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ABSTRACT: Both the intensities of individual extreme rainfall events and the frequency of such events are important for
infrastructure planning. We develop a new statistical extreme value model, the PGEV model, which makes it possible to use
high-quality annual maximum series data instead of less well-checked daily data to estimate trends in intensity and frequency
separately. The method is applied to annual maximum data from Vol. 10 of NOAA Atlas 14, dating from approximately 1900 to
2014, showing that in the majority of 333 rain gauge stations in the northeastern United States the frequency of extreme rainfall
events increases as mean temperature increases, but that there is little evidence of trends in the distribution of the intensities of
individual extreme rainfall events. The median of the frequency trends corresponds to extreme rainfall becoming 83% more
frequent for each 1°C of temperature increase. Naturally, increasing trends in frequency also increase the yearly or decadal
risks of very extreme rainfall events. Three other large areas in the contiguous United States, the Midwest, the Southeast, and
Texas, are also studied, and show similar but weaker trends than those in the Northeast.

SIGNIFICANCE STATEMENT: Climate change can increase extreme daily rainfall by making individual extreme
rainfall events more frequent, more intense, or both. We develop new methods based on extreme value statistics to
predict to what extent these three scenarios will occur. Our aim is to inform infrastructure planning, both for protection
against high-impact catastrophes and for local planning of roads and sewers. The new methods allow using high-quality
annual maximum series for prediction of frequency, instead of partial duration series. In the northeastern United States,
extreme daily rainfall events are becoming more frequent with little evidence of increasing trends in the distribution of
intensities of individual extreme daily rainfall events. For many stations the frequency increase exceeds 150% for each

1°C of temperature increase.

KEYWORDS: Extreme events; Precipitation; Climate change; Climate prediction; Probabilistic Quantitative Precipitation

Forecasting (PQPF); Trends

1. Introduction

Extreme rainfall in the contiguous United States has been
estimated to have caused more than 0.75 trillion U.S. dollars
(USD) in property losses since 1980 (Kunkel et al. 2020); the
American Society of Civil Engineers (ASCE) estimates that
trillions of dollars will be needed by 2025 to improve infra-
structure in the United States (ASCE 2016), and climate change
is expected to compound the problems (see, e.g., Kunkel et al.
2020). Rainfall events with immense intensity cause extensive
damage, like the 2017 Hurricane Harvey, which produced daily
rainfall amounts of more than 400 mm and is estimated to have
caused more than 89 deaths and cost 130 billion USD (NOAA
NCEI 2020). Extreme rainfall events with lower intensities also
carry very high costs for making flooding of roads less frequent by
improving detention ponds and building higher berms and bigger
concrete culverts, and for improving drainage systems to make
inundation of cellars less common.

Denotes content that is immediately available upon publica-
tion as open access.
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Assuming stationarity has been standard practice when ana-
lyzing extreme hydrological events (Kundzewicz and Kaczmarek
2000). However, with increasing awareness of a changing climate,
incorporating nonstationarity in the analysis, as we do in this pa-
per, is becoming both more common and more important (see,
e.g., Katz et al. 2002; Li et al. 2005; Milly et al. 2008; Towler et al.
2010; Kysely et al. 2010; Acero et al. 2011; Rootzén and Katz 2013;
De Paola et al. 2018).

Climate change can increase extreme daily rainfalls in three
different ways:

C1: individual extreme rainfall events become more fre-
quent (i.e., exceedances of high thresholds become more
frequent);

C2: individual extreme rainfall events become more intense
(i-e., the conditional distribution of sizes of excesses over
high thresholds becomes stochastically larger); or

C3: individual extreme rainfall events become both more
frequent and more intense.

Clearly, the maximum of (say) 100 rainfall events is likely to
be larger than the maximum of 10 rainfall events following the
same distribution. Because of this, C1 will make annual max-
ima larger and make the very extreme events like Harvey more
likely, even if C2 does not happen. However, even if C1 and C2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
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can increase risks of very extreme rainfall events in the same
way, their effects on infrastructure needs still are different. If
individual events with lower, but still extreme, intensity, such
as flooding of roads and cellars become, say, twice as frequent,
then demands for improvement will be much more urgent. In
this paper we develop methods based on extreme value sta-
tistics to predict to what extent C1, C2, or C3 will occur. Our
aim is to inform infrastructure planning, both for protection
against high-impact catastrophes and for local planning of
roads and sewers.

To answer statistical questions such as those above, the
quality of data is crucial. Analysis of station data on extreme
rainfall events typically uses either annual maximum series
(AMS) of daily rainfall or partial duration series (PDS) data
[also called peaks over thresholds (PoT) data] consisting of
sizes of excesses of a high threshold. For the United States,
daily rainfall data are available in the NOAA GHCN-Daily
dataset (Menne et al. 2012). With the large number of station
records, manual control of the data is not possible and instead
quality assurance is mainly automated. AMS data on daily
rainfall are provided by NOAA Atlas 14 (Vol. 10; Perica et al.
2015, revised 2019). The AMS data are obtained from the
GHCN-Daily data but have been submitted to additional
careful manual screening and quality control, and are ex-
pected to be of substantially higher quality than the PDS
data. As a (perhaps unnecessary) side remark, one can of
course compute yearly maxima from the GHCN-Daily data.
However, these data would be of the same quality as the daily
data, and would take away the point of using the NOAA Atlas
14 AMS data, namely, higher quality.

The method we develop and apply in this work makes it
possible to use the high-quality AMS data to answer questions
on the occurrence of cases C1-C3. Use of PDS data has the
advantage that it provides direct information about both fre-
quencies and intensities of extreme daily rainfall events, and
hence about the extent of C1-C3. Furthermore, the PDS data
cover more regions and have later ending dates, but instead
have the drawback that it is difficult to judge to what extent
results based on analysis of PDS data might be influenced by
missing days and by errors in measurement and transcription.

