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Abstract
Why is it that semidefinite relaxations have been so successful in numerous applications in computer vision and robotics for
solving non-convex optimization problems involving rotations? In studying the empirical performance, we note that there are
few failure cases reported in the literature, in particular for estimation problems with a single rotation, motivating us to gain
further theoretical understanding. A general framework based on tools from algebraic geometry is introduced for analyzing
the power of semidefinite relaxations of problems with quadratic objective functions and rotational constraints. Applications
include registration, hand–eye calibration, and rotation averaging.We characterize the extreme points and show that there exist
failure cases for which the relaxation is not tight, even in the case of a single rotation. We also show that some problem classes
are always tight given an appropriate parametrization. Our theoretical findings are accompanied with numerical simulations,
providing further evidence and understanding of the results.

Keywords SDP relaxations · Duality · Algebraic geometry · Almost minimal varieties · Sum-of-squares · Rotation estimation

1 Introduction

Optimization over the special orthogonal group of the orthog-
onalmatriceswith determinant one occurs inmanygeometric
vision problems where rigidity of a model needs to be pre-
served under transformations. While the objective functions
are often simple least squares costs, constraining a matrix
to be a rotation requires a number of quadratic equality
constraints on the elements which makes the problem non-
convex. On the other hand, since both the objective and the
constraints are quadratic, the Lagrange dual function can be
computed (in closed form) and therefore optimization of the
dual problem can be considered. It turns out that this is a lin-
ear semidefinite program (SDP),which can be reliably solved
with standard solvers in polynomial time.

Recent studies [9,12,14,18,28,32] have observed that in
many practical applications the lower bound provided by
the dual problem is often the same as the optimal value of
the primal one. In such cases, duality offers a way of solv-
ing the original non-convex problem using a tight convex
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relaxation. For different problem classes, the prevalence of
problem instances with tight relaxations varies, as illustrated
by the synthetically generated instances in Fig. 1. Further-
more, finding conditions that can be rigorously proven to be
sufficient for a tight relaxation and strong duality for a given
problem class remains a challenging research area. In this
paper, we focus on the converse question: For what problem
classes can we find objective functions that give a nonzero
duality gap and a non-tight relaxation? We use tools from
algebraic geometry for analyzing when this happens in the
case of general quadratic objective functions over rotational
constraints. In particular, we consider the three most com-
monly occurring parametrizations that can be realized with
quadratic constraints, namely3D-rotations represented either
bymatrices fromSO(3) or by unit normquaternions, and pla-
nar rotations represented by matrices from SO(2).

We consider the dual of the dual wherein all quadratic
terms of the primal problem are replaced by linear terms
over a set of ‘lifted’ variables subject to semidefinite con-
straints. The quadratic objective functions are then replaced
by linear functions in the new variables, which are known to
attain their optimum in extreme points of the feasible set. By
studying the extreme points of this relaxation, we show that
the situation is not as favorable as one might expect from the
literature: Even for applications with relatively few rotations,
we prove the existence of extreme points with rank strictly
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Fig. 1 Histogram of the rank of the extreme points for 1000 synthetic
experiments. If the rank is one, then the globally optimal solution can
be extracted. a Problem instances with a quadratic objective function
defined over SO(3) are solved via an SDP relaxation. The coefficients
for the quadratic function of each instance are uniformly drawn from
[ -1, 1 ]. b The experiments are performed in a similar manner, except
that the quadratic functions are defined over SO(3) × SO(3). In almost
50% of the cases, an extreme point with rank greater than one is
obtained, and hence, the SDP relaxations are not tight. See Sect. 7.3
for details

greater than one, and objective functions that are minimized
at such points. The larger rank then prevents us from extract-
ing a solution to the primal problem from the ‘lifted’ variables
and shows that there is a duality gap.

Our main contributions are:

– We present a novel analysis of the duality properties for
quadratic minimization problems subject to rotational
constraints based on algebraic geometry.

– We characterize for several applications when the stan-
dard SDP relaxation is tight and when it is not. For
instance, we give counterexamples for the registration
problem with SO(3)-parametrization, showing that the
SDP relaxation is not always tight since its solution may
be an extreme point of rank 6. Similarly, we generate
counterexamples which show that averaging of four pla-
nar rotations is not necessarily tight.

– We show that the registration problem and the hand–
eye calibration problem with SO(2)-parametrization or
quaternion parametrization are always guaranteed to pro-
duce tight SDP-relaxations.

1.1 RelatedWork

It is well known that finding the optimal rigid transforma-
tion that registers two point clouds can be done in closed
form [27]. This is a key subroutine used in many different
applications, for example, in the ICP algorithm [2]. However,
registering other geometric primitives is a much harder prob-
lem. In [34,35], a branch-and-bound approach is proposed for
finding the 3D rigid transformation for corresponding points,
lines, and planes. The same problem is solved in [9] by first

eliminating the translation and then using SDP relaxations
for estimating the rotation. Empirically, it was noted that the
relaxations were always tight, but no theoretical analysis was
given. The problem of registering multiple point clouds was
solved using SDP relaxations and Lagrangian duality in [14].
The problem was further studied in [28] where it was shown
that for low noise regimes, the SDP relaxation is always tight.

