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Abstract: In this paper, we study the valuation of stochastic cash flows that exhibit
dependence on interest rates. We focus on insurance liability cash flows linked to an index,
such as a consumer price index or wage index, where changes in the index value can be
partially understood in terms of changes in the term structure of interest rates. Insurance
liability cash flows that are not explicitly linked to an index may still be valued in our
framework by interpreting index returns as so-called claims inflation, i.e., an increase in
claims cost per sold insurance contract. We focus primarily on the case when a deep
and liquid market for index-linked contracts is absent or when the market price data are
unreliable. Firstly, we present an approach for assigning a monetary value to a stochastic
cash flow that does not require full knowledge of the joint dynamics of the cash flow and the
term structure of interest rates. Secondly, we investigate in detail model selection, estimation
and validation in a Heath–Jarrow–Morton framework. Finally, we analyze the effects of
model uncertainty on the valuation of the cash flows and how forecasts of cash flows and
interest rates translate into model parameters and affect the valuation.
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1. Introduction

In this paper, we study the valuation of index-linked cash flows under the assumption that index
returns and the changes in nominal interest rates have significant dependence. The cash flows we
consider are such that each payment is a product of two independent random variables: one is the index
value, and the other may represent pure insurance risk or simply a constant. Typically, the index is a
consumer price index or a wage index, but the index returns could also be interpreted as claims inflation,
i.e., an increase in claims cost per sold insurance contract. Given a deep and liquid market of bonds
linked to the same index as the cash flow, the natural market-consistent value of the cash flow is a best
estimate of the non-index factor times the market-implied price of an index-linked zero-coupon bond.
Here, we focus mainly on market-consistent valuation of index-linked cash flows when market-implied
prices of index zero-coupon bonds are absent or unreliable.

A traditional approach to valuation of insurance cash flows is to assign a value corresponding to
the discounted expected cash flow, where the discount factors match a yield curve bootstrapped from,
e.g., current data on government bonds or interest rate swaps. However, if the cash flows depend on
the development over time of an index that shows clear signs of dependence on changes in the yield
curve, then the traditional valuation approach is inappropriate and possibly even a source of arbitrage
opportunities. The importance of market-consistent valuation in life and pension insurance is well
understood by insurance companies and regulators, and the theoretical foundation is well established
and accessible in textbooks; see, e.g., [1–3]. Moreover, the ideas of integrating traditional insurance
valuation with financial no-arbitrage valuation can be found in the literature from the 1970s; see, e.g., [4].
Many articles found in actuarial journals are based on the idea that it is possible to construct a portfolio
of financial assets that replicates the unit in which a life insurance contract is expressed; see, e.g., [5–7].
Valuation of unit-linked life insurance products with embedded options and guarantees is treated in,
e.g., [8,9], and participating policies are analyzed in, e.g., [10–12]. Valuation frameworks for pension
liabilities and long-term health insurance are developed in [13,14], respectively. Market-consistent
valuation in non-life insurance is a rather new subject treated in, e.g., [15,16].

The approach we promote for the valuation of index-linked cash flows requires accurate modeling
of the dynamics of the yield curve of nominal interest rates. For this purpose, we choose a
Heath–Jarrow–Morton (HJM) model in a discrete-time setting. HJM models, introduced in [17],
are flexible enough to realistically model the evolution of the forward-rate curve over time and are
more appealing than short-rate models, since they directly model the evolution of the entire forward-rate
curve. Key features of simultaneous changes in forward rates are easily investigated using, e.g., principal
component analysis on historical yield-curve data. From a theoretical perspective, HJM models
in continuous time are complicated models whose properties have posed challenges to probabilists.
However, by now, they are among the standard interest-rate models (see, e.g., [3,18]), and generalizations
of the models that allow for non-Gaussian driving noise processes are well understood; see [19,20].

