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The Optimal Lattice Quantizer in Nine Dimensions

Bruce Allen* and Erik Agrell

The optimal lattice quantizer is the lattice that minimizes the (dimensionless)
second moment G. In dimensions 1 to 3, it has been proven that the optimal
lattice quantizer is one of the classical lattices, and there is good numerical
evidence for this in dimensions 4 to 8. In contrast, in 9 dimensions, more than
two decades ago, the same numerical studies found the smallest known value
of G for a non-classical lattice. The structure and properties of this
conjectured optimal lattice quantizer depend upon a real parameter a > 0,
whose value was only known approximately. Here, a full description of this
one-parameter family of lattices and their Voronoi cells is given, and their
(scalar and tensor) second moments are calculated analytically as a function
of a. The value of a which minimizes G is an algebraic number, defined by the
root of a 9th order polynomial, with a ≈ 0.573223794. For this value of a, the
covariance matrix (second moment tensor) is proportional to the identity,
consistent with a theorem of Zamir and Feder for optimal quantizers. The
structure of the Voronoi cell depends upon a, and undergoes phase
transitions at a2 = 1∕2, 1, and 2, where its geometry changes abruptly. At
each transition, the analytic formula for the second moment changes in a very
simple way. The methods can be used for arbitrary one-parameter families of
laminated lattices, and may thus provide a useful tool to identify optimal
quantizers in other dimensions as well.

1. Introduction and Summary

Lattices are regular arrays of points in ℝn. They are obtained as
arbitrary linear combinations of n linearly independent basis vec-
tors, with integer coefficients. The remarkable book by Conway
and Sloane[1] provides a comprehensive review of lattices and
their properties.
An important geometric structure of lattices are their Voronoi

cells,[2] named after Georges Voronoï who established much of
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the underlying theory.[3–6] Voronoi cells
are also called Wigner–Seitz cells,[7] Bril-
louin zones,[8] or Dirichlet cells.[9] The
Voronoi cell of a lattice point p is the
set of points in ℝn which are closer to p
than to any other lattice point, with the
conventional Cartesian/Euclidean metric
and norm. All of the Voronoi cells have
identical shape, and may be obtained by
translation of the cell about the origin
p = 0. They cover space, intersecting only
on their boundaries, and thus have an n-
volume which is the same as that of the
parallelotope defined by the n basis vec-
tors.
Because the distance inequalities

which define them are saturated on
planes, Voronoi cells are convex poly-
topes with flat faces. The faces of the cell
about the origin lie on planes that are
halfway in between the origin and a set of
nearby lattice points. The intersections of
these faces form lower-dimensional con-
vex sub-faces, also bounded by planes,
which in turn intersect to form lower-
dimensional faces. At the bottom of this
hierarchy are the 0-faces, or vertices.

These vertices define the Voronoi cell, in the sense that their con-
vex hull is the cell. A single Voronoi cell also defines the lattice,
because one can use translated copies to cover the space, thus
identifying the lattice points, which lie at the center of the cells.
Lattices arise in many diverse fields, including number

theory,[10] geometry,[11] cryptography,[12] string theory,[13] coding
and information theory,[14] and data analysis.[15] In the latter two
contexts, lattices whichminimize the average squared distance to
the closest lattice point[16] provide the “most efficient” solutions
for accurately discretizing information content, or in searching
for unknown signals. This average squared distance may be
written as U∕V , where V is the volume of the Voronoi cell Equa-
tion (3.2) and U is the un-normalized second moment, which
is the trace of Equation (3.6). Since U scales as (length)n+2, the
dimensionless quantity to be minimized for an n-dimensional
lattice is[16,17]

G = 1
n

U
V1+2∕n . (1.1)

(The normalization factor 1∕n ensures that G = 1∕12 for a cubic
lattice ℤn in any number of dimensions.) Since the geometric
shape that minimizes G for a given volume is a ball, the optimal
quantizer lattice is likely to have a Voronoi cell which is close to
this shape.
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In dimensions from 1 to 3, the lattices that minimize G have
been found analytically (see Chapter 2 in ref. [1] and ref. [18]).
This is done by brute force: the quadratic form for the squared
distance (in lattice coordinates) is written as a function of sev-
eral unknowns, and the average is minimized. For example, in
3 dimensions[18] the solution is the body-centered cubic lattice
(bcc = A∗

3 = D∗
3.) No optimality proofs are available for quantiz-

ers in dimensions higher than 3, but well-known classical lattices
are conjectured to be optimal in dimensions up to 8 (see pp. 12
and 61 in ref. [1])
The strongest evidence for this is numerical. More than two

decades ago, Agrell and Eriksson for the first time used com-
puterized optimization algorithms to search for optimal lattice
quantizers in higher dimensions.[19] Effectively they evaluated
G via Monte Carlo integration, shifted the lattice points using
stochastic gradient descent, and continued until a stable mini-
mum was found. The key advance which enabled this was an ef-
ficient algorithm[20] to identify the closest point of an arbitrary
given lattice to any given point in ℝn. The process was repeated
many times in each dimension n = 3, 4,… , 10, each time op-
timizing the lattice over all n(n + 1)∕2 − 1 degrees of freedom,
without imposing any constraints on the structure of the lattice.
Most trials converged to the same lattices, up to equivalence oper-
ations. The numerically optimized generator matrices are avail-
able online.[21] Based on this numerical evidence, it was conjec-
tured in ref. [19] that the obtained lattices are the globally opti-
mal quantizers.
In dimensions n < 9, the numerically optimized lattices that

were obtained were the same classical lattices that had already
been conjectured as optimal in pp. 12 and 61 of ref. [1]. But in di-
mension 9, Agrell and Eriksson identified a previously unknown
lattice, which is not a classical lattice, though it is related to the
E8 root lattice and very similar toΛ∗

9, which is the dual of the lam-
inated lattice Λ9. In this paper, we call this new lattice AE9, after
its discoverers.
The AE9 lattice

[22] is defined by lattice points ZB, where Z is
the set of nine-dimensional row vectors whose components are
integers. The 9 × 9 generator matrix is

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.2)

The upper left corner of (1.2) is a generator of the root lattice D8,
which means that the lattice consists of copies of the D8 lattice,
shifted and stacked along the ninth dimension. The projection of
the nine-dimensional lattice orthogonal to the ninth dimension
is another root lattice, E8. In ref. [19], the quantity a in the lower
right hand corner was found by numerical optimization, yielding
a ≈ 0.573. The exact value was unknown, and might have even
been a rational number.