In robotics, SDP relaxations for estimating rigid transfor-
mations in simultaneous localization and mapping (SLAM)
have been explored in a number of recent papers [8,11,12,
19,32]. Again, the empirical performance is generally good,
the optimal solutions can be efficiently computed [5], and
the relaxations are shown to be tight for bounded noise
levels. Non-tight counterexamples are also provided. In com-
puter vision, there are many structure-from-motion (SfM)
pipelines that rely on solving the so-called rotation averag-
ing problem, see [1,13,17,18,20,23,24,40]. One of the first
approaches to use convex relaxations and duality in this set-
ting was [20] where it was empirically observed that the
relaxations are tight. A theoretical analysis and proof that
for low noise regimes, SDP relaxations are indeed tight (no
duality gap) have been derived in [15,18,36] for the problem
of rotation averaging. The recent paper [17] explores this
analysis to develop an efficient algorithm with optimality
guarantees.

Estimating the pose of a camera also involves opti-
mization over the special orthogonal group, [10,33,38,41].
Approaches based on minimal solvers and Gröbner bases
are often used. Alternatively, we show that the camera pose
problem can be solvedwith SDP relaxations and convex opti-
mization. Another classical problem that involves rotations
is the hand–eye calibration problem [26]. In a recent paper
[21], an SDP relaxation is proposed, again, with seemingly
good empirical performance.

There are several previousworkswith similar aims as ours,
but for more general problem settings. For a general, geo-
metric overview of the problem at hand, we recommend [37]
where orbitopes are studied. An orbitope is the convex hull of
an orbit of a compact group acting linearly on a vector space.
The dual of the dual formulation that we study corresponds
to the first-order relaxation of the moment-SOS hierarchy
[25], pioneered by Lasserre [30]. The approach of Lasserre
has previously been applied to multiview geometry [29], but
without any tightness guarantees. In [15], SDP relaxations
for quadratically constrained quadratic programs (QCQP)
are analyzed. Given that the SDP relaxation correctly solves
a problem under noiseless observations (which is the case for
the problems that we analyze), conditions are given which
guarantee strong duality in the low noise regime. The size of
this neighborhood is, however, not explicitly given. Further, a
geometric interpretation of the relaxation is provided in [16].
We base our framework on the mathematical results proved
in [4] where a deep connection is established between, on the
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one hand, algebraic varieties of minimal degree and on the
other hand, the study of nonnegativity and its relation with
sums of squares (SOS).

1.2 Contents of the Paper

In the next section, we present our general problem formu-
lation. In Sect. 3, applications are presented and formulated
on the standard form, of which the SDP relaxation is given
in Sect. 4. In Sects. 5–7, we relate our problem to duality
and analyze it using results from algebraic geometry. Our
main result, a complete classification of SDP tightness for
our example applications, is presented in Sect. 8.

2 Problem Formulation

The class of problems that we are interested in analyzing are
problems involving rotations, parametrized either by

(i) p× pmatrices belonging to the special orthogonal group,
denoted SO(p), where p = 2 or p = 3 for planar rota-
tions and 3D-rotations, respectively.

(ii) 4-vectors of unit length representingquaternions, denoted
Q for 3D-rotations.

In addition, we require that the objective function is quadratic
in the variables of the chosen parametrization.

Let R = [R1, . . . Rn]where each Ri ∈ SO(p)with p = 2
or p = 3 and let vec (R) denote the column-wise stacked
vector of the p×pnmatrix R. Now letM be a real, symmetric
(p2n + 1) × (p2n + 1) matrix; then, we would like to solve
the following non-convex optimization problem

min
R∈SO(p)n

[
vec (R)

1

]T

M

[
vec (R)

1

]
. (1)

Alternatively we model 3D-rotations with unit quaternions,
q = [q1, . . . qn], and consider the similar formulation

min
q∈Qn

[
vec (q)

1

]T

M

[
vec (q)

1

]
. (2)

Note that not every problem with 3D-rotations may be
straightforward to model on both of the formulations (1) and
(2), and furthermore, their residual errors have different inter-
pretation, and therefore, the formulations are not equivalent.
Also, the set of quaternions forms a double covering of the
set of rotations, meaning that q and −q represent the same
rotations [24].

Both of these problem formulations can be put in the fol-
lowing standard form:

min
r

r T Mr

subject to rT Air = 0, i = 1, . . . , l
r T e = 1

. (3)

The l quadratic equations rT Air = 0 enforce the rotational
constraints and rT e = 1 with e = [0, . . . , 0, 1]T forces
the final element of r to be one. The rest of the paper will
be devoted to this standard form, and we will analyze it in
detail.

3 Applications

There are several application problems that can be modeled
and solved using the above formulation. Often, one would
like to solve for one or several rigid transformations (a rota-
tion and a translation). However, in many cases, one can
directly eliminate the translation and concentrate on themore
difficult part of finding the rotations.