We apply the valuation principles in [3], in an HJM framework and based on historical yield-curve
and index data, with the aim of setting up a credible valuation machinery for index-linked cash flows.
The valuation formulas we derive allow us to understand how the volatility structure of the calibrated
HJM model, the market-price-of-risk vector, the forecasts of trends in index values and interest rates
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and the necessary modeling assumptions affect the value of an index-linked cash flow. The index we
consider in the empirical analysis is the Swedish Consumer Price Index (CPI), to which, for example,
illness and accident insurance contracts often are linked. Market prices of CPI-linked bonds offer
possibilities to investigate how the market’s anticipation of future price inflation can be understood in
terms of our valuation machinery.

The suitable time grid (weekly, monthly or quarterly, say) for the HJM modeling of the dynamics
of the yield curve might be finer than the time grid for the updates of index values. Even if
frequently-updated index values are available, seasonal effects and problems with data quality might
suggest that a coarser time grid for the index values is preferable. Moreover, many insurance liability
cash flows depend on yearly updated values of a consumer price index, whereas historical data of yearly
yield curve changes are not sufficient for efficiently parameterizing an HJM model. We investigate the
effects of different time scales on the valuation of the index-linked cash flows.

In [21], a three-factor HJM model is used to model the joint dynamics of a U.S. consumer price index
and the real and nominal U.S. Treasury yield curves, with the aim of pricing and hedging both inflation
bonds and conventional nominal bonds. The basic idea is to exploit the analogy between nominal and
real interest rates and a consumer price index, on the one hand, and two currencies and an exchange
rate, on the other hand. The foreign-exchange analogy has appeared earlier also in [22]. The paper [21]
discusses both model selection and validation issues and uses the model to price options written on the
consumer price index. In [23], the question of how and under what conditions an inflation-index bond
can be replicated by dynamically trading in nominal bonds is investigated.

Our main contributions in this paper can be summarized as follows. Firstly, we present an approach
for transparently assigning a monetary value to a stochastic cash flow that does not require full knowledge
of the joint dynamics of the cash flow and the term structure of interest rates. Secondly, we investigate
in detail model selection, estimation and validation in a Heath–Jarrow–Morton framework. Finally, we
analyze the effects of model uncertainty on the valuation of the cash flows and how forecasts of cash
flows and interest rates translate into model parameters and affect the valuation.

The outline for the paper is as follows. In Section 2, we introduce principles for market-consistent
valuation of cash flow that will form the basis for our valuation machinery and give a summary of the
discrete-time HJM framework. Section 3 derives valuation formulas for index-linked cash flows taking
the modeling at different time scales into account. The proofs containing rather lengthy computations
are placed at the end of the paper in Appendix. Section 4 presents model selection and model validation
issues, describes the data and presents the empirical findings and statistical analysis. Section 5 applies
the valuation machinery and presents and interprets the numerical results. Finally, the discussion in
Section 6 concludes the paper.

2. Preliminaries

We work in a discrete-time setting with time points t = 0, 1, . . . , tmax, where t = 0 denotes the
current time. We consider a filtered probability space (Ω,F ,P,F), where F = (Ft)t=0,...,tmax with Ft

denoting the information available at time t. The probability measure P, called the real-world probability
measure, is assumed to describe future observations of cash flows and price processes. Typically, it is
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chosen so that relevant features of historical data are plausible for future values of cash flows and price
processes. The expectation operator with respect to P is denoted by E. In expressions involving matrix
multiplications, vectors are taken to be column vectors. We use the notation a · b for the scalar product
aTb and || · || for the Euclidean norm.

We consider a given currency that applies to all price processes and cash flows. A cash flow here is
a random vector X = (X0, . . . , Xtmax), where Xt is the amount due at time t. The price at time t of the
cash flowX is denoted by Qt[X].

For market-consistent valuation of insurance cash flows, a useful approach is presented in [3].
Here, we give a brief outline of the approach. We set up models and validation procedures in
subsequent sections.