Figure 1. The second moment G and its derivative.

In this paper, we calculateG(a) of AE9 analytically; a plot of this
function is shown in Figure 1. The value of awhichminimizesG
is the algebraic number a =

√
v, where v is the smallest positive

root of the polynomial

720v9 − 1704v8 + 2544v6 − 3528v4 + 4896v2 − 4320v + 929.

(1.3)

Thus a = 0.5732237949…, corresponding to G =
0.0716225944…. An interesting byproduct of this calcula-
tion is that we obtain a full analytic description of the Voronoi
cells of AE9.
In the course of this work we have explored the one-parameter

family of lattices generated by B, obtaining exact formulae for the
secondmoments, volumes, and other properties of all of the sub-
faces (face catalogs are included in the Supporting Information.
There is one catalog for each of the four phases shown in Table 3
in Section 4). In nine dimensions, for a2 < 1∕2 the volume and
second moment are:

V = 2a, and

U = − a19

90
+ 4a17

135
− 8a13

135
+ 28a9

225
− 16a5

45
+ 2a3

3
+ 929a

810
. (1.4)

This is obtained from an analytic and geometric description
which is valid only for a2 < 1∕2. At the lower boundary of this
interval, for a = 0, the nine-volume vanishes, and at the up-
per boundary the volumes of the faces F31 , F

7
1 , F

3
2 , F

7
3 , F

10
4 , and

F105 vanish. (We denote equivalence classes of congruent n-
dimensional faces by Ft

n, where the “type label” t identifies the
class—see Table 2). However, provided that a is within this inter-
val, the overall topology of the Voronoi cell (by which we mean
the number of faces in any dimension and their pattern of inter-
section) is unchanged, and our analysis and equations are valid.
As a increases, the Voronoi cell undergoes three distinct phase

transitions. While we do not present the other phases here, they
are discussed in Section 4 and full details are provided in the face
catalogs (see Supporting Information).
There is a beautiful theorem by Zamir and Feder, stating that

a necessary (but not sufficient) condition for the optimal lattice
quantizer is a covariance proportional to the identity matrix.[23]

The covariance is proportional to the secondmoment tensorU𝜇𝜈 ,
defined in Equation (3.6) where 𝜇 and 𝜈 are vector indices that
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run from 1 to n. For our one-parameter family of lattices, sym-
metry implies[24] that

U𝜇𝜈 = 𝛼(a)𝛿𝜇𝜈 + 𝛽(a)z𝜇z𝜈 , (1.5)

where the first term is proportional to the identity matrix 𝛿𝜇𝜈 =
diag(1,… , 1), and the second to the outer product of a pair of unit
vectors along the 9th or “vertical” coordinate, z𝜇 = (0,… , 0, 1).
We find

𝛼 = a19

90
− 7a17

270
+ a13

27
− 7a9

150
+ 2a5

45
+ 929a

6480
, and

𝛽 = − a19

9
+ 71a17

270
− 53a13

135
+ 49a9

90
− 34a5

45
+ 2a3

3
− 929a

6480
. (1.6)

The trace of U𝜇𝜈 is the scalar moment U = 9𝛼 + 𝛽 of Equa-
tion (1.4). Multiplying by 6480 shows that 𝛽z𝜇z𝜈 vanishes for pre-
cisely the same value of a that extremizes G.Were that not so, the
Zamir and Feder result would imply that AE9 is not the optimal
lattice quantizer.
Currently, the best methods for computing Voronoi cells and

their moments are those of Dutour Sikiríc, Schürmann, and
Vallentin,[25] with which they computed the quantizer constant
for a number of lattices, includingΛ∗

9. That lattice corresponds to
setting a = 1∕2, for which all entries along the bottom row of B
become 1∕2. Happily, our general formula reproduces their value
(see Table 5 in ref. [25]), which is

G(Λ∗
9) = 1371514291∕19110297600

= 0.0717683376… . (1.7)

An interesting consequence of our construction is that it demon-
strates that the structure of the AE9 and Λ∗

9 Voronoi cells are the
same[26] although some faces of the Λ∗

9 cell have additional con-
gruences. Specifically, for a = 1∕2, the one-faces F11, F

6
1, and F71

become identical. In higher dimensions there are a handful of
faces which become congruent in shape, though with different
overall scales: F12 , F

3
2 , F

6
2 in dimension 2, F33 , F

7
3 , F

11
3 in dimen-

sion 3, and F64 , F
10
4 in dimension 4.

As described below, our construction begins analytically, using
“pencil and paper”, and is completed using a small Python code
that we wrote for this purpose. The code constructs the Voronoi
cell faces in all dimensions, both in floating point, for specific
values of a, and symbolically, for general values of a. As far as we
know, other computer codes (for example Polyhedral, see refs.
[25, 27]) are limited to rational arithmetic and therefore not di-
rectly applicable.
At the conclusion of the paper, in Section 6, we explain how

it may be possible to use existing rational arithmetic codes and
techniques to infer these results. More generally, our approach
can be used to evaluate the scalar and tensor second moments
U and U𝜇𝜈 , the volume V and the dimensionless scalar second
moment G for one-parameter families of lattices in any number
of dimensions n. For this purpose, it should be sufficient to
evaluate U and V for at most 2n + 3 distinct rational values of
the parameter.

