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Trajectory Generation for Mobile Robots in a Dynamic Environment
using Nonlinear Model Predictive Control

Jonas Berlin1 Georg Hess1 Anton Karlsson1 William Ljungbergh1

Ze Zhang2 Per-Lage Götvall3 Knut Åkesson2

Abstract— This paper presents an approach to collision-free,
long-range trajectory generation for a mobile robot in an
industrial environment with static and dynamic obstacles. For
the long-range planning a visibility graph together with A*
is used to find a collision-free path with respect to the static
obstacles. This path is used as a reference path to the trajectory
planning algorithm that in addition handles dynamic obstacles
while complying with the robot dynamics and constraints. A
Nonlinear Model Predictive Control (NMPC) solver generates
a collision-free trajectory by staying close to the initial path
but at the same time obeying all constraints. The NMPC
problem is solved efficiently by leveraging the new numerical
optimization method Proximal Averaged Newton for Optimal
Control (PANOC). The algorithm was evaluated by simulation
in various environments and successfully generated feasible
trajectories spanning hundreds of meters in a tractable time
frame.

I. INTRODUCTION

Mobile robots that autonomously navigate in an environ-
ment with static and dynamic obstacles have to solve two
main problems, (i) they have to find a global path from
the source to the destination, and (ii) they have to locally
plan a trajectory that avoids collision with moving obstacles,
e.g., humans and forklifts. There exists a large number of
approaches to do motion planning for autonomous vehicles.
An overview of different motion planning techniques for
autonomous vehicles are presented in [1, 2]. The problem
is typically divided into a global route planner and a local
trajectory planner. For the route planner the task is to find
a path from source to destination. In a factory setting this
typically involves following preferred road networks and
avoiding static obstacles. The route planning problem can
be formulated as minimum-cost path problems defined over
a graph where a weight on an edge describe the distance
between the nodes that are connected by the edge. The
nodes can originate from a discretization of the 2-D space
or from geometric methods where obstacles are models as
polyhedrals [3]. In both these cases shortest path problems
can be solved using A* [4] or approximate, but faster,
variants like Anytime Dynamic A* [5].
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Route planners do, typically not, consider robot kinematics
and dynamics, nor do they handle dynamic obstacles. How-
ever, global route planners are able to cover large distances
in a computationally efficient manner, which makes them
suitable for the long-horizon planning problems, but they
have to be complemented with local trajectory planners that
will take robot kinematics, dynamics, and also dynamic
obstacles into account.

Local trajectory planners are concerned with generating
a collision-free path for a part of the path between the
source and destination. These planners generally consider
vehicle kinematics and dynamics and constraints on velocity
and acceleration, and yield feasible trajectories for a given
robot. A local trajectory planning may also take moving
obstacles into account by generating a trajectory that avoids
a collision between the robot and the moving obstacle. There
are many approaches to trajectory planning, for example
sampling-based planners like RRT[6], or planners based on
interpolating curves that computes a smooth path given a
set of way-points, see e.g. [7]. However, to handle situations
with moving obstacles it is advantageous to use an on-line
approach that computes control actions for the robot based on
the observed and predicted future states of the environment.
Optimization-based trajectory planning algorithms, such as
Model-Predictive Control (MPC), are very promising due
to two reasons, (i) they can naturally encode constraints on
velocity, acceleration, and jerk as well as distance constraints
to obstacles inside its formulation, and (ii) the algorithms
for solving optimization problems has improved considerably
over the last years, this together with the increased perfor-
mance of common processors has made it feasible to solve
complex optimization problems in real-time.

The method Proximal Averaged Newton-type method for
Optimal Control (PANOC) was proposed in [8] and shows
computation times multiple orders faster than interior point
(IP) and sequential quadratic programming (SQP) for many
applications. In [9], different solvers were compared for
non-linear MPC (NMPC) obstacle avoidance, showing the
superiority of PANOC when it comes to robustness and
solving time. Further, the PANOC solver has successfully
been used for real-time NMPC with obstacle avoidance in
applications such as [9, 10].