Next we give several examples of rotation problems
appearing in the literature.

Example 1 Registration with point-to-point, point-to-line
and point-to-plane correspondences can be written as in (3).
The residuals are all of the form

‖Pi (Rxi + t − yi )‖2 = ‖(xTi ⊗ Pi )vec (R) + Pi (t − yi )‖2.
(4)

If point xi corresponds to point yi , then set Pi = I3. If xi is a
measurement known to lie on a line, then set Pi = I − viv

T
i ,

where vi is a unit directional vector and yi is a point on the
line. Similarly, if xi lies on a plane, then set Pi = nTi , where
ni is a unit normal and yi is a point on the plane.

Minimizing over t gives the closed-form solution

t = −
(∑

i

PT
i Pi

)−1∑
i

Pi
(
(xTi ⊗ Pi )vec (R) − Pi yi

)
, (5)

which is linear in vec (R). Inserting this into the objec-
tive function thus gives an expression which is quadratic in
vec (R) and therefore can be reshaped into (3).

In [27], it is shown that the registration problemwith point-
to-point correspondences can be formulated as a quadratic
optimization problem in the quaternion representation. We
are not aware of any quadratic quaternion formulation for
the point-to-line and point-to-plane cases.

Example 2 Resectioning is the problem of recovering the
position and orientation of a camera given 2D-to-3D cor-
respondences. Geometrically this can be done by aligning
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the viewing rays from the camera with the 3D points. This
reduces the problem to a special case of point-to-line regis-
tration where all of the lines intersect in the camera center.

Example 3 Hand–eye calibration is the problem of deter-
mining the transformation between a sensor (often a camera)
and a robot hand on which the sensor is mounted. Given
rotation measurements Ui and Vi , i = 1, . . . ,m relative to a
global frame, for the sensor and the robot hand, respectively,
the objective is to find the relative rotation R between them
by solving the following optimization problem:

min
R∈SO(3)

m∑
i=1

||Ui R − RVi ||2F .

‖Ui R − RVi‖2F = ‖(I ⊗Ui − V T
i ⊗ I )vec (R) ‖2

= vec (R)T Mivec (R) , (6)

where Mi = 2I − Vi ⊗Ui − V T
i ⊗UT

i . Finally, set M as

M =
[∑m

i=1 Mi 0
0 0

]
. (7)

An alternative formulation using quaternions can also be
employed. If the unit quaternions u, v ∈ Q represent the
rotations U , V ∈ SO(3), then the quaternion representing
the composition UV can be written Q(u)v, where

Q(u) =

⎛
⎜⎜⎝
u0 −u1 −u2 −u3
u1 u0 −u3 u2
u2 u3 u0 −u1
u3 −u2 u1 u0

⎞
⎟⎟⎠ . (8)

Therefore, the optimization problem

min
q∈Q

m∑
i=1

||Q(ui )q − Q(q)vi ||2 (9)

can also be used and turned into the standard form in order
to solve hand–eye calibration. Note, however, that due to the
double covering the signs of ui and vi have to be selected
consistently in order for q to give a low objective value.

Example 4 Rotation averaging aims to determine a set of
absolute orientations Ri , i = 1, . . . , n from a number of
measured relative rotations Ri j by minimizing

∑
i �= j

‖Ri Ri j − R j‖2F . (10)

Since ‖Ri‖2F = 3, the problem is (ignoring constants) equiv-
alent to minimizing

−
∑
i �= j

〈Ri Ri j , R j 〉

= tr
(
RM0RT

)
,

, M0 = −

⎡
⎢⎢⎢⎣

0 R12 · · · R1n

RT
12 0 · · · R2n
...

...
. . .

...

RT
1n RT

2n · · · 0

⎤
⎥⎥⎥⎦ . (11)

Letting M = blkdiag (M0 ⊗ I3, 0) now gives an opti-
mization problemof form (3). I3 is a 3×3 identitymatrix, and
the blkdiag (·) operation constructs a block-diagonal matrix.

Similar to the hand–eye calibration problem, rotation aver-
aging can be formulated with quaternions [22] using the
objective function

∑
i �= j ‖Q(ri )ri j − r j‖2, which after sim-

plifications yields an expression similar to (11) and hence
can be put in the standard form (3).

Example 5 Point-set averaging is the problem of registering
a number of point sets, measured in different coordinate sys-
tems, to an unknown average model. If Xi , i = 1, . . . , n are
3 × n matrices containing measurements of corresponding
3D points, we want to find a 3 × n matrix Y , rotations Ri

and translations ti such that

∑
i

‖Ri Xi + ti1
T − Y‖2F , (12)

where1 is a column vectorwith all ones, which isminimized.
Since the variables Y and ti , i = 1, . . . , n are unconstrained,
they can be solved for as a function of the rotations Ri , i =
1, . . . , n. Assuming that the centroid of the points in Xi is
the origin for all i , back-substitution allows us to write the
problem solely in terms of the rotations as

min
R∈SO(3)n

tr
(
RM0R

T
)

, (13)

where

M0 = −

⎡
⎢⎢⎢⎣

0 X1XT
2 X1XT

3 . . . X1XT
n

X2XT
1 0 X2XT

3 . . . X2XT
n

...
...