2. Construction of the Voronoi Cell

TheAE9 Voronoi cell centered at the origin is the nine-face F
1
9.We

begin by finding its facets (eight-faces) and vertices (zero-faces).
For this, it is helpful to examine the symmetries implied by the
form of the generator matrix B of Equation (1.2).
The symmetries of the lattice which preserve the origin are

a group of order 10 321 920, and most easily described in terms
of three generator subgroups, which only overlap at the identity.
(Our description is for generic values of a; if a takes special val-
ues such as 1∕2, then there are additional symmetries and the
group is larger.) R (reflection): Suppose that (x1,… , x9) is a lat-
tice point. Then (x1,… , x8,−x9) must also be a lattice point. R is
a subgroup of order 2. P (permutation): If (x1,… , x9) is a lattice
point, then any permutation of the first eight coordinates is also
a lattice point. P is a subgroup of order 8! = 40 320. S (sign inver-
sion): If (x1,… , x9) is a lattice point, then changing the sign of
any two of the first eight coordinates also produces a lattice point.
S is a subgroup of order 128. Since the lattice points have these
symmetries, any geometric object defined by the lattice, and in
particular the Voronoi cell about the origin, will share them.
To begin the construction of the Voronoi cell, we apply the al-

gorithm in Section VI(C) of ref. [20] to identify the relevant vec-
tors, that is, the lattice vectors that define the facets of the Voronoi
cell. There are 370 such vectors, provided that a2 < 1∕2; the other
cases are described in Section 4.
The 370 relevant vectors are of three types, with different dis-

tances to the origin. (For a2 ≥ 2∕15, these relevant vectors corre-
spond to the 370 closest lattice points to the origin, but not for
a2 < 2∕15.) There are, respectively, 256, 112, and 2 lattice points
of the three types; the facets lie halfway between the origin and
these points. The coordinates of one point of each type are

n1 = 1
2
(1, 1, 1, 1, 1, 1, 1, 1, 2a) with |n1|2 = a2 + 2,

n2 = (1, 1, 0, 0, 0, 0, 0, 0, 0) with |n2|2 = 2, and

n3 = (0, 0, 0, 0, 0, 0, 0, 0, 2a) with |n3|2 = 4a2. (2.1)

The symmetry operations listed above can be applied to these
three lattice points to generate others at the same distance, and
hence the other 367 facets.
The lattice vector n1 is acted on by R and S to generate 256

points. The symmetry R has no effect on n2, P provides
(8
2

)
= 28

permutations, and S provides 4, so n2 generates 112 lattice points.
For the third vector, neither P nor S have any effect, so n3 provides
just two lattice points under the action of R. The facets (eight-
faces) lie in planes orthogonal to these 370 vectors, at distance|ni|∕2 from the origin.[28]

The vertices lie at the intersections of these facets and are listed
in Table 1. To illustrate how they are found, we calculate the co-
ordinates of one of these vertices; the others are obtained in sim-
ilar fashion. Consider, for example, the vertex which lies at the
intersection of the following nine facets: (1) the “diagonal” facet
defined by n1, (2–8) the seven “vertical” facets defined by permu-
tations P of n2 which leave a “1” in the first coordinate, and (9)
the “top” facet defined by n3.
We start by intersecting the facets defined by n2 and n3. A

point (x1,… , x9) that lies on both facets must be equidistant
from the origin and the corresponding lattice points, and hence
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Table 1. For a2 < 1∕2, the Voronoi cell has 93 024 vertices which fall into 16 equivalence classes under symmetry transformations. This table lists those
classesHi, ordered by decreasing distance |Hi| from the origin, with the coordinates of a representative vertex. The ordering depends upon the parameter
a, which we set to the special value a ≈ 0.573 that minimizes the dimensionless second moment G. The last two columns are the number of vertices in
the equivalence class, and the number of facets of each type (F18 , F

2
8 , F

3
8) that meet at the vertex.

Class Vertex w |Hi|2 Number Facets

H1 ( 0, 0, 0, 0, 0, 0, 0, 1, a) 1 + a2 32 (0,14,1)

H2 (−w, w, w, w, w, w, w, 1 − w, a) (1 − a2)∕4 1 + a2∕2 + a4∕2 2048 (7,7,1)

H3 (−w, w, w, w, w, w, w, 1 − w, 0) (1 + a2)∕4 1 + a2∕2 + a4∕2 1024 (14,7,0)

H4 ( w, w, w, w, w, w, w, 1 − w, a) (1 − a2)∕6 (8 + 8a2 + 2a4)∕9 2048 (1,7,1)

H5 (−w, w, w, w, w, w, w, w, 0) (2 + a2)∕6 (8 + 8a2 + 2a4)∕9 128 (16,0,0)

H6 (−w, w, w, w, w, 1∕2, 1∕2, 1∕2, 0) (1 + 2a2)∕6 (8 + 5a2 + 5a4)∕9 7168 (10,3,0)

H7 ( 0, 0, 0, w, w, w, w, 1 − w, a) (1 − a2)∕3 (8 + 5a2 + 5a4)∕9 17 920 (4,4,1)

H8 ( 0, 0, 0, 0, w, w, w, 1 − w, a) (1 − a2)∕2 1 + a4 8960 (8,3,1)

H9 ( 0, 0, 0, w, 1∕2, 1∕2, 1∕2, 1∕2, 0) a2 1 + a4 8960 (8,6,0)

