
Extreme Rainfall Events in the Northeastern United States Become More
Frequent with Rising Temperatures, but Their Intensity Distribution

Downloaded from: https://research.chalmers.se, 2025-10-22 09:24 UTC

Citation for the original published paper (version of record):
Ólafsdóttir, H., Rootzen, H., Bolin, D. (2021). Extreme Rainfall Events in the Northeastern United
States Become More Frequent with Rising
Temperatures, but Their Intensity Distribution Remains Stable. Journal of Climate, 34(22):
8863-8877. http://dx.doi.org/10.1175/JCLI-D-20-0938.1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Extreme Rainfall Events in the Northeastern United States Become More Frequent with Rising
Temperatures, but Their Intensity Distribution Remains Stable

HELGA KRISTIN OLAFSDOTTIR,a HOLGER ROOTZÉN,a AND DAVID BOLIN
a,b

aDepartment of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
bComputer, Electrical andMathematical Sciences and Engineering Division, King Abdullah University of Science and Technology,

Thuwal, Saudi Arabia

(Manuscript received 6 December 2020, in final form 9 August 2021)

ABSTRACT: Both the intensities of individual extreme rainfall events and the frequency of such events are important for

infrastructure planning. We develop a new statistical extreme value model, the PGEV model, which makes it possible to use

high-quality annual maximum series data instead of less well-checked daily data to estimate trends in intensity and frequency

separately. Themethod is applied to annualmaximumdata fromVol. 10 ofNOAAAtlas 14, dating fromapproximately 1900 to

2014, showing that in themajority of 333 rain gauge stations in the northeasternUnited States the frequency of extreme rainfall

events increases as mean temperature increases, but that there is little evidence of trends in the distribution of the intensities of

individual extreme rainfall events. The median of the frequency trends corresponds to extreme rainfall becoming 83% more

frequent for each 18C of temperature increase. Naturally, increasing trends in frequency also increase the yearly or decadal

risks of very extreme rainfall events. Three other large areas in the contiguous United States, the Midwest, the Southeast, and

Texas, are also studied, and show similar but weaker trends than those in the Northeast.

SIGNIFICANCE STATEMENT: Climate change can increase extreme daily rainfall by making individual extreme

rainfall events more frequent, more intense, or both. We develop new methods based on extreme value statistics to

predict to what extent these three scenarios will occur. Our aim is to inform infrastructure planning, both for protection

against high-impact catastrophes and for local planning of roads and sewers. The new methods allow using high-quality

annual maximum series for prediction of frequency, instead of partial duration series. In the northeastern United States,

extreme daily rainfall events are becoming more frequent with little evidence of increasing trends in the distribution of

intensities of individual extreme daily rainfall events. For many stations the frequency increase exceeds 150% for each

18C of temperature increase.

KEYWORDS: Extreme events; Precipitation; Climate change; Climate prediction; Probabilistic Quantitative Precipitation

Forecasting (PQPF); Trends

1. Introduction

Extreme rainfall in the contiguous United States has been

estimated to have caused more than 0.75 trillion U.S. dollars

(USD) in property losses since 1980 (Kunkel et al. 2020); the

American Society of Civil Engineers (ASCE) estimates that

trillions of dollars will be needed by 2025 to improve infra-

structure in the United States (ASCE 2016), and climate change

is expected to compound the problems (see, e.g., Kunkel et al.

2020). Rainfall events with immense intensity cause extensive

damage, like the 2017 Hurricane Harvey, which produced daily

rainfall amounts of more than 400mm and is estimated to have

caused more than 89 deaths and cost 130 billion USD (NOAA

NCEI 2020). Extreme rainfall events with lower intensities also

carry very high costs for making flooding of roads less frequent by

improving detention ponds and building higher berms and bigger

concrete culverts, and for improving drainage systems to make

inundation of cellars less common.

Assuming stationarity has been standard practice when ana-

lyzing extreme hydrological events (Kundzewicz and Kaczmarek

2000). However, with increasing awareness of a changing climate,

incorporating nonstationarity in the analysis, as we do in this pa-

per, is becoming both more common and more important (see,

e.g., Katz et al. 2002; Li et al. 2005; Milly et al. 2008; Towler et al.

2010;Kyselý et al. 2010;Acero et al. 2011;Rootzén andKatz 2013;

De Paola et al. 2018).

Climate change can increase extreme daily rainfalls in three

different ways:

C1: individual extreme rainfall events become more fre-

quent (i.e., exceedances of high thresholds become more

frequent);

C2: individual extreme rainfall events become more intense

(i.e., the conditional distribution of sizes of excesses over

high thresholds becomes stochastically larger); or

C3: individual extreme rainfall events become both more

frequent and more intense.

Clearly, the maximum of (say) 100 rainfall events is likely to

be larger than the maximum of 10 rainfall events following the

same distribution. Because of this, C1 will make annual max-

ima larger andmake the very extreme events likeHarveymore

likely, even if C2 does not happen. However, even if C1 and C2
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can increase risks of very extreme rainfall events in the same

way, their effects on infrastructure needs still are different. If

individual events with lower, but still extreme, intensity, such

as flooding of roads and cellars become, say, twice as frequent,

then demands for improvement will be much more urgent. In

this paper we develop methods based on extreme value sta-

tistics to predict to what extent C1, C2, or C3 will occur. Our

aim is to inform infrastructure planning, both for protection

against high-impact catastrophes and for local planning of

roads and sewers.

To answer statistical questions such as those above, the

quality of data is crucial. Analysis of station data on extreme

rainfall events typically uses either annual maximum series

(AMS) of daily rainfall or partial duration series (PDS) data

[also called peaks over thresholds (PoT) data] consisting of

sizes of excesses of a high threshold. For the United States,

daily rainfall data are available in the NOAA GHCN-Daily

dataset (Menne et al. 2012). With the large number of station

records, manual control of the data is not possible and instead

quality assurance is mainly automated. AMS data on daily

rainfall are provided byNOAAAtlas 14 (Vol. 10; Perica et al.