In [10] a novel framework was introduced for modeling
generic, possibly non-convex, shapes of obstacles by describ-
ing them as a set of non-linear inequalities. However, as
described by [9], the framework has the risk of getting stuck
in local minima. To avoid this, [9] combined the modeling
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approach with several heuristics such as using graph search
to guide the solution out from local minima. Nevertheless,
none of these approaches are suitable to find long-range
trajectories.

In order to generate trajectories at larger scales, we
propose an approach leveraging the global route planners
optimality and computational efficiency with the a local tra-
jectory based planner based on an NMPC controller solving
several NMPC problems in an iterative manner. Specifically,
A* is used to find the optimal path while NMPC follows
this path closely and generates a feasible trajectory. To
solve the NMPC problems iteratively in a computationally
efficient manner, the PANOC solver is used. Our contribution
is a new combination of global and local path planning
techniques, yielding an algorithm that can generate collision-
free trajectories using NMPC for distances larger than a
few meters while being able to handle arbitrary shapes of
static obstacles as well as avoiding collision with dynamic
obstacles.

II. METHOD

A. Algorithm overview

In Fig. 1, a flowchart of the proposed algorithm is shown.
The algorithm mainly consists of two parts. First, A* is
used to find waypoints for the shortest path. Secondly, an
NMPC solver is used iteratively to follow said waypoints
and generate a smooth trajectory. The A* algorithm can
consider arbitrary polygon shapes as static obstacles, which
are translated to simpler constraints in the NMPC setting.
The reasoning is that this simplifies the optimization problem
and thus should improve the robustness and computation time
of the NMPC solver.

As input, the algorithm is fed a set of static obstacle
polygons Pstatic, an outer boundary polygon B, initial state
xinit and a target state xend, an illustrative example is shown
in Fig. 2. To account for A* considering the robot to be
a point object, all polygons in Pstatic are inflated by half
the robot width together with some additional safety margin.
Similarly, B is deflated by the same amount. The set of all
polygons is then converted to a visibility graph where the
set of vertices also includes the starting and target positions
extracted from xinit and xend respectively. The waypoints
found when running the A* algorithm on the visibility graph
then consist of start and target position, as well as polygon
vertices that must be cornered, e.g. the upper left polygon
vertex in Fig. 2. Before starting the NMPC solver, the
waypoints are correlated to the non-padded polygon vertices
and their coordinates are saved as ostatic = [xobs, yobs]

T in
Ostatic, e.g. in Fig. 2 this corresponds to Ostatic = {[3, 7]T }.
Further, a sequence L with line segments of equal length is
extracted from the waypoints.

Once the initial processing is finished, the trajectory X
is initiated as the initial state. Next, the NMPC solver is
called in an iterative manner. Let N denote the horizon used
in the NMPC and let nobs,static and nobs,dynamic be the
maximum number of static and dynamic obstacles considered
in each NMPC iteration. In each iteration, the latest state in
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Fig. 1. Flowchart of the proposed algorithm.

the trajectory is set as the current state and based on this
the N coming line segments from L are extracted as well as
the nobs,static closest obstacle coordinates in Ostatic. Further,
the predicted location and shape of nobs,dynamic dynamical
obstacles for the next N time steps are extracted. Given
these inputs, the NMPC solver is used to find a sequence
of feasible actions û(0:N−1) for a given motion model. The
corresponding states x should be close to the line segments,
i.e. have a low cross-track error to the desired path, keep
at least a distance of r to the selected nobs,static obstacle
points in Ostatic, keep a sufficient distance to the nobs,dynamic
dynamical obstacles and respect vehicle dynamics and con-
straints. From the sequence û(0:N−1), the first action is used
to calculate the new state to append to the trajectory X . If the
last state is not close to the target state the next iteration is



Fig. 2. Example environment displaying padding of boundary and obstacle,
A* path and obstacle modelling in NMPC. The original enclosing boundary
is shown as a black line, while the green line is used for the A* path.
Similarly, the original static obstacle is shown with a red line, while the
padded yellow version is used when deploying the A*-algorithm. Lastly,
the obstacle corner where the A* path traverses is translated to a circular
NMPC obstacle, such that the robot does not collide with the static obstacle.

started, i.e. the current state is updated and new line segments
and obstacle locations are fed to the NMPC solver.

