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ABSTRACT As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety,
efficient and distributed data analysis is needed to effectively leverage new technologies in real-world
applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional
analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network,
becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which
aims at alleviating this drawback by leveraging vehicles’ computational power, we are the first to study how
to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is
achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time
needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We
evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles
join or leave the fleet during the distributed data localization process. As we show, our algorithms are both
efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing
computational overhead by up to 3×, while providing good estimates for the fraction of vehicles with
relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are
available at https://github.com/dcs-chalmers/dataloc_vn.

INDEX TERMS Connected vehicles, Data Analysis, Edge computing, Query processing

I. INTRODUCTION

W ITH the recent advancements in connected Vehicu-
lar Networks [1], often facilitated by Vehicular Ad

Hoc Networks (or VANETs) [2], the automotive industry is
witnessing an unprecedented growth of possible ways for
leveraging the fine-grained data sensed in modern vehicles
and enhance drivers’ safety and experience. If accessed in a
real-time fashion as it is being sensed, such data can lead to
fresh, up-to-date insights for analysts and practitioners [3].
Similarly to how Mobile Edge Computing [4] pushes parts
of data analysis applications, previously run entirely in the
cloud, towards mobile users, to achieve lower latency and
bandwidth consumption, Vehicular Edge Computing [5] aims
at better utilizing the cumulative computational power of Ve-
hicular Networks while coping with high-mobility networks
and the challenges stemming from their dynamic topologies
and communications. When focusing on data analysis in the
context of Vehicular Networks, a critical challenge is that of

data gathering [6], [7] for subsequent analysis. While in the
past companies could potentially afford the central gathering
of all the data sensed by an entire fleet of vehicles (see [8], [9]
for applications and services in VANETs), a modern vehicle
can now generate several gigabytes of data per hour [1],
making this approach infeasible in terms of infrastructure
and costs - which could be alleviated by enforcing the
collection of just enough data from relevant vehicles only.
Several recent studies in the literature are focusing on how
to avoid general central data gathering by transitioning to
models in which the data selection processes, or even the
analysis itself, are pushed towards the vehicles [10], [11],
[12], for efficient and continuous filtering [13], preprocessing
through online compression [14], [7], and conversion of raw
data into information in Federated Learning [15]. However,
these distributed analysis models often lack mechanisms that
attempt to involve only valid vehicles into the analysis, to
thus avoid unnecessary computational load and data transfers
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or other hindrances to the analysis. As an example, Federated
Learning on vehicles [16] requires the involvement of vehi-
cles that have gathered sufficient suitable data in order not to
hinder the learning process [17]. Furthermore exacerbating
the issue of vehicle selection are skewed data distributions on
vehicles [18], [19] and data minimization directives such as
the European GDPR, which dictate to minimize exposure risk
and thus overall involvement of customer vehicles. To find
vehicles possessing data relevant to an analysis task, one has
to overcome the lack of a-priori knowledge about which vehi-
cle has collected which data, without centrally gathering said
data first, by leveraging the vehicles’ computational power.
As vehicles possess only application-specific computational
hardware that is not provisioned for more general tasks, it is
furthermore paramount to avoid unnecessary computational
strain on the fleet.

Contribution
In light of the present challenges concerning the transition
from central to distributed, edge data gathering and analysis
in large fleets of vehicles, we pose the following question:

How can data residing on the edge nodes of a Vehicular
Network be localized efficiently through request-spreading

from a central coordinator to the vehicles?

The manner of spreading requests is regulated by a data
localization algorithm orchestrated at a central coordinator
that has to be aware of the completion time and the compu-
tational overheads induced on the fleet of vehicles. Once a
request is sent from the coordinator to a vehicle, the latter
checks locally whether a set of conditions is satisfied by the
stored data (e.g., whether the data spans a given time interval,
or whether the data indicates that the vehicle is associated
with a specified geographical position, speed, driving mode,
etc.), and returns a compact answer indicating whether the
conditions hold. When performing traffic flow analysis, for
instance, this could be used to efficiently compute a certain
statistic (e.g., the average speed) only based on vehicles
driving above a certain speed, within a city center, or during
rush hour, or to mark these vehicles for a subsequent analysis.
With the ultimate goal of collecting a certain amount of
answers from vehicles matching a given set of conditions,
we propose efficient data localization algorithms, that can
also cope with dynamic connectivity, and benchmark them
against baseline algorithms. Our evaluation, based on real-
istic queries and also assessing the spreading of requests
using real vehicular data, shows that our data localization
algorithms provide up to a 40× speedup and less than one-
third of the computational overhead, compared with baseline
algorithms optimizing only one of the metrics.

The typical characteristics of Vehicular Networks include
recurrent topology changes due to vehicles’ high-speed mo-
bility and properties of the underlying road network (in-
cluding communication-challenging environments such as
bridges, tunnels, etc.). Though this challenging aspect can
impede successful communication between a central coordi-

nator and vehicles, our work accounts for it with algorithms
able to react rapidly to dynamic connectivity issues. To the
best of our knowledge, we are the first to formulate and
analyse the problem of localizing data in a vehicular fleet,
as well as to propose algorithms that can tune the key trade-
off between resolution time and overhead on the vehicles and
the communication network.

The remainder of the paper is organized as follows: We
introduce the System Model in § II. We present in § III
baselines and propose novel algorithms for solving data
localization queries by spreading a set of requests over a fleet
of vehicles. We lay out our evaluation methodology in § IV
and cover the evaluation of the proposed algorithms in § V.
We discuss related work in § VI, before concluding the paper
with a summary in § VII. In the Appendix, we discuss the
relation of the present paper to an earlier conference article
that presented first results on a preliminary formulation of the
problem for a subset of the system types considered here.

II. SYSTEM MODEL
A. PROBLEM DEFINITION
We consider the following model: a fleet V of k vehicles, also
referred to as nodes, is equipped with different types of sen-
sors s1, s2, . . . from the fixed sensor set S, e.g., S = {GPS,
steer, break, . . . }. We define the continuous timestamped
record sequence recorded by the sensor si ∈ S at vehicle
v ∈ V as

si(v) = (t0, x0), (t1, x1), . . .

where xj is the sensor reading at time point tj . All vehicles
are connected via a two-way communication channel to a
central coordinator C, e.g., a datacenter. Data analysts re-
quire C to process data localization queries q1, . . . , qr, with
each query focusing on some subset of the possible sensors
for some time span of recorded data.

A (data localization) query here corresponds to the task
of identifying n vehicles in the fleet with relevant data. In
more detail, a query q carries a specific condition P that
must be fulfilled by vehicles’ data to be relevant for q and
every query specifies some number of positive answers n
(responses from distinct vehicles with relevant data, where
a “positive” or yes-answer implies that P holds locally) that
must be collected to resolve q before a potential next analysis
step involving only these n vehicles with relevant data can
follow. kq is the number of vehicles in the fleet on which P
holds, and QR = kq/k is the query rate or average answer
rate of a query q. We assume k � kq > n, thus n vehicles
with relevant data can indeed be found for a query q. To
check if a particular vehicle v fulfills q’s condition P for
some query q, a request r(q) is sent to v and after checking
P locally, v responds to C with its yes- or no-answer (and
potentially some additional data). If a vehicle v receives a
new request r(q′) corresponding to another query q′ while
already processing a previously received one r(q), then r(q′)
is added to v’s local task queue; once v has terminated its
processing of r(q), v’s task queue is then processed in FIFO
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order. Naturally, not every vehicle can answer positively to
every request, because of lack of data or because the data
is found not suitable to answer that particular query. The
required number of answers is meant to localize a sufficient
amount of data from the vehicles to be meaningful for the
analysis task at hand, while avoiding excessive participation.

Notice that contacting exactly the number of vehicles
given by the analyst is not necessarily enough, as some might
not answer or have data that does not satisfy the condition. On
the other hand, contacting too many vehicles might result in
some of them wasting some of their computational power to
inspect data that is not actually needed by the analyst. Thus,
we need to require just enough positive answers (e.g., for
statistical significance or for reducing the likelihood of iden-
tifying individuals in the data), but not too many (because of
the time needed to collect all the data [20], [7], the induced
computational load, and potential network stress).