2015, revised 2019). The AMS data are obtained from the

GHCN-Daily data but have been submitted to additional

careful manual screening and quality control, and are ex-

pected to be of substantially higher quality than the PDS

data. As a (perhaps unnecessary) side remark, one can of

course compute yearly maxima from the GHCN-Daily data.

However, these data would be of the same quality as the daily

data, and would take away the point of using theNOAAAtlas

14 AMS data, namely, higher quality.

The method we develop and apply in this work makes it

possible to use the high-quality AMS data to answer questions

on the occurrence of cases C1–C3. Use of PDS data has the

advantage that it provides direct information about both fre-

quencies and intensities of extreme daily rainfall events, and

hence about the extent of C1–C3. Furthermore, the PDS data

cover more regions and have later ending dates, but instead

have the drawback that it is difficult to judge to what extent

results based on analysis of PDS data might be influenced by

missing days and by errors in measurement and transcription.

Our method is built on the close relation between the two

main models of extreme value statistics, the generalized ex-

treme value (GEV) distribution for annual maxima and the

generalized Pareto–Poisson model for partial duration series.

It is related to the Langbein formula (Langbein 1949) com-

monly used in hydrology.

We apply the new method to show that C1 holds so that

extreme daily rainfall events in the northeastern United States

are becoming more frequent, but that C2 does not occur (i.e.,

the distribution of intensities of individual extreme rainfall

events is not changing). As a consequence of C1, the intensity

of, for example, the maximum yearly or decadal rainfall is also

increasing. In the analysis we use the 99.5% threshold to define

extreme daily rainfall events. However, it should be noted that

according to our model trends for exceedances of higher

thresholds will be the same, and that this agrees well with data.

The results are validated using a high-quality manually

checked set of daily rainfall measurements from 16 weather

stations in the northeastern United States, and by parametric

bootstrap simulations. We also perform the same analysis for

three other large areas in the contiguous United States, and

conclude that changes there are similar but slower than in the

Northeast.

Our results are in line with earlier empirically based studies

including NOAA Atlas 14, Vol. 10, where it was observed, but

not confirmed, that annual maximal rainfall in the northeastern

United States seem to increase (Perica et al. 2015, revised

2019). Easterling et al. (2017) and Barlow et al. (2019) sum-

marize the large and quite diverse research on precipitation

changes in the United States, which often concludes that heavy

rainfall events in some or most parts of the United States have

increased in intensity and frequency since 1901 and projects

that the increase will continue over the twenty-first century.

The later summary notes a very large variability in the defini-

tion of ‘‘extreme rainfall events’’ and the earlier one does not

seem to provide a clear definition of the meaning of ‘‘increase

in intensity.’’ Based on data and model output for Europe and

the United States, Myhre et al. (2019) find strong increases in

the frequency of extreme precipitation events, but that changes

in intensity are weak. The climate literature shows that general

circulation models (GCMs) have more difficulties in modeling

precipitation than temperature and in capturing the oftenmore

local phenomena that lead to extreme precipitation amounts

(Huang et al. 2017). It also points to important differences in

extreme rainfall trends between the different regions in the

United States, with the largest changes predicted to occur in

the U.S. Northeast, and that increases have continued also

after the end dates of the NOAA Atlas 14 data (Kirchmeier-

Young and Zhang 2020; Kunkel et al. 2020; Easterling et al.

2017; Risser et al. 2019).

In the regions we study, except for the U.S. Southeast, there

are clear seasonal differences in the rate of occurrence of ex-

treme rainfall events. However, for infrastructure planning the

question of when during the year events happen often are of

secondary importance, and we have not tried to include sea-

sonality in our analysis.

The structure of this article is as follows. Section 2 describes

the datasets on which the analysis is based. Section 3 gives an

overview of the extreme value statistics methods used for the

nonstationary analysis and derives the formula that connects

the PDS and AMS models. Inference and model selection is

discussed in section 4. The results of the analysis for the U.S.

Northeast are presented in sections 5a, 5b, and 5c. The results for

the other three areas in the contiguous United States are de-

scribed in section 5d. Section 6 contains a concluding discussion.

Additional technical details are provided in four appendixes.

2. Station and temperature data

We use three datasets of rainfall measurements from sta-

tions in the contiguous United States. The first dataset, the

NE-PDS data, contains daily rainfall from 20 stations from

the U.S. Northeast. It is a part of the data used to develop

NOAA Atlas 14, Volume 10, and has gone through a more

thorough quality control than is usual for daily data. These 20

stations were chosen since they all suggested increases in
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extreme rainfall events. Hence they are not suitable for in-

ference about whether such events are becoming more com-

mon. Instead we use them to study if our inference fromAMS

data agrees with standard PoT modeling of daily data; to

check if C1, C2, or C3 hold for this special dataset; and as an

aid for threshold selection.

The second dataset, the NE dataset, is part of NOAA Atlas

14 (Volume 10, part 3). It contains annual maxima of daily

rainfall for 685 stations in the northeastern United States. The

third dataset, theUSA dataset, consists of theNE data together

with the same data for six other large regions (Semiarid, Ohio

River basin, Midwest, Southeast, Texas, California) in the

contiguous United States and is also obtained from theNOAA

Atlas 14 time series data (NOAA’s National Weather Service

2019). The stations and regions are as defined by NOAA.

The time span of the observations depends on the dates of

the NOAA Atlas 14 updates and differs between stations and

regions but ranges from approximately 1900 to 2014 (see

Table 1). The station positions for the datasets NE-PDS and

NE are displayed below (see Figs. 4 and 6, respectively), and

the areas in the USA dataset are shown in Fig. 1. We only use

stations containing at least 60 years of data covering a time pe-

riod up until at least 2010. This results in 16 stations from

NE-PDS and 333 stations fromNE. The number of stations from

the regions in the USA data that satisfy the requirements are

given in Table 1. The requirements are not met by any station in

theOhioRiver basin nor in the Semiarid region, and only by five

stations in theCalifornia region. Thus these regions are excluded

from the analysis.