H10 ( 0, 0, 0, 0, w, 1∕2, 1∕2, 1∕2, a) (1 − 2a2)∕2 1 + a4 8960 (8,3,1)

H11 (−w, w, w, w, 1∕2, 1∕2, 1∕2, 1∕2, 0) a2∕2 1 + a4 8960 (8,6,0)

H12 (−w, w, w, w, w, 1∕2, 1∕2, 1∕2, a) (1 − 2a2)∕6 (8 + 4a2 + 5a4)∕9 14 336 (5,3,1)

H13 ( 0, 0, 0, w, w, w, w, 1 − w, 0) (1 + a2)∕3 (8 + 4a2 + 5a4)∕9 8960 (8,4,0)

H14 ( 0, 0, 0, 0, 1∕2, 1∕2, 1∕2, 1∕2, a∕2) 1 + a2∕4 2240 (8,6,0)

H15 ( w, w, w, w, w, w, w, 1 − w, 0) (1 + a2)∕6 (8 + a2 + 2a4)∕9 1024 (2,7,0)

H16 (−w, w, w, w, w, w, w, w, a) (2 − a2)∕6 (8 + a2 + 2a4)∕9 256 (8,0,1)

must satisfy the equations

x21 +⋯ + x29 = x21 +⋯ + x28 + (x9 − 2a)2, and

x21 +⋯ + x29 = (x1 − 1)2 + (x2 − 1)2 +

x23 +⋯ + x29 . (2.2)

All the quadratic terms drop out, leaving two linear equa-
tions. The first implies that x9 = a and the second implies that
x1 + x2 = 1. Now consider the intersection of this with additional
facets of type n2, but permuted by P in a way that leaves a “1”
in the first coordinate of n2 but shifts the second “1” further
along. These give equations of identical form to x1 + x2 = 1, but
with x2 replaced by another coordinate, so we find x1 + x3 = 1,
x1 + x4 = 1,… , x1 + x8 = 1. Together, these imply that coordi-
nates two through eight are equal: x2 = x3 = ⋯ = x8. Denoting
those equal values by w, the vertex at the intersection of these
eight facets must have the form

v = (1 − w, w, w, w, w, w, w, w, a). (2.3)

Finally, consider that this vertex also lies on the facet defined by
n1, and thus is located halfway between the origin and the lattice
point n1. This means that

x21 +⋯ + x29 = (x1 − 1∕2)2 +⋯ + (x8 − 1∕2)2 + (x9 − a)2. (2.4)

Again, the quadratic terms cancel, and since x9 = a we are left
with

a2 = −x1 + 1∕4 −⋯ − x8 + 1∕4 = 1 − 6w. (2.5)

This implies that w = (1 − a2)∕6; the vertex in Equation (2.3) is
listed in Table 1 as typeH4.

The remaining vertices listed in the table can be found in the
same way, given a set of at least nine facets that intersect at each
vertex. To identify all sets of nine facets that intersect at a vertex,
we resort to a probabilistic procedure. We select a random vector
c uniformly in the unit 9-sphere and solve maxx∈F9 (c ⋅ x), where
F9 is the Voronoi cell. This is a standard linear program, and the
solution is a vertex of F9. Additional vertices are obtained by ap-
plying the symmetry group to the found vertex. The process is
repeated for multiple random vectors c, expanding the vertex set
until it saturates, which typically happens after 5–10 000 vectors.
Later in the analysis (Section 3) we compute the volume of the
convex hull of the vertex set to verify that the set is indeed com-
plete.
The number of vertices in each of the three types of facets can

be easily computed from the information given in Table 1. For ex-
ample the “top” facet of type F38, defined by n3, contains all of the
vertices with x9 = a, and hence has 16 + 1024 + 1024 + 8960 +
8960 + 7168 + 128 = 27 280 vertices. The “vertical” facets of type
F28 are defined by n2 and have 3484 vertices. The “diagonal” facets
of type F18 are defined by n1 and have 2454 vertices.
We now shift to a different representation of the facets, iden-

tifying each one by the set of vertices that lie in it. These are
easily found, by identifying the subset of all vertices whose dot
product with the normal vector to the facet is equal to the facet-
to-origin distance. From here onward, we also represent lower-
dimensional faces in this same way: by the subset of vertices that
lie in the face.
To find these lower-dimensional faces, we now carry out a

sequence of eight recursive steps, beginning with the n = 8-
dimensional faces, to obtain the faces in one lower dimension.
There are many efficient algorithms for this, for example the
general-purpose “diamond-cutting” algorithm of Viterbo and
Biglieri[29] or the more recent innovations of Dutour Sikiríc and
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Table 2. The number of n-faces Ftn of each type t, for the AE9 Voronoi cell with a2 < 1∕2.

Dimension n 0 1 2 3 4 5 6 7 8 9

Types of faces 1 12 15 13 12 10 7 4 3 1

F1n 93 024 218 112 584 192 645 120 430 080 358 400 57 344 10 752 256 1

F2n 134 656 358 400 501 760 322 560 89 600 53 760 1344 112

F3n 107 520 197 120 369 152 286 720 80 640 8960 384 2

F4n 88 064 179 200 250 880 250 880 50 176 7168 224

F5n 62 720 143 360 215 040 107 520 35 840 4480

F6n 53 760 125 440 150 528 98 560 17 920 2688

F7n 53 760 114 688 89 600 86 016 8960 448

F8n 32 256 98 560 71 680 53 760 8960

F9n 17 920 71 680 67 200 20 160 1120

F10n 2304 40 320 50 176 16 128 896

F11n 2048 35 840 50 176 10 752

F12n 16 28 672 11 200 10 752

F13n 16 384 7168

F14n 1024

F15n 1024

Total faces 93 024 773 136 1 995 904 2 479 680 1 693 888 652 512 134 848 12 704 370 1

collaborators,[25,30] which can take better advantage of symme-
tries. However, because our main purpose is to compute G(a),
we do not employ these. We simply intersect the two sets of
vertices of all pairs of n-faces which have common parents, to
obtain all (n − 1)-faces. (If the intersection produces an object
with dimension less than n − 1, it is discarded.) As part of
this intersection process in dimension n, we construct and
save lists of parent faces of dimension n and child faces of
dimension n − 1. Continuing recursively in this way through all
the dimensions, we build the complete incidence graph of the
Voronoi cell. The number of faces in each dimension is shown in
Table 2.