We will use the notation q.P for the condition and q.n for
the minimum number of answers required to complete the
data localization query q. The condition P specifies (i) which
sensors are relevant to the query and (ii) an overall condition
that local data must satisfy for the vehicle to acknowledge
that its data can be part of the desired analysis. In the fol-
lowing: Sq ⊆ S is a subset of sensors which are relevant for
the query q (by default Sq = S); and (tstart, tend) are time
bounds spanning q’s time interval of interest such that for
every participating node v and every sensor of type si ∈ Sq ,
only the portion of local data {(t, x) ∈ si(v) | tstart ≤ t ≤
tend} is examined (if not specified, the full recorded data is
considered).

a: Example query

To interactively check the traffic flow within a certain area
A of a city, an analyst wishes to identify n = 100 vehicles
in a k = 100, 000 vehicles fleet, with P = “driven within
area A in the last hour, with an average speed greater than
50km/h over a 10 minutes window, and with GPS mea-
surements spaced by at most 5s from each other”. In this
query, assuming the query is created at 9:00, Sq = {GPS},
(tstart, tend) = (8:00, 9:00), and A is a bounding box or
geofence approximating the area of interest. Notice that, in
this example, to check if any period of 10 minutes (repre-
senting only 12000 data points for 100 cars with 5 seconds
GPS readings) within the last hour fulfills the condition, a
centralized solution requires between n · 3600/5 (consider-
ing at least n vehicles need to answer) and k · 3600/5 data
points to be transmitted, i.e., 72000 to 7200000 data points;
that is, in order to check the existence of any period of
10 minutes of consecutive readings with speed greater than
50km/h, since the coordinator has no information whether
they exist (and in which portion of the hour), the entire hour
needs to be retrieved and checked. Checking the condition
on-board the vehicles alleviates this data transfer and only
short yes/no answer messages need to be communicated with
the coordinator.

b: Applications
In the aforementioned example query, the mere collection of
affirmative or negative answers from the fleet can already
provide a good estimation of the fraction of vehicles that
satisfy P in the fleet (and thus quantify the traffic flow in
the area in question). This defines a first set of applications,
in which a query itself gives rise to a statistical insight by
providing a population estimate. As hinted in the example,
transmitting raw data from a random sample of the fleet in
the above example to check at the coordinator whether P
holds for a vehicle would incur significantly higher commu-
nication costs, while yielding the same insight. In addition
to the first set of applications, the coordinator node C can
ask the vehicles which answer positively to subsequently
perform tasks suitable only to them. These tasks can include
transmitting raw data, performing statistical summaries such
as averages or other aggregate functions over the local data,
or higher-level computations on-board the vehicle over the
relevant data, such as training an Artificial Neural Network.
However, we do not consider the query post-treatment in this
work and concentrate on the aspect of data localization. That
is, we focus on finding a suitable set of vehicles that will
participate in the query resolution process. One may note that
some of the subsequent tasks could be answered alongside
P ’s verification, entailing minor changes in the processing
time of the query. The aggregated value could be transmitted
with the vehicle’s yes/no-answer to C without significantly
changing the resolution time. For computationally heavier
analysis tasks or those requiring substantially longer time
(such as data transfers from the vehicles), we consider that
the post-treatment is executed in a way independent of the
selection process, i.e., vehicles will always first inform C if
they validate P before executing the post-treatment.

B. FLEET MODEL
The fleet V of vehicles that can be contacted encompasses the
totality of vehicles that are equipped to take part in answering
requests incoming from the coordinator C. As vehicles in V
may be switched off, we introduce the active set of vehicles
Vt ⊆ V at a time t as the ones switched on and willing
to participate in the data localization queries’ resolution
process. A realistic fleet is a dynamic entity where vehicles
leave and join impromptu (thus, vehicles are being switched
on and off). We differentiate two variants of the underlying
system model depending on how the fleet Vt evolves during
the resolution of a batch of queries.

We first consider a static fleet model. In that model, the set
of contactable participants is always fixed, hence we do not
consider that new vehicles may join the fleet or that vehicles
may leave within the time interval spent resolving a particular
query. Thus, Vt = V for all t.

In the dynamic fleet model, the set V of all vehicles (such
as all vehicles from a company fleet) is larger than the active
set Vt at time t, unlike in the static model. The active set
evolves through time with the possibility for new vehicles to
join and for old ones to leave. Contrary to the static model,
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a vehicle may be switched off (that is, leaving the active set)
during the resolution of a particular query q and may not send
its answer for q toC; similarly, new vehicles that were absent
at the start of q’s resolution may join the active fleet at any
time during q’s resolution process.

To quantify the amount of vehicles leaving the fleet over
time, we rely on the notion of churn. Given a period ∆, we
define the churn at time t based on the number of vehicles that
leave the fleet during the period [t −∆, t) but that were part
of the fleet during the period [t−2∆, t−∆). More formally:

Definition 1. Churn∆(t): The number of vehicles that were
part of Vt′ for all t′ ∈ [t− 2∆, t−∆) but that leave the fleet
at any t′′ ∈ [t−∆, t), divided by the size of Vt.

Note that while the churn takes into account only vehicles
leaving the fleet, the number of vehicles joining the fleet can
be obtained through the size of the active fleet and the value
of the churn.

C. COMMUNICATION MODEL
We assume that the coordinator C has no access to the
vehicles’ local data other than through communication with
them; thus, the amount of work needed to test q.P for a
query q cannot be estimated before checking P locally on the
appropriate vehicle. We further assume that C will always
successfully contact any active vehicles and as soon as a
vehicle does not communicate for a certain period of time,
it is considered inactive.

In the likely event that the local requested data is missing,
the involved vehicle does not satisfy q.P and it answers neg-
atively. Similarly, active vehicles unwilling to participate in a
query’s task (for privacy or other reasons) can be modeled by
negative answers.

In the dynamic fleet model, new vehicles signal their pres-
ence once they become active and ready to answer potential
requests. Since connection to C can be lost at any point
in time (e.g., driving through a tunnel or reaching a poorly
covered geographical area), we assume that once a vehicle
v has become inactive, it cannot be reached by C and drops
all currently processed queries; hence, C will not receive any
answers from v for the queries it was processing at the time.
This allows abstracting the high degree of node mobility and
its effect on communication by possibly short interruptions
in the active status of the vehicles; here, individual packet
losses are neglected as overall they can be compensated by
configuring a lower transfer rate and higher latency for the
underlying communication channel.

D. PERFORMANCE METRICS
We associate with each query three performance metrics:

1) Query Resolution Time, the elapsed time between
deploying a particular query q at C and q’s resolution,
i.e., when q.n positive answers have been collected at
C.

2) Fleet Workload, the overall computing load on the
vehicles defined as the sum of individual processing

times (local workloads) of all vehicles involved in
processing the received requests associated with the
query.

3) Fairness of the algorithms, the standard deviation of
the cumulative local workloads between the vehicles
that received a request, representing how fair the spread
of the fleet workload is.

Notice that optimizing for both (1) and (2) at the same time
is not straightforward, as they compete. More concretely,
query resolution time is minimized by simply asking all
vehicles in the fleet and ignoring answers after n positive an-
swers are retrieved (thereby maximizing the Fleet Workload
required per query, which is further exacerbated when queries
are executed in parallel or are computationally expensive, see
§ IV-C) while the fleet workload is minimized for instance
by asking one vehicle at a time in a round-robin fashion
(implying high time overhead).

The amount of uncertainty in the model is an additional
challenge: each query requires different amounts of time per
vehicle that can hardly be foreseen. The reasons for this are
twofold:
(i) Query semantics. As it is unknown how much relevant
data a vehicle has collected, it can not be estimated before-
hand how long it will take for this vehicle to search for the
property required by the request. Likewise, some queries may
be answered positively as soon as the first matching instance
is found in the data, whereas a negative answer requires
checking all potentially relevant data.
(ii) Computing capacity. A vehicle that is contacted may be
performing other processing with higher priority and equally
unknown completion time before it can start answering the
latest received request at hand.

III. DATA LOCALIZATION ALGORITHMS
We present here algorithms that select a subset of vehicles
among the kq vehicles satisfying P for a single query q =
(P, n) assuming kq ≥ n. For a set of queries q1, . . . , qr, each
query can be resolved by executing at C, either sequentially
or concurrently, the procedures described hereafter. Without
further assumptions on the distribution of nodes satisfying
P , it is natural to randomly and uniformly send requests to
nodes within the pool of nodes that have not been requested
yet. However, other factors (such as the number of requests
currently being processed on the vehicle, historical local
computation load, etc.) can be used to bias the selection
process. Since in our setting, queries are relatively short to
solve (from a few seconds to minutes at most), we consider
that algorithms do not need to send another request to a vehi-
cle that has answered negatively, in case its newest acquired
data now satisfies the property P . We hence assume in our
analysis that a vehicle’s to a query q does not change over the
whole period of the algorithms’ execution.

We present in this section four algorithms focusing on
different measures:
• BASEEAGER, a baseline approach that optimizes the reso-

lution time needed to answer q,
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• BASELAZY, a baseline approach that optimizes the num-
ber of contacted vehicles (hence minimizing required
communication and reducing fleet workload), and en-
sures no more than n positive answers are ever received,

• BALANCEREQUESTS, a new approach that balances the
trade-off identified through the two baseline algorithms,
in order to quickly collect n answers without inducing
excessive load on the vehicular nodes, and

• BALANCELOAD, an approach that extends BALANCEREQUESTS

by prioritizing the least-used vehicles during the selec-
tion process to balance the workload.

The Base* algorithms introduced in this work are meant to
benchmark the Balance* algorithms against edge cases (i.e.,
optimizing only one aspect) of the spectrum of possible trade-
offs.

The four algorithms can maintain the following sets in
each execution:
• F ⊆ V , the set of contacted vehicles since the beginning

of the algorithm;
• A, the set of all answers from vehicles v ∈ F that have

been received by the coordinator;
• R ⊆ A, the subset of positive answers (where each

answer contains whether P holds plus metadata iden-
tifying the sending vehicle, see § II-A) among all the
ones received.

We begin by introducing these algorithms in the context
of an idealized model in which the fleet is static and the
on-board execution is synchronous, before presenting the
algorithms in our complete static (§ III-B) and dynamic
model (§ III-C).