The temperature data are obtained from NOAA (NOAA

NCEI 2019). They contain the yearly average Northern

Hemispheric temperature.To represent the changing climate, a

lowess smoothing of this data is used, shown in Fig. 2. The

smoothing is computed with the standard parameters of the

lowess function in R (R Core Team 2017).

3. Extreme value methods

The two basic models of extreme value statistics are the

blockmaximamodel and the PoTmodel (see, e.g., Coles 2001).

For AMS, the blocks are years, and the model assumes that

yearlymaxima are independent and follow aGEVdistribution,

with cumulative distribution (CDF) function

G(x)5 exp

�
2
h
11 g

�x2m

s

�i21/g
�
. (1)

TABLE 1. The number of stations from the regions in the USA data containing at least 60 years of yearly maxima and covering the year

2010, and the years of the first- and last-observed yearly maximum in the region.

California Midwest Northeast Ohio River basin Semiarid Southeast Texas

No. of stations 5 1122 333 0 0 433 423

First year 1850 1837 1816 — — 1842 1849

Last year 2010 2012 2014 — — 2012 2018

FIG. 1. Map of stations from the contiguous United States with division into regions.
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Here m is a real-valued location parameter, s . 0 a scale pa-

rameter, and g a real-valued shape parameter. For g 5 0, the

distribution function simplifies to a double exponential dis-

tribution with location parameter m and scale parameter s.

The PoT model for partial duration series is that exceed-

ances of a high threshold u occur as a Poisson process with rate

parameter lu and that sizes of excesses (observed rainfall event

intensity values minus the threshold) are mutually indepen-

dent, independent of the Poisson process, and follow a gener-

alized Pareto distribution, with CDF

H(x)5 12

�
11

gx

s
u

�21/g

, (2)

where su . 0 is a scale parameter depending on the choice

of the threshold u, and g is a real-valued shape parameter.

For g 5 0, the distribution simplifies to an exponential

distribution with scale parameter s. The assumption that

excess sizes are mutually independent is often unrealistic.

However, this can be handled in a standard way by de-

clustering—that is, by identifying separate rainfall events

and in the analysis only using the maximum daily rain

amount in each rainfall event, as discussed later in section 4.

These models are motivated by the basic probability theory

of extremes, but as for any model, checking goodness of

fit is important, and sometimes more complicated models

are needed.

Recall that our goal is to answer questions about the cases

C1–C3 in the introduction, which can be done using a PoT

model for PDS data. It cannot be done using a standard

GEV model since the (higher-quality) AMS data do not

provide direct information about frequencies of rainfall events.

However, in the following section we construct a modified

GEV model, the PGEV model, that will allow us to never-

theless use AMS data to study the extent of C1–C3. Our model

is the extreme value statistics counterpart of the Langbein

formula from hydrology.

a. Connection between the PDS and AMS models

Suppose the PoT model holds for excesses over a thresh-

old u, with lu as the yearly rate of the Poisson process.

Let N be the number of excesses in a year and let M be the

annual maximum. Then, for x . u, and with H given by

Eq. (2)

P(M, x)5 �
n50

365

P(M, xjN5 n)P(N5 n)

’�
n50

‘

H(x2 u)n
ln
u

n!
e2l . (3)

From straightforward computations (appendix A), it follows

that M has a GEV distribution with location, scale, and shape

parameters

m
PGEV

5 u1
(lg

u 2 1)s
u

g
, s

PGEV
5s

u
lg
u , g

PGEV
5 g , (4)

where lu, su, and g are the parameters of the PoT model,

and where we write PGEV to indicate that the parameteri-

zation of the GEV model is obtained from the PoT model. If

lu 5 1, this is the Langbein formula (Langbein 1949; Takeuchi

1984) commonly used in hydrology, as further explained in

appendix A.

b. Models for climate change

The standard method for incorporating a changing climate

into the GEV model for the AMS series is to assume trends in

the location and scale parameters as follows:

m(t)5m
0
1m

1
t, lns(t)5s

0
1s

GEV,1
t , (5)

with t being a suitable covariate such as calendar time. We call

this the GEV trend model.

The corresponding PoT trend model has the parameters

lns
u
(t)5s

u,0
1s

u,1
t, lnl

u
(t)5 l

u,0
1l

u,1
t . (6)

Here, lu,1 captures changes in the frequency of large rain-

storms and su,1 models changes in their intensities, and thus

answers C1 and C2 of the introduction. Importantly, if the PoT

model holds, for some threshold, say u0, it also holds for all

thresholds u . u0. Neither lu,1 nor su,1 depends on the choice

of the threshold u . u0, see appendix B. The subscript u will

hence be deleted and these parameters will be denoted s1 and

l1 for the remainder of this paper. For both the AMS and the

PoT models we assume that the shape parameter g of the

distributions is not affected by trends. This assumption is

common when modeling nonstationary extreme precipitation

(De Paola et al. 2018). For details about extreme value mod-

eling, see Coles (2001).

FIG. 2. (top) Yearly average temperature (8C) for the Northern

Hemisphere along with lowess smoothing. (bottom) Number of

yearly exceedances over 99.5% threshold with regression curves

exp(l1t 1 l0), averaged over 16 stations from the NE-PDS

dataset. Here, t represents either temperature (solid) or time

(dashed).
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To use AMS data to address cases C1–C3 of the introduc-

tion, we exploit Eq. (4) to transfer the parameters of the PoT

trend model to GEV parameters to obtain the PGEV trend

model for AMS data,

m
PGEV

(t)5u1
[l

u
(t)g 2 1]s

u
(t)

g
, s

PGEV
(t)5s

u
(t)l

u
(t)

g
,

(7)

with su(t) and lu(t) given by Eq. (6). The shape parameter g is

the same in all three models. Trends in the frequencies of ex-

treme rainfall events are caught by the parameter l1 and trends

in their intensities bys1. FromEq. (7) it is clear that an increase

in the frequency of extreme rainfall events also will result in an

increased location parameter in the GEV model.

