical roles,
although for ST24 and ST11 (related to Encouraged to remove TD when
ever we/the team want), the p-value is 0.06097, which is very close to the
0.05 (usually used α).

When analysing the four different activities together, the results
indicate that the technical roles perceive that they are more encouraged
to remove TD by their managers when they have extra time or resources
available or when they can provide a business case for TD refactoring
activities. Moreover, the technical roles seem to perceive less encour
agement from their managers to remove TD whenever they want.

Taken together, when analysing the statements which relate to when
the TD refactoring is encouraged, it is evident by the presented findings

that there is a misalignment between the perception between the man
ager perspective compared to the technical role perspective, related to
the different situations and circumstances when conducting TD refac
toring activities are encouraged.

4.7. The perception of encouragement: qualitative results and discussion

After the quantitative data was collected and analysed, the results
were presented to a subset of the respondents during four different in
terviews with both technical roles and managers (separately).

The survey results were described as quite surprising by two of the
interviewed managers, where, for example, one Chief Product Owner
(CPO) said, “I would not expect that they [the managers] put so much effort
into encouraging TD management. Another interviewed manager offered a
potential explanation for the relatively high percentage of the percep
tion of encouragement from the management as “The managers them
selves think they encourage TD management a lot since it is a very high
percentage…I think the managers ‘want’ to have this attitude of encouraging
the removal of TD.”

Moreover, during these follow-up sessions, one of the interviewed
managers concluded the overall results as "The perception of the man
agers and the technical people is completely different, but the teams
show some awareness, so they [the teams] deal with it [TD] anyway."

Contrary, during the interviews with respondents having technical
roles, concerns were expressed about the encouragement of addressing
TD from their managers’ side. Even if they perceived that they received
some encouragement from their managers, the TD-related tasks were
commonly down-prioritised in favour of implementing new features
instead, which was perceived by technical roles (especially developers)
as a lack of encouragement.

When interviewing Chief Product Managers (CPMs), it was revealed
that they often do not agree to prioritise large TD issues (for example,
related to architecture refactoring) because of the lack of a good busi
ness case to support it, which should be provided by technical roles
(especially architects) and because of the lack of a suitable solution
proposal to remove the TD. This was reported by a CPM with a technical
background, which decreases the likelihood that, as proposed by other
technical roles in the interviews, managers would down-prioritize TD
refactoring because of a lack of technical understanding.

When asking what kind of TD was encouraged to be removed, we
found a difference that could explain the divergence of perception be
tween managers and technical roles. Both managers and technical roles

Fig. 7. Summary of the responses to the survey statements reflecting the situation when teams are encouraged to remove TD.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

13

revealed that they encouraged and are encouraged respectively to
remove TD that hinders the implementation of the features in the im
mediate future. In most cases, this is represented by “small” TD issues, or
other issues that can be fixed by dedicating a limited percentage of
development time (e.g., 10-20%). However, such time is not enough to
remove larger TD, such as the architectural type. Large architectural
refactoring, where packages of epic dimension are often required and
should be prioritised against features at a high management level is still
often down-prioritised. Consequently, managers feel that they
encourage staff to remove (small) TD, while technical roles feel that they
are not encouraged to remove (large) TD. This difference in perceiving
encouragement might have caused the misalignment reported in the
data.

Another issue brought up by POs during the interviews was that TD
needs to be prioritised over interests from several stakeholders in com
plex projects. The projects’ complexity often leads to wrongly estimated
time to implement the features: then, the extra time needed for the
features ends up, in practice, decreasing any time reserved to refactor
TD. This means that even if a percentage of time is reserved to remove
TD, it is not actually enough and the pressure to implement features is
too high. This infers that TD should be prioritized at a higher manage
ment level and when the projects’ budget is decided upon. Our results
further reveal that TD is not, in fact, often taken into consideration as a
variable when project resources are allocated.