3. Volume and Second Moment Computations

Once the faces and parent/child (incidence) relationships have
been determined, the next step is to compute the volumes,
barycenters, and second moments of all n-faces. These are com-
puted recursively, beginning in dimension 0 and working up-
ward. See ref. [31] for a useful comparison of different tech-
niques. For our purposes, the most practical method is to con-
struct pyramids from sub-faces, as employed for example in
Chapter 21, Theorem 3 of ref. [1]. Unfortunately, we could not
employ this directly, because it requires projecting a basepoint
(the origin) onto sub-faces in all dimensions. If the vertices are
defined by (floating point or rational) numbers, then it is trivial to
carry out projections onto sub-faces, by recursively constructing
a set of 9 − n orthonormal vectors to the face Fn, for example us-
ing the Gram–Schmidt algorithm. But when working analytically
with arbitrary a, the expressions become increasingly complex.
In practice, we were only able to construct projection operators
in dimensions six and above.
Since we could not use the projected origin, the natural choice

of basepoint was the centroid. A suitable set of recursion formu-
lae is given in Section IV(C) of ref. [29], but the equations there

have a number of errors. Similar formulae are given in Section 4
of ref. [25], but are not presented as explicit recursion relations,
andwewere unsure if the symmetry requirements were satisfied.
So here we give the recursion relations that we used, in notation
similar to that of ref. [29].
The centroid C𝜇

n of the face Fn is defined by

C𝜇

n = 1
N

N∑
i=1

v𝜇i , (3.1)

where the v𝜇i are the vertices of the face, i labels the N different
vertices, and 𝜇 = 1,… , 9 labels the vector components. Because
the faces are convex, this point is guaranteed to lie in the interior
of the face.
The n-volume Vn of a face Fn is defined by

Vn = ∫Fn

dnx, (3.2)

where dnx denotes the volume element dx1⋯ dxn, suitably pro-
jected onto the plane of the face. The volume can be computed
from the recursion relation

Vn =
1
n

∑
i

hiV
i
n−1, (3.3)

where the sub-faces Fi
n−1 of Fn are labeled by i, the volume of

the sub-faces is Vi
n−1 = Vn−1(F

i
n−1), and hi is the (positive) height

of the centroid of Fn above the plane of the sub-face. The initial
condition is V0 = 1.
We use two methods to compute the height hi to the sub-

face Fi
n−1. In dimensions n ≥ 6, we first form the projection

operator onto the sub-face, which is a matrix P𝜇𝜈 =
∑

𝓁𝜇𝓁𝜈 .
The sum includes 10 − n terms; the 𝓁𝜇 are a set of 10 − n
linearly-independent unit-length mutually-orthogonal vectors
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normal to the sub-face. The height hi is then given by the length
of P(Cn − Cn−1,i). In dimensions n < 6, we pick n − 1 vectors
vj that span the sub-face, and compute the Gram determinant,
which is the determinant of the (n − 1) × (n − 1) square matrix
of dot products: n−1 = det[vj ⋅ vk]. We then add one more vector
v = Cn − Cn−1,i to the set and compute the Gram determinant
n. The height h

2
i = n∕n−1 is the (squared) volume ratio of the

two corresponding parallelotopes.
The barycenter B𝜇

n of a face Fn is defined by

B𝜇

n = 1
Vn ∫Fn

x𝜇 dnx. (3.4)

It is the location which would act as the “center of gravity,” or bal-
ance point, if the face were constructed from a uniform-density
substance, and placed in the n-dimensional generalization of a
constant gravitational field. We compute the barycenter relative
to the centroid of the face, where O𝜇

n = B𝜇
n − C𝜇

n is the offset be-
tween them. It is obtained from the recursion relation

O𝜇

n = 1
(n + 1)Vn

∑
i

hiV
i
n−1(O

𝜇

n−1,i + C𝜇

n−1,i − C𝜇

n ), (3.5)

where hi has the same meaning as before, and we have moved
the sub-face label i on B𝜇 and O𝜇 to the lower position. Note that
O𝜇

n vanishes for n = 0 and n = 1.
The second moment tensor of a face Fn about the basepoint x0

is defined by

U𝜇𝜈

n = ∫Fn

(x − x0)
𝜇(x − xo)

𝜈dnx. (3.6)

We always evaluate this about the barycenter of a face, x𝜇o = B𝜇
n ;

the recursion relation is

U𝜇𝜈

n = 1
n + 2

×

∑
i

hib
[
U𝜇𝜈

n−1,i +
(
B𝜇

n − B𝜇

n−1,i

)(
B𝜈

n − B𝜈

n−1,i

)
Vi
n−1

]
(3.7)

with U𝜇𝜈

0 = 0. Here, in contrast with the previous expressions,
hib > 0 is the height of the barycenter of Fn above the plane of the
ith sub-face Fi

n−1. The trace of this gives the recursion relation for
the scalar second moment Un =

∑9
𝜇=1U

𝜇𝜇
n about the barycenter.