Besides using calendar time as covariate, we also per-

formed the analysis using a lowess smoothing of the yearly

average Northern Hemispheric temperature (see Fig. 2). The

results were similar for the two choices of covariates, so we only

present the results obtained by using temperature as covariate,

because (i) temperature directly affects the intensities and fre-

quencies of rainfall events since the water-holding capacity of air

increases with temperature, (Ganguli and Coulibaly 2017;

Pendergrass 2018); (ii) general circulation models (GCMs) al-

ways include temperature change, and thus statistical models

with temperature as covariate combined with a GCM can be

used to predict changes in extreme rainfall events under the

many different scenarios used in GCMs (Solomon et al. 2007);

and (iii) temperature as covariate catches a broken trend

around 1960 (see Fig. 2) and thus allows the use of simple

models for the complete series of station data, while time

as a covariate would require more complicated models or

restricting analysis to measurements from 1960 and later.

Using the Northern Hemispheric temperature and using

the local temperatures for each region yielded similar re-

sults. However, trends in frequency of extreme rainfall events

were stronger in the Southeast when using the Northern

Hemispheric temperature. The results presented in this paper

are from using the Northern Hemispheric temperature for

all stations.

4. Inference and model selection

All model parameters were estimated with the maximum

likelihood method. We used likelihood ratio tests with stan-

dard deviations estimated from observed information to test

for the presence of trends. A reason for this is that maximum

likelihood estimation makes it possible to accommodate many

different kinds of observations schemes and models and in

particular provides a general method to handle trends in pa-

rameters. We performed the estimation for the AMS and PoT

models in R (R Core Team 2017), using the R package

extRemes (Gilleland and Katz 2016).

a. Declustering

Before estimating the PoT model, one must make sure

that the mutual independence assumption is reasonable.

However, a single weather event can often cause more than

one extreme daily rainfall event; more generally, in many

situations threshold excesses come in small clusters with

dependence within a cluster, but with independence be-

tween clusters. Declustering, as described in appendix C, is the

standard method to remove dependence. The data from the 16

stations in NE-PDS indicated that rainfall events seldom were

longer than 7 days. As a further check we redid the analyses

below with cluster sizes 7–10. This led to quite similar results,

and did not affect any of the conclusions. We hence used the

declustered NE-PDS data with cluster size 7.

b. Threshold choice

A last step to take before obtaining a final estimate of

the models is to choose the threshold, u. For PDS data,

thresholds customarily are obtained as a compromise be-

tween bias and variance, with a higher threshold expected to

give less bias but higher variance, with the compromise

based on parameter stability and goodness-of-fit plots. Rain

amounts vary widely between stations and the thresholds

have to be obtained as a suitable individual quantile of the

station observations. We used the NE-PDS data to inform

the choice of quantile and then used the same quantile for

all stations.

Parameter stability and goodness of fit plots showed good fit

of the PoT model for the 99% and higher quantiles. Table 2

indicates that for the 99% and lower quantiles there may be a

shift in the distribution of the l estimates between the PGEV

and the PoT models. We hence chose to use the threshold

99.5% throughout.

The PGEV model contains the threshold u, which cannot be

directly estimated from the AMS data in the same way as from

the PDS data. Instead, the value of the threshold u corre-

sponding to the 99.5% quantile was obtained for the AMS data

from Eq. (4) as

û5 m̂2
ŝ(12 1:832ĝ)

ĝ
. (8)

Here the parameters m̂, ŝ, and ĝ were estimated from the

stationary GEV model and the average number of yearly ex-

ceedances l was set to 1.83 (corresponding to 0.5% of days

within a year).

c. Model selection

To investigate if trends exist we made likelihood ratio

tests (Coles 2001, 35–36) against the best submodel, and

reported p values. Thus, for the model with trends in both

l and s, we made the comparison with the model with a

trend in only one of the parameters s or l that had the lowest

p value when compared to the stationary model. Here, one

TABLE 2. Sign tests of differences D between estimates of l1
obtained fromPGEVandPoTmodels for the declusteredNE-PDS

data. From threshold 0.99 and upward, we cannot reject the null

hypothesis D 5 0.

Quantile 0.95 0.99 0.995 0.997

p value 0.004 0.077 0.210 0.454
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should note that if the trend parameter s1 equals 0 then by

the first expression in Eq. (7) tests of the GEV model with

m1 6¼ 0 and s1 5 0 against the model with no trends are likely

to lead to rejection of the null hypothesis if l1 is different

from 0. Similarly, even if the trend parameter s1 in fact

equals 0 then by the second expression in Eq. (7) tests of the

model with s1 6¼ 0 and l1 5 0 against the model with no

trends are, for the PGEVmodel, likely to lead to rejection of

the null hypothesis if is different from 0.

In our analysis, tests were performed for each station.

Even without any trend effects, small p values are bound to

occur for some of the stations and this should be accounted

for. For example, if p values are computed for n stations for

which the null hypothesis is true, then the expected number

of stations for which the p value is less than 0.05 is 0.05n,

so that if the null hypothesis of no trend is true for all the

n5 333 stations in the NE dataset then the expected number

of p values that are smaller than 0.05 is 16.6. Standard

methods for handling multiple significance include Boole’s

inequality and the Benjamini-Hochberg method. These

methods are aimed at situations where one believes that

there is a real effect in only one or a few of the tested cases

and where the aim is to find those cases. For example, in

gene research one often believes that only very few of the

tested genes are linked to disease and the aim is to find those

genes. However, for the problem we study here the situation

is different. One expects that trends in extreme rainfall at

the stations in an area all are driven by the same large-scale

climate change processes and additionally are affected by

local variability and noise.Thus one would expect that, apart

from random variability, there either are no trends in the

station measurements, or else that there are similar trends in

many of the stations. To account for this, instead of using for

instance Benjamini-Hochberg, we display results as plots of

ordered p values. If there are no trends, the p-value curve

should align around a 458 line through zero. A curve below

the line suggests that climate change leads to trends at many

stations and the farther below the 458 line the curves are, the
stronger the evidence.