Taken together, the misalignment of encouragement between the
managers and the technical roles may be because managers, in general,
perceive that they encourage the technical roles and even if the technical
roles receive this encouragement, they are not provided with additional
time and resources to actually address TD in reality.

However, with limited interviewees, caution must be applied as the
findings might not be transferable to all different technical roles and all
manager roles.

5. Discussion and limitations

One of the main implications for TD research is a need for more and
better empirical studies that may assist in finding strategies to keep the
level of TD down. Since no research to date was found in the SE research
field on how different TD management strategies can be applied to keep
TD down, this research provides novel results that may contribute to
this.

In the first step of the study, four main strategies were identified in
the initial literature research, which was particularly interesting when
portraying how software managers can influence and impact the soft
ware engineers’ attitudes and working behaviour with TD.

As illustrated in Fig. 8, we propose a model describing the different
identified and investigated TD management strategies. The model spans
four quadrants and is named "The Four TD Management Quadrants",
which outlines that TD managing strategies can be either of an incen
tive/disincentive nature, focusing on either a desired or undesired
behaviour.

This model considerably expands our understanding of different TD
management strategies, together with their different modalities and
tactics, and it also describes both how the strategies relate to each other
and how they differ. This model can assist managers in deciding which
strategy to adopt and support transition plans, shifting from one strategy
to another. It also illustrates different TD management strategy impli
cations for the teams.

Among the different studied strategies, the result shows that today’s
software companies most commonly use a TD management strategy
based on the encouragement of employees, where 60% of the re
spondents in the survey state that they are, to some extent, encouraged
to keep the level of TD down. Meanwhile, the other investigated stra
tegies such as using a strategy based on forcing mechanisms or adopting
incentive or disincentive programmes were rarely used by the
companies.

Furthermore, among the investigated companies, there was a strong
belief that both the encouraging and the reward TD management
strategy would be valuable to further decrease the amount of TD in the
software; meanwhile, the forcing and penalising strategies were not
considered as desired and constructive.

One motivating finding is that practitioners conceive that the atti
tudes and mindset toward TD remediation tasks from their managers
significantly impact the way they address TD. Further, and perhaps the
most striking results in this study are that a TD managing strategy based
on encouragement has a significant impact on the way practitioners
work with TD.

However, since the result shows that quite a lot of the respondents
(40%) to some extent still do not agree with being encouraged to focus
their effort on TD remediation tasks, this result shows that there is an
unfulfilled potential for managers to impact how practitioners can
reduce TD by adopting a TD management strategy based on

Fig. 8. The Four TD Management Quadrants Model.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

14

encouragement and without having to introduce forcing mechanisms or
strategies based on rewards or penalisations.

The second step of the study primarily focused on the output from the
first step to provide more in-depth information about how, when, and by
whom TD management is encouraged.

It is evident from this step of the study that there are significant
differences in how managers perceive that they encourage the technical
roles compared to how the technical roles perceive being encouraged by
the managers. Commonly, the managers perceive that they encourage
addressing TD significantly more often compared to how the technical
roles perceive receiving this encouragement from their managers. The
result also indicates a misalignment in when or under which circum
stances TD refactoring activities should be carried out.

Several different factors could explain the misalignment of TD
management’s encouragement between the technical roles and their
managers. In particular, we found that the higher-level managers indeed
encourage teams to remove short-term and smaller TD issues. However,
they do not often prioritise large TD issues to be refactored. This happens
because of a lack of business cases and viable refactoring solutions. In a
sense, this can also be seen as the managers not feeling encouraged enough
to prioritise TD refactoring at a higher level. In turn, the down-
prioritisation causes the technical roles (especially developers) to also
feel not encouraged to remove TD due to lack of dedicated time.

These relationships are illustrated in Fig. 9, where the current suc
cessful (green arrows) and unsuccessful (red arrows) encouraging
practices across the different roles are illustrated.