In many instances, as described in ref. [25], these recursive sums
can be simplified, so that there is one term for each congruence
class of sub-faces, rather than one term per sub-face.
The Supporting Information includes face catalogs for the dif-

ferent ranges of a. The catalogs contain complete lists of formu-
lae for volume, barycentric and centroid heights, and secondmo-
ments, of all face types in all dimensions. From these, the for-
mulae we give here can be reconstructed. For example, the three
types of eight-faces have volume

V(F18) =
√
a2 + 2

(
a15

64
− a13

30
+ 7a9

180
− 7a5

180
+ a
30

)
,

V(F28) =
√
2
(
−a15
28

+ 8a13

105
− 4a9

45
+ 4a5

45
+ a
15

)
, and

V(F38) = −a16 + 32a14

15
− 112a10

45
+ 112a6

45
− 32a2

15
+ 1. (3.8)

The heights of these faces from the centroid of the Voronoi cell
about the origin F19 are easily calculated, and are (respectively)

h1 =
√
a2 + 2∕2, h2 =

√
2∕2, and h3 = a, (3.9)

from which one obtains V(F19) = 2a. This also follows imme-
diately from the determinant of the generator matrix of Equa-
tion (1.2), providing a simple consistency check and confirming
that all vertices had been found.
The symbolic calculations which lead to these results are too

time-consuming to repeat for every face. To speed the process up,
we exploit symmetry: the volume calculations are done only once
for each face type in dimension n = 1,… , 8, and then used for all
similar faces in that dimension. One way to identify equivalent
faces would have been to search for the required symmetry trans-
formation, but this is challenging to program and implement. So
we used two other methods. First, we computed the volumes nu-
merically for a = 0.573, where the values are distinct, apart from
dimension n = 3, where there are two different faces that have
identical three-volumes:

V(F23) = V(F43) =
a
√
12a2 + 7

(
3 − 2a4

)
72

. (3.10)

Fortunately these are trivially distinguished, because the first
has six sub-faces, and the second has seven sub-faces. We also
checked that we could uniquely identify face types by making a
hash from the hierarchy of child counts.
As shown in Table 2, the AE9 Voronoi cell contains 78 distinct

types of faces. For all but one type, the sub-faces of a given type
are all at the same barycentric height and separation. The excep-
tion is F52, whose two sub-faces of type F

6
1 have different values of

barycenter separation |B2 − B1|. Both are listed in the face cata-
log.

4. Phase Transitions for a2 > 1∕2
While the optimal lattice quantizer of the form (1.2) has a2 < 1∕2,
we have also studied how the lattice behaves for larger values. As
a increases from zero, the Voronoi cell evolves through different
“phases.”
Within each phase, corresponding to the L-type domains of ref.

[5], the cell has a constant number of facets, vertices, and face
equivalence classes, and the combinatorial structure (by which
we mean the network topology of the face incidence graph) is
invariant. This is shown in Table 3. (Note that the structure of the
a = 1 case is explicitly calculated in Section 7 of ref. [32], setting
n = 9). Varying a smoothly across a phase transition, the vertices
merge together or split apart, and the “velocity” dx𝛼∕da of some
of the vertices changes direction.
Previously, we studied phase A of Table 3, because it is rel-

evant for the conjectured optimal lattice quantizer in 9 dimen-
sions, which has a ≈ 0.573. Consider instead, for example, phase
B, for which 1∕2 < a2 < 1. Although the number of vertex equiv-
alence classes is the same as for a2 < 1∕2, four of the classes
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Table 3. Voronoi cell structure for increasing a.

Phase Vertices Classes Facets Classes

A: 0 < a2 < 1∕2 93 024 16 370 3

a2 = 1∕2 54 496 14 370 3

B: 1∕2 < a2 < 1 66 144 16 370 3

a2 = 1 8160 7 370 3

C: 1 < a2 < 2 9344 9 370 3

a2 = 2 7138 7 368 2

D: 2 < a2 7266 7 368 2

H9, H10, H12, and H13 are modified from those given in Table 1.
Their respective coordinates take the following new forms:

(
−w, w, w, 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 0

)
, w = a2 − 1

2
,

(
1 − w, w, w, 0, 0, 0, 0, 0, a

)
, w = 1 − a2,(

0, 0, 0, 0, 0, 1
2
, 1
2
, 1
2
, w

)
, w = a

2
+ 1
4a

, and

(
0, 0, 0, 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, w

)
, w = a

2
− 1
4a

. (4.1)

Phases A and B have the same numbers of faces (see Table 2)

in dimensions 6 through 9, but different numbers of faces in di-
mensions 5 and below (see face catalogs in the Supporting Infor-
mation).
We calculate the volumes and second moments for all four

phases, in the same way as previously described; full details are
provided in the accompanying face catalogs (see Supporting In-
formation). For example in phase B, for 1∕2 < a2 < 1, the un-
normalized second moment is

UB =
121

12 150
a19 − 92

1 215
a17 + 32

135
a15 − 152

405
a13 + 112

405
a11

− 28
675

a9 + 28
405

a7 − 152
405

a5 + 181
270

a3 + 1 393
1 215

a + 1
48 600

a−1. (4.2)

Since their domains in a are disjoint, we cannot immediately
compareUB to the corresponding equation forUA given in Equa-
tion (1.4) for a2 < 1∕2. However, both functions may be trivially
extended to the entire real a axis by analytic continuation, and
then directly compared.
The result is a beautiful sequence of simple relationships.