Our method is built on the close relation between the two
main models of extreme value statistics, the generalized ex-
treme value (GEV) distribution for annual maxima and the
generalized Pareto—Poisson model for partial duration series.
It is related to the Langbein formula (Langbein 1949) com-
monly used in hydrology.

We apply the new method to show that C1 holds so that
extreme daily rainfall events in the northeastern United States
are becoming more frequent, but that C2 does not occur (i.e.,
the distribution of intensities of individual extreme rainfall
events is not changing). As a consequence of C1, the intensity
of, for example, the maximum yearly or decadal rainfall is also
increasing. In the analysis we use the 99.5% threshold to define
extreme daily rainfall events. However, it should be noted that
according to our model trends for exceedances of higher
thresholds will be the same, and that this agrees well with data.

The results are validated using a high-quality manually
checked set of daily rainfall measurements from 16 weather
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stations in the northeastern United States, and by parametric
bootstrap simulations. We also perform the same analysis for
three other large areas in the contiguous United States, and
conclude that changes there are similar but slower than in the
Northeast.

Our results are in line with earlier empirically based studies
including NOAA Atlas 14, Vol. 10, where it was observed, but
not confirmed, that annual maximal rainfall in the northeastern
United States seem to increase (Perica et al. 2015, revised
2019). Easterling et al. (2017) and Barlow et al. (2019) sum-
marize the large and quite diverse research on precipitation
changes in the United States, which often concludes that heavy
rainfall events in some or most parts of the United States have
increased in intensity and frequency since 1901 and projects
that the increase will continue over the twenty-first century.
The later summary notes a very large variability in the defini-
tion of “extreme rainfall events” and the earlier one does not
seem to provide a clear definition of the meaning of “‘increase
in intensity.” Based on data and model output for Europe and
the United States, Myhre et al. (2019) find strong increases in
the frequency of extreme precipitation events, but that changes
in intensity are weak. The climate literature shows that general
circulation models (GCMs) have more difficulties in modeling
precipitation than temperature and in capturing the often more
local phenomena that lead to extreme precipitation amounts
(Huang et al. 2017). It also points to important differences in
extreme rainfall trends between the different regions in the
United States, with the largest changes predicted to occur in
the U.S. Northeast, and that increases have continued also
after the end dates of the NOAA Atlas 14 data (Kirchmeier-
Young and Zhang 2020; Kunkel et al. 2020; Easterling et al.
2017; Risser et al. 2019).

In the regions we study, except for the U.S. Southeast, there
are clear seasonal differences in the rate of occurrence of ex-
treme rainfall events. However, for infrastructure planning the
question of when during the year events happen often are of
secondary importance, and we have not tried to include sea-
sonality in our analysis.

The structure of this article is as follows. Section 2 describes
the datasets on which the analysis is based. Section 3 gives an
overview of the extreme value statistics methods used for the
nonstationary analysis and derives the formula that connects
the PDS and AMS models. Inference and model selection is
discussed in section 4. The results of the analysis for the U.S.
Northeast are presented in sections 5a, 5b, and 5c. The results for
the other three areas in the contiguous United States are de-
scribed in section 5d. Section 6 contains a concluding discussion.
Additional technical details are provided in four appendixes.

2. Station and temperature data

We use three datasets of rainfall measurements from sta-
tions in the contiguous United States. The first dataset, the
NE-PDS data, contains daily rainfall from 20 stations from
the U.S. Northeast. It is a part of the data used to develop
NOAA Atlas 14, Volume 10, and has gone through a more
thorough quality control than is usual for daily data. These 20
stations were chosen since they all suggested increases in
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TABLE 1. The number of stations from the regions in the USA data containing at least 60 years of yearly maxima and covering the year
2010, and the years of the first- and last-observed yearly maximum in the region.

California Midwest Northeast Ohio River basin Semiarid Southeast Texas
No. of stations 5 1122 333 0 0 433 423
First year 1850 1837 1816 — — 1842 1849
Last year 2010 2012 2014 — — 2012 2018

extreme rainfall events. Hence they are not suitable for in-
ference about whether such events are becoming more com-
mon. Instead we use them to study if our inference from AMS
data agrees with standard PoT modeling of daily data; to
check if C1, C2, or C3 hold for this special dataset; and as an
aid for threshold selection.

The second dataset, the NE dataset, is part of NOAA Atlas
14 (Volume 10, part 3). It contains annual maxima of daily
rainfall for 685 stations in the northeastern United States. The
third dataset, the USA dataset, consists of the NE data together
with the same data for six other large regions (Semiarid, Ohio
River basin, Midwest, Southeast, Texas, California) in the
contiguous United States and is also obtained from the NOAA
Atlas 14 time series data (NOAA’s National Weather Service
2019). The stations and regions are as defined by NOAA.

The time span of the observations depends on the dates of
the NOAA Atlas 14 updates and differs between stations and
regions but ranges from approximately 1900 to 2014 (see
Table 1). The station positions for the datasets NE-PDS and
NE are displayed below (see Figs. 4 and 6, respectively), and
the areas in the USA dataset are shown in Fig. 1. We only use
stations containing at least 60 years of data covering a time pe-
riod up until at least 2010. This results in 16 stations from

Midwest

NE-PDS and 333 stations from NE. The number of stations from
the regions in the USA data that satisfy the requirements are
given in Table 1. The requirements are not met by any station in
the Ohio River basin nor in the Semiarid region, and only by five
stations in the California region. Thus these regions are excluded
from the analysis.

The temperature data are obtained from NOAA (NOAA
NCEI 2019). They contain the yearly average Northern
Hemispheric temperature.To represent the changing climate, a
lowess smoothing of this data is used, shown in Fig. 2. The
smoothing is computed with the standard parameters of the
lowess function in R (R Core Team 2017).