...
. . .

...

XnXT
1 XnXT

2 XnXT
3 . . . 0

⎤
⎥⎥⎥⎦ . (14)

Letting M = blkdiag (M0 ⊗ I3, 0) now gives an optimiza-
tion problem of form (3).

In the above examples, we only considered the case of 3D-
rotations. Note, however, that all of these problems also have
meaningful versions in the plane for which parametrization
using SO(2) yields the same type of problem.
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4 SDP Relaxation

Let us now derive the standard convex SDP relaxation for our
standard form (3). Consider the objective function,which can
be rewritten using trace notation as

rT Mr = tr
(
MrrT

) = tr (MX) ,

where X = rrT . Note that rank (X) = 1 and X � 0.
For SO(3), the condition that Ri belongs to the special

orthogonal group can be expressed by quadratic constraints
in the entries of Ri , for instance RT

i Ri− I = 0. Similarly, that
the cross product of the first and second rows should equal the
third, which ensures det Ri = 1 is also a quadratic constraint.
Consequently, the same constraints can be expressed by lin-
ear equations in the entries of X in the form tr (Ai X) = 0.
It can be checked that there are 20 linearly independent such
constraints for each Ri .

The corresponding program for SO(2) is similar to that
of SO(3), but it only requires one constraint per rotation. We

represent a rotation by Ri =
(
ci −si
si ci

)
, where c2i + s2i = 1.

Hence, for n rotations, only 2n variables are needed in the
vector r and the unit length constraint becomes linear in the
entries of X . Similarly for quaternions Q, the unit length
constraint for each qi can be written as a linear constraint.

If we ignore the non-convex constraint that rank (X) = 1,
then we get a semidefinite program problem over X : The
objective function is linear in X subject to linear equality
constraints and a positive semidefinite constraint, X � 0.
This leads to the following convex relaxation:

min
X�0

tr (MX)

tr (Ai X) = 0, i = 1, . . . , l
tr

(
eeT X

) = 1

. (15)

Note that as we have relaxed (ignored) rank (X) = 1, the
optimal value will be a lower bound on the original non-
convex problem (3). Further, if the optimal solution X∗ has
rank one, then we say that the relaxation is tight and the
globally optimal solution is obtained.

5 Duality and Sums of Squares

Consider again the objective function in (3) and the
Lagrangian dual problem of (15)

max
γ,λ1,...,λl

γ

M − ∑
i λi Ai − γ eeT � 0,

(16)

where (γ, λ) are the dual variables. By construction, this
problemgives the sameobjective value as (15) and therefore a

lower bound on the original (3).We are interested in knowing
when this lower bound is tight.

Let I be the ideal of the polynomials defining the con-
straint set, that is, a polynomial p is in I when

p(r) = v(r)(rT eeT r − 1) +
∑
i

vi (r)r
T Air , (17)

where v and vi are any polynomials. The variety V (I ) con-
sists of the feasible points {r | p(r) = 0 ∀p ∈ I }. Let R2

denote the set of quadratic polynomialsmodulo I , that is, two
polynomials f , g ∈ R2 are considered equal if f − g ∈ I .

The question of tightness between the original problem (3)
and the relaxation (15) and its dual (16) is related to the two
convex, closed cones

P := { f ∈ R2 | f (r) ≥ 0 for all r ∈ V (I ) } , (18)

and

� := { f ∈ R2 | there exist vectors a1, . . . , ak
such that f (r) = ∑k

i=1(a
T
i r)

2 }. (19)

Note that the cones are defined to be dependent on the con-
straint set of (3) and not on the actual form of the objective
function rT Mr . As any quadratic polynomial f in � is a
sum of linear squares on the feasible set V (I ) and hence
nonnegative, it follows that � ⊆ P .

Consider again our original problem in (3), written as

η∗ = min
r∈V (I )

rT Mr .

It follows that rT (M − η∗eeT )r ∈ P . If γ ∗ is the optimal
value of (16) with dual variables λ∗, then the matrix M −∑

i λ
∗
i Ai −γ ∗eeT is positive semidefinite, and we can factor

it into a sum of rank-1 matrices
∑

j a j aTj . Therefore,

∑
j

(aTj r)
2 = rT (M − γ ∗eeT )r − rT

(∑
i

λ∗
i Ai

)
r .

Now, rT
(∑

i λ
∗
i Ai

)
r lies in I , and we can conclude that the

quadratic polynomial rT (M − γ ∗eeT )r belongs to � when
(γ ∗, λ∗) is the solution to (16).