Although architects and POs agree that TD is an important area for
regulation, they report struggling to provide the right business motiva
tion for TD to be prioritised (for example, quantifying the interest in TD).
In addition, feature pressure and the complexity of the projects and
stakeholders tend to cause unplanned work that then also eats up the
time dedicated to remove TD.

Given the reported results, we foresee four possible encouragement
practices, which may act as implications for both industry and
academia, even if they would benefit from further investigation:

1) Technical Debt should be recognised as a variable in project planning
in order to better protect time for the eventual and unavoidable
occurrence of TD.

2) Architects and POs need to motivate higher-level management to
prioritise the removal of large TD items. To do so, more emphasis can
be placed on creating business cases and quantifying the TD interest.

3) High-level managers should prioritise larger TD issues against the
features to convey the message to the developers that TD is indeed an
important entity to be taken into consideration.

4) We also found that companies are often unaware of the extent of
misalignment between employees’ perceptions and top manage
ment. Once this gap was showed to the participants, they were
keener to revise their encouragement strategy.

In conclusion, the success of encouragement across the roles seems to
be closely related to how the TD is communicated and prioritised.

6. Threats to validity

Several vital threats to validity necessitate a cautious interpretation
of the results of this study. We have chosen a classification scheme to
distinguish between different aspects of validity and threats to validity
provided by Runesson and Höst [35]. This scheme includes four aspects
of validity: construct validity, internal validity, external validity, and
reliability.

Construct validity reflects the extent to which the studied opera
tional measures represent what the researchers have in mind and what is
investigated according to the stated research questions [42]. This is
commonly one of the main threats to validity in surveys, as the re
spondents might interpret the survey questions and other terms differ
ently. To mitigate this threat, we provided the respondents with the
following description of TD before answering the questions: "Technical
Debt is a metaphor that describes a real-life phenomenon and it provides a
way of talking and reasoning about difficulties related to software develop
ment and software maintenance. Below is a brief description of what Tech
nical Debt is: Technical Debt (TD) is usually described as the non-optimal
code or other artifacts related to software development that gives a short-term
benefit but causes a long-term extra cost during the software life-cycle."

Moreover, and as described in Section 3, this study may also
potentially and unwittingly have left out management strategies that
were not found during the construction of the conceptual framework.

Furthermore, this study could possibly suffer from internal validity
by affecting our ability to explain the phenomena that we accurately
observed [21]. However, to mitigate this threat, we triangulated both
surveys’ findings by conducting follow-up interviews validating the
derived results.

Additionally, to minimise the threat of misunderstanding the
different topics in the survey, we initially conducted two pilot studies
(one for each survey) with industrial practitioners. Understanding the
terms was also addressed during the follow-up interviews. External
validity focuses on the extent to which it is possible to generalise the
findings. There is always a risk in surveys that the sample is biased and
for this topic, a potential threat refers to the demographic and cultural
distribution of response samples. As reported in Section 3.1.2, we mainly
investigated companies from the Scandinavian area in step 1, which may
have a cultural impact on respondents’ experiences and views on
penalising, rewarding, forcing, and encouraging management actions.
The results could, therefore, potentially be different in other cultural or
geographical areas. Therefore, further work is needed to replicate the
results in other geographical areas and other software development
cultures. However, to mitigate this validity issue, we attempted to
enlarge the respondents’ sample by inviting additional participants
globally via LinkedIn. Reliability addresses whether a study would yield
the same results if other researchers replicated it. In this sense, trian
gulation is important [42], and to mitigate this threat, we have
employed source triangulation (several companies and several profes
sional roles), methodological triangulation (quantitative analysis based
on surveys and qualitative analysis based on interviews), and observer
triangulation (all authors participated in the analysis).

7. Conclusions

This study investigates how common different management strate
gies are when managing TD and investigating how software practi
tioners perceive such TD management strategies. More specifically, we
study how software management influences how software practitioners
work with TD, for example, by continuously encouraging and rewarding
those who focus on TD remediation and limitation activities. Yet another
TD management strategy we examine in this study is based on penal
isation and forcing mechanisms. The results show that software Fig. 9. Encouragement strategies between roles.