3. Extreme value methods

The two basic models of extreme value statistics are the
block maxima model and the PoT model (see, e.g., Coles 2001).
For AMS, the blocks are years, and the model assumes that
yearly maxima are independent and follow a GEV distribution,
with cumulative distribution (CDF) function

G(x) = exp{— [1 + 'y(?)] 7”7}.

@

Northeast

Southeast

FIG. 1. Map of stations from the contiguous United States with division into regions.
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temperature (°C)

year

exceedances (mean)

1900 1920 1940 1960 1980 2000 2020
year

FI1G. 2. (top) Yearly average temperature (°C) for the Northern
Hemisphere along with lowess smoothing. (bottom) Number of
yearly exceedances over 99.5% threshold with regression curves
exp(At + Ag), averaged over 16 stations from the NE-PDS

dataset. Here, ¢ represents either temperature (solid) or time
(dashed).

Here w is a real-valued location parameter, o > 0 a scale pa-
rameter, and vy a real-valued shape parameter. For y = 0, the
distribution function simplifies to a double exponential dis-
tribution with location parameter u and scale parameter o.

The PoT model for partial duration series is that exceed-
ances of a high threshold u occur as a Poisson process with rate
parameter A, and that sizes of excesses (observed rainfall event
intensity values minus the threshold) are mutually indepen-
dent, independent of the Poisson process, and follow a gener-
alized Pareto distribution, with CDF

x —1/y
H(x)=1—(1+l) ,
ag

u

@)

where o, > 0 is a scale parameter depending on the choice
of the threshold u, and vy is a real-valued shape parameter.
For y = 0, the distribution simplifies to an exponential
distribution with scale parameter o. The assumption that
excess sizes are mutually independent is often unrealistic.
However, this can be handled in a standard way by de-
clustering—that is, by identifying separate rainfall events
and in the analysis only using the maximum daily rain
amount in each rainfall event, as discussed later in section 4.
These models are motivated by the basic probability theory
of extremes, but as for any model, checking goodness of
fit is important, and sometimes more complicated models
are needed.

Recall that our goal is to answer questions about the cases
C1-C3 in the introduction, which can be done using a PoT
model for PDS data. It cannot be done using a standard
GEV model since the (higher-quality) AMS data do not
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provide direct information about frequencies of rainfall events.
However, in the following section we construct a modified
GEV model, the PGEV model, that will allow us to never-
theless use AMS data to study the extent of C1-C3. Our model
is the extreme value statistics counterpart of the Langbein
formula from hydrology.

a. Connection between the PDS and AMS models

Suppose the PoT model holds for excesses over a thresh-
old u, with A, as the yearly rate of the Poisson process.
Let N be the number of excesses in a year and let M be the
annual maximum. Then, for x > u, and with H given by

Eq. (2)

365

P(M <x)= Y, P(M <IN =n)P(N =n)

S nhi -
%%H(x—u) e A 3)

From straightforward computations (appendix A), it follows
that M has a GEV distribution with location, scale, and shape
parameters

L 01 Do,
Y

=a-)\’Y

Mpgey ~ U s Opgev =T Aus Ypgey =7Vs (4
where A, 0, and 7y are the parameters of the PoT model,
and where we write PGEV to indicate that the parameteri-
zation of the GEV model is obtained from the PoT model. If
A, = 1, this is the Langbein formula (Langbein 1949; Takeuchi
1984) commonly used in hydrology, as further explained in

appendix A.
b. Models for climate change

The standard method for incorporating a changing climate
into the GEV model for the AMS series is to assume trends in
the location and scale parameters as follows:

®)

n(t) = Mo T eyt Ino (1) = 0y T Ogpy, b

with ¢ being a suitable covariate such as calendar time. We call
this the GEV trend model.
The corresponding PoT trend model has the parameters

Ino ()=0,,+0,t InA ()=A,,+A,,1 (6)

Here, A,; captures changes in the frequency of large rain-
storms and o, ; models changes in their intensities, and thus
answers C1 and C2 of the introduction. Importantly, if the PoT
model holds, for some threshold, say uy, it also holds for all
thresholds u > u,. Neither A, ; nor ¢, ; depends on the choice
of the threshold u > uy, see appendix B. The subscript u will
hence be deleted and these parameters will be denoted o and
A4 for the remainder of this paper. For both the AMS and the
PoT models we assume that the shape parameter y of the
distributions is not affected by trends. This assumption is
common when modeling nonstationary extreme precipitation
(De Paola et al. 2018). For details about extreme value mod-
eling, see Coles (2001).
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To use AMS data to address cases C1-C3 of the introduc-
tion, we exploit Eq. (4) to transfer the parameters of the PoT
trend model to GEV parameters to obtain the PGEV trend
model for AMS data,

M’ O'PGEV(Z) =0, (t))\”(t)y ’

™)

with o,(f) and A,,(¢) given by Eq. (6). The shape parameter v is
the same in all three models. Trends in the frequencies of ex-
treme rainfall events are caught by the parameter A and trends
in their intensities by o;. From Eq. (7) it is clear that an increase
in the frequency of extreme rainfall events also will result in an
increased location parameter in the GEV model.

Besides using calendar time as covariate, we also per-
formed the analysis using a lowess smoothing of the yearly
average Northern Hemispheric temperature (see Fig. 2). The
results were similar for the two choices of covariates, so we only
present the results obtained by using temperature as covariate,
because (i) temperature directly affects the intensities and fre-
quencies of rainfall events since the water-holding capacity of air
increases with temperature, (Ganguli and Coulibaly 2017,
Pendergrass 2018); (ii) general circulation models (GCMs) al-
ways include temperature change, and thus statistical models
with temperature as covariate combined with a GCM can be
used to predict changes in extreme rainfall events under the
many different scenarios used in GCMs (Solomon et al. 2007);
and (iii) temperature as covariate catches a broken trend
around 1960 (see Fig. 2) and thus allows the use of simple
models for the complete series of station data, while time
as a covariate would require more complicated models or
restricting analysis to measurements from 1960 and later.
Using the Northern Hemispheric temperature and using
the local temperatures for each region yielded similar re-
sults. However, trends in frequency of extreme rainfall events
were stronger in the Southeast when using the Northern
Hemispheric temperature. The results presented in this paper
are from using the Northern Hemispheric temperature for
all stations.