As described above and shown in Fig. 2, obstacles are
modeled in different ways in the visibility graph and the
NMPC formulation. In the visibility graph, obstacles are
allowed to have any polygon shape. For the NMPC formu-
lation, these are translated such that the trajectory must keep
a certain distance of at least r to polygon vertices that are
along the A* path, e.g. in Fig. 2 r is shown as the radius of
the red circle. To ensure that the trajectory does not overlap
with polygons that are not modeled in the NMPC, e.g. the
boundary in Fig. 2, the cross-track error to the reference
path must be kept sufficiently small. While not shown in the
figure, dynamic obstacles are modelled as ellipses. This is
due to the fact that their true locations in general are not
known beforehand, and ellipses can be used to model their
position as a Gaussian distribution.

B. NMPC Formulation

The dynamics in the NMPC formulation are modelled
using a discrete motion model for a differential drive robot
as in (1), where i denotes the current trajectory time step and
Ts denotes the step size. The state xi in the model consists
of the 2D coordinates xi, yi, and the heading θi, while the
inputs ui to the system are velocity vi and angular velocity
ωi. Acceleration is not included in the motion model but
the change in the input is bounded in the coming NMPC
constraints, and thus acceleration is not neglected. Note that
the proposed algorithm is not dependent on this specific
motion model but the differential drive is used since it is
illustrative for the mobile robot use-case.

f(xi,ui) =

xi + vi cos(θi)Ts
yi + vi sin(θi)Ts

θi + ωiTs

 (1)

The NMPC-controller calculates an optimal control se-
quence in regard to a cost function and constraints for the
predicted states and control actions over a horizon of length
N. Predicted states and inputs within the NMPC controller
are denoted as x̂ and û respectively and use time index j,
while the states and control actions that define the generated
trajectory are denoted x and u respectively and use time
index i. The selected cost function consists of multiple parts,

Jcte,j = d(x̂j , lA*)T Qcte d(x̂j , lA*) (2a)

Jv,j = (v̂j − vr,j)T Rv (v̂j − vr,j) (2b)

Jacc,j = (ûj − ûj−1)T Rd (ûj − ûj−1) (2c)

where Jcte is the cross-track error (CTE) cost. For a state x̂j
and a set of line segments lA*, d(x̂i, lA*) finds the minimum
distance between the state and any of the line segments. Jv
is a cost for difference between predicted velocity v̂j and
the reference velocity vr,j at each time instance. Finally,
Jacc is the cost for change in input i.e acceleration. For
coherence between iterations, this cost is also applied to
û0 − ui−1 where ui−1 is the last applied input from the
previous iteration. Conventionally a cost for the predicted
terminal state is included to provide incentive for the robot
move forward, however this cost has been omitted as that
incentive is provided by other costs. Qcte, Rv and Rd are
tuning parameters that can be modified for desired controller
behaviour.

Dynamical obstacles are modeled as ellipses with five
time dependent parameters namely the coordinates ox,j and
oy,j , width ow,j , height oh,j and heading oα,j . The reason
width and height are time dependent is to potentially model
uncertainty in obstacle location. The robot is at time j not
allowed to violate the area Dj occupied by all ellipses at
time j. Let Odynamic,j denote the dynamic obstacle states
at time j, then Dj can be written as,

Dj = {(x, y)|oj ∈ Odynamic,j ,
((x− ox,j) cos(oα,j) + (y − oy,j) sin(oα,j))

2

o2
w,j

+

((x− ox,j) sin(oα,j)− (y − oy,j) cos(oα,j))
2

o2
h,j

≤ 1}

(3)

These cost, constraints from obstacles and dynamics make



up the optimization problem in (4).

min
û(0:N−1)