The volume V is the determinant of the generator matrix Equa-
tion (1.2), so the same volume formula V = 2a holds for all four
phases, and all of its derivatives are continuous. But the second
moments change form at the transition points, with differences:

UB −UA =
(
2a2 − 1

)10
97 200a2

V,

UC −UB =
(
1 − a2

)9(
2a2 + 3

)
405a2

V, and

UD −UC = −
(
a2 − 2

)10
24 300a2

V . (4.3)

It would be unfair to call these “jumps,” because the transitions
are extremely smooth. A physicist would describe these as ninth
or tenth order phase transitions, because at the transition points,
the Taylor series of U∕V agree to this order. There is probably a
simple geometrical explanation for this behavior.
The second moment tensors U𝜇𝜈 = 𝛼𝛿𝜇𝜈 + 𝛽z𝜇z𝜈 have similar

behavior across the transitions:

𝛽B − 𝛽A =
(
2a2 − 1

)9(
16a2 + 1

)
77 760a2

V, (4.4)

𝛽C − 𝛽B = −
(
1 − a2

)8(
32a4 + 43a2 + 6

)
648a2

V, and (4.5)

𝛽D − 𝛽C = −
(
a2 − 2

)9(
4a2 + 1

)
9720a2

V . (4.6)

The corresponding formulae for 𝛼 may be easily obtained from
the trace constraint U = 9𝛼 + 𝛽.

5. Discussion

More than three decades have passed since the publication of
Conway and Sloane’s wonderful book on sphere packings, lat-
tices and groups,[1] and more than two decades since the third
edition appeared. It is sobering to compare the plot they provide
(see Figure 2.9 of Chapter 2 in ref. [1]) of the best quantizers
known in dimensions n ≤ 24 with the current state of affairs.
Since that plot was published 37 years ago,[36] there have been
only a few additions, which are shown in Figure 2. The main
progress has been in dimensions 8–12 and can be seen more
clearly in the enlargement Figure 3.
In dimension 9, there has been the numerical discov-

ery of the AE9 lattice by Agrell and Eriksson,[19] who also
identified the (non-lattice) tessellation D+

9 as a superior quan-
tizer. Dutour Sikiríc[36] subsequently calculated the moments
of D+

9 analytically, using the methods of [25], obtaining
G(D+

9 ) = 924 756 607∕13 005 619 200 = 0.0711043…, which
is in good agreement with the numerical results reported in
ref. [19]. Table 5 of ref. [25] also reports exact values for the
laminated lattice Λ9 and its dual, G(Λ9) = 151 301∕2 099 520 =
0.0720645… and G(Λ∗

9) = 1 371 514 291∕19 110 297 600 =
0.0717683…, as well as exact values for the Coxeter lattices
G(A2

9) = 5−1∕92−8∕92 120 743∕13 271 040 = 0.0721668…, and
G(A5

9) = 2−1∕95−8∕98 651 427 563∕26 578 125 000 = 0.0720790….
In dimension 10, the exact value for G(D+

10) =
4 568 341∕64 512 000 = 0.0708138… was computed in ref.
[25]. This is also in good agreement with the value found numer-
ically in ref. [19], which numerically converged on this lattice as
the optimal lattice quantizer in ten dimensions.
In dimension 11, ref. [25] has provided exact values for the

quantizer constants of A2
11, A

4
11, and A3

11; the last of these is the
current record-holder (see Figure 3).
In dimension 12, K12 remains the best lattice quantizer, al-

though there has been some progress: ref. [25] calculates an exact
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Figure 2. The best lattice quantizers currently known are shown as dots,
in dimensions n ≤ 24. Also shown are the conjectured lower bound of
Conway and Sloane (see Equation (4) in ref. [33]), the lower-bound from
the interior of a sphere (see Equation (2) in ref. [33]), and Zador’s up-
per bound.[16,34] In dimensions 13 ≤ n ≤ 15 and 17 ≤ n ≤ 23, the best
quantizers currently known are D∗

n and A∗n, which are above Zador’s up-
per bound.
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Figure 3. An enlargement of Figure 2 around dimension 9, showing other
good lattice quantizers. In dimension 9, the second-best lattice quantizer,
Λ∗
9, is a special case of the lattice studied in this paper, corresponding to

a = 1∕2. The plot includes one non-lattice quantizer, the tessellation D+
9

discussed in detail in ref. [19].

value for G(K12), which was previously only estimated by Monte
Carlo integration, and also calculates G(D+

12), which is larger.
In dimensions 13 ≤ n ≤ 24, with the exceptions of n = 16 and

n = 24, the best lattice quantizers that we currently know lie
above the upper bound given by Zador.[16,34] These are D∗

n for
13 ≤ n ≤ 20 and A∗

n for 21 ≤ n < 24. Zador’s bound establishes
that in these dimensions there must be superior quantizers, but

since the proof is not constructive, their identity is unknown; it
is not even known if the optimal quantizers are lattices.

6. Further Applications

The AE9 lattice has some practical interest. For example, a
search for pulsars in eccentric binary orbits has nine non-trivial
parameter-space dimensions (see Sections 4.1 and 6 in ref. [37]).
Using the optimal quantizer as a parameter-space grid would
minimize the number of “lost” detections.[15] But the more sur-
prising aspect of AE9 is how it suddenly appears in dimension 9,
after a long sequence of well-known classical lattices. Is this a hint
of what happens in (some) higher dimensions?
Happily, our methods can be used to calculateG for other one-

parameter families of lattices, and to search for optimal quantiz-
ers in higher dimensions. They are particularly suitable for build-
ing laminated lattices, which are constructed by “stacking copies”
of an (n − 1)-dimensional lattice in the nth dimension.
To make an n-dimensional laminated lattice (see Chapters 5

and 6 in ref. [1] and refs. [30,38], we start with a generator Bn−1 for
the lower-dimensional lattice, and an (n − 1)-dimensional vector
r, which is the component of the stacking offset in the (n − 1)-
plane. This is often taken to point toward a “deep hole” in the
(n − 1)-lattice (the vertex of the Voronoi cell most distant from the
origin). We then construct an n-dimensional generator matrix