Mpgey (1) =u+

4. Inference and model selection

All model parameters were estimated with the maximum
likelihood method. We used likelihood ratio tests with stan-
dard deviations estimated from observed information to test
for the presence of trends. A reason for this is that maximum
likelihood estimation makes it possible to accommodate many
different kinds of observations schemes and models and in
particular provides a general method to handle trends in pa-
rameters. We performed the estimation for the AMS and PoT
models in R (R Core Team 2017), using the R package
extRemes (Gilleland and Katz 2016).

a. Declustering

Before estimating the PoT model, one must make sure
that the mutual independence assumption is reasonable.
However, a single weather event can often cause more than
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TABLE 2. Sign tests of differences A between estimates of A;
obtained from PGEYV and PoT models for the declustered NE-PDS
data. From threshold 0.99 and upward, we cannot reject the null
hypothesis A = 0.

0.95
0.004

0.99
0.077

0.995
0.210

0.997
0.454

Quantile

p value

one extreme daily rainfall event; more generally, in many
situations threshold excesses come in small clusters with
dependence within a cluster, but with independence be-
tween clusters. Declustering, as described in appendix C, is the
standard method to remove dependence. The data from the 16
stations in NE-PDS indicated that rainfall events seldom were
longer than 7 days. As a further check we redid the analyses
below with cluster sizes 7-10. This led to quite similar results,
and did not affect any of the conclusions. We hence used the
declustered NE-PDS data with cluster size 7.

b. Threshold choice

A last step to take before obtaining a final estimate of
the models is to choose the threshold, u. For PDS data,
thresholds customarily are obtained as a compromise be-
tween bias and variance, with a higher threshold expected to
give less bias but higher variance, with the compromise
based on parameter stability and goodness-of-fit plots. Rain
amounts vary widely between stations and the thresholds
have to be obtained as a suitable individual quantile of the
station observations. We used the NE-PDS data to inform
the choice of quantile and then used the same quantile for
all stations.

Parameter stability and goodness of fit plots showed good fit
of the PoT model for the 99% and higher quantiles. Table 2
indicates that for the 99% and lower quantiles there may be a
shift in the distribution of the A estimates between the PGEV
and the PoT models. We hence chose to use the threshold
99.5% throughout.

The PGEV model contains the threshold u, which cannot be
directly estimated from the AMS data in the same way as from
the PDS data. Instead, the value of the threshold u corre-
sponding to the 99.5% quantile was obtained for the AMS data
from Eq. (4) as

o(1—1.8377)

3 ®)

u=p-—
Here the parameters [, &, and ¥ were estimated from the
stationary GEV model and the average number of yearly ex-
ceedances A was set to 1.83 (corresponding to 0.5% of days
within a year).

¢. Model selection

To investigate if trends exist we made likelihood ratio
tests (Coles 2001, 35-36) against the best submodel, and
reported p values. Thus, for the model with trends in both
A and o, we made the comparison with the model with a
trend in only one of the parameters o or A that had the lowest
p value when compared to the stationary model. Here, one
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should note that if the trend parameter o4 equals 0 then by
the first expression in Eq. (7) tests of the GEV model with
n1 # 0 and oy = 0 against the model with no trends are likely
to lead to rejection of the null hypothesis if A; is different
from 0. Similarly, even if the trend parameter o; in fact
equals 0 then by the second expression in Eq. (7) tests of the
model with oy # 0 and Ay = 0 against the model with no
trends are, for the PGEV model, likely to lead to rejection of
the null hypothesis if is different from 0.

In our analysis, tests were performed for each station.
Even without any trend effects, small p values are bound to
occur for some of the stations and this should be accounted
for. For example, if p values are computed for # stations for
which the null hypothesis is true, then the expected number
of stations for which the p value is less than 0.05 is 0.05#,
so that if the null hypothesis of no trend is true for all the
n = 333 stations in the NE dataset then the expected number
of p values that are smaller than 0.05 is 16.6. Standard
methods for handling multiple significance include Boole’s
inequality and the Benjamini-Hochberg method. These
methods are aimed at situations where one believes that
there is a real effect in only one or a few of the tested cases
and where the aim is to find those cases. For example, in
gene research one often believes that only very few of the
tested genes are linked to disease and the aim is to find those
genes. However, for the problem we study here the situation
is different. One expects that trends in extreme rainfall at
the stations in an area all are driven by the same large-scale
climate change processes and additionally are affected by
local variability and noise. Thus one would expect that, apart
from random variability, there either are no trends in the
station measurements, or else that there are similar trends in
many of the stations. To account for this, instead of using for
instance Benjamini-Hochberg, we display results as plots of
ordered p values. If there are no trends, the p-value curve
should align around a 45° line through zero. A curve below
the line suggests that climate change leads to trends at many
stations and the farther below the 45°line the curves are, the
stronger the evidence.

5. Results

In this section we present the results for the three models
that can be used to detect trends in extreme rainfall events, the
GEYV and PoT trend models and the PGEV model. Recall that
the GEV and PGEV models are fitted to high-quality AMS
data, whereas the PoT model is fitted to PDS data. Further
recall that only the PoT and the PGEV models can be used to
study the occurrence of cases C1-C3 in the introduction.
Naturally, a goal of this section is to compare the results of the
different models to see, for example, if the use of the higher-
quality AMS data and the PGEV model changes the conclu-
sions that are drawn from the lower-quality PDS data and the
PoT model.