A. DATA LOCALIZATION IN THE SYNCHRONOUS
STATIC MODEL
To ease the introduction of the algorithms, we consider in
this subsection a synchronous model (in the next subsections
we present the generalization of the algorithms for the asyn-
chronous model): communications with C are instantaneous
and all nodes need a constant amount of time to check the
property P , i.e., one “round” is the time to check any request
on one vehicle. Hence, after a round of time has elapsed,
C has received answers (yes/no) from all nodes that were
asked during that round. In this simplified situation, only
two aspects have to be considered in order to measure the
performance of data localization procedures: (1) the total

Algorithm 1 BASEEAGER

1: function BASEEAGER(V, q) . fleet V , query q with n = q.n
2: R← ∅ . set of collected positive answers
3: for v ∈ V do
4: send(q, v) . send request r(q) to vehicle v
5: while |R| < n do
6: r ← receive() . block till receiving next answer
7: if positive(r) then
8: R← R ∪ {r}
9: return R

Algorithm 2 BASELAZY

1: function REQUESTRANDVEHICLE(q, F )
2: v ← random(V, F ) . random vehicle in V excluding F
3: send(q, v)
4: return v

1: function BASELAZY(V, q) . fleet V , query q with n = q.n
2: F ← ∅ . set of asked vehicles
3: R← ∅ . set of collected positive answers
4: for 1 ≤ i ≤ n do
5: F ← F ∪ { REQUESTRANDVEHICLE(q, F ) }
6: while |R| < n do
7: r ← receive()
8: if positive(r) then
9: R← R ∪ {r}

10: else
11: F ← F ∪ { REQUESTRANDVEHICLE(q, F ) }
12: return R

number of rounds needed at C to receive n answers, and (2)
the number of nodesm that have checked if q.P holds (which
is equivalent to the fleet workload on the vehicles, since each
contacted vehicle has spent exactly one round checking the
request). Note that for clarity we discuss the behavior of the
algorithms in the case of answering a single data localization
query q.

BASEEAGER - synchronous, static
Presented in pseudocode in Algorithm 1, BASEEAGER aims to
optimize a query’s resolution time, by immediately querying
all available nodes; this resolves the query in a single round
(under our assumption that enough vehicles with relevant
data are in the fleet). Indeed, consider any other algorithm
A that does not contact at least one node v during the first
round. In the situation that kq = n and P holds on v,
only kq − 1 answers are received after a single round of
communication and a second one is required to retrieve all
required answers; hence, A is not optimal in regards of the
resolution time. Executing Algorithm 1 to obtain all needed
answers leads nonetheless to a large strain on the vehicular
nodes. In particular, the number of queried nodes is always k,
independently of kq and n. Thus, all nodes always participate
in q’s resolution, even though the number of required answers
n might be relatively small.

BASELAZY - synchronous, static
This Algorithm is presented in pseudocode in Algorithm 2.
The focus of this algorithm is on reducing the computational
overhead and communication induced on the fleet. To ensure
that only the minimum number of nodes are being requested
to check P , one must ask at most as many new nodes as the
number of currently missing positive answers. Any algorithm
satisfying such an assertion is associated with a minimal fleet
workload, and the best algorithm in this category selects
randomly as many nodes as possible by asking m “new
nodes” for each round where there are m missing answers.
Once n positive answers are received, the procedure stops. In
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an edge case, every vehicle in the fleet has to be contacted
to achieve this. Since the algorithm contacts m vehicles per
round, the algorithm will proceed the slowest for m = 1.
When (n−1) yes-answers are collected in the first round and
the last yes-answer is obtained after asking every single other
vehicle in the subsequent rounds, this results in a resolution
time of k − n+ 1 rounds.

However, on average BASELAZY requires fewer rounds, as
claimed by Proposition 1 below. When sending a request
to a vehicle that has not participated so far, the probability
of receiving a yes-answer is in general (kq − r)/(k − f)
where f = |F | is the number of vehicles already requested
and r = |R| ≤ n the number of positive answers already
received. In the following, we assume for simplicity that the
probability of obtaining a yes-answer is constant and equal
to QR = kq/k during the full execution of the algorithm;
this corresponds to our typical use-case where n is much
smaller in comparison to both kq and k. The number of
rounds used by the algorithm can then intuitively be shown to
be logarithmic by the following reasoning: When requesting
x vehicles in a round, approximately x ·QR positive answers
are received, thus if xi denotes the number of requests sent in
round i, we have xi ≈ xi−1 ·(1−QR), as vehicles answering
negatively trigger another request. Setting x1 = n, we get
xi ≈ n · (1−QR)i and we obtain r ≈ log1/(1−QR)(n) when
requiring xr = 1 (when the algorithm roughly concludes).
More formally, we argue that:

Proposition 1. BASELAZY solves a single query in the static,
synchronous case on average in O(log(n)) rounds.

Proof. Let us visualize the query resolution as follows. Let
P = p1, . . . , pn be n random processes that aim to retrieve
one answer each to the query, and each process will remain
active until it acquires a positive answer. BASELAZY can be
seen as sending one request per round for each process that
is still active and doing nothing for the ones that have already
got a yes-answer. Under our assumptions, during a certain
round, pi ∈ P retrieves a positive answer with constant
probability p = QR and a negative answer with probability
1 − p. Each process, being independent of the others, will
need 1/p rounds on average to acquire a yes-answer (geo-
metric distribution with parameter p). The number of rounds
M(p, n) that is necessary for all processes to stop is thus the
maximum of n independent geometric random variables of
parameter p. The expected value E (M(p, n)) is known [21]
to be bounded by

Hn

ln 1
1−p
≤ E(M(p, n)) <

Hn

ln 1
1−p

+ 1

where Hn is the n-th harmonic number. Using Hn = lnn+
O(1), one obtains that E(M(p, n)) = log 1

1−QR
(n) + O(1)

for a constant QR.

Algorithm 3 BALANCE*-skeleton
1: function BALANCE*(V, q, α, β) . fleet V , query q with n =

q.n, α > 0, β ∈ (0, 1]
2: p← 1 . estimation of probability to answer yes
3: F ← ∅ . set of requested vehicles
4: A← ∅ . set of collected answers
5: R← ∅ . set of collected yes-answers
6: while |R| < n do . until n answers are collected
7: ASKNEWBATCH(α, p)
8: while WAITFORANSWERS() do
9: RECEIVEANDUPDATE()

10: p← max{ |R|
|A| ,

1
|A|+1

} . update probability

11: return R

Similarly, BASELAZY sends on average requests to signifi-
cantly fewer vehicles than in the extreme case, as shown by
the following Proposition 2:

Proposition 2. BASELAZY solves a single query in the static,
synchronous case asking on average n/QR vehicles.

Proof. Following the presentation of the previous proof, the
number of requested vehicles is obtained as the sum of
n independent geometric random variables, each of which
has an expected value of 1/p = 1/QR. By linearity of
expectation, we obtain that n/QR vehicles will receive a
request.

BALANCEREQUESTS - synchronous, static
We introduce now an efficient scheme to achieve a low
fleet workload while resolving queries within few processing
rounds, balancing the tradeoffs of BASEEAGER (high work-
load) and BASELAZY (slow query resolution time). The main
idea behind BALANCEREQUESTS is to employ QR, the share of
vehicles in the fleet on which q.P holds, to scale the number
of vehicles contacted in each round such that the expected
number of positive answers is equal to the number of total
outstanding positive answers. As QR is unknown during
the execution of the query, we replace it with the running
estimate p = |R|/|A|, and show in § V-D that p gives a
reasonable estimation of QR.

We will present various implementations of the Balance*
algorithms based on the skeleton algorithm shown in Al-
gorithm 3, which proceeds as follows: Keeping track of
p, F,A,R, the algorithm concludes by returning R, the set
of yes-answers. To achieve this, the algorithm begins by
contacting a new batch of vehicles in askNewBatch(), and
then proceeds to receive answers from the contacted vehicles
using receiveAndUpdate until waitForAnswers() evaluates to
false. At this point, the algorithm updates the value of p
using the answers received so far, and loops back to the
beginning; the loop is continued until |R| = n, i.e., a
sufficient number of yes-answers has been acquired.

In the synchronous model and with a static fleet, algorithm
BALANCEREQUESTS employs those variants of askNewBatch()
and waitForAnswers() described in Algorithm 4. askNewBatch()
has as input the running estimate p and a parameter α, and
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Algorithm 4 BALANCEREQUESTS - synchronous, static
1: procedure ASKNEWBATCHAUX(α, p,m)
2: `← dα ·m/pe . new vehicles to contact
3: for 1 ≤ i ≤ ` do
4: if |F | < k then . if fleet not exhausted yet
5: F ← F ∪ { REQUESTRANDVEHICLE(q, F ) }

1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| . remaining yes-answers to collect
3: ASKNEWBATCHAUX(α, p,m)

1: procedure RECEIVEANDUPDATE()
2: r ← receive()
3: A← A ∪ {r}
4: if positive(r) then
5: R← R ∪ {r}

1: function WAITFORANSWERS()
2: return |A| 6= |F |

proceeds as follows: m marks the currently missing yes-
answers n− |R|. We denote by

` =

⌈
α · m

p

⌉
(1)

the adjusted expected number of vehicles to contact to receive
the outstanding m answers, employing the running estimate
p. The parameter α > 0 allows the algorithm to depart
from the estimated expected number of vehicles to contact
to get the remaining answers, by sampling more or fewer
vehicles. This allows to either shorten (when α > 1) the
average number of rounds needed to resolve q while poten-
tially increasing the fleet workload, or on the contrary (when
α < 1) to slow down q’s processing by being more prudent
and avoiding requesting more vehicles than necessary (and
thus getting closer to receiving exactly n answers at the end).
Having contacted ` vehicles or exhausted the fleet of vehicles,
the function returns. BALANCEREQUESTS then enters a loop of
receiving answers until waitForAnswers() returns true, i.e.,
until all contacted vehicles have sent an answer.