B =
[
Bn−1 0
r a

]
, (6.1)

where a is a positive real number, which has zeros above it. The
AE9 generator Equation (1.2) has exactly this form because Bn−1
is the generator for D8 and r points to a deep hole. The value of a
determines the distance between the shifted lattice copies, in the
direction orthogonal to their plane.
With this assumed form, it should be possible to calculate G

as we have done here. In Table 1, the coordinates of all vertices
of the Voronoi cell are quadratic functions of a. The situation is
similar for the laminated construction of Equation (6.1), where
the parameter a sits in the bottom right corner, with vanishing
entries above it. This form of B implies that all but the final coor-
dinate of the Voronoi cell vertices take the quadratic form c + c̄a2;
the final coordinate xn has the form xn = c∕a + c̄a. Here c and c̄
are constants, of which at least one is non-zero. For example, for
the AE9 lattice, compare Table 1 and Equation (4.1): the final co-
ordinate has c = 0 for a2 < 1∕2, and c ≠ 0 for 1∕2 < a2.
This is enough to infer the functional form of V = Vn(a) and

U𝜇𝜈 = U𝜇𝜈
n (a). The volume V is given by the determinant of B,

and is therefore proportional to a. The second moment U𝜇𝜈

may be found by decomposing the Voronoi cell into n-simplices.
There aremany ways to do this, as elaborated in ref. [31]. For now,
suppose that this is done recursively: each face in dimension n is
written as a union of n-simplices, formed by adding the centroid
of the face as a new vertex to each of the (n − 1)-simplices used to
decompose the lower-dimensional faces. In this way, the Voronoi
cell is written as a sum of n-simplices, each of which has n + 1
vertices. One of those vertices is the origin, n − 2 of those ver-
tices are centroids of lower-dimensional faces, and the final two
are drawn from the vertices of the Voronoi cell.
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Such a decomposition leads to a combinatorial explosion be-
cause the number of simplices grows very rapidly with dimen-
sion. For example, if the AE9 Voronoi cell with a

2 < 1∕2 is decom-
posed in this way, it is expressed as the union of 45 344 194 560
nine-simplices. But to determine the functional form of U(a), it
is only necessary to imagine that this has been done, but not to
carry it out in practice.
Let the n + 1 vertices of one of the simplices be the vectors

0𝜇 , 𝛼𝜇 ,… , 𝛽𝜇 . Then the volume of the simplex is the determinant
of the n × n square matrix

Vn =
1
n!

det
⎡⎢⎢⎣
𝛼1 … 𝛼n

⋮ ⋱ ⋮
𝛽1 … 𝛽n

⎤⎥⎥⎦ , (6.2)

where the rows are ordered to give a positive volume, and the
superscripts denote the n components of the vectors. Two of the
rows are vertices of the Voronoi cell, and the remaining rows are
centroids of the sub-faces in dimensions 2 to n − 1, defined in
Equation (3.1). Since the centroids are averages of the Voronoi
cell vertices, they have the same functional form as the vertices.
Hence, all but the final column of Equation (6.2) have the form
c + c̄a2; the final column has the same form, but with an addi-
tional factor of 1∕a. (For AE9 with a2 < 1∕2 only the term linear
in a appears because c = 0.) Consequently, the volume of each
simplex takes the form Vn = P(a2)∕a, where P is polynomial of
maximum order n in a2.
The second moment tensor U𝜇𝜈 about the origin for an n-

simplex is easily calculated. After normalization by the volume,
one has

I𝜇𝜈 = U𝜇𝜈∕V =

(𝛼𝜇 +⋯ + 𝛽𝜇)(𝛼𝜈 +⋯ + 𝛽𝜈) + 𝛼𝜇𝛼𝜈 +⋯ + 𝛽𝜇𝛽𝜈

(n + 1)(n + 2)
, (6.3)

where we have assumed that one of the simplex’s vertices is at
the origin, as is the case here. (The trace of this equation re-
duces to the scalar second moment given in Chapter 21, The-
orem 2 of ref. [1].) By a reasoning similar to that used in the
previous paragraphs, I𝜇𝜈 has components of the form a−2S(a2)
where S are polynomials ofmaximumorder 3. Hence, adding the
un-normalized second moment tensors U𝜇𝜈 = VI𝜇𝜈 of all of the
simplices, we find that the total un-normalized second moment
tensor of the Voronoi cell has components of the form P(a2)∕a3,
where P is a polynomial of maximum order n + 3.
Making use of these forms, the dimensionless (scalar) second

moment can be written as

G(a2) = 1
n

U
V1+2∕n = 1

n
P(a2)(a2)−(2n+1)∕n. (6.4)

The extrema of G satisfy G′(a2) = 0, where ′ = d∕da2, which im-
plies

na2P′(a2) − (2n + 1)P(a2) = 0. (6.5)

This is a polynomial equation in a2 of maximum order n + 3,
which means that one may use this technique to perturb any
lattice whose Voronoi cell can be calculated, and to identify the

extrema. If the matrix Bn−1 and vector r are rational, this also
demonstrates that the extremal values of a are algebraic num-
bers.
Existing techniques can compute the quantizer constants for

specific lattices using rational arithmetic.[25,29,30] To find the poly-
nomial P, it is sufficient to compute U or G for n + 3 distinct
rational values of a. Since P is polynomial, one can use these val-
ues to then obtain a set of linear equations for the coefficients.
Solving these yields the polynomial for U, and hence the one-
parameter family of solutions.[39]

The program we are describing, to generate one-parameter
families of lattices, Voronoi cells, and quantizer constants, may
provide a useful technique for generating better quantizers
in higher dimensions, and understanding their structure. If
needed, the choice of starting generators and the direction to per-
turb them can be guided by further numerical studies like those
of ref. [19].
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