In view of the above discussion, it is clear that the convex
formulations (15) and (16) can only give the same objective
value as (3) when rT Mr − η∗ is a sum of squares, where η∗
is the optimal value of (3). The question we are interested
in answering is hence when is it possible to find an SOS for
this nonnegative quadratic form? If the cones are not equal,
that is, � � P , then there may exist objective functions for
which the relaxation is not tight. We shall investigate this
further in a constructive manner. First, we need some more
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Table 1 Characterization of V = SO(3)n , V = SO(2)n , and V = Qn ,
in terms of their degree. If deg V = codim V + 1, V is said to be
minimal, and if deg V = codim V +2, V is almost minimal. Otherwise,
deg V ≥ codim V + 3, and V is neither minimal nor almost minimal

tools from algebraic geometry. See also book [3] for a general
introduction.

6 The Varieties of Rotations

An algebraic variety V is the set of solutions of a system
of polynomial equations over the reals. In this paper, we
analyze three varieties that are commonly used in computer
vision applications: SO(2)n , SO(3)n andQn . These varieties
can be defined by a system of polynomial equations in the
entries of 2 × 2, 3 × 3 matrices and 4-vectors, respectively
(cf. Sect. 4). The dimensions and co-dimensions of these vari-
eties arewell-known, anddim SO(2) = 1, codim SO(2) = 1,
dim SO(3) = 3, codim SO(3) = 6, dimQ = 3, and
codimQ = 1. The degree of V is by definition the number of
intersection points of the variety with dim V general hyper-
planes, and we have that deg SO(2) = 2, deg SO(3) = 8 (see
[7] for a derivation) and degQ = 2.

For n copies of V , it is straightforward to show that
the variety of V n has dimension n dim V , co-dimension
n codim V , and degree (deg V )n . For instance, for the case
of SO(3)n , we have that dim SO(3)n = 3n, codim SO(3)n =
6n, and deg SO(3)n = 8n .

For any variety V , deg V ≥ codim V + 1. A variety is
calledminimal if it is non-degenerate (that is, not contained in
ahyperplane) anddeg V = codim V+1. Similarly, it is called
almost minimalwhen deg V = codim V+2. Considering the
degrees and co-dimensions of the varieties previously listed,
Table 1 summarizes their characterization asminimal, almost
minimal, and not minimal, for the cases n = 1, n = 2, and
n > 2.

7 The Extreme Points of the SDP Relaxation

In this section, we investigate further the convex cone of
nonnegative polynomials and that of SOS polynomials over
the rotational varieties, SO(3), SO(2), and Q. The goal is to
find out when the SDP relaxation is tight and to characterize
all possible extreme points for the relaxation.

The following general result is proved in [4].

Fig. 2 Illustration of the closed convex cones � and P defined in (18)
and (19). If the variety V (I ) is minimal, then� = P , otherwise� � P

Lemma 1 (Blekherman et al. [4]) Let V be a real irreducible
non-degenerate variety such that its subset of real points is
Zariski dense. Every real quadratic form that is nonnegative
on V is a sum of squares of linear forms if and only if V is a
variety of minimal degree.

An illustration of the result is given in Fig. 2. We will now
apply it to our varieties of interest.1

7.1 Minimal Varieties

Among the varieties in Table 1, we know that only SO(2)
andQ are minimal. In the remaining cases, the convex cones
P and� defined in (18) and (19) are therefore strictly differ-
ent, i.e., � � P . The proof of Lemma 1 is constructive,
and it allows us to generate objective functions that are
nonnegative, but not sums of squares, and thereby the SDP
relaxations will not be tight for these optimization problems.
However, our example applications have objective functions
of a special form, and it remains to see whether there are such
objectives which are not sums of squares. We will return to
this question in Sect. 8. We can conclude that any hand–eye
calibration problem defined over SO(2) or Q will always
have tight SDP relaxations.

7.2 Almost Minimal Varieties

In the casewhenV is almostminimal, that is,whenV is either
SO(3), SO(2)×SO(2) orQ×Q (Table 1), we will still have
� � P , but the gap between the cones will be smaller. Fur-
thermore, for problems in P \ �, the extreme points of the
corresponding SDP relaxation can be characterized based on
the theory in [4]. An immediate reformulation of Proposi-
tion 3.5 for our purposes gives the following corollary.

Corollary 1 Assume that the variety V is almost minimal and
arithmetically Cohen–Macaulay. Then, the extreme points
X∗ of the SDP relaxation in (15) either have rank (X∗) = 1
or rank (X∗) = codim V .