5. Results

In this section we present the results for the three models

that can be used to detect trends in extreme rainfall events, the

GEV and PoT trend models and the PGEVmodel. Recall that

the GEV and PGEV models are fitted to high-quality AMS

data, whereas the PoT model is fitted to PDS data. Further

recall that only the PoT and the PGEV models can be used to

study the occurrence of cases C1–C3 in the introduction.

Naturally, a goal of this section is to compare the results of the

different models to see, for example, if the use of the higher-

quality AMS data and the PGEV model changes the conclu-

sions that are drawn from the lower-quality PDS data and the

PoT model.

Section 5a estimates trends in the declusteredNE-PDS data

and discusses the fit of the PGEV model. The PGEV model is

then applied to estimate trends in extreme rainfall events in the

U.S. Northeast (section 5b) and in three other large regions in

the contiguous United States (section 5d). Section 5c explores

the effect of trends on the frequency and intensity of future

rainfall events.

a. The NE-PDS data

The NE-PDS stations were selected because they showed

an increase in extreme rainfall events. The existence of

trends in this special dataset, as expected, is confirmed by

Fig. 3, which shows p values from eight different likelihood

ratio tests. The tests of trends in both l and s were made

against the best submodel, which was that with trend in l but

no trend in s. No trend corresponds to p values falling close

to the 458 line, while small p values indicate a trend. There is

little indication of trends in s in the GEV, PGEV, and PoT

models. However, for both the PGEV and the PoT model, the

plots point to clear trends in the rate of the Poisson model for

the number of exceedances. Additionally, there is a trend in the

location parameter of the GEV model, which, by Eq. (4), is as

expected if there is a trend in the Poisson rate. Figure 4 shows

that the l1 estimates obtained from the PoT trendmodel and the

PGEV-trend model are similar. Hence, for this dataset indi-

vidual extreme daily rainfall events are becomingmore frequent

but not more intense (i.e., C1 holds, but not C2). Further, this

analysis confirms that the PGEV and the PoT models give

similar results. But, of course, this dataset cannot be used to

confirm or otherwise the existence of increasing trends in all of

the Northeast.

b. The U.S. Northeast: Trends in Poisson rate, no trend

in scale

By Fig. 5, the p values for tests of trends in both scale s and

Poisson rate l in the PGEVmodel, against trend only in l, give no

FIG. 3. Ordered p values for likelihood ratio tests for the de-

clustered NE-PDS dataset and for the AMS for the same stations.

Themodels represented are trend in Poisson intensity in the PGEV

model for AMS (PGEVl), trend in scale in the PGEV model for

AMS (PGEVs), trend in both Poisson intensity and scale in the

PGEV model for AMS (PGEVl,s), trend in location of AMS

(GEVm), trend in scale of AMS (GEVs), trend in both location and

scale inAMS (GEVm,s), trend in intensity in PoT (POIl), and trend

in scale in PoT (GPs). Red dotted line is the 0.05 value.
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reason to believe that including a trend in s improves model

fit. Instead, the p values for the tests of trend in intensity

against no trend indicate that there are trends in the Poisson

rate for many stations. In particular, 34% of the p values were

smaller than 0.05. As for the NE-PDS data, the curve for the

p values of the PGEVmodel test of trend only in scale against

no trend is as expected from Eq. (4). To simplify Fig. 5, we

have not included the p values from the GEV tests that are

part of Fig. 3. However, as in Fig. 3 the p-value plot for the

tests of trends in location in the GEV trend model was similar

to the plot for the tests of trend in intensity in the PGEV

model, and the other test gave no indication of significance.

The validity of these conclusions is supported by simulation in

appendix D.

The estimated trends for the PGEV model with trend in in-

tensity are shown in Fig. 6. Visually, the figure seems to indicate a

tendency for trends in intensity to be larger in the southeastern

part of the area. However, this may just be a result of the denser

net of stations in this area. The corresponding plot of estimated

location parameters in the GEV model (not shown) showed that

similar trends are caught station-wise by both models, but less

clearly by the GEV model.

The histogram in Fig. 6 shows that for 91% of the stations

the estimated trends l1 in the frequency of extreme rainfall

events are positive. The mean trend is 0.65, the median trend

is 0.61, and the standard deviation of the trends is 0.49. The

time periods that were included in the station data were

related to the estimates of the size of the trend in l1, and, in

particular, stations with later ending times often had higher

l1 values.

c. The U.S. Northeast: Implications of climate change on the
frequency and intensity of large rainfall events

Let Dt 5 t2 2 t1 be the temperature change, where t1 and t2
are the average yearly temperatures at two distinct times. At

temperature t the expected number of exceedances is given by

l(t) 5 exp(l0 1 l1t), and thus the relative difference in the

number of yearly extreme rainfall events is

D
l
5
l(t

2
)2 l(t

1
)

l(t
1
)

5 exp(l
1
D
t
)2 1:

The left panel of Fig. 7 shows a histogram of Dl for the stations

in the NE-PDS data for different values of Dt. For Dt 5 0.58C,
the median increase is around 35%, and for Dt 5 18C, the
median increase is around 83% and the mean increase is

around 116%.

As discussed in the introduction, even though the distri-

bution of individual extreme rainstorms does not change,

the increase in frequency will lead to an increase of inten-

sity of the yearly or, say, 20-yearly maximum rainstorm. A

common way of reporting sizes of extreme storms is through

the intensity of the 20-yr storm, which in a stationary climate

is the storm that has probability 5% of occurring in a year.

In changing climate, static references such as 20-yr storms

FIG. 4. (left) Estimated l1 from the PoT trend model for the NE-PDS data and (right) the PGEVl trend model

for the AMS data from the same stations, with lowess smoothed temperature for the Northern Hemisphere as

covariate.

FIG. 5. Ordered p values for likelihood ratio tests for the AMS

in the 333 stations in the NE dataset. The models represented

are trend in Poisson intensity in the PGEV model for AMS

(PGEVl), trend in scale in the PGEVmodel for AMS (PGEVs),

and trend in both Poisson intensity and scale in the PGEV

model for AMS (PGEVl,s). Red dashed line is the 0.05 value.