We assume that all cash flows X = (X0, . . . , Xtmax) are F-adapted with integrable components
and write X ∈ L1(Ω,F ,P,F). A state price deflator φ = (φ0, . . . ,φtmax) ∈ L1(Ω,F ,P,F) is a
strictly positive random vector with normalization φ0 ≡ 1. We interpret φt as a stochastic discount
factor transporting cash amounts Xt at time t to values at time 0. The set of cash flows that can be valued
relative a given state price deflator φ is given by:

Lφ =

{
X ∈ L1(Ω,F ,P,F) : E

[
tmax∑
s=0

φs|Xs|
∣∣∣F0

]
<∞

}
and the price process (Qt[X])t=0,...,tmax for a cash flowX ∈ Lφ is defined by:

Qt[X] :=
1

φt

E

[
tmax∑
s=0

φsXs

∣∣∣Ft

]
, t = 0, . . . , tmax (1)

A price process (Qt[X])t=0,...,tmax is called consistent with respect to a state price deflator φ if
the deflated price process (φtQt[X])t=0,...,tmax is a (P,F)-martingale. Using the tower property of
conditional expectation, we see that the definition in Equation (1) implies that deflated price processes
are (P,F)-martingales,

E [φtQt[X]|Ft−1] = E

[
E

[
tmax∑
s=0

φsXs

∣∣∣Ft

] ∣∣∣Ft−1

]
= E

[
tmax∑
s=0

φsXs

∣∣∣Ft−1

]
= φt−1Qt−1[X]

Let P (t, u) denote the price at time t of a non-defaultable zero-coupon bond (ZCB) with maturity
u ≥ t. By convention, P (u, u) = 1. The one-period risk-free rollover rt and the value of one unit
of the corresponding bank account at time t are defined by rt := − logP (t, t + 1) for t ≥ 0, Bt :=

Bt−1 exp {rt−1} for t ≥ 1, and B0 := 1. From the definition Equation (1) and the fact that Bt+1 is
Ft-measurable, it follows that the process (φtBt)t=0,...,tmax is a strictly positive (P,F)-martingale with
an expected value of one (Lemma 2.17 in [3]). Therefore, we may define the probability measure P∗,
equivalent to P, by P∗(A) := E [IAφtmaxBtmax ] for any Ft-measurable event A for t ≤ tmax. In particular,
φtBt is the Radon–Nikodym derivative for P∗ with respect to P onFt. The probability measure P∗, called
the risk-neutral probability measure, is the equivalent martingale measure for the bank account numeraire
(Bt): (B−1t Qt[X]) is a (P∗,F)-martingale (Lemma 11.5 in [3]). We write E∗ for the expectation operator
with respect to P∗.
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By a standard change of the numeraire argument (Lemma 11.4 in [3]),

φ−1t E [φTXT |Ft] = BtE∗
[
B−1T XT |Ft

]
for t ≤ T

Therefore, using the linearity of conditional expectations, the price at time t of the cash flow
X≥t := (0, . . . , 0, Xt, . . . , Xtmax) can be expressed as:

Qt[X≥t] =
1

φt

E

[
tmax∑
s=t

φsXs

∣∣∣Ft

]
= BtE∗

[
tmax∑
s=t

B−1s Xs

∣∣∣Ft

]

i.e., the risk-neutral value at time t of the cash flow X≥t. Unless we are considering a very simple cash
flow, the joint distribution under P∗ of the rs and Xu is hard to determine, and the effect on the valuation
of dependencies between interest rates and cash flows is hard to assess. Therefore, although valuation
using state price deflators is equivalent to risk-neutral valuation, the former is more natural for cash flows
with distributions that cannot be easily assessed from market prices of financial contracts.

From a modeling perspective, we may first decide on a model for the (forward) interest-rate dynamics
under P∗, such that the model may, given a convenient change of measure from P∗ to P, yield dynamics
under P that are in line with historical observations of interest rates. The measure transformation is
typically determined by the market-price-of-risk function, which should be chosen so that the model
parameters under P can be estimated and the model validated on historical data. The interest-rate model
under P∗ and the market-price-of-risk function determines the model for the state price deflators under
P, which can be extended into a joint model under P of both cash flows and state price deflators.
This approach to setting up the valuation framework and validating the models of historical data
is presented below.