Following the general logic of the Balance* algorithms
described in Algorithm 3, the value of p is then updated as

p = max

{
|R|
|A|

,
1

|A|+ 1

}
, (2)

where the second case is used when no positive answers have
been received during the first round(s), i.e., |R| = 0. A next
batch of vehicles is then contacted, until n yes-answers are
received.

BALANCELOAD - synchronous, static

This algorithm does not have an equivalent in the syn-
chronous model, as it attempts to balance the individual
workloads of each vehicle. In the synchronous model, the
workload of each vehicle answering a request is identical by
assumption (as all vehicles answer a request synchronously).

We thus defer introducing this algorithm to the following
section.

B. DATA LOCALIZATION IN THE ASYNCHRONOUS
STATIC MODEL
We now generalize the algorithms presented in the previous
section to the asynchronous data localization model, i.e.,
when request processing time is both vehicle- and context-
dependent. In a typical vehicular environment, one cannot
generally assume bounds on neither the time a vehicle needs
to process a request nor on the communication delays in
the network. Consequently, the algorithms have to adapt to
the following scenarios: (1) how to avoid being blocked by
the slowest-answering vehicles; and (2) how to deal with
vehicles that answer late? While BASEEAGER and BASELAZY

achieve their respective goals without adaptations in the
asynchronous model, we tune BALANCEREQUESTS to the asyn-
chronicity and furthermore extend it to yield BALANCELOAD.
In addition to asynchronicity, we now also extend to the more
general case of more than a single data localization query
deployed simultaneously. As a reminder, vehicles possess a
FIFO task queue (see § II-A) in which incoming requests are
stored and processed sequentially.

BASEEAGER - asynchronous, static
Shown in pseudocode in Algorithm 1, BASEEAGER optimizes
the time required to answer a single query q by contacting all
vehicles upon receiving it. In our asynchronous model, the
query resolution time then needed for a single q is the best
possible and corresponds to the n-th fastest positive answer
received at C. In contrast to that, the fleet workload is also
the highest possible, as all k vehicles have processed r(q).
Note that the guarantee on fastest resolution does not hold in
the case of multiple simultaneous queries: Let us assume that
vehicle v gives the n-th fastest yes-answer to query q in the
single-query case. However, when r(q) is received by v, v is
busy processing another request r(q′); thus v will wait before
answering r(q), which would conclude the query q. Thus, the
execution time of q is dependent on the presence and order of
other concurrent queries on the requested vehicles.

BASELAZY - asynchronous, static
Shown in pseudocode in Algorithm 2, BASELAZY optimizes
the number of requested vehicles (hence minimizing needed
communication to spread all requests) by contacting a new
vehicle only when strictly needed. Since in our asynchronous
model it is not guaranteed nor assumed that vehicles will
have similar answer times (only that they will answer at
some point), this algorithm does not necessarily imply a
minimum load on the network. Indeed, it might be the case
that requesting more vehicles that require shorter processing
times to answer will use fewer resources overall.

BALANCEREQUESTS - asynchronous, static
The asynchronous variant of BALANCEREQUESTS (Algorithm 5)
is similar in essence to its round-based version described in
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Algorithm 5 BALANCEREQUESTS - asynchronous, static
1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| − p · (|F | − |A|) . remaining yes-answers,

corrected by late ones
3: ASKNEWBATCHAUX(α, p,m) . cf. Algorithm 4

1: procedure RECEIVEANDUPDATE() . same as Algorithm 4

1: function WAITFORANSWERS(β)
2: return |A| < β · |F | . share β of contacted

vehicles has answered

§ III-A but needs to take into account that not all contacted
nodes reply at the same time (as they do in the synchronous
model). To do so, we change the behavior of the function
waitForAnswers(), as shown in Algorithm 5; it accepts a new
parameter β ∈ (0, 1]: a certain proportion of answers over
all requested vehicles that we will wait to receive before re-
evaluating the running estimate of yes-answer share p and
proceeding to the next batch of selection (see Algorithm
3). When β = 1, the algorithm waits for the reception of
all answers before continuing; this is effectively the case in
the synchronous model, § III-A. Setting a lower value for β
allows us to make a decision without having to wait for the
slowest vehicles. Another change is about taking into account
vehicles that have not yet answered when a new iteration
starts. Based on previously received answers, we estimate
that a fraction p of the |F | − |A| requested vehicles that have
not yet answered, will eventually answer positively while
the next batch of vehicles is already being sent requests.
This allows to reduce the number of vehicles asked in the
next iteration, and thus reduce excessive participation. This
change is applied in askNewBatch() (Algorithm 4): we adjust
the number of vehicles to contact next, `, by

` =

⌈
α ·

(
n− |R|

p
− (|F | − |A|)

)⌉
(3)

Those dp·(|F |−|A|)e vehicles are hence counted as expected
answers when calculating `.

BALANCELOAD - asynchronous, static
This is a variation of the previous algorithm that presents a
further refinement of vehicle selection, differing in how the
` vehicles are selected during each batch in askNewBatch(),
as shown in Algorithm 6. Instead of randomly selecting new
nodes to request, vehicles having low local workload or
involved in only a few concurrent data localization queries
are picked first in the selection phase. The main difference
with Algorithm 5 is that instead of requesting a random ve-
hicle using requestRandVehicle() among the not yet requested
ones (see requestRandVehicle() in Algorithm 2), vehicles are
selected in the order of their lowest local workload measured
as (1) number of simultaneous requests being processed on
the vehicle (for the concurrent execution of several data
localization queries) and (2) reported local processing time
since the start. As shown in Algorithm 6, vehicles are for that
purpose stored in an updatable priority queue W (initialized

Algorithm 6 BALANCELOAD - asynchronous, static
1: procedure INIT()
2: global W . priority queue
3: W .insertAll(V, [0, 0]) . initially, all vehicles

have same priority

1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| − p · (|F | − |A|)
3: `← dα ·m/pe
4: for 1 ≤ i ≤ ` do
5: if |F | < k then
6: v →W .getLowestPriority() . get vehicle with

fewest parallel queries and lowest workload
7: send(q, v)
8: W .updatePriority(v,[+1,+0]) . increase no. of

parallel queries of v

1: procedure RECEIVEANDUPDATE()
2: r ← receive()
3: A← A ∪ {r}
4: if positive(r) then
5: R← R ∪ {r}
6: W .updatePriority(r.v, [−1,+r.workload]) . decrease no.

of parallel queries of r.v (sender of r), increase r.v’s workload

1: function WAITFORANSWERS(β) . same as Algorithm 5

in a call to init()) where vehicle v’s priority is defined as a
tuple of [no. of parallel queries, total local workload]. As
shown in line 6 of askNewBatch() in Algorithm 6, the vehicle
v with the lowest priority is contacted first. After sending a
request to v, its priority is updated by increasing the first field
of the priority tuple, no. of parallel requests, by one. Likewise
at line 6 of receiveAndUpdate(), upon reception of an answer
r from vehicle v, v’s priority is updated by reducing the
number of its parallel requests, and increasing the total local
workload registered in W for v by the workload transmitted
alongside r.

C. DATA LOCALIZATION IN THE ASYNCHRONOUS
DYNAMIC MODEL
The dynamic fleet model introduces vehicles dynamically
joining the fleet (which is detected at C) and leaving the fleet
(undetected). We describe here adaptations in the presented
data localization algorithms to handle both types of events,
i.e., vehicles joining and leaving the fleet.

BASEEAGER - asynchronous, dynamic
The algorithm is a straightforward extension of BASEEAGER

defined for the dynamic model: all active vehicles get asked
upon starting processing a new query at C. Vehicles leaving
the fleet will not provide any answer whereas vehicles arriv-
ing receive all unresolved queries upon becoming available.

BASELAZY - asynchronous, dynamic
This algorithm could be blocked indefinitely if any of the
involved vehicles leave the fleet before the moment when
all answers are collected: indeed, the algorithm waits for
receiving a negative answer before asking a new vehicle. To
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deal with leaving vehicles, we introduce a timer set upon
sending a request. A timeout is then considered equivalent
to a negative answer and triggers requesting one of the
remaining available vehicles; if the timeout vehicle answers
later than its corresponding timer, the answer is accepted
in case of a yes-answer and ignored in case of a negative
one. Contrary to BASEEAGER, new vehicles may get requested
(upon receiving a negative answer or timeout event at C)
some time after they become active. However, a new arrival
by itself will not trigger directly the transmission of a request,
except in the particular case of unresolved queries that have
already exhausted the pool of known active vehicles.