Colored regions are confidence bands obtained by simulation

(see appendix D).
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lose meaning. Therefore, we instead of the 20-yr rainstorm

talk about the 5% rainstorm, and more generally about the

P% rainstorm. This is the storm intensity that has the

probability P% of being exceeded in a year, obtained from

the PGEV model as

S(p, t)5u1
[l(t)g 2 1]s

g
1
l(t)gs

g
f[2log(12 p)]2g 2 1g .

A similar result holds for g 5 0. The probability of a storm of

intensity S(p, t1) at temperature t2 is

P[X(t
2
).S(p, t

1
)]

5 12 exp

266642
0BB@11g

S(p, t
1
)2

�
u1

[l(t
2
)
g 2 1]s

g

�
l(t

2
)
g
s

1CCA
21/g
37775

5 12 exp

�
l(t

2
)

l(t
1
)
log(12p)

	
5 12 (12 p)exp(l1Dt) .

This means that if the relative frequency of exceeding a

threshold increases by 83%, as seen for a 18C increase, then a

5% storm will occur with approximately 9% probability, under

the new temperature.

d. The contiguous United States: Similar but weaker trends

The four regions in the USA dataset are shown in Fig. 1.

The p values obtained from the PGEV model for the other

three regions in the contiguous United States were similar

to those for the U.S. Northeast, and indicated no or little

trend in the scale parameter in the PGEV model but trends

in the intensity parameter l1 (Fig. 8). Positive estimated

l1 values dominate but are smaller than for the Northeast

(Fig. 9). The scale parameters were highest in Texas and

the Southeast (Fig. 10), as expected. The shape parameters

are similar throughout the contiguous United States, except

for Texas (Fig. 10) where they are somewhat larger, and

hence the risks of unusually extreme rainfall events are

higher.

6. Discussion and conclusions

In this paper we use a newmodel, the PGEVmodel, to show

that in the U.S. Northeast extreme daily rainfall events are

becoming more frequent but that there is little evidence of

increasing trends in the distribution of intensities of individual

extreme daily rainfall events. The estimated median trend in

frequency for stations in the U.S. Northeast corresponds to

exceedances of high thresholds becoming 83% more frequent

FIG. 6. Trends in frequency of extreme rainfalls are described by estimated parameters l1 for the PGEVl model

for the NE AMS data. Sizes of trends are shown (left) by both color and size of circles on map and (right) by the

histogram of the l1 estimates with median as a solid vertical line.

FIG. 7. Histograms of (left) the expected relative increase in the number of extreme rainfall events and (right) the

future probability of a 5% rainstorm for the 333 stations in the U.S. Northeast as obtained by assuming different

increases of yearly mean temperature. Medians are included in both plots (vertical dashed lines). For readability, the

x axis has been truncated in both plots, excluding 14 values for the 1.58C increase and 55 values for the 28C increase.
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per degree of increase in average yearly temperature, and for

many stations the frequency increase exceeds 150% per 18C of

temperature increase. Further, for example, if the temperature

increases by 18C, then the median increase of the probability of

the 5% rainstorm is to 9%, so the 5% probability rainstorms

become almost twice as likely. As a consequence, very extreme

yearly maxima of daily rainfall event intensities also become

more probable. Trends, as estimated for three other large areas

in the contiguousUnited States (Midwest, Southeast, Texas) are

similar, but weaker. The results used high-quality annual maxi-

mum series (AMS) data, and were validated using simulations

and PDS data from 16 stations. These data had undergone

manual quality control and are of higher quality than standard

PDS data.

The PGEV model is based on using the connection be-

tween the block maxima and PoT method in extreme value

statistics to derive a new parameterization that is similar to

the Langbein formula. An important property of our model is

that it can be used to predict the implications of different

GCM scenarios on risks of extreme rainfall amounts. A

practical way for communities and cities to use our results for

infrastructure planning could be to find one or several nearby

stations with similar topography and estimate PGEV pa-

rameters, in particular trends, at those, and then use the result

for informing dimensioning of infrastructure.

A further important consideration for planning is ‘‘storm

dependence’’: If an extreme rainstorm only hits a small area

(and thus perhaps only a single station) consequences could

be less severe than if it hits a large area (and then perhaps

several stations). The extreme value statistical methodology

for modeling storm dependence (and dependence between

station measurements) is still at an early stage (see, e.g.,

Kiriliouk et al. 2019). Storm dependence will not affect biases

or standard deviations of trend estimates for individual sta-

tion or biases of averages of such estimates, but it will influ-

ence standard deviations of means of station trends.

In appendixE,weprovide a spatialMatérnmodel for the storm

dependence and use it to estimate a common trend for each re-

gion. The result of this analysis is that there is little evidence for

differences in trends between stations in the same region, but that

there are differences in the trends for the different regions. For

more details and estimated values, see appendix E.

Many of our results, in particular that trends are strongest

in the U.S. Northeast, agree with earlier literature. The dis-

cussion in Easterling et al. (2017) about changes in extra-

tropical cyclones and how they cause a large portion of

extreme rainfall events in the Northeast may give one ex-

planation of why our models fit well above the 99% quantile,

but not below it. However, there are also differences. For

example, Kunkel et al. (2020) finds that trends for rare events

FIG. 8. Ordered p values for the different models applied to AMS from the stations in the contiguous United

States, by region. The models represented are trend in Poisson intensity in the PGEV model for AMS (PGEVl),

trend in scale in the PGEVmodel for AMS (PGEVs), trend in both Poisson intensity and scale in the PGEVmodel

for AMS (PGEVl,s), trend in location of AMS (GEVm); trend in scale of AMS (GEVs), and trend in both location

and scale in AMS (GEVm,s). The red dotted line shows the 0.05 value.
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are higher than for less rare events, in contradiction to our

results. This paper uses PDS data for the period 1949–2016

whereas theNOAAAtlas 14AMS data for the Northeast that

are analyzed here cover the time period 1814–2014, so dif-

ferent ending times presumably do not explain this difference

in conclusions. Instead possible explanations include that

Kunkel et al. (2020) compute grid cell averages with different

cell sizes for more common andmore rare events before using

standard linear regression to estimate trends; that having

temperature as a covariate makes it possible for us to use

much earlier starting times; and that there are missing ob-

servations in the GHCN dataset.