All of the varieties we study are smooth and therefore
arithmetically Cohen–Macaulay. Furthermore recall from

1 All of the varieties that we study are real, irreducible, non-degenerate
and their corresponding subsets of real points are Zariski dense.
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Sect. 6 that codim SO(3) = 6, codim SO(2) × SO(2) = 2
and codimQ × Q = 2. In the SO(3) case, if the computed
optimal solution X∗ of the relaxation has not rank 1 nor 6, but
say, for instance, rank 2, then X∗ can be decomposed into two
rank-1 matrices, X∗ = λX∗

1 + (1−λ)X∗
2 for some λ ∈ [0, 1]

where X∗
1 and X∗

2 are optimal solutions and extreme points.
If rank (X∗) = 1, then the corresponding objective func-

tion rT Mr−η∗ (where η∗ is the optimal objective value) is a
sum of squares, and as shown previously can be retrieved by
solving the SDP. If rank (X∗) > 1 and X∗ cannot be decom-
posed into rank-1 extreme points, then the corresponding
objective function rT Mr − η∗ is not a sum of squares. For
almost minimal arithmetically Cohen–Macaulay varieties,
such extreme points X∗ must be of rank (X∗) = codim V
and there are no other possibilities.

To summarize, if when minimizing a given problem over
an almost minimal variety V we obtain the extreme point X∗
which has rank (X∗) = 1, then we have indeed computed the
globally optimal solution, but if it turns out that rank (X∗) =
codim V , then the relaxation is not tight, and we do not even
have a feasible solution to the original problem, just a lower
bound on the optimal value.

7.3 Prevalence of Non-tight Problem Instances

In Fig. 1, we presented the results of two sets of synthetic
experiments, illustrating the significance of almost minimal
varieties.

In the first set of experiments, the domain is the almost
minimal variety V = SO(3) and the entries of the objective
function, encoded by the 10 × 10 symmetric matrix M in
(3), were randomly drawn from a uniform distribution from
[ -1, 1 ]. In all 1000 examples, we obtained a rank-1, glob-
ally optimal solution for the SDP relaxation, even though the
variety is not minimal. This shows that the rank-6 extreme
points predicted by Corollary 1 are rare in practice among
the random objective functions considered. It is, however,
possible to produce such non-tight examples, and we shall
return to this question later.

In the second set of experiments, the optimization took
place over V = SO(3)×SO(3), which is not almost minimal.
The entries of the 19× 19 symmetric matrix M were gener-
ated in the same way via a uniform distribution. In this case,
the relaxation works poorer, and various ranks are obtained
for its solutions.

Remark For neither minimal nor almost minimal varieties,
the nonnegative cone P becomes significantly larger than
the SOS cone �. Non-tight SDP relaxations will be more
prevalent, and various ranks will be observed for the solu-
tions to these non-tight relaxations. A rank-1 solution will,
however, always provide a solution to the primal problem.

8 Tightness of Our Example Applications

The theoretical results in the previous section apply to gen-
eral quadratic objective functions. For actual applications, the
objective functions will be structured. For instance, consider
the hand–eye calibration problem in Example 3. There are
only purely quadratic terms of the rotation variables in the
objective and no linear ones. Hence, the last row and the last
column of the matrix M will be zero. In this section, we ana-
lyze structured objective functions corresponding to different
problem classes. We also relate our new results to previous
ones in the literature.

In Table 2, we present a complete classification of SDP
tightness for our example applications. In accordance with
Table 1, applications for the minimal varieties SO(2) and Q
are always tight—this is a known result, as there is a single
quadratic constraint (see, for example, Boyd and Vanden-
berghe [6]). For the almost minimal varieties, we generate
rare non-tight problem instances, and for the non-minimal
cases we conclude that tightness can only be guaranteed
in the low noise regime, supported by previous works and
empirically demonstrated by us.
Noise-free case All of our considered example applications
have objective functions of the form rT Mr = rTUTUr =
‖Ur‖2 for some matrix U . If the optimal value η∗ =
minr∈V (I ) rT Mr is equal to zero (which corresponds to the
noise-free case), then rT (M−η∗eeT )r = rT Mr ∈ P , where
P is the cone of nonnegative quadratic forms in (18). Fur-
ther, since M has nonnegative eigenvalues, M � 0 and we
can factor it into a sum of rank-1 matrices M = ∑

j a j aTj .

It follows that rT Mr = ∑
j (a

T
j r)

2 is SOS. This is a well-
known result, and it has further been studied in [15] where
it is shown that for low noise levels (η∗ close to zero), the
nonnegative polynomial rT Mr − η∗ is a sum of squares as
well.

8.1 Registration and Resectioning

The formulations of these two applications over the domain
SO(3) are given in Examples 1 and 2, respectively. As the
variety SO(3) is almost minimal (Table 1), one may wonder
if there are actual problem instances that lead to non-tight
relaxations and extremepoints of rank-6 (Corollary 1)? In [4],
there is a procedure for finding polynomials that are nonnega-
tive, but not sums of squares.However, thiswill in general not
result in objective functions originating from registration or
resectioning problems. The objective function for this type of
problem is of the form rT Mr = rTUTUr = ‖Ur‖2 where
M = UTU with U of size m × 10 and m is the number
of correspondences of type point-to-point, point-to-line or
point-to-plane. That in particular means that M has nonneg-
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Table 2 Tightness of SDP relaxations for various applications and
parametrizations. Colors followTable 1, illustratingwhether the domain
isminimal, almost minimal, or neither. The main new results are for the
almost minimal cases, for whichwe have generated rare non-tight coun-

terexamples. For the low noise cases, tightness can only be guaranteed
in the low noise regime.We conclude that only the problem classes over
minimal varieties come with tightness guarantees

ative eigenvalues and M � 0, and there are some additional
requirements as well.