BALANCEREQUESTS and BALANCELOAD - asynchronous,
dynamic
Contrary to BASELAZY, the Balance* algorithms as designed
for the static setting are not at risk of becoming blocked
by vehicles exiting the fleet. Indeed, they both already have
a mechanism to ask a new batch of vehicles before having
answers from all the vehicles that had been requested earlier
(through the β parameter, cf. Algorithm 5) and can hence
deal with a dynamic fleet where some vehicles leave the fleet.
However, over the long run, the estimation of the probability
p of answering positively will be less accurate, as vehicles
that have left will be excluded from the estimation (only
received answers are taken into account); also, if a proportion
greater than 1−β of the vehicles currently checking requests
associated with a particular query leaves the fleet during the
algorithm execution, no new batch of vehicles will ever get
contacted even though there might be plenty of available ve-
hicles. To circumvent these issues, we also introduce timers
in those algorithms: a timeout is equivalent to receiving a
negative answer, i.e., a negative answer is added to the set
of received answersA, which is used for p’s computation and
for testing when the β threshold has been crossed. If a vehicle
answers positively later than its timer, it is added to the set of
known positive answers R; this has no further effect on A,
but slightly modifies the calculated value for p as

p = max

{
|R|
|A|

,
1

|A|+ 1

}
.

We note that timers help the estimation p to take into account
both the positive answering rate and the fleet churn rate when
computing the size of the next vehicle batch to request.

IV. METHODOLOGY OF THE EXPERIMENT STUDY
To investigate the performance of the proposed algorithms,
we evaluate them on two large real-world sets of vehicular
data. In this section, we first describe in detail the datasets
and the induced churn in each of them (see Definition 1)
and the experiment setup used for our study. We then present
a set of common queries that will serve to benchmark the
different algorithms, including longer-running versions of
such queries for our dynamic fleet model. Finally, we show
the distribution of data over the fleet and the query answer
rates in the studied datasets.

A. DATASETS
Our evaluation encompasses two datasets (one public, one
proprietary) that differ in the number of active vehicles and
the rate of churn (see Figure 1), the distribution of data per
vehicle (see Figure 3), as well as the types of data included
in the dataset.

Geolife Dataset
The first dataset consists of trajectories collected within the
scope of the Microsoft Research Asia Geolife (version 1.3)
project by 182 users over approximately four years [22]. The
trajectories were collected from diverse users using different
mobile devices and feature predominantly vehicular usage
(by car, taxi, or bus). The original dataset consists of 18670
GPS traces containing between 50 and 92,645 records of the
form timestamp (s), latitude (deg), longitude (deg). After pre-
processing the data, we used 10528 files, each for one day of
usage of one user (cf. Figure 1a for the number of vehicles
over the course of 24h).

Volvo Dataset
The second dataset consists of CAN data and GPS traces
from 20 hybrid cars internally collected by Volvo Car Cor-
poration [20], [7] in the year 2015. After pre-processing, we
generate 3462 trace files, each corresponding to a daily usage
of one vehicle (cf. Figure 1b). Among the large quantity of
CAN data, we have concentrated on two signals, the com-
bustion engine rotation and electric engine rotation. These
can be combined, leading to three possible driving modes:
electric, combustion, and hybrid. Each trace in this dataset
hence contains records of the form timestamp (s), latitude
(deg), longitude (deg), driving mode (e/c/h) (cf. Figure 1b for
the vehicle number over the course of 24h).

Vehicles leaving and joining the fleet in the datasets
Churn∆(t), measuring the fraction of vehicles leaving the
fleet within a predefined time interval ∆, influences how
fast queries get resolved (see Definition 1). In the studied
datasets, the churn is evaluated to be between 2% (for ∆ =
30 seconds) and 38% (∆ = 15 minutes), see Figures 1a
and 1b. In a general sense, churn not only describes vehicles
leaving the fleet while the latter is processing requests but
also associates with communication issues due to the high
node mobility, with many vehicles featuring intermittent
short activeness periods, typical of dense urban driving. A
non-negligible churn causes problems to data localization
algorithms as explained in § III-C. In the majority of our
experiments (§ IV-D to § V-D), there is negligible churn in
the fleet during query execution when regarding the timescale
for query resolution (with queries lasting only up to 30s,
and 0.02 ≤ Churn30s ≤ 0.08 as shown in Figures 1a,1b).
Longer queries, subject to longer churn intervals, are studied
in § V-E.

Dynamic changes to the active fleet pool are also based on
arriving vehicles. While vehicles joining the pool do not alter
the execution of the requests being currently processed by
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FIGURE 1: Number of active vehicles and churn during one day in the
(a) Geolife and (b) Volvo dataset (see Definition 1 for a formal definition
of churn).

the fleet, new vehicles support the execution of the running
queries when the number of vehicles with positive answers
to a query is scarce or declining due to non-negligible churn
(exacerbated for the Volvo dataset with its lower active vehi-
cles count).

B. EXPERIMENT SETUP
We will present here the components and key settings of
the evaluation of our proposed algorithms, involving the
adaptation of real-world datasets and parameters.

Query response time calculation
To evaluate our algorithms, we define 15 queries to be run
locally on the vehicles (presented in § IV-C). The requests
are programs written in Python that are transferred to the
vehicle via mobile broadband communication, then executed
on-board the vehicle over their already stored data (1 day
each); size(q) denotes the amount of code and extra data1 that
needs to be transferred fromC to each vehicle in order for the
latter to be able to process r(q) on-board. The elapsed time
R(v, q) (in milliseconds) needed between the coordinator
sending a request message r(q) for query q to a vehicle v and
the reception of the corresponding answer is approximated as

R(v, q) = Tl +
size(q)

Td
+ Tp(v, q) (4)

1For example, GPS positions of Points of Interests (POIs) such as parking
lots or fuel stations.
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FIGURE 2: Distribution of wireless round-trip latencies Tl (modeled
after [23]).

where Tl is a round-trip latency for wireless communication,
Td is the wireless link data rate, and finally Tp(v, q) is
the time needed by the vehicle to decide if it can answer
positively to r(q) or not. The transmission time of the answer,
considering that the answer is of constant and small size (for a
yes/no reply and a constant amount of additional information
such as the vehicle id, the time it took for the processing,
etc.), is neglected here (it can be accounted as part of Tl).

Resolution time of concurrent queries
The experiment process is done as follows. The coordinator
node C receives a certain number of queries in a random
uniform order and starts the batch of sending requests to
vehicles in the same order as the queries’ arrival times. The
queries are then resolved in parallel by the vehicles and
C reacts to each message reception by either just updating
its internal statistics for the corresponding query q or by
spreading the request r(q) over the fleet to a new set of
vehicles. As introduced in § II-A, vehicles possess a task
queue processed in FIFO order. This approach simplifies the
vehicles’ internal computing architecture and is well suited in
situations for which the remaining computing resources on-
board the vehicles (if any) can be used to process security-
sensitive applications. A vehicle v hence starts processing
a request as soon as v is done with the processing of its
already queued tasks. When considering multiple queries
concurrently processed at C, the reception time R′(v, qk)
of v’s answer to the request r(qk) corresponding to the k-th
received query qk at v is obtained as

R′(v, qk) = max{R′(v, qk−1)+Tp(v, q), tk+R(v, q)} (5)

where t1 < t2 < · · · < tk indicate the sending times of
requests r(q1), . . . , r(qk) to vehicle v, and with R′(v, q1) =
R(v, q1) where R(v, q) is calculated using equation 4.

Real-world values used for the parameters
In our set of experiments, we have set Td = 10Mb/s, which
is within current 4G/LTE download rates2 (similar results are
obtained using 5G parameters). To model a non-deterministic
but realistic 4G round-trip latency Tl, we sample Tl randomly
from the Gamma distribution shown in Figure 2, as modeled
after the results from a study of 4G latencies across several

2To take into account packet losses, Td is chosen inferior to typical
broadband bandwidth.
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TABLE 1: Selected query conditions and their parameters (QR = share of positive answers over the dataset, G = Geolife and V = Volvo).

Key Time span Size (Kb) in G | V Condition to fulfill “q.P” for G for V QR in G (%) V (%)
Q1 8-12 0.3 At least 1 record during the time span 56 60
Q2 0-24 7.5 | 19.9 Driven within 50m of any parking lot 25m 42 43
Q3 17-18 1.3 Continuous records with ζGa with ζV a 29 28
Q4 0-24 0.5 Driven through City area with ζV 18
Q5 17-18 1.1 Maximum speed reached over 89km/h over 99km/h 12
Q6 0-24 1.6 Instant speed over 42km/h for 10min for 18min 8
Q7 0-24 1.4 Driven in Downtown with ζG consecutive records with ζV ′ a 5
Q8 17-18 0.8 Passed by City area Downtown area 4
Q9 12-13 0.7 Stayed in City area for all time span 1
Q10 0-24 3.8 | 7.7 Stopped at any gas station for a short durationb 1

The queries below are only defined for the Volvo dataset.
Q11 0-24 4.8 Combustion engine used less than 10% of the time 34
Q12 0-24 5 Driven on electric mode only outside City area 25
Q13 0-24 4.4 Driven using hybrid mode for 10min 10
Q14 0-24 6.6 Instant speed on electric mode reached over 100km/h 7
Q15 0-24 4 Passed by 3 distinct electric vehicle charging stations on electric 4

a ζG = (80, 5), ζV = (85, 10), ζV ′ = (300, 10), where ζ = (τ, δ) requires at least τ consecutive measurements spaced at least
δ seconds apart.

b For Geolife, we require ζG records within 50m of a gas station; for Volvo the vehicle must stop (speed = 0km/h) for 10min within 20m of it.

mobile carriers in the UK [23]. To have a fair estimation
of Tp(v, q), we have computed all queries on a vehicular
processing unit representative [20], [7]: an ODROID-XU4
single-board computer to approximate the limited processing
headroom of a vehicle, equipped with a Samsung Exynos
5422 (Cortex-A15 2.1GHz Quad-Core and 1.4GHz Quad-
Core CPUs) and 2 GB of LPDDR3 RAM at 933 MHz. We
then use the computed time measured on the vehicular stand-
in as Tp(v, q) for every possible vehicle v and query q. Based
on the measured transfer time (through an Ethernet link with
software-capped bandwidth to Td = 10Mb/s), size(q)/Td
expressed in ms is very well approximated by the size of data
to transfer expressed in Kb.