The Heath–Jarrow–Morton Framework

The forward rate at time t for maturity u is defined by:

F (t, u) := − logP (t, u) + logP (t, u− 1), u > t

and the price of a ZCB can be expressed in terms of forward rates as:

P (t, u) = exp

{
−

u∑
s=t+1

F (t, s)

}
, u > t

We assume an HJM framework with the forward rate dynamics:

F (t, u) = F (t− 1, u) + α(t, u) + σ(t, u) · ε∗t , 0 < t < u (2)

where the innovation vector ε∗t is Ft-measurable. The risk-neutral measure P∗ is chosen so that ε∗t is
independent of Ft−1 under P∗. The consistency condition for an arbitrage-free pricing system is:

E∗
[
B−1t P (t, u)|Ft−1

]
= B−1t−1P (t− 1, u), 0 < t < u
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where Bt is the value of the bank account at time t. The consistency condition can be written
(see ([3], pp. 98–99) for details):

h(t, u) =
u∑

s=t+1

α(t, s), 0 < t < u

where the function h is defined by:

h(t, u) := logE∗
[
e−v(t,u)·ε

∗
t

∣∣Ft−1
]
, u > t (3)

with v(t, u) :=
∑u

s=t+1σ(t, s). If the expectation in Equation (3) is finite, we get α(t, u) = h(t, u) −
h(t, u − 1) for 0 < t < u, and h(u − 1, u − 1) = 0. We choose P∗, so that the components of ε∗t are
independent standard normal random variables under P∗. Then, h(t, u) = 1

2
||v(t, u)||2 and:

α(t, u) = σ(t, u) · v(t, u)− 1

2
||σ(t, u)||2 (4)

Now, let εt = ε∗t + λt, where λt is called the market price of risk at time t. We require that λt is
Ft−1-measurable. The forward rate dynamics can be expressed as:

F (t, u) = F (t− 1, u) + µ(t, u) + σ(t, u) · εt, 0 < t < u (5)

where:

µ(t, u) := α(t, u)− σ(t, u) · λt = σ(t, u) · (v(t, u)− λt)−
1

2
||σ(t, u)||2

The density process (φtBt)t=0,...,tmax is chosen as:

φtBt := exp

{
−

t∑
s=1

(
1

2
||λs||2 − λs · εs

)}
Notice that, given sufficient integrability (Novikov’s condition), (φtBt)t=0,...,tmax is a (P,F)-martingale

and (φ−1t B−1t )t=0,...,tmax is a (P∗,F)-martingale. This choice of density process implies that the εt are
independent and standard normally-distributed under P. Indeed, the fact that for an Ft+1-measurable X
it holds that:

E [X|Ft] = φtBtE∗
[
φ−1t+1B

−1
t+1X|Ft

]
= E∗

[
exp

{
−1

2
||λt+1||2 − λt+1 · ε∗t+1

}
X
∣∣∣Ft

]
implies that:

E [exp {u · εt+1}|Ft]

= E
[
exp

{
u · λt+1 + u · ε∗t+1

}
|Ft

]
= E∗

[
exp

{
−1

2
||λt+1||2 − λt+1 · ε∗t+1 + u · λt+1 + u · ε∗t+1

}∣∣∣Ft

]
= exp

{
u · λt+1 −

1

2
||λt+1||2

}
E∗
[
exp

{
(u− λt+1) · ε∗t+1

}
| Ft

]
= exp

{ ||u||2
2

}
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which further implies that:

E [exp {u1 · εt} exp {u2 · εt+1}] = E [E [exp {u1 · εt} exp {u2 · εt+1}|Ft]]

= E [exp {u1 · εt}E [exp {u2 · εt+1}|Ft]]

= exp

{ ||u1||2
2

}
exp

{ ||u2||2
2

}
We observe that the moment generating function of the random vector (εt, εt+1) of length 2d is the

moment generating function of the 2d-dimensional standard normal distribution. The claim follows.