In Sect. A in appendix, we show how to modify the pro-
cedure of Blekherman et al. [4] in order to achieve such
objective functions. For every non-tight problem instance
generated with Procedure 1 described in Sect. A, we get a
rank-6 solution X∗ as predicted by Corollary 1, and conse-
quently, no feasible solution is obtained. Hence, there exist
indeed problem instances that are non-tight, but they are rare
in practice. See also the first column of Table 2.
Relation to the empirical results of Briales and Gonzalez–
Jimenez [9]. Extensive experiments using the SDP relaxation
in (15) for registration over SO(3) are performed in [9],
but not a single instance with a non-tight relaxation among
their real or synthetic experiments is found. This is consis-
tent with our experiments, as presented in Fig. 1a, where we
have done an empirical analysis of SDP tightness over SO(3)
for quadratic objective functions with random entries. The
counterexamples are indeed rare in practice for this almost
minimal variety.

8.2 Hand–Eye Calibration

As previously mentioned, the objective function for hand–
eye calibration contains only purely quadratic terms of the
rotation variables and no linear ones. Hence, the last row
and the last column of the 10 × 10 symmetric matrix M
will be zero. We tested the same procedure as for regis-
tration (see Procedure 1 in Sect. A in appendix) in order
to generate non-tight counterexamples with the structure of
a hand–eye calibration objective. We succeeded in obtain-
ing problem instances for averaging 8 rotation matrices that
yielded objective functions with non-tight relaxations, see
the second column of Table 2 for a summary. Again, all of
these optimization problems attain their minima at rank-6
extreme points, in accordance with Corollary 1.

8.3 Rotation Averaging

In [18], Eriksson et al. proved that the SDP relaxation for
problems involving three rotations with SO(3)
-parametrization is always tight. This result trivially extends
toSO(2). Further, for instanceswithmore than three cameras,

Fig. 3 Average rank for instances of the rotation averaging problem
over SO(2)4, with varying noise levels

it is shown that in the low noise regime the SDP relaxation
is tight. Low noise results applicable to SO(3) as well as
SO(2) have also been presented byRosen et al. [36], although
SO(2) is parametrized by all matrix elements in their case.
Fredriksson and Olsson [20] parametrize the rotation aver-
aging problem with quaternions Q and in all the reported
experiments, the SDP relaxation was always numerically
found to be tight. For SO(2), Zhong and Boumal [42] proved
the existence of an upper bound on the noise level for which
the SDP relaxation is tight; however, no explicit estimates
were given.2

Here we present results for the case of four rotations in
SO(2) (a three-rotation problem is always tight [18]). Fig-
ure 3 shows the average rank of the computed SDP solution
X∗. The M0 matrix in (11) was generated by sampling the
relative rotation angles from N (0, σ 2), σ ∈ [0, 1] radians.
For each noise level σ , we ran the problem 10, 000 times and
plotted the average obtained rank of the lifted variables X∗.
The observed ranks were 1 or 2. Similar to our results, Fan
et al. [19] find instances of the 2D SLAM problem with non-
tight relaxations2, and Carlone et al. [12] present analogous
results for 3D pose-graph optimization (PGO).
Relation to Mangelson et al. [32]. The planar pose-graph
problem with

∑
i �= j

‖Ri Ri j − R j‖2F + τ‖t j − ti − Ri ti j‖2 (20)

is studied in [32]. Here, additional relative translation esti-
mates ti j are present, but τ = 0 reduces the problem to
rotation averaging. A ‘proof’ of strong duality for the Sparse-
BSOS relaxation [31,39] is presented. This would imply that
rotation-averaging can be solved exactly in polynomial time

2 Their C parametrization is equivalent to our representation.
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Fig. 4 Average rank for instances of the point set averaging problem
over SO(3)4, with varying noise levels

but that the SDP relaxation (15) still gives a duality gap.
While such a weakness is entirely plausible, we note that
the presented proof in [32] is in fact flawed as the domain,
SO(2)n using unit norm constraints on the diagonals of the
rotation matrices, is incorrectly claimed to be SOS-convex
(see [3,31,39] for a definition). It is not even a convex domain.

While the lack of a proof does not exclude the possibility
that Sparse-BSOS is exact, our counterexamples in Fig. 3
show that this is only possible if Sparse-BSOS is stronger
than the SDP relaxation (15). A detailed comparison of these
two formulations would reveal if this is the case. Such an in-
depth analysis is, however, beyond the scope of this paper.