C. SELECTED DATA LOCALIZATION QUERIES
In this subsection, we present our selection of data local-
ization queries used for the static and dynamic fleet scenar-
ios. Please note that these queries are tailored to the two
datasets/fleets employed, each of which has a known (geo-
graphic) focus. In the general case, basic a-priori knowledge,
e.g., vehicle type or region (which can be assumed to be
known to the vehicle manufacturer), can be used to select
a subset of a fleet before deploying the actual query over the
now filtered fleet.

Queries for the static fleet
We introduce here a set of 15 queries, representative of possi-
ble vehicular analysis tasks. The queries match typical inter-
esting events occurring in Vehicular Networks [24] (driving
close to POIs such as parking spaces, detecting traffic jams,
etc.), thus giving meaningful insights into the fleet’s behav-
ior. They were chosen to represent different requirements
(on time interval, queried sensors, geographic constraints,
sampling constraints, etc.). They furthermore have distinct
positive answer rates ranging from about 60% to about 1%.

Table 1 presents (cf. § II for notations) the query q’s key
(Q1 to Q15), the time interval tstart − tend given in hours,
size(q) given in Kb, the description of the condition q.P , and
the average answer rate QR (rounded to closest percentage)
for Geolife and Volvo datasets. The parameters of the first 10
queries have been slightly tuned between the two datasets (in
Table 1 the additional column for q.P ’s description indicate
differing parameters in the query’s condition in Volvo) so
that each query in both datasets has a similar fraction of
positive answers. Recall that size(q) corresponds to the size
of the program plus the extra data required to check q.P , cf.
§ IV-B. Of the queries, 10 are run over both datasets whereas
5 additional queries focus on signals only contained within
the Volvo dataset. Two geographical zones are defined for
both datasets: City is the area of a large city chosen within
the dataset and Downtown is a sub-area within City thought
of as its heart. In our experiments, if not stated otherwise,
all queries will require n = 50 answers to get resolved.
Setting an adequate value for the parameter n is a non-
trivial task that is both query- and data-dependent and is
linked to the post-treatment of the vehicle selection process
and the end-application. For the case of statistical estimation
of the true answer rate QR, The impact of the choice of
n with the presented algorithms is explored thoroughly in
§ V-D, where the value n = 50 is shown to provide a good
trade-off between estimation accuracy and excessive vehicle
involvement over the queries analysed in this work.

Queries for the dynamic fleet

As mentioned in § IV-A, short queries (in terms of resolution
time) entail a similar behavior in a dynamic fleet as the fleet
remains stable during the time used to resolve the query. All
queries defined so far fall in this category, as most of the time,
they get resolved in less than one second – whereas the churn
for 30s is below 5% of vehicles (cf. § IV-A). To be able to ob-
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FIGURE 3: Left axis: Histogram of data volumes per car over each
respective dataset. Right: Average answer rate for a vehicle with a
certain amount of data. Results shown for the Geolife (red) and Volvo
(blue) datasets.

serve differences in the algorithms’ behaviors, we introduce
“long” versions of the ad-hoc queries previously introduced
and described in detail in Table 1. The long versions are
obtained by multiplying both the transfer time of the requests
and the time needed to process them by a constant of 1000,
for a realistic distribution of answering times representative
of a fleet with a higher amount of local data or heavier
computational tasks used for queries’ conditions.

D. DISTRIBUTION OF DATA AND QUERY ANSWERS
RATES
The average answer rates over all queries as well as the
distribution of the data volumes are presented in Figure 3
for the Volvo and Geolife dataset; the x-axes range over data
volumes in MB within Volvo (lower axis) and Geolife (upper
axis) datasets. For Geolife, the average query answer rate
(red line) appears to be positively linked to the data volume
(shaded red bars); thus, vehicles with larger amounts of data
will have a higher chance to answer requests. For Volvo (blue
line), the average query answer rate is almost flat, which
indicates that vehicles with a large amount of data (shaded
blue bars) are roughly as likely to answer "yes" to a request
as vehicles with only little data. Concerning the distribution
of data volumes among the fleet (shaded bars), the Volvo
dataset presents a significantly longer tail, indicating that
inter-vehicular differences in data volume are greater.

V. EVALUATION RESULTS
We show in this section the experiments’ results. To compare
the performance of the different algorithms, we will use
the evaluation metrics defined in § II-D, namely the query
resolution time and the fleet workload. To show the results,
we will frequently use violin plots, which indicate the median
of a distribution with a horizontal bar, while the distribution
itself is shown vertically in shaded color.

A. PARAMETRIZATION OF THE ALGORITHMS
To choose well-fitting parameters for our evaluation, we ex-
plore the parameter space for BALANCEREQUESTS in the Geolife

(a)

(b)

FIGURE 4: Maximum query resolution time and fleet workload (static
model) needed to resolve all queries over the Geolife and Volvo
datasets for BALANCEREQUESTS for different α, β. Circle size scales
with maximum query resolution time (red) and fleet workload (blue),
respectively.

and Volvo dataset. We run 10000 times the query sets with
different values for the parameter α (proportion of vehicles
to ask; higher value translates to asking more vehicles) and β
(fraction of vehicles to wait before asking next batch; higher
fraction translates to longer waiting time between two request
batches). For each run, we measure the time needed to resolve
all queries (i.e., the maximum query resolution time among
the query set) and the fleet workload and present them on a
2D plot in Figures 4 (note that absolute values are given in
Figure 5).

Based on the fleet workload (blue) displayed in Figure 4, in
both datasets, for lower values for β and higher values for α,
more vehicles than necessary tend to be requested while not
waiting for everyone’s answer before requesting a new batch
of vehicles. The consequence in this setting is on the one
hand a high analysis cost, as more vehicles participate in the
queries resolving task, but on the other hand, the resolution
time is relatively lower than other configurations of (α, β).
Focusing on the maximum query resolution time (red), the
situation is different between the Geolife or Volvo dataset:
When vehicles tend to answer “no” because of lack of data
(as for the Geolife dataset, cf. § IV-D), hence responding
much quicker than positive vehicles, and β is rather small, the
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FIGURE 5: Query resolution time (in ms) (static model) for
all valid queries executed over the (a) Geolife and (b) Volvo
dataset for (i) BASEEAGER, (ii) BASELAZY, (iii) BALANCEREQUESTS,
(iv) BALANCELOAD.

estimation p (cf. Algorithm 3) of positive answers will be too
low; then (as β is small) many vehicles are requested rapidly
in the first few rounds. The consequence is a shorter reso-
lution time but higher fleet workload, as seen in the Geolife
experiments. On the contrary, if the data is distributed over
the fleet more fairly (as for the Volvo dataset, cf. § IV-D), and
when β is low, there will be a bias towards positive answers
with queries that require a full data scan before they can be
answered negatively, whereas vehicles answering positively
need only find the first matching record(s). The consequence
is that p becomes an overestimation of the real fraction of
yes-answers and one observes a succession of small batches
of vehicles being requested, as observed in the Volvo ex-
periments. When β approaches 1, the estimation p becomes
unbiased and better trade-offs are obtained; however, note
that a high β is impractical for longer queries, as is shown
in § V-E. For the remainder of this section, we set α = 1.25
and β = 0.7 as these values present a suitably balanced
trade-off between the two measured performance metrics
over both datasets; other nearby values for (α, β) produce
similar results that only slightly advantage one metric over
the other, as explained above.
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FIGURE 6: Query resolution time (left) and fleet workload (right)
(static model) of the four algorithms for the Geolife (red) and Volvo
dataset (blue). The starred algorithm is the respective baseline, the
y-axis is logarithmic to suit the different scales.

B. COMPARISON OF THE ALGORITHMS IN THE STATIC
MODEL
To give a general idea of the resolution time for the different
queries, we present quantitative results in Figure 5 (an intra-
algorithms comparison is done in Figure 6): the query resolu-
tion time is measured over 10000 experiment repetitions con-
sisting in resolving all 10 (Geolife, a) / 15 (Volvo, b) queries
arriving in random order; for the Volvo dataset, Q9 and Q10

have been removed here and for all following experiments
as all vehicles end up being contacted (there are fewer than
50 positive answers in this case, violating the assumption
kq > n from § II-A). The main findings to note are:
BASEEAGER’s and BASELAZY’s resolution time varies clearly
depending on the queries’ answer rate (lower answer rateQR
is associated with larger resolution times, see Table 1 for QR
per query), while BASELAZY is one to two orders of magnitude
slower; and BALANCEREQUESTS and BALANCELOAD present sim-
ilar query resolution times that do not vary significantly with
the queries’ answer rate (except for Q2 and Q10 [Geolife]).
Also, note these computationally heavier queries Q2, Q10

(requiring to check spatial proximity to multiple points of
interest) get resolved significantly slower than lightweight
queries. BASEEAGER shows large variations in resolution time
for the same algorithm and query because, contrary to all
other algorithms, the algorithm itself is purely deterministic
and highly dependent on the order in which queries arrive:
indeed, if a “heavy” query is sent first to every vehicle, all
the nodes will need to process it before moving on to the
next query (cf. the FIFO task queue as described in § II-A),
potentially slowing down subsequent lighter queries (this
also explains why the balanced-algorithms may outperform
BASEEAGER by contacting smaller subsets of vehicles, see
Figure 10).