T. Besker et al.

Information and Software Technology 142 (2022) 106740

15

practitioners are not commonly rewarded, penalised, or forced to keep
the level of TD down.

Furthermore, the result shows that a TD management strategy based
on encouraging activities is described as having a significant impact on
the attitudes and behaviours of software engineers when addressing TD.

The results from both the first and the second step of this study show
that an extensive number of the respondents state that they are not
directly encouraged by managers to keep TD down. This indicates that
there is considerable unfulfilled potential to influence how software
practitioners can limit and reduce TD by adopting a TD management
strategy based on encouraging activities where, for example, the concept
of TD is acknowledged and recognised more broadly.

Moreover, this study also contributes to a TD management quadrant
model describing four different TD management strategies and its tactics
together with recommendations on how to implement such strategies in
practice.

Taken together, besides indicating the importance of managers
encouraging the technical roles to address TD, it is also important that
managers dedicate extra time and resources so that the technical roles
actually may conduct these activities in reality.

Finally, this conclusion presents many opportunities for future work.
A singular study is insufficient to build a solid theory covering all
different strategies, thus we encourage others to replicate our study
under similar or different settings to also include other strategies besides
the encouraging strategy.

CRediT authorship contribution statement

Terese Besker: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Data curation, Writing – original draft, Writing –
review & editing, Visualization, Project administration. Antonio Mar
tini: Conceptualization, Methodology, Validation, Formal analysis,
Investigation, Writing – original draft, Visualization. Jan Bosch:
Conceptualization, Methodology, Supervision.

Declaration of Competing Interest

The authors (Besker, Martini and Bosch) declare that they have no
known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Appendix A

Survey Questions in Step 1 (used in phase DC1)
How many years of experience in the Software Development area do

you have?

• < 2 years
• 2 - 5 year
• 5 - 10 year
• 10 years

What is your job role?

• Developer/Program/Software Engineer
• Software Architect
• Manager
• Project Manager
• Product Manager
• Expert

How big is your software development team?

• 1–5 members
• 6–10 members
• 11–20 members

• 21–40 members
• > 40 members

Please indicate your level of agreement or disagreement with each of
these statements regarding your organizational strategy to manage
Technical Debt.

• Using Likert scale: Strongly agree, Agree, Somewhat agree, Some
what Disagree, Disagree, Strongly Disagree

• Our team is or I am explicitly rewarded if TD is kept down.
• Our team is or I am explicitly penalised if TD is not kept down.
• Our team is or I am explicitly forced to keep the level of TD down (i.

e., to be allowed for deployment)
• Our team is or I am explicitly encouraged if TD is kept down.

Survey Questions in Step 2 (used in phase DC3)
What is your experience with software development?

• < 2 years
• 2 - 5 year
• 5 - 10 year
• 10 - 20 years
• < 20 Years

What is your role?

Ø Technical roles:
○ Developer
○ Team/FunctionalArchitect
○ Test/Quality
○ Platform/Chief Architect
○ Managers roles:
○ R&D manager
○ Product manager
○ CPO Product owner
○ Other managers

What is the size of your team?

• 1–5 members
• 6–10 members
• 11–20 members
• > 20 members

Asked in the survey version to managers:
Using the Likert scale: Strongly agree, Agree, Disagree, Strongly

disagree

• I encourage the software development teams to:
• Avoid and Remove TD
• Assess and report TD in the official backlogs to prioritise and

remove it
• Deliberate taking on TD if they get benefits from it (e.g., to speed

up delivery)
• When is my team encouraged to remove TD?
• Whenever they/we want
• When they/we have extra time, budget, or human resources to be

allocated
• When they/we have a specific amount of time dedicated to TD

removal (e.g., 10 or 20%, etc.)
• When they/we provide a business case for removing TD (e.g.,

reporting on costs, risks, and benefits of removing or keeping TD)