Section 5a estimates trends in the declustered NE-PDS data
and discusses the fit of the PGEV model. The PGEV model is
then applied to estimate trends in extreme rainfall events in the
U.S. Northeast (section 5b) and in three other large regions in
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FIG. 3. Ordered p values for likelihood ratio tests for the de-
clustered NE-PDS dataset and for the AMS for the same stations.
The models represented are trend in Poisson intensity in the PGEV
model for AMS (PGEV,), trend in scale in the PGEV model for
AMS (PGEV,,), trend in both Poisson intensity and scale in the
PGEV model for AMS (PGEV, ,), trend in location of AMS
(GEV,,), trend in scale of AMS (GEV,,), trend in both location and
scalein AMS (GEV,, ), trend in intensity in PoT (POI,), and trend
in scale in PoT (GP,). Red dotted line is the 0.05 value.

the contiguous United States (section 5d). Section Sc explores
the effect of trends on the frequency and intensity of future
rainfall events.

a. The NE-PDS data

The NE-PDS stations were selected because they showed
an increase in extreme rainfall events. The existence of
trends in this special dataset, as expected, is confirmed by
Fig. 3, which shows p values from eight different likelihood
ratio tests. The tests of trends in both A and ¢ were made
against the best submodel, which was that with trend in A but
no trend in 0. No trend corresponds to p values falling close
to the 45°line, while small p values indicate a trend. There is
little indication of trends in ¢ in the GEV, PGEYV, and PoT
models. However, for both the PGEV and the PoT model, the
plots point to clear trends in the rate of the Poisson model for
the number of exceedances. Additionally, there is a trend in the
location parameter of the GEV model, which, by Eq. (4), is as
expected if there is a trend in the Poisson rate. Figure 4 shows
that the A, estimates obtained from the PoT trend model and the
PGEV-trend model are similar. Hence, for this dataset indi-
vidual extreme daily rainfall events are becoming more frequent
but not more intense (i.e., C1 holds, but not C2). Further, this
analysis confirms that the PGEV and the PoT models give
similar results. But, of course, this dataset cannot be used to
confirm or otherwise the existence of increasing trends in all of
the Northeast.

b. The U.S. Northeast: Trends in Poisson rate, no trend
in scale

By Fig. 5, the p values for tests of trends in both scale o and
Poisson rate A in the PGEV model, against trend only in A, give no
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FIG. 4. (left) Estimated A, from the PoT trend model for the NE-PDS data and (right) the PGEV,, trend model
for the AMS data from the same stations, with lowess smoothed temperature for the Northern Hemisphere as

covariate.

reason to believe that including a trend in ¢ improves model
fit. Instead, the p values for the tests of trend in intensity
against no trend indicate that there are trends in the Poisson
rate for many stations. In particular, 34 % of the p values were
smaller than 0.05. As for the NE-PDS data, the curve for the
p values of the PGEV model test of trend only in scale against
no trend is as expected from Eq. (4). To simplify Fig. 5, we
have not included the p values from the GEV tests that are
part of Fig. 3. However, as in Fig. 3 the p-value plot for the
tests of trends in location in the GEV trend model was similar
to the plot for the tests of trend in intensity in the PGEV
model, and the other test gave no indication of significance.
The validity of these conclusions is supported by simulation in
appendix D.

The estimated trends for the PGEV model with trend in in-
tensity are shown in Fig. 6. Visually, the figure seems to indicate a
tendency for trends in intensity to be larger in the southeastern
part of the area. However, this may just be a result of the denser
net of stations in this area. The corresponding plot of estimated
location parameters in the GEV model (not shown) showed that
similar trends are caught station-wise by both models, but less
clearly by the GEV model.

The histogram in Fig. 6 shows that for 91% of the stations
the estimated trends A; in the frequency of extreme rainfall
events are positive. The mean trend is 0.65, the median trend
is 0.61, and the standard deviation of the trends is 0.49. The
time periods that were included in the station data were
related to the estimates of the size of the trend in A, and, in
particular, stations with later ending times often had higher
Ay values.

¢. The U.S. Northeast: Implications of climate change on the
frequency and intensity of large rainfall events

Let A; = t, — t; be the temperature change, where ¢, and #,
are the average yearly temperatures at two distinct times. At
temperature f the expected number of exceedances is given by
A(f) = exp(Ag + Aqt), and thus the relative difference in the
number of yearly extreme rainfall events is

:)\(tz) —/\(zl):

RS

exp(A,A) — 1.

The left panel of Fig. 7 shows a histogram of A, for the stations
in the NE-PDS data for different values of A,. For A, = 0.5°C,
the median increase is around 35%, and for A, = 1°C, the
median increase is around 83% and the mean increase is
around 116%.

As discussed in the introduction, even though the distri-
bution of individual extreme rainstorms does not change,
the increase in frequency will lead to an increase of inten-
sity of the yearly or, say, 20-yearly maximum rainstorm. A
common way of reporting sizes of extreme storms is through
the intensity of the 20-yr storm, which in a stationary climate
is the storm that has probability 5% of occurring in a year.
In changing climate, static references such as 20-yr storms

PGEV,

1.001

0.75 1
)]
=
c?u 0.50
o

0.25 1

0.004,

0.00 0.25 0.50 0.75 1.00
ordered p-values
— PGEV, - - PGEV, — =~ PGEV,,

FIG. 5. Ordered p values for likelihood ratio tests for the AMS
in the 333 stations in the NE dataset. The models represented
are trend in Poisson intensity in the PGEV model for AMS
(PGEV,), trend in scale in the PGEV model for AMS (PGEV,,),
and trend in both Poisson intensity and scale in the PGEV
model for AMS (PGEV, ). Red dashed line is the 0.05 value.
Colored regions are confidence bands obtained by simulation
(see appendix D).
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FIG. 6. Trends in frequency of extreme rainfalls are described by estimated parameters A for the PGEV, model
for the NE AMS data. Sizes of trends are shown (left) by both color and size of circles on map and (right) by the
histogram of the A estimates with median as a solid vertical line.

lose meaning. Therefore, we instead of the 20-yr rainstorm
talk about the 5% rainstorm, and more generally about the
P% rainstorm. This is the storm intensity that has the
probability P% of being exceeded in a year, obtained from
the PGEV model as

_ @) 1o A@)o
S(p,t)=u+ " + Y {[

—log(1-p)]"" - 1}.