As a summary, Figure 6 presents the query resolution time
(left side) and fleet workload (right side) over all queries for
the four algorithms relative to the average resolution time
of BASEEAGER and the average fleet workload of BASELAZY,
respectively (marked by stars). The query resolution time is
almost two orders of magnitude higher for BASELAZY (in the
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FIGURE 7: Standard deviation σload of local workloads (static model)
between vehicles over both datasets and 10000 experiments.

Geolife dataset) than for BASEEAGER, whereas the Balance-
algorithms are almost as fast as BASEEAGER, which shows the
best resolution times in both datasets. For the fleet workload,
BASELAZY outperforms BASEEAGER by a factor of up to 17.
The Balance* algorithms perform again well in this metric on
both datasets, having an average cost close to the baseline.

Finally, BALANCEREQUESTS’s fleet workload shows the de-
pendence on the distribution of data in the fleet: with skewed
data (as in the Geolife dataset), it outperforms BALANCELOAD

by a margin of 40%, whereas in a uniformly spread dataset
(e.g., Volvo) it performs marginally worse.

C. FAIRNESS OF THE ALGORITHMS
The presented algorithms distribute clearly differently the
workload over the vehicles. We measured the standard devi-
ation σload of the local workloads between the vehicles with
non-zero workloads, for executing all queries (cf. § IV-C)
over 10000 experiments and for both datasets, presented
by Figure 7. Low values of σload indicate that all vehicles
have a similar workload, and vice versa for high σload. In
BASEEAGER, the workload is distributed deterministically as
every vehicle checks every query (even though the execution
order may vary in different runs), and thus the value for
BASEEAGER results only from vehicles needing different times
to execute all queries. The inter-dataset differences may be
explained by the fact that Geolife exhibits larger variance in
the average answer rate between vehicles, cf. Figure 3. All
other data localization algorithms show a smaller spread of
the workload, hence a fairer distribution, as more vehicles
have similar workloads. BASELAZY provides the fairest out-
come in this sense in the Geolife dataset, closely matched
by BALANCEREQUESTS and BALANCELOAD, while the latter pro-
vides small improvements over the three in the Volvo dataset.

D. ESTIMATION OF THE FRACTION OF YES-ANSWERS
In all previous experiments, the number n of required an-
swers was set to 50. This section now investigates how this
parameter influences the outcome of the different presented
data localization algorithms. Recall that the number of re-
quired answers allows one to select a fixed number of vehi-
cles from the fleet satisfying the query’s condition for further
analysis. One may estimate in this fashion the true fraction
QR of vehicles satisfying the query in the full fleet, with
a higher number of required answers providing intuitively a
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FIGURE 8: (a) Average absolute error ∆QR and (b) relative error
∆QR/QR of the estimation of yes-answers (static model) for queries
Q1−Q5 with different data localziation algorithms over both datasets.

better estimation of that fraction. The estimation is given by
n/m, where n yes-answers have been collected over m total
received answers. Here, the validity of the aforementioned
intuition will be investigated. Figure 8a presents the average
absolute error ∆QR = |QR−n/m| on the estimation of yes-
answers among the fleet for the first five defined queries with
QR = 56/60%, 42/43%, 29/28%, 18% and 12%, respectively
(Geolife/Volvo, cf. Table 1 for details about the queries),
and n ranging from 10 to 175 required answers. For each
n and each algorithm, 10000 experiments were conducted
where all 5 queries are being resolved in parallel. Then,
for each experiment and each query, the share n/m of yes-
answers provided by the algorithm at the moment that the
particular query is resolved is recorded. Since BASEEAGER

asks every vehicle in the fleet, the estimation is provided
based only upon the fastest vehicles to answer and ends up
providing the least precise estimation of all tested algorithms.
On the contrary, BASELAZY, by asking one vehicle at a time
chosen randomly upon receiving negative answers, bases
its estimation on a purely random pool of vehicles, hence
providing the best estimation unbiased by the time vehicles
require to answer the query. In between, BALANCEREQUESTS

and BALANCELOAD provide reasonable trade-offs; as both base

14 VOLUME X, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118596, IEEE Access

1 2 3 4 5 6 7

102

(i)

1 2 3 4 5 6 7

103

(ii)

1 2 3 4 5 6 7

103

(iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

103
(iv)

(a)

1 2 3 4 5 6

102

(i)

1 2 3 4 5 6

103

(ii)

1 2 3 4 5 6

102 (iii)

Q1 Q2 Q3 Q4 Q11 Q12

102 (iv)

(b)

FIGURE 9: Query resolution time (in s) (dynamic model) and all
valid queries executed over the (a) Geolife and (b) Volvo dataset
for (i) BASEEAGER, (ii) BASELAZY, (iii) BALANCEREQUESTS, (iv)
BALANCELOAD.

their estimation on the first 70% of vehicles to answer a
particular query (as β = 0.7), they both feature bias as
BASEEAGER, but to a lesser degree. The main difference be-
tween the two algorithms is that BALANCELOAD introduces
another bias on top of using the 70% fastest vehicles, which
is selecting vehicles with a current lower load rather than
random ones as in BALANCEREQUESTS; this additional bias
seems strongest in Q2 in the Volvo dataset. On most queries,
the balanced algorithms perform nearly as well as BASELAZY.
We note that they present almost identical estimations except
for queryQ2, where BALANCELOAD, prioritizing spreading the
queries fairly among the fleet, under-performs in the Volvo
dataset. Figure 8b summarizes the estimation performance
of all four algorithms on both datasets by presenting the
average relative error ∆QR/QR of the estimation of yes-
answers for the 10000 experiments. The advantage of the
introduced algorithms is clear: they provide mostly good
estimates independently of the required number of answers,
especially considering the low values of n compared to the
size of the fleets (Geolife: 10528; Volvo: 3462), while the
disadvantage of the secondary bias of BALANCELOAD becomes
apparent again in the Volvo dataset.
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FIGURE 10: Query resolution time (left) and fleet workload (right)
(dynamic model) of the four algorithms for the Geolife (red) and Volvo
dataset (blue). The starred algorithm is the respective baseline.

E. COMPARISON OF THE ALGORITHMS IN THE
DYNAMIC MODEL

Recall that in the dynamic model, vehicles may join and
leave the fleet at any time during a query’s resolution. For the
churn values to be in line with those observed in real setups
(cf. § IV-C), we have modeled the arrival and departure of
vehicles during a time interval by using real-world traces: in
the following experiments, the set Vt representing the fleet
at time t consists of all vehicles that have records within
7.5s of t. Furthermore, here long queries defined in § IV-C
have been used where the multiplicative factor has been set to
1000. This shifts the fastest vehicles from answering within
milliseconds to seconds and the slowest from a few hundreds
of milliseconds to minutes (on selected queries); similarly,
the transfer time of 1-20ms becomes 1-20s (the equivalent
of 1-20 MB of data having to be transferred per query). The
timeout (introduced in § III-C) is set to 100s and the number
of answers required per query is set to n = 50 as in previous
experiments.

Figure 9 presents the query resolution time in the dynamic
model following the same conventions as Figure 5. We
use in the experiments a query batch of 7 queries (Geo-
life dataset) and 6 queries (Volvo) with a starting time of
18:00; the remaining other queries were discarded as not
solvable considering only vehicles active past that point in
time. The main outcomes in regards to the adaptation of the
algorithms to dynamicity are as follows: (i) BASEEAGER’s and
BASELAZY’s resolution time is less dependent on the queries’
positive answer rate; (ii) BALANCELOAD performs similarly
to BALANCEREQUESTS with a slight improvement thanks to
spreading the requests over more vehicles, which then de-
creases the chance that a vehicle leaves the network before
having emptied its local request queue; and (iii) queries that
require new arrivals to get resolved, such asQ12, display high
resolution times regardless of the spreading algorithm used
(however, we note that in these situations, BALANCEREQUESTS

is more likely to fail to collect enough answers, as it does for
Q12 in Figure 9 b).
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Figure 10 shows, as a summary, the average query reso-
lution time and fleet workload over all selected queries3 of
both datasets for each algorithm relative to BASEEAGER and
BASELAZY, respectively (in a similar fashion as Figure 6).
Contrary to the static setting, where the best-performing of
the Balance- algorithms varies depending on the distribution
of data over the fleet (cf. § V-B), in a dynamic environment,
BALANCELOAD clearly performs best. BALANCEREQUESTS dis-
plays overall favorable trade-offs, performing close to each
baseline, but slightly slower and with a higher cost than
BALANCELOAD. The latter performs close to or better than
BASEEAGER in terms of time, and better than BASELAZY in
terms of load. This is the consequence of the way the vehicles
are selected in the algorithm; those with the lowest current
local load are requested first (hence favoring freshly arrived
vehicles), which in our datasets biases the selection process
towards vehicles with higher chances of answering positively
or vehicles answering faster (see discussion in § V-A). A
clustering of relevant data in those vehicles may further
exhibit the causes of BALANCELOAD’s higher performance.