8.4 Point Set Averaging

In previous work by Chaudhury et al. and Iglesias et al.
[14,28], it has been shown that SDP relaxations are tight
in the low noise regime for registering multiple point clouds,
while in the high noise regime non-tight instances arise. Here
we reproduce similar results, registering an artificial point set
over four frames. 100 points are sampled fromN (0, 1), after
which one direction is squeezed with a factor 1/100, caus-
ing higher prevalence of non-tight instances. Gaussian noise,
sampled from N (0, σ 2), was added to each point. Figure 4
shows the average rank over 10.000 problem instances of the
computed SDP solution X∗, for each noise level σ .

9 Conclusions

We have presented a framework for analyzing the power of
SDP relaxations for optimization over rotational constraints.
The key to our analysis has been to investigate the two convex
cones of nonnegative and sum-of-squares polynomials and
to establish a connection between them and the tightness of
an SDP relaxation. We have shown that certain parametriza-
tions lead to tight SDP relaxations and others do not. For
our applications which have structured objective functions,
we have generated non-tight counterexamples to settle the
question of whether the relaxation is always tight or not.

An interesting avenue for future research is to develop
algorithms that can recover a good solution from a non-
tight relaxation for practitioners of SDP relaxations. This

was recently done for the rotation averaging problem [17].
Another interesting direction is to explore the existence of
noise bounds for which the registration and hand–eye cali-
bration problems over SO(3) are guaranteed to be tight.
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A Generating Non-tight Least-Squares
Problems

Using Procedure 1, one can generate nonnegative polyno-
mials that are not sums of squares, and consequently, such
objective functions minimized over the variety will result in
non-tight relaxations. The procedure is adapted from Pro-
cedure 3.3 in [4] (for general non-minimal varieties) and
presented here specifically for the SO(3)-case. We will gen-
erate explicit counterexamples for the hand–eye calibration
problem and the registration problem that do not have tight
SDP relaxations.

There are a few modifications of the procedure that are
required so that the objective functions do originate from
a specific example application. For least-squares problems
(such as hand–eye and registration), we know that M � 0.
This is not automatically fulfilled via Procedure 1, but we can
change Step 2 to account for this. More specifically, one can
choose a quadratic formM0, which fulfills the two prescribed
conditions (i) and (ii), and at the same time maximizes the
minimum eigenvalue of M0. This can be cast as a convex
optimization problem. If an M0 � 0 is found, then M � 0
will follow. Further, for hand–eye calibration and registra-
tion, there are linear relationships between the elements of
M that should be satisfied for any problem instance. This can
also be accounted for when maximizing the minimum eigen-
value of M0. This will give us a matrix M which satisfies
necessary conditions for our applications.
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Procedure 1 Non-negative polynomials that are not sums of
squares, p ∈ P \ �.

This procedure gives an objective function rT Mr which is not an SOS
and for which the optimal solution is a rank-6 extreme point. Recall that
r is a 10-vector consisting of 9 variables and the constant term 1 and M
is a 10 × 10 symmetric matrix.

1. Choose general linear forms hTi r , i = 1, . . . , dim V , where
dim V = 3 and compute the deg V = 8 intersection points with the
variety SO(3), where all the intersection points should be real. Fix
codim V = 6 of the points and choose an additional linear form
hT0 r that vanishes on these 6 points.

2. Choose a quadratic form rT M0r that (i) vanishes to order at least
two at each of the 6 selected intersection points and (ii) does not
belong to the subspace generated by the forms (hTi r)(h

T
j r) for

i, j ∈ {0, 1, 2, 3}.
3. For every sufficiently small δ, the quadratic form

rT Mr = δrT M0r + (hT0 r)
2 + (hT1 r)

2 + (hT2 r)
2 + (hT3 r)

2

is non-negative on SO(3) but not a sum of squares.

To show that such an M corresponds to an actual problem
instance, we look for, in the case of hand–eye calibration,
pairs of rotation matrices (Ui , Vi ), i = 1, . . . ,m such that
the objective function in (6) gives the correct matrix M . Note
that we do not need to find rotation matrices that map exactly
to M , since the set P of quadratic forms that are nonnegative
is closed and thereby quadratic forms close to rT Mr will
also be in P , but not in � (cf. Fig. 2). In practice, we solve
the following minimization problem with gradient descent:

min
Ui ,Vi∈SO(3)

||M({(Ui , Vi )}mi=1) − M ||2F , (21)

where M({(Ui , Vi )}mi=1) is the matrix obtained from formula
(7) using (Ui , Vi ), i = 1, . . . ,m andM is thematrix obtained
fromProcedure 1. Empirically,we have found that form = 8,
one can find such rotationmatriceswhich result in a non-tight
objective function.

In the case of registration, we have empirically found non-
tight problem instances with 5 point-line correspondences
where the residuals are of form (4). Similarly to the case
of hand–eye calibration in (21), we explicitly optimize for
point-line correspondences that produce an objective func-
tion which is close to the given matrix M .

Remark Although Procedure 1 in general is guaranteed to
find a polynomial p ∈ P \ �, it is not evident a priori that
there exist such polynomials with the M � 0 constraint.
Nevertheless, in practice we are able to findmany such coun-
terexamples, with non-tight relaxations.
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