Empirical climate precipitation research usually relies on

translation of station data to grid cells by various forms of

interpolation and averaging, and the climate models also

provide gridded output. The extent to which gridded data

agree with station data depends on grid size and the details of

how the averaging implicit in gridding has been done (see,

e.g., Huang et al. 2017; Risser et al. 2019). Compared to a

local analysis, gridding has the advantage of reducing vari-

ances and therefore adding robustness to the conclusions.

However, there often are important local differences inside

of the grid cells (see, e.g., Martel et al. 2020), and this may

make gridded results less directly useful for the engineers

who build our infrastructures.

Our results apply to the maximum of the daily rain

amounts in separate storm events and mean that extreme

rain storms are becoming more frequent for many stations.

However, a rainstorm may contain several days with high

amounts of rain. If this is important, it should be studied

FIG. 10. Boxplots of estimated values of the (left) scale parameter exp{s0} and (right) shape parameter g for stations

in the contiguous United States.

FIG. 9. Histograms of the estimated trend parameters l1 for the PGEVl model for the USA dataset de-

scribing the trends in frequency of extreme rainfall, shown by region.. The solid vertical line in each panel

indicates the median.
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separately, for individual stations. Some topics for future

research are including spatial and topographic information

into the models, and taking storm dependency between

stations into account in the modeling.
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APPENDIX A

Connection between Estimated Trends in BM and PoT and
the Langbein Formula

LetX denote the rainfall intensity at a randomly chosen day,

M the yearlymaxima, and u the threshold. If threshold excesses

X2 ujX. u have a GP(su, g) distribution, and the number N

of exceedances over threshold for a given year has a Poisson

distribution with rate parameter lu, then

P(N5 n)5
ln
u

n!
e2lu ,

and by Eq. (3),

P(M, x)’ �
n50
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11g

x2u
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Comparing the above to the GEV distribution, we see that

M;GEV(~m, ~s, ~g), where

~m5u1
(lg

u 2 1)s
u

g
, ~s5s

u
lg
u , and ~g5g (A1)

when g 6¼ 0. When g 5 0, the parameters are connected as

~m5 u1s log(l
u
), ~s5s, and ~g5g5 0: (A2)

Langbein (1949) derived the relation

T
a
5 1/[12 exp(21/T

p
)] (A3)

between the recurrence intervals Ta and Tp of the same

event for the annual maximum and peaks over threshold

(PoT) series under the assumption of stationarity (see also

Takeuchi 1984). Assuming the GEV distribution for the

annual maximum series and the GP distribution for the PoT

series, we have that the probability of the annual maximum

M exceeding a value x is

P(M$ x)5 12 exp

8<:2

"
11 ~g

 
x2 ~m

~s

!#21/~g
9=; ,

and the distribution of the peaks X over threshold u is

P(X$ xjX. u)5
h
11g

�x2 u

s

�i21/g

.

This gives the corresponding recurrence intervals

T
a
5 1

,0@12 exp
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11 ~g

 
x2 ~m
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!#21/~g
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1A , (A4)

and

T
p
5
h
11g

�x2u

s

�i1/g
. (A5)

Inserting Eq. (A4) into Langbein’s formula (A3) gives the

recurrence interval

T
p
5

"
11 ~g

 
x2 ~m

~s

!#1/~g
. (A6)

Comparing Eqs. (A5) and (A6), shows that Langbein’s formula

holds if ~m5 u, ~s5s, and ~g5 g. FromEq. (A1), we can see that

this means that lg
u should be equal to one. If g 6¼ 0, this holds

when lu 5 1 and approximately when glnlu ’ 0. In the

Gumbel case, when g 5 0, the connection between the models

becomesm5 u1 suln(lu) and s5 su, which also is close to the

Langbein formula when lu ’ 1.

APPENDIX B

Trends Do Not Depend on the Threshold

When using the PoT method to estimate the parameters of

the GP for the distribution of excesses and the Poisson process

describing the number of exceedances over a threshold, the

threshold u needs to be chosen. Ideally, it is chosen high

enough that theGP distribution gives a good fit to the excesses,

but as low as possible to get as much data to work with as

possible. Both the scale parameter su and the rate parameter

lu depend on the choice of the threshold. If the threshold is

increased by y, the rate parameter decreases to

l
u1y

5P(X. u1 yjX.u)l
u
. (B1)

Therefore, lu5 exp(l01 l1t) gives lu1y 5 exp[log(k)1 l01 l1t],

where k5P(X. u1 yjX.u). Thus, in the PoT model, chang-

ing the threshold does not change the trend parameter l1.

However, of course the estimated l1 is different if one uses

different thresholds for the estimation since changing the
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threshold changes what parts of the data are used for

estimation.

APPENDIX C

Declustering

The standard technique to handle the dependency of threshold

exceeding is to decluster—that is, to gather the observed excesses

into clusters and use the cluster maxima as the basic observations

in the PoTmodel and in the relation (4) (see Coles 2001). To find

the clusters we first, guided by data as described below, deter-

mine a cluster length d and let the first cluster start at the time, t1,

of the first exceedance of u. The observed rain amounts

xt1, xt111, . . . , xt11d21 on these days are then modified as follows:

x0t 5

8<: x
i
, if x

i
5maxfx

j
; j 2 (t

1
, . . . , t

1
1 d2 1)g

min(x
i
, u), otherwise,

(C1)

so that only the maximum value in the cluster remains an

exceedance. In case the maximum occurs multiple times

within a cluster, the maximum is assigned to the first such oc-

currence. The second cluster starts at the time, t2, of the first

exceedance of u after time t1, and the rain amounts in the

cluster are modified in the same way, and so on. We thus

obtain a time series of cluster maxima, and use it as the ob-

servations instead of the original data when estimating the

PoT model.