3. Valuation of an Index-Linked Cash Flow

We consider the valuation of a cash flow formed by two independent components: a pure
insurance risk component and an index component. More specifically, we consider the value of the
cash flow YkT IkT at time kT , where YkT and IkT are FkT -measurable and independent under P.
The meaning of k and T will be made clear below. According to Equation (1), the value today
of the cash flow X = (0, . . . , 0, YkT IkT , 0, . . . , 0) is Q0[X] = E [φkTYkT IkT ] = E [YkT ]Q0[I],
where I = (0, . . . , 0, IkT , 0, . . . , 0). If IkT denotes the value at time kT of an inflation index and
if there is a deep and liquid market of (coupon-bearing) inflation-linked bonds, then the market prices
determine the market price Q0[I] = I0Pr(0, kT ) of the cash flow I , which is the cash flow of a real
zero-coupon bond maturing at time kT .

We focus on the case when index values and nominal interest rates are dependent and when Q0[I] is
not trivially determined by the market prices of index-linked bonds. In this case, modeling of the joint
dynamics of the index and nominal interest rates is required. Whereas data are available that enable the
selection of a plausible model for the dynamics of interest rates, the index value data may be limited
in size and quality. Therefore, we want a transparent approach to cash-flow valuation where the value
Q0[I] = E [φkT IkT ] factors into a product, where one factor is the expected value of the part of the index
value that cannot be explained by interest rates, and the other factor, completely specifying a generally
accepted HJM forward-rate model, is the monetary value of the part of the index value that is explained
by the interest rates. We want the first factor to allow for subjective input, such as an assumption of a
particular long-term trend in the index value. Subjective views may be attractive for stress testing, or
internal valuation purposes, or imposed exogenously by a supervisory authority.

For the discrete-time forward-rate dynamics, the time unit is commonly chosen large enough to avoid
unnecessary noisy forward rate data, but small enough for the model to capture relevant time series
features. However, for valuation purposes, it may be of interest to consider the forward-rate dynamics
on a coarser time grid, e.g., with yearly observations instead of quarterly observations. Let k ≥ 1 be an
integer and consider a new time unit corresponding to k original time units. We use the superscript k
to denote that time is measured in units of k original time units. Let qkt be the log return of some index
between time kt and time k(t + 1): Ik(t+1) = Ikt exp

{
qkt
}

. Without loss of generality, we set I0 = 1.
If the original time unit is a fraction of a year, then the series {qt} may not be available or can be hard
to model accurately due to seasonal effects and, in the case of a price index, so-called price stickiness;
prices are not rapidly updated as costs and demands change in the economy. Therefore, it may be more
attractive to consider changes in the index over longer time periods (one year, say).
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Given the independence between the pure insurance risk variable YkT and IkT , Q0[X] =

E [YkT ]E [IkTφkT ] = E [YkT ]Q0[I]. Hence, if we determine a random variable Z, such that log IkT − Z
and Z + logφkT are independent, then Q0[I] = E [IkT exp {−Z}]E [exp {Z}φkT ], where:

E [IkT exp {−Z}] = E

[
exp

{
T∑
t=1

qkt−1 − Z
}]

(6)

E [exp {Z}φkT ] = E∗
[

exp

{
Z −

kT∑
t=1

rt−1

}]
(7)

Notice that the market price of risk does not affect the value Q0[I]. In order for this approach to
computing Q0[I] to have practical utility, we want Z to be an affine function of forward rates F (t, u)

for t ≤ kT , so that Equation (7) is easily computed using the HJM dynamics under P∗. Moreover,
we want Z to be a rather simple expression in terms of some forward rates, so that the distribution of∑T

t=1 q
k
t−1 − Z is easily assessed from historical data or economic arguments. If the market price of

risk is an affine function of forward rates and if the qkt−1 and the εs are jointly normally-distributed, then
the independence of log IkT − Z and Z + logφkT is equivalent to Cor [log IkT − Z,Z + logφkT ] = 0,
which is more easily testable. Notice that Z could be taken as the orthogonal projection of log IkT onto
the linear space spanned by ε1, . . . , εkT . However, the restriction of Z to an affine function of forward
rates appears more useful.