A similar result holds for y = 0. The probability of a storm of
intensity S(p, t;) at temperature ¢, is

PLX () > S(p.1,)]
At) — 1o\
S

=l—exp|—|1+
P Y Ao
A(t,) AA)
=1—exp|:—2 log(l—p)] =1—(1-p)™P*ha),
(L)

This means that if the relative frequency of exceeding a
threshold increases by 83%, as seen for a 1°C increase, then a
5% storm will occur with approximately 9% probability, under
the new temperature.

1001

754

504

count

d. The contiguous United States: Similar but weaker trends

The four regions in the USA dataset are shown in Fig. 1.
The p values obtained from the PGEV model for the other
three regions in the contiguous United States were similar
to those for the U.S. Northeast, and indicated no or little
trend in the scale parameter in the PGEV model but trends
in the intensity parameter A; (Fig. 8). Positive estimated
A values dominate but are smaller than for the Northeast
(Fig. 9). The scale parameters were highest in Texas and
the Southeast (Fig. 10), as expected. The shape parameters
are similar throughout the contiguous United States, except
for Texas (Fig. 10) where they are somewhat larger, and
hence the risks of unusually extreme rainfall events are
higher.

6. Discussion and conclusions

In this paper we use a new model, the PGEV model, to show
that in the U.S. Northeast extreme daily rainfall events are
becoming more frequent but that there is little evidence of
increasing trends in the distribution of intensities of individual
extreme daily rainfall events. The estimated median trend in
frequency for stations in the U.S. Northeast corresponds to
exceedances of high thresholds becoming 83% more frequent

increase (°C)
—= (5

1.0
1.5

— 2.0

T T T T T T

012345678 9
relative frequency increase

0 5 10 15 20 25 30 35 40
probability of 5% storm (%)

FIG. 7. Histograms of (left) the expected relative increase in the number of extreme rainfall events and (right) the
future probability of a 5% rainstorm for the 333 stations in the U.S. Northeast as obtained by assuming different
increases of yearly mean temperature. Medians are included in both plots (vertical dashed lines). For readability, the
x axis has been truncated in both plots, excluding 14 values for the 1.5°C increase and 55 values for the 2°C increase.
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FIG. 8. Ordered p values for the different models applied to AMS from the stations in the contiguous United
States, by region. The models represented are trend in Poisson intensity in the PGEV model for AMS (PGEV,),
trend in scale in the PGEV model for AMS (PGEV,,), trend in both Poisson intensity and scale in the PGEV model
for AMS (PGEV, ,), trend in location of AMS (GEV,); trend in scale of AMS (GEV,,), and trend in both location
and scale in AMS (GEV,, ;). The red dotted line shows the 0.05 value.

per degree of increase in average yearly temperature, and for
many stations the frequency increase exceeds 150% per 1°C of
temperature increase. Further, for example, if the temperature
increases by 1°C, then the median increase of the probability of
the 5% rainstorm is to 9%, so the 5% probability rainstorms
become almost twice as likely. As a consequence, very extreme
yearly maxima of daily rainfall event intensities also become
more probable. Trends, as estimated for three other large areas
in the contiguous United States (Midwest, Southeast, Texas) are
similar, but weaker. The results used high-quality annual maxi-
mum series (AMS) data, and were validated using simulations
and PDS data from 16 stations. These data had undergone
manual quality control and are of higher quality than standard
PDS data.

The PGEV model is based on using the connection be-
tween the block maxima and PoT method in extreme value
statistics to derive a new parameterization that is similar to
the Langbein formula. An important property of our model is
that it can be used to predict the implications of different
GCM scenarios on risks of extreme rainfall amounts. A
practical way for communities and cities to use our results for
infrastructure planning could be to find one or several nearby
stations with similar topography and estimate PGEV pa-
rameters, in particular trends, at those, and then use the result
for informing dimensioning of infrastructure.

A further important consideration for planning is ‘“‘storm
dependence’: If an extreme rainstorm only hits a small area
(and thus perhaps only a single station) consequences could
be less severe than if it hits a large area (and then perhaps
several stations). The extreme value statistical methodology
for modeling storm dependence (and dependence between
station measurements) is still at an early stage (see, e.g.,
Kiriliouk et al. 2019). Storm dependence will not affect biases
or standard deviations of trend estimates for individual sta-
tion or biases of averages of such estimates, but it will influ-
ence standard deviations of means of station trends.

In appendix E, we provide a spatial Matérn model for the storm
dependence and use it to estimate a common trend for each re-
gion. The result of this analysis is that there is little evidence for
differences in trends between stations in the same region, but that
there are differences in the trends for the different regions. For
more details and estimated values, see appendix E.

Many of our results, in particular that trends are strongest
in the U.S. Northeast, agree with earlier literature. The dis-
cussion in Easterling et al. (2017) about changes in extra-
tropical cyclones and how they cause a large portion of
extreme rainfall events in the Northeast may give one ex-
planation of why our models fit well above the 99% quantile,
but not below it. However, there are also differences. For
example, Kunkel et al. (2020) finds that trends for rare events
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are higher than for less rare events, in contradiction to our
results. This paper uses PDS data for the period 1949-2016
whereas the NOAA Atlas 14 AMS data for the Northeast that
are analyzed here cover the time period 1814-2014, so dif-
ferent ending times presumably do not explain this difference
in conclusions. Instead possible explanations include that
Kunkel et al. (2020) compute grid cell averages with different
cell sizes for more common and more rare events before using
standard linear regression to estimate trends; that having
temperature as a covariate makes it possible for us to use
much earlier starting times; and that there are missing ob-
servations in the GHCN dataset.