APPENDIX D

Verification via Simulation

As a background to the p plots (Figs. 3 and 8), daily

rainfall for 300 stations was simulated using parameters

similar to the estimated PGEV parameters in the U.S.

Northeast. Thereafter, model parameters were estimated

from the simulated data and the ordered p values for each

model were computed. This was repeated for 100 pop-

ulations and from those, 95% confidence bounds were

computed and compared to the results obtained from the

NE dataset.

For each station, parameters u 5 (l0, l1, s0, s1, g) were

drawn from an N(û, Ŝ ) distribution, independently for the

different stations. Here, û and Ŝ were first obtained by fitting a

multivariate normal distribution to the estimated PGEV

model parameters from the stations in the NE dataset. Then

for each station 80 yearly maxima were simulated from a GEV

distribution with the parameterization of Eq. (7), with the co-

variate t set to the lowess temperature for years 1934 to 2014.

FIG. D1. Ordered p values from model fits on the NE dataset (lines) along with confidence bands from simulation

(shaded regions) using four different PGEV models. Red dotted line is the 0.05 value.
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The threshold u was set to 2.88. Figure D1, where the resulting

confidence bounds are compared to the p plots from the NE

dataset, indicates that the PGEVl model describes the data

reasonably well. In this it should be noted that there are dif-

ferences between the simulated data and the NE data, such as

that the threshold was chosen to be constant for all stations in

simulations and that there is spatial dependency that is not

modeled in the simulated data.

APPENDIX E

Spatial Analysis

For each station we obtained an estimated trend l1,i together

with an associated estimated standard deviation si of the es-

timate via the maximum likelihood estimation method in

section 4. The variation between estimated trends l1,i at dif-

ferent stations depends on both estimation uncertainty and on

differences between real trends. If there are no differences in

real trends, then standardizing the station-wise trend esti-

mates by subtracting the mean trend and dividing by the

estimated standard deviations should give standard normal

values. Instead, if there are substantial variations in the true

trends these values would be expected to deviate from a

normal distribution. Figure E1 shows that for the Northeast

a standard normal distribution gives a good fit and hence

that there is little indication of variation between the true

trends in the different stations in this region. Similar plots

for the other three regions gave the same result. However,

there are clear differences in the trends between the dif-

ferent regions.

We hence for each region fitted the simple spatial model

Y
i
5m1X(s

i
)1 e

i
, (E1)

to the estimated station-wise trends. In this model m is a

common mean trend and X is a mean-zero Gaussian random

field (GRF) with Matérn covariance function

C(h)5
s2

2n21G(n)
(kh)nK

n
(kh) .

HereG is the gamma function;Kn is themodifiedBessel function

of the second kind; n, k, and s2 are positive shape, scale, and

variance parameters, respectively; and h is geodesic distance

measured in tens of kilometers. The terms ei ;N(0, r2s2
i ) are

independent nugget effects where the station-wise nugget stan-

dard deviations, rsi, are assumed to be proportional to the es-

timated standard deviations si of the trend estimates, and r is the

proportionality parameter.

The parameters of the model, u 5 (m, n, k, s, r), were esti-

mated by maximizing the log-likelihood of model (E1). The

practical dependency range (i.e., the distance where the cor-

relation is approximately 0.1) is given by the estimate of

r5 10
ffiffiffiffiffi
8n

p
k21 (Lindgren et al. 2011). The results for the four

regions are shown in Table E1. Extreme rainfall events in the

U.S. Northeast become more frequent with rising tempera-

tures, but their intensity distribution remains stable. The ef-

fective range of theGRF differs slightly between regions, but is

between 144 and 218 km (Table E1).

The average of the estimated station-wise trend parameters

are contained in the confidence interval for the common trend

m for all regions, again suggesting that there is little variation

between the true trends inside of the different regions. Further,

within each of the four regions we computed estimates of the

contour avoiding set, Eu50,a(X). This is defined as the union of

the joint contour u5 0 excursion sets with probability 12 a; see

definition 4 in Bolin and Lindgren (2015). The probability is

TABLE E1. Parameter estimates for each of the four regions by using individual nugget effects with common scale r along with mean trend

l1, confidence intervals for m and s1, and approximated practical range r.

Northeast Southeast Midwest Texas

l1 0.6430 0.2571 0.3559 0.2567

m̂ 0.5467 0.2599 0.3357 0.2135

n̂ 8.099 7.238 0.6385 6.033

k̂ 0.369 0.4620 0.085 61 0.4822cs1 0.1354 0.1977 0.2432 0.2075

r̂ 1.106 1.077 0.9740 0.9460

CI m̂ [0.4281, 0.6652] [0.1710, 0.3488] [0.2412, 0.4301] [0.1101, 0.3169]

CIcs1 [0.078 87, 0.232 48] [0.1399, 0.2794] [0.1791, 0.3303] [0.1461, 0.2946]

r̂ (km) 218.2 164.7 264.0 144.1

FIG. E1. A Q–Q plot of standardized station-wise estimates of

the trend parameter l1 in the Northeast against standard normal

distribution.
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based on the conditional distribution ofXjY, which is aN(~m, ~S )

distribution with

~m5S(S1R)21(Y2m) , ~S5S2S(S1R)21S , (E2)

and S and R are the covariance matrices of the GRF and the

nugget effects, respectively. For further information on ex-

cursion sets see, for example, Bolin and Lindgren (2015). Using

the R package excursions (Bolin and Lindgren 2018), we

computed the marginal contour avoiding probabilities .i for
the different station locations si, defined as .i 5P[X(si). 0] if

E[X(si)] . 0, and .i 5P[X(si), 0] otherwise, and the contour

avoiding sets using the error probability a 5 0.05 (Fig. E2).

These contour avoiding sets did not contain any station,

lending additional support to the approximation that there is a

common trend within each region.
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