Based on empirical investigations presented in Section 4, in the case when the index is chosen as a
consumer price index, here, we choose Z so that the right-hand side of Equation (6) is expressed as:

E

[
exp

{
T∑
t=1

dkt

}]
, dkt := qkt−1 − rkt

Recall that qkt−1 is the index log return from time k(t − 1) to time kt and that rkt is the
continuously-compounded spot rate at time kt of a ZCB maturing at time k(t + 1). Both qkt−1 and
rkt are observable at time kt.

The traditional value at time 0 assigned to an insurance cash flow XkT at time kT is
P (0, kT )E [XkT ] = E [φkT ]E [XkT ], i.e., the discounted best estimate. In Proposition 1 below, we
compute the market-consistent value Q0[X] and compare it to the traditional value of the cash flow. The
proof of the proposition is found in Appendix.

Proposition 1. Suppose that:

YkT , exp

{
T∑
t=1

dkt

}
, exp

{
T∑
t=1

rkt −
kT∑
t=1

(
rt−1 +

1

2
||λt||2 − λt · εt

)}
(8)

are uncorrelated under P. Then:

Q0[X] = E [YkT ]E

[
exp

{
T∑
t=1

dkt

}]
A(k, T )

If, further, the market price of risk λ is a constant vector, then:

P (0, kT )E [XkT ] = E [YkT ]E

[
exp

{
T∑
t=1

dkt

}]
B(k, T,λ)
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so that:

Q0[X]

P (0, kT )E [XkT ]
=

A(k, T )

B(k, T,λ)

The quantities A(k, T ) and B(k, T,λ) are given by:

A(1, T ) = exp

{
F (0, T + 1)− F (0, 1) +

T∑
t=1

σ(t, T + 1) · v(t, T + 1)

}

and, for k ≥ 2,

A(k, T ) = exp


k(T+1)∑
t=kT+1

F (0, t)−
k∑

t=1

F (0, t)


× exp


k−1∑
s=1

( k(T+1)∑
t=kT+1

−
k∑

t=s+1

)[
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

]
× exp


T∑

u=1

k(T+1)∑
t=kT+1

[
σ(ku, t) · v(ku, t)− 1

2
||σ(ku, t)||2

]
× exp


T−1∑
u=1

k(u+1)−1∑
s=ku+1

( k(T+1)∑
t=kT+1

−
k(u+1)∑
t=s+1

)[
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

]
× exp

1

2

k−1∑
s=1

∥∥∥ k(T+1)∑
t=kT+1

σ(s, t)− v(s, k)
∥∥∥2


× exp

1

2

T∑
u=1

∥∥∥ k(T+1)∑
t=kT+1

σ(ku, t)
∥∥∥2


× exp

1

2

T−1∑
u=1

k(u+1)−1∑
s=ku+1

∥∥∥ k(T+1)∑
t=kT+1

σ(s, t)− v(s, k(u+ 1))
∥∥∥2


B(1, T,λ) = exp {F (0, T + 1)− F (0, 1)}

× exp

{
T∑

s=1

T+1∑
t=s+1

(
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

)}

× exp

{
T∑

s=1

(1

2
||v(s, T + 1)||2 − λ · v(s, T + 1)

)}
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and, for k ≥ 2,

B(k, T,λ) = exp


k(T+1)∑
t=kT+1

F (0, t)−
k∑

t=1

F (0, t)


× exp


kT∑
s=1

k(T+1)∑
t=ds/kek+1

(
σ(s, t) · (v(s, t)− λ)− 1

2
||σ(s, t)||2

)
× exp

1

2

kT∑
s=1

∥∥∥ k(T+1)∑
t=ds/kek+1

σ(s, t)
∥∥∥2


where dxe is the smallest integer larger or equal to the nonnegative number x.

Notice that under the assumption of Proposition 1 and a constant market-price-of-risk vector λ,
the valuation ratio:

ηkT (λ) :=
Q0[X]

P (0, kT )E [XkT ]
=

E [φkTXkT ]

E [φkT ]E [XkT ]

is an expression in terms of σ, λ, k and T . In particular, it does not depend on the current term structure
of forward rates. Moreover the dependence on the market price of risk λ is rather easily