Asked in the survey version to technical roles:
Using the Likert scale: Strongly agree, Agree, Disagree, Strongly

disagree

T. Besker et al.

Information and Software Technology 142 (2022) 106740

16

• My manager encourages my team to:
• Avoid and Remove TD
• Assess and report TD in the official backlogs to prioritise and

remove it
• Deliberate taking on TD if they get benefits from it (e.g., to speed

up delivery)
• My team colleagues encourage me to:
• Avoid and Remove TD
• Assess and report TD in the official backlogs to prioritise and

remove it
• Deliberate taking on TD if they get benefits out of it (e.g., to speed

up delivery)
• When is my team encouraged to remove TD?
• Whenever they/we want
• When they/we have extra time, budget, or human resources to be

allocated
• When they/we have a specific amount of time dedicated to TD

removal (e.g., 10, 20%, etc.)
• When they/we provide a business case for removing TD (e.g.,

reporting on costs, risks, and benefits of removing or keeping TD)

References

[1] E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, J. Syst. Softw. 86
(6) (2013) 1498–1516.

[2] H. Ghanbari, T. Besker, A. Martini, J. Bosch, Looking for peace of mind? Manage
your (Technical) Debt - An exploratory field study, in: Proceedings of the 11th
International Symposium On Empirical Engineering and Measurement, ESEM,
2017.

[3] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its
management, J. Syst. Softw. 101 (2015) 193–220.

[4] T. Besker, A. Martini, J. Bosch, Time to pay up - technical debt from a software
quality perspective, in: Proceedings of the 20th Ibero American Conference on
Software Engineering (CibSE) @ ICSE17, 2017.

[5] W. Cunningham, The WyCash portfolio management system, in: Proceedings of the
7th International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’92, 1992, pp. 29–30.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,
R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, N. Zazworka, Managing
technical debt in software-reliant systems, in: Proceedings of the FSE/SDP
workshop on Future of software engineering research, 2010, pp. 47–52.

[7] T. Besker, A. Martini, J. Bosch, Technical debt triage in backlog management, in:
Proceedings of the Second International Conference on Technical Debt, Montreal,
Quebec, Canada, 2019, pp. 13–22.

[8] K. Elena, J.R. Evaristo, S. Mark, Levels of culture and individual behavior: an
investigative perspective, J. Glob. Inf. Manag. (JGIM) 13 (2) (2005) 1–20.

[9] S.M.U Gneezy, P Rey-Biel, When and why incentives (don’t) work to modify
behavior, J. Econ. Perspect. 1261 (4) (2011) 191–210, 25.

[10] A.A. Chughtai, Linking affective commitment to supervisor to work outcomes,
J. Manag. Psychol. 28 (6) (2013) 606–662.

[11] S. Beecham, N. Baddoo, T. Hall, H. Robinson, H. Sharp, Motivation in software
engineering: a systematic literature review, Inf. Softw. Technol. 50 (9-10) (2008)
860–878.

[12] A.C.C. França, T.B. Gouveia, P.C.F. Santos, C.A. Santana, F.Q.B.d. Silva, Motivation
in software engineering: A systematic review update, in: Proceedings of the 15th
Annual Conference on Evaluation & Assessment in Software Engineering (EASE
2011), 2011, pp. 154–163.

[13] P. Milne, Motivation, incentives and organisational culture, J. Knowl. Manag. 11
(2007) 28–38.

[14] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto, P. Abrahamsson,
Performance alignment work: how software developers experience the continuous
adaptation of team performance in Lean and Agile environments, Inf. Softw.
Technol. 64 (2015) 132–147.

[15] R.H. Rasch, H.L. Tosi, Factors affecting software developers’ performance: an
integrated approach, MIS Q. 16 (3) (1992) 395–413.

[16] S. Bala, J. Mendling, Monitoring the software development process with process
mining. Business Modeling and Software Design, Cham, 2018, pp. 432–442.