Empirical climate precipitation research usually relies on
translation of station data to grid cells by various forms of
interpolation and averaging, and the climate models also

provide gridded output. The extent to which gridded data
agree with station data depends on grid size and the details of
how the averaging implicit in gridding has been done (see,
e.g., Huang et al. 2017; Risser et al. 2019). Compared to a
local analysis, gridding has the advantage of reducing vari-
ances and therefore adding robustness to the conclusions.
However, there often are important local differences inside
of the grid cells (see, e.g., Martel et al. 2020), and this may
make gridded results less directly useful for the engineers
who build our infrastructures.

Our results apply to the maximum of the daily rain
amounts in separate storm events and mean that extreme
rain storms are becoming more frequent for many stations.
However, a rainstorm may contain several days with high
amounts of rain. If this is important, it should be studied
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FIG. 10. Boxplots of estimated values of the (left) scale parameter exp{o(} and (right) shape parameter vy for stations
in the contiguous United States.
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separately, for individual stations. Some topics for future
research are including spatial and topographic information
into the models, and taking storm dependency between
stations into account in the modeling.
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APPENDIX A

Connection between Estimated Trends in BM and PoT and
the Langbein Formula

Let X denote the rainfall intensity at a randomly chosen day,
M the yearly maxima, and u the threshold. If threshold excesses
X — u|X > u have a GP(o,, v) distribution, and the number N
of exceedances over threshold for a given year has a Poisson
distribution with rate parameter A, then

An
P(N=n)= n—"‘e‘_)‘u ,

and by Eq. (3),

nl
n=0 g, n:

X—u —1/y
=e M exp{)\u {1 - <1 +y > } }
o

A —1 =1y
[RRAUEL
Y

e X—u —1/y n/\n
P(M<x)~2{l—(l+y ) }"ew

X—
=exp| —

1+y Y
utu

Comparing the above to the GEV distribution, we see that
M ~ GEV(a, &, ¥), where

AY—1
+( u )o-u,
Y

A=u g=o0Al, and y=y (A1)

when y # 0. When y = 0, the parameters are connected as

fp=u+olog(r,), 6=0, and y=y=0. (A2)
Langbein (1949) derived the relation
T,=1[1 —exp(=1/T),))] (A3)

between the recurrence intervals 7, and T, of the same
event for the annual maximum and peaks over threshold
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(PoT) series under the assumption of stationarity (see also
Takeuchi 1984). Assuming the GEV distribution for the
annual maximum series and the GP distribution for the PoT
series, we have that the probability of the annual maximum
M exceeding a value x is

N1
P(M=x)=1-exp _[14_?(@)] ,
o

and the distribution of the peaks X over threshold u is

PXz=zx|X>u)= [1 + y(x;u)]*l/v.

This gives the corresponding recurrence intervals

Tu=1/(1—exp - {1+7<x;ﬁ> v ) (A4)
and
RIS L.

Inserting Eq. (A4) into Langbein’s formula (A3) gives the

recurrence interval
_[(x—
1+ Y (J)
o

Comparing Egs. (A5) and (A6), shows that Langbein’s formula
holdsif o = u, 5 = o, and ¥ = y. From Eq. (A1), we can see that
this means that A} should be equal to one. If y # 0, this holds
when A, = 1 and approximately when ylnA, =~ 0. In the
Gumbel case, when y = 0, the connection between the models
becomes u = u + o,In(A,,) and o = o, which also is close to the
Langbein formula when A, ~ 1.

1/y

T = (A6)

APPENDIX B

Trends Do Not Depend on the Threshold

When using the PoT method to estimate the parameters of
the GP for the distribution of excesses and the Poisson process
describing the number of exceedances over a threshold, the
threshold u needs to be chosen. Ideally, it is chosen high
enough that the GP distribution gives a good fit to the excesses,
but as low as possible to get as much data to work with as
possible. Both the scale parameter o, and the rate parameter
A, depend on the choice of the threshold. If the threshold is
increased by v, the rate parameter decreases to

Apsy =PX>u+v|X>uh .

u+tv

(B1)

Therefore, A, = exp(Ag + A1f) gives A+, = exp[log(k) + Ao + Aq],
where k = P(X > u + v|X > u). Thus, in the PoT model, chang-
ing the threshold does not change the trend parameter A;.
However, of course the estimated A, is different if one uses
different thresholds for the estimation since changing the
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F1G. D1. Ordered p values from model fits on the NE dataset (lines) along with confidence bands from simulation
(shaded regions) using four different PGEV models. Red dotted line is the 0.05 value.

threshold changes what parts of the data are used for
estimation.

APPENDIX C

Declustering

The standard technique to handle the dependency of threshold
exceeding is to decluster—that is, to gather the observed excesses
into clusters and use the cluster maxima as the basic observations
in the PoT model and in the relation (4) (see Coles 2001). To find
the clusters we first, guided by data as described below, deter-
mine a cluster length 6 and let the first cluster start at the time, #;,
of the first exceedance of u. The observed rain amounts

Xty Xt 41, - - - » Xy +5—1 ON these days are then modified as follows:
L) X if xl.=max{xj;j€(zl,...,tl+6—1)}
min(x,,u), otherwise,

(C1)

so that only the maximum value in the cluster remains an
exceedance. In case the maximum occurs multiple times
within a cluster, the maximum is assigned to the first such oc-
currence. The second cluster starts at the time, t,, of the first
exceedance of u after time #;, and the rain amounts in the

cluster are modified in the same way, and so on. We thus
obtain a time series of cluster maxima, and use it as the ob-
servations instead of the original data when estimating the
PoT model.