F. SUMMARY OF THE RESULTS

Table 2 summarizes the average resolution time and relative
fleet workload (compared to BASEEAGER) over all queries
for all algorithms and datasets in the static and dynamic
fleet model. On average, the proposed algorithms resolve
queries up to 40 times faster than BASELAZY while consuming
only 1/3rd of the resources of BASEEAGER (BALANCEREQUESTS,
static model, Geolife).

The presented solutions (a well-tuned BALANCEREQUESTS

and BALANCELOAD) provide substantially improved trade-offs
of query resolution time versus on-board workload compared
to baseline solutions, and allow tuning between the tradeoffs
by varying the estimation of required vehicles to ask in the
next iteration (via the parameter α) and the waiting times
for slow-processing vehicles (via β). Furthermore, a query’s
resolution time in the proposed algorithms is shown to not be
negatively impacted by a low positive answer rate among the
fleet.

BALANCELOAD, presenting shorter resolution time and
slightly larger fleet workload, produces a workload more
fairly spread over the vehicles; however, it may provide a less
accurate estimation of the fraction of positively answering
vehicles once queries are resolved. BALANCEREQUESTS pro-
vides the most balanced trade-offs overall, performing almost
as good as each baseline solution both when considering a
uniform distribution of positive answers (Volvo dataset) or a
skewed distribution (Geolife dataset). Finally, BALANCELOAD

is overall more suited to “dynamic” scenarios, i.e.,when the
queries require long enough processing times for the fleet
churn to become noticeable.

3All queries described in Figure 9, except for Volvo where Q12 has been
excluded from the resolution time plot, as it did not always terminate.

TABLE 2: Summary of the results (average over all queries) for both
datasets, all algorithms, and static & dynamic models.

Resolution time (s) Fleet workload (s)
Algorithm

Geolife Volvo Geolife Volvo
BASEEAGER 0.27 0.20 10715 1667
BASELAZY 22.65 6.75 2823 103
BALANCEREQUESTS 0.55 0.40 3616 162st

at
ic

BALANCELOAD 0.52 0.48 4816 148
BASEEAGER 105 204 1484451 168280
BASELAZY 1105 556 293245 115858
BALANCEREQUESTS 197 148 281650 141771

dy
na

m
ic

BALANCELOAD 132 220 227068 101282

VI. RELATED WORK
Having studied in this work the problem of how to localize,
efficiently and in a distributed manner, relevant data in a
vehicular fleet for analysis applications, in the following
paragraphs we discuss work about topics that associate with
or have similarities to the problem.

The traditional approach to query a set of vehicles has been
through SQL-inspired languages [25], [26], [27] to process
continuous queries on live vehicular sensors’ data. Two main
differences with the current work are that in previous works
(i) “queries” were usually initiated by vehicles themselves
(e.g., [28], [29], [30], [31], [32], [33]) and (ii) the full fleet
was queried upon receiving new queries (as in [34]), contrary
to our work in which a known and fixed set of general queries
is deployed from a centralized point to the fleet and only
some vehicles in the current fleet may have relevant data to
answer the queries. Also, many works in the field are based
on an advantageous usage of geographical properties of the
distribution of Road Side-Units (among others [31], [32],
[33], [35]), whereas our work is only based on the already
widespread mobile broadband infrastructure as well as data
analysis capabilities already in place at car manufacturers’
data centers. Query-answering mechanisms for Vehicular
Networks in the literature also predominantly concentrate
on using the architecture of the network (for instance using
pre-existing P2P approaches, as in [36], [37], [38] or 2-tier
architectures [39], [40]) to resolve the query. In this work,
we do not presume any connections between vehicles; this
positions our work in readily deployable technologies on
modern vehicles. A querying approach for vehicle selection
was recently studied in [18] in which a request is sent to
all available vehicles to detect candidates to participate in
Federated Learning. The vehicles send updated responses
to the query over time as they are collecting new data, and
eventually a subset of the vehicles that answered positively
is chosen. In contrast, our algorithms attempt to limit the
number of vehicles that are queried for data, thus allowing
for more concurrent queries, while novel data discovery is
only supported via new queries.

The problem of localizing the relevant data or “data lo-
calization” features many similarities with the concept of
data aggregation in wireless sensor networks [41], [42], [43],
[44], [45]. Usual aspects of data aggregation that differ
from data localization include a continuous aspect (rather
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than an on-the-fly query approach for data localization) and
dissemination of information to nearby nodes (rather than
to a single sink node for data localization). Since the focus
taken here is on the localization of data, approaches for
efficient data gathering [14], [20], [7] and aggregation do
well complement the initial localization phase. The way our
algorithms have been designed also relates to the large field
of information gathering (see [46] and references therein).
In both concepts, online decisions are iteratively taken to
gain knowledge of a hidden state. For instance, in [47], the
authors design near-optimal algorithms to pick the right set
of tests in order to maximize the value of information, with
applications to medical diagnosis and troubleshooting. Note
such approaches can be used to design the right set of queries
(similar to the aforementioned tests) to resolve a particular
task whereas our work concentrates on how to efficiently and
distributively resolved those queries.

The fundamental opposing metrics studied in our paper
that are the time to resolve the queries and the computational
overhead induced on the fleet are similarly observed in the
field of job scheduling in distributed computing. Parallel and
redundant job execution can decrease job execution times
in heterogeneous environments (e.g., through speculative
scheduling in MapReduce [48]), at the cost of increasing
contention and overall workload [49]. In contrast, in our work
parallel execution is always required, and no node is a priori
known to be fundamentally able to fulfill a given task.

In vehicle data analysis, privacy aspects are important
when dealing with for example location-based services [50],
[51], [52] and privacy-preserving cloud-based query process-
ing [35]. We suggest that our work, by allowing to check
whether a certain number (chosen by the analyst) of vehicles
meets a given condition, can complement applications where
privacy is supported by aggregating data from many sources.

VII. CONCLUSION
This work proposes two distributed algorithms for data local-
ization in Vehicular Networks. To the best of our knowledge,
this paper is the first to propose a data localization mecha-
nism over a Vehicular Network through request spreading,
focusing on acquiring only a limited number of answers
from the fleet and considering as a performance metric the
computing workload of the vehicles. The focus lies on the
vehicle selection phase necessarily performed prior to data
gathering over large vehicular fleets, typically for selecting
vehicles that triggered a particular condition or event [6],
[20], [7]. As this work also shows, this vehicle selection
mechanism can be used as-is for estimating the occurrence of
particular events in the vehicles’ recent data while incurring
low overhead on the Vehicular Network as a whole. The
proposed algorithms balance (i) the overall time needed to
identify a subset of vehicles holding relevant data and (ii) the
local computational overhead each vehicle pays to check
whether a set of properties hold for its data. As shown
with analytical argumentation and experimental evaluation,
conducted with real-world data traces, the algorithms provide

means to tune the trade-off between (i) and (ii) in interesting
ways. In particular, it appears that it is possible to signifi-
cantly reduce the query resolution time, with only a small
extra load imposed on the vehicles, compared to the baselines
that can optimize only one of these metrics (achieving for
example up to 40 times faster resolution while saving more
than 65% of the computing resources). These results indicate
that the adoption of a data localization phase prior to the exe-
cution of additional analysis steps for example in a Federated
Learning scenario can occur with little overhead with respect
to time and computing resources, thus enabling better learn-
ing outcomes for a comparably small price. Furthermore, our
results show that the distribution of the work to the vehicles
can happen fairly, even for skewed data distributions, to
alleviate the risk of overloading individual vehicles. This
work sets the basis for several paths to investigate in the
future. One avenue is the porting of the proposed algorithms
to V2V [53] rather than centralized V2I setups. A second
direction is to explore how our algorithms can be integrated
within existing simulators (e.g., with a traffic and/or network
simulator) to produce richer simulation environments for
benchmarking smart analysis in Vehicular Networks. Lastly,
investigating the use of correlations between queries could be
a promising way of efficiently selecting those vehicles for a
query that have answered positively to a similar query in an
earlier execution by adaptively changing the parameters of
our algorithms during a data localization query’s resolution.
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APPENDIX.
A preliminary formulation of the problem was presented
in [54]. The present article builds on those test results and
presents an extensive study that includes a detailed problem
formulation, as well as varying system models and parame-
ters along with algorithmic designs for them. For compari-
son, we list here the main novel contributions of the present
work:

1) the system model is made more realistic by introducing
a dynamic fleet model where vehicles can leave and
join at any time (§ II-B);

2) the data localization algorithms presented here are
enhanced to adapt to changes in the set of available
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vehicles (§ III-C), in accordance with the new system
model;

3) the evaluation has been updated with use-cases that ac-
count for the new system model (§ V-E);

4) the evaluation is extended with a thorough comparison
of the algorithms’ behaviour, using a larger set of per-
formance metrics, as well as enhanced experiment rep-
etitions for higher statistical certainty, and a more ex-
tensive analysis of the parametrization of the proposed
algorithms (§ V-C, § V-D);

5) the study includes more realistic modeling of the com-
munication delays (§ IV-B); and lastly

6) the evaluation framework and algorithms are openly
published4 to enable replicability of our experiments
as well as to spark further research.
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