[17] M.J. Bateman, T.D. Ludwig, Managing distribution quality through an adapted
incentive program with tiered goals and feedback, J. Organ. Behav. Manag. 23 (1)
(2004) 33–55.

[18] F.S.F. Soares, G.S.d.A. Junior, S.R.d.L. Meira, Incentive systems in software
organizations, in: Proceedings of the 2009 Fourth International Conference on
Software Engineering Advances, 2009, pp. 93–99.

[19] R.A. Ayala, Thinking of conceptual reviews and systematic reviews, Nurs. Inq. 25
(4) (2018) e12264.

[20] J. Hulland, Conceptual review papers: revisiting existing research to develop and
refine theory, AMS Rev. 10 (1) (2020) 27–35.

[21] C.A. Ramus, Encouraging innovative environmental actions: what companies and
managers must do, J. World Bus. 37 (2) (2002) 151–164.

[22] W. Snipes, V. Augustine, A.R. Nair, E. Murphy-Hill, Towards recognizing and
rewarding efficient developer work patterns, in: Proceedings of the 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp. 1277–1280.

[23] Y. Wang, M. Zhang, Penalty policies in professional software development practice:
a multi-method field study, in: Proceedings of the 2010 ACM/IEEE 32nd
International Conference on Software Engineering, 2010, pp. 39–47.

[24] C. Seaman, Y. Guo, Chapter 2 - Measuring and monitoring technical debt, in: M.
V. Zelkowitz (Ed.), Advances in Computers, Elsevier, 2011, pp. 25–46.

[25] T. Besker, A. Martini, J. Bosch, Software developer productivity loss due to
technical debt—A replication and extension study examining developers’
development work, J. Syst. Softw. 156 (2019) 41–61.

[26] T. Besker, A. Martini, J. Bosch, How regulations of safety-critical software affect
technical debt, in: Proceedings of the 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2019, pp. 74–81.

[27] T. Besker, A. Martini, R.E. Lokuge, K. Blincoe, J. Bosch, Embracing technical debt,
from a startup company perspective, in: Proceedings of the 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp. 415–425.

[28] S. Freire, N. Rios, M. Mendonça, D. Falessi, C. Seaman, C.O. Izurieta, R. Spínola,
Actions and impediments for technical debt prevention: results from a global
family of industrial surveys, in: Proceedings of the 35th Annual ACM Symposium
on Applied Computing, Brno, Czech Republic, 2020, pp. 1548–1555.

[29] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: from metaphor to theory and
practice, Software 29 (6) (2012) 18–21.

[30] T. Besker, A. Martini, J. Bosch, Technical debt cripples software developer
productivity - a longitudinal study on developers’ daily software development
work, in: Proceedings of the First International Conference on Technical Debt @
ICSE18, 2018.

[31] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empirical methods for
software engineering research, in: F. Shull, J. Singer, D.I.K. Sjøberg (Eds.),
Selecting empirical methods for software engineering research, Guide to Advanced
Empirical Software Engineering (2008) 285–311.

[32] T. Punter, M. Ciolkowski, B. Freimut, I. John, Conducting on-line surveys in
software engineering, in: Proceedings of the 2003 International Symposium on
Empirical Software Engineering, 2003. ISESE 2003. Proceedings., 2003, pp. 80–88.

[33] R. Czaja, J. Blair, Designing Surveys: a Guide to Decisions and Procedures, Pine
Forge Press, Thousand Oaks, Calif, 2005.

[34] V. Díaz de Rada, Peter V. MARSDEN y James D. WRIGHT Handbook of Survey
Research, 2010, Revista Internacional de Sociología 71 (1) (2013) 229–233.

[35] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2009) 131–164.

[36] R.A. Krueger, M.A. Casey, Focus Groups: a Practical Guide for Applied Research,
Sage Publications, Thousand Oaks, Calif, 2009.

[37] V. Braun, V. Clarke, Using thematic analysis in psychology, Qual. Res. Psychol. 3
(2) (2006) 77–101.