APPENDIX D

Verification via Simulation

As a background to the p plots (Figs. 3 and 8), daily
rainfall for 300 stations was simulated using parameters
similar to the estimated PGEV parameters in the U.S.
Northeast. Thereafter, model parameters were estimated
from the simulated data and the ordered p values for each
model were computed. This was repeated for 100 pop-
ulations and from those, 95% confidence bounds were
computed and compared to the results obtained from the
NE dataset.

For each station, parameters @ = (Ao, Ay, 09, 01, Y) Were
drawn from an N(@, £) distribution, independently for the
different stations. Here, § and £ were first obtained by fitting a
multivariate normal distribution to the estimated PGEV
model parameters from the stations in the NE dataset. Then
for each station 80 yearly maxima were simulated from a GEV
distribution with the parameterization of Eq. (7), with the co-
variate ¢ set to the lowess temperature for years 1934 to 2014.
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FiG. E1. A Q-Q plot of standardized station-wise estimates of
the trend parameter A; in the Northeast against standard normal
distribution.

The threshold u was set to 2.88. Figure D1, where the resulting
confidence bounds are compared to the p plots from the NE
dataset, indicates that the PGEV, model describes the data
reasonably well. In this it should be noted that there are dif-
ferences between the simulated data and the NE data, such as
that the threshold was chosen to be constant for all stations in
simulations and that there is spatial dependency that is not
modeled in the simulated data.

APPENDIX E

Spatial Analysis

For each station we obtained an estimated trend A ; together
with an associated estimated standard deviation o; of the es-
timate via the maximum likelihood estimation method in
section 4. The variation between estimated trends A, ; at dif-
ferent stations depends on both estimation uncertainty and on
differences between real trends. If there are no differences in
real trends, then standardizing the station-wise trend esti-
mates by subtracting the mean trend and dividing by the
estimated standard deviations should give standard normal
values. Instead, if there are substantial variations in the true
trends these values would be expected to deviate from a
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normal distribution. Figure E1 shows that for the Northeast
a standard normal distribution gives a good fit and hence
that there is little indication of variation between the true
trends in the different stations in this region. Similar plots
for the other three regions gave the same result. However,
there are clear differences in the trends between the dif-
ferent regions.
We hence for each region fitted the simple spatial model

Y, =pu+X(s,)+e, (E1)
to the estimated station-wise trends. In this model w is a
common mean trend and X is a mean-zero Gaussian random
field (GRF) with Matérn covariance function

c(h) = (kh)"K (xh).

o2
2711 (v)
Here I is the gamma function; K, is the modified Bessel function
of the second kind; v, k, and o? are positive shape, scale, and
variance parameters, respectively; and 4 is geodesic distance
measured in tens of kilometers. The terms e; ~ N(0, r>o?) are
independent nugget effects where the station-wise nugget stan-
dard deviations, ro;, are assumed to be proportional to the es-
timated standard deviations o; of the trend estimates, and r is the
proportionality parameter.

The parameters of the model, @ = (u, v, , o, r), were esti-
mated by maximizing the log-likelihood of model (E1). The
practical dependency range (i.e., the distance where the cor-
relation is approximately 0.1) is given by the estimate of
p =10v/8vk™! (Lindgren et al. 2011). The results for the four
regions are shown in Table E1. Extreme rainfall events in the
U.S. Northeast become more frequent with rising tempera-
tures, but their intensity distribution remains stable. The ef-
fective range of the GRF differs slightly between regions, but is
between 144 and 218 km (Table E1).

The average of the estimated station-wise trend parameters
are contained in the confidence interval for the common trend
w for all regions, again suggesting that there is little variation
between the true trends inside of the different regions. Further,
within each of the four regions we computed estimates of the
contour avoiding set, E,—o(X). This is defined as the union of
the joint contour u = 0 excursion sets with probability 1 — «; see
definition 4 in Bolin and Lindgren (2015). The probability is

TABLE E1. Parameter estimates for each of the four regions by using individual nugget effects with common scale r along with mean trend
A1, confidence intervals for u and o, and approximated practical range p.

Northeast Southeast Midwest Texas

A 0.6430 0.2571 0.3559 0.2567

o 0.5467 0.2599 0.3357 0.2135

v 8.099 7.238 0.6385 6.033

K 0.369 0.4620 0.08561 0.4822

o1 0.1354 0.1977 0.2432 0.2075

P 1.106 1.077 0.9740 0.9460
Cl i [0.4281, 0.6652] [0.1710, 0.3488] [0.2412, 0.4301] [0.1101, 0.3169]
Clo; [0.07887, 0.232 48] [0.1399, 0.2794] [0.1791, 0.3303] [0.1461, 0.2946]

2182 164.7

264.0 144.1
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F1G. E2. Marginal contour avoiding probabilities, ¢; under the
conditional distribution for X|Y, calculated separately for each of
the four regions: Midwest, Northeast, Texas, and Southeast. The
contour-avoiding sets, E,—q ,(X), remain empty in all regions un-
der the significance level « = 0.05.

based on the conditional distribution of X|Y, whichis a N(ji, )
distribution with

E=3C+R)'(Y-pw), 2=3-3C+R)'Y, (E2
and 3 and R are the covariance matrices of the GRF and the
nugget effects, respectively. For further information on ex-
cursion sets see, for example, Bolin and Lindgren (2015). Using
the R package excursions (Bolin and Lindgren 2018), we
computed the marginal contour avoiding probabilities ¢; for
the different station locations s;, defined as g; = P[X(s;) > 0] if
E[X(s;)] > 0, and g; = P[X (s;) < 0] otherwise, and the contour
avoiding sets using the error probability « = 0.05 (Fig. E2).
These contour avoiding sets did not contain any station,
lending additional support to the approximation that there is a
common trend within each region.
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