N∑
j=0

Jcte,j + Jv,j + Jacc,j (4a)

subject to: x̂0 = xi (4b)

||[x̂j , ŷj ]T − o||2 ≥ r, ∀o ∈ Ol, j = 0, . . . , N (4c)
(x̂j , ŷj) /∈ Dj (4d)

x̂j+1 = f(x̂j , ûj) (4e)
ûj ∈ [umin,umax] (4f)
∆û

Ts
∈ [u̇min, u̇max] (4g)

Here Ol is a subset of all static obstacles Ostatic, specif-
ically, the nobs,static closest ones as described earlier. To
ensure coherence, the first state of the NMPC solver x̂0 is
set to the latest state from the trajectory generated so far xi.
Finally, the constraint on ∆û = ûj − ûj−1 is also applied
to û0 − ui−1, again to ensure coherence between iterations.

The optimization problem in (4) is solved using the
PANOC optimizer, this yields a sequence of control actions.
Note, that we, in this work, assume that no disturbances are
present. The first control action is supplied to the motion
model and the robots movements are simulated one time
step ahead. This process will be iterated until the final state
is reached as is shown in the flowchart in Fig. 1.

III. EVALUATION

The proposed solution was evaluated via simulation and
the algorithm was tested on multiple constellations of layouts
and obstacle configurations to ensure robustness. However,
only the test-case shown in Fig. 3 will be considered in this
section. Note that the dynamical obstacles are not shown in
this figure as their positions vary with time, but are displayed
in Fig. 5 to 7.

Throughout the evaluation, a differential drive motion
model, as described in (1) was used to simulate the move-
ment of the mobile robot and the following values were
selected as the tuning profile. The cost for velocity deviation
from the reference speed Rv was set to Rv = 10.0, the cost
of deviation from the global path Qcte was set to Qcte = 200
and the cost for linear and angular acceleration was set
to Rd = diag(

[
10.0 5.0

]
) respectively. Furthermore, the

length of the receding horizon was set to N = 20 and the
algorithm operated with a time-step size of Ts = 0.2. Lastly,
the linear and angular constraints imposed on the vehicle was
chosen to reflect that of a mobile robot, which is shown in
(5).

umin =
[
−0.5 −0.5

]T umax =
[
1.5 0.5

]T
(5a)

u̇min =
[
−1.0 −3.0

]T
u̇max =

[
1.0 3.0

]T
(5b)

Our proposed solution have displayed several different
desirable characteristics that can be highlighted using the

Fig. 3. Generated reference trajectory throughout the layout. Note that the
dynamical obstacles (shown in Fig. 5 - 7) are not shown as their positions
are varying over time. Video of the simulation can be found https://
youtu.be/jiRxyRfNJK8

Fig. 4. Linear and angular velocity profile for the reference trajectory
shown in Fig. 3 .

example shown in Fig. 3. By inspecting the generated linear
and angular velocity profiles, shown in Fig. 4, it is clear
that the NMPC-controller decreases the linear velocity as
it increases the angular velocity. In other words it slows
down when taking sharp corners to avoid deviating too much
from the reference path. Furthermore, from Fig. 3 and 4, it
is evident that the proposed approach computes a smooth
trajectory, even around very sharp corners, that satisfies the
non-holonomic motion constraints of the differential drive
robot while keeping the deviation from the global reference
path small.

The time-lapse in Fig. 5 displays a dynamic obstacle cross-
ing the global path perpendicularly as the mobile robot is to
traverse it. As the NMPC-controller has access to the future
positions of said obstacle it can calculate that decreasing the
velocity and allowing the obstacle to pass before proceeding
would enable it to maintain a small distance to the global
path.

In Fig. 6 the mobile robot is blocked by a slow-moving
obstacle travelling along the same path. Here, the NMPC-
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Fig. 5. A dynamical obstacle crossing the global path perpendicularly,
causing the mobile robot to slow down in order for the obstacle to pass.
The extent of the moving obstacle is shown as a red ellipse, while the yellow
ellipse is used in the NMPC formulation to account for the extent of the
ego-robot. Video at https://youtu.be/95Or9fLlIpM

controller can not simply wait for the obstacle to pass
but rather it can reason about the cost of deviating from
the global path versus the cost of remaining behind the
slowly moving obstacle. Depending on the tuning profile this
can lead to different behaviors, however, using the profile
described above leads to the overtaking that can be seen in
the time-lapse in Fig. 6.