[38] M. Vaismoradi, H. Turunen, T. Bondas, Content analysis and thematic analysis:
implications for conducting a qualitative descriptive study, Nurs. Health Sci. 15 (3)
(2013) 398–405.

[39] V. Braun, V. Clarke, Using thematic analysis in psychology, Qual. Res. Psychol. 3
(2) (2006) 77–101.

[40] J.L. Campbell, C. Quincy, J. Osserman, O.K. Pedersen, Coding in-depth
semistructured interviews problems of unitization and intercoder reliability and
agreement, Sociol. Methods Res. (2013).

[41] T. Besker, A. Martini, J. Bosch, Carrot and stick approaches when managing
technical debt, in: Proceedings of the Third International Conference on Technical
Debt, Seoul, Republic of Korea, 2020, pp. 21–30.

[42] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164.

[43] R. Heiberger, N. Robbins, Design of diverging stacked bar charts for Likert scales
and other applications, J. Stat. Softw. 57 (issue 5) (2014) 1–32. Pages.

[44] R.Howorko Indratmo, J.M. Boedianto, B. Daniel, The efficacy of stacked bar charts
in supporting single-attribute and overall-attribute comparisons, Vis. Inform. 2
(Issue 3) (2018) 155–165. Pages.

[45] M. Streit, N. Gehlenborg, Bar charts and box plots, Nat. Methods 11 (117) (2014).

T. Besker et al.

http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0044
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0044
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0044
http://refhub.elsevier.com/S0950-5849(21)00190-7/sbref0045

	The use of incentives to promote technical debt management
	1 Introduction
	2 Background and related work
	2.1 Incentives and disincentive programmes in SE
	2.2 Conceptual framework
	2.2.1 Encouraging activities
	2.2.2 Rewarding incentive
	2.2.3 Forcing mechanisms
	2.2.4 Penalising disincentive

	2.3 TD management activities
	2.4 Our previous work

	3 Methodology
	3.1 Step 1 – The exploratory part of the study
	3.1.1 Phase 1 – Contextual analysis and design
	3.1.2 Phase 2 – Quantitative data collection (DC1)
	3.1.3 Phase 4 – Qualitative data collection (DC2)
	3.1.4 Phase 5 – Analysis and synthesis (AS2)
	3.1.5 Phase 6 – Combined analysis and synthesis (AS3)

	3.2 Step 2 – The conclusive part of the study
	3.2.1 Phase 7 – Quantitative data collection (DC3)
	3.2.2 Phase 8 – Analysis and synthesis (AS4)
	3.2.3 Phase 9 – Qualitative data collection (DC4)
	3.2.4 Phase 10 – Analysis and synthesis (AS5)
	3.2.5 Phase 11 – Combined analysis and synthesis (AS6)

	4 Results and findings
	4.1 Demographics data
	4.2 Encouraging strategy (RQ1)
	4.2.1 4.2. Survey results
	4.2.2 Effective or desirable strategies (RQ1.1)
	4.2.3 Tactics for encouragement

	4.3 Rewarding incentives (RQ2)
	4.3.1 Survey results
	4.3.2 Effective or desirable strategies (RQ2.1)
	4.3.3 Tactics for rewards

	4.4 Forcing mechanisms (RQ3)
	4.4.1 Survey results
	4.4.2 Effective or desirable strategies (RQ3.1)
	4.4.3 Tactics for implementing a forcing strategy

	4.5 Penalising disincentives (RQ4)
	4.5.1 Survey results
	4.5.2 Effective or desirable strategies (RQ4.1)
	4.5.3 Tactics for penalisation

	4.6 The perception of encouragement - survey results
	4.6.1 The perception of receiving or providing encouragement (RQ5)
	4.6.2 The situation when the teams are encouraged to remove TD (RQ6)

	4.7 The perception of encouragement: qualitative results and discussion

	5 Discussion and limitations
	6 Threats to validity
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A
	References