Finally, in Fig. 7 the mobile robot is on course for a
collision with an oncoming obstacle. Even in this seemingly
challenging case, where the obstacle is approaching with a
relatively large velocity, the NMPC-controller can compute
a smooth and collision-free trajectory by deviating from the
global path. While the extent of the ego-robot intersects
with the padded obstacle ellipse, it never collides with the
true obstacle. Together, the scenarios shown in Fig. 5 to 7
display that the NPMC and algorithm can handle a range
of different interaction scenarios with dynamic obstacles. It
further illustrates that the algorithm is robust not only to
different static obstacle configuration but also different types
of dynamic obstacle interactions.

However, while the algorithm can handle a large variety
of scenarios, one of which is shown in Fig. 3, there are
certain cases where the NMPC solver generates trajectories
that intersect the padded obstacles. In Fig. 8, one such case is
depicted, where the path is heading north through a narrow
corridor before turning 90 degrees into a different narrow
corridor. For the NMPC solver, the only obstacle constraint is
to keep a distance of at least 0.5 meters to the polygon corner
marked with a red circle. Since the solver has no notion of
other obstacles, there is nothing restricting it to stay within
the drivable area. To stay close to the reference speed of
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Fig. 6. Slow-moving dynamical obstacle forces the mobile robot to deviate
from the global path and increase its velocity to perform an overtaking.
Video at: https://youtu.be/aN73iwWjQUA
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Fig. 7. Mobile robot strays from the global path in order to stay clear
of the oncoming dynamical obstacle. Video at: https://youtu.be/
DQarRKinpTw

1.5 m/s, while respecting constraints on the angular velocity,
the trajectory must deviate from the desired path. While the
trajectory intersects the padded obstacle, the safety margin
used when padding results in the trajectory to be collision-
free. The robot width is set to 0.25 meters, and there is no
contact between the robot and any obstacle. However, this
shows that proper selection of all parameters is of utmost
importance to generate collision-free trajectories and they
must be selected based on each specific use-case. While this
can be considered an edge-case it highlights the limitations
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Fig. 8. Scenario for which the NMPC solver generated a trajectory
intersecting with a padded obstacle. However, the safety margin ensures that
the robot keeps sufficient distance to the original obstacle. The trajectory is
going from the bottom to the right side.

of the proposed algorithm.

IV. CONCLUSION

In this paper we propose a novel combination of al-
ready established techniques to perform long-range trajectory
generation. We leverage the optimality and computational
efficiency of the A* algorithm to generate a reference path,
consisting of linearly connected waypoints, from which we
form a cross-track error loss in the NMPC objective function.
The recent development in numerical optimization methods,
namely PANOC, enables our approach to leverage the NMPC
in an iterative manner while maintaining computation time
sufficiently low. The iterative usage of the NMPC allows
us to generate reference trajectories that span over longer
distances than that of what previous solutions showcase.

To improve the robustness of the proposed approach, we
suggest further investigations within three areas. Firstly, as
mentioned earlier, in [10] a framework was presented on how
to model general obstacle shapes in the NMPC formulation.
It might be of interest to combine this type of obstacle
modelling with our algorithm for cases where our original
approach fails. However, one has to investigate how a more
complex obstacle modelling affects the run-time. Secondly,
the presented approach does not work for all possible motion
models. There are situations where the A* algorithm will
produce paths that cannot be followed closely by some
motion models, e.g. one describing the motion of a car. More
work has to be done to find ways to adjust our approach such
that it can handle all common motion models.
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[1] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and
E. Frazzoli, “A survey of motion planning and con-
trol techniques for self-driving urban vehicles,” IEEE
Transactions on Intelligent Vehicles, vol. 1, no. 1,

pp. 33–55, 2016. DOI: 10 . 1109 / TIV . 2016 .
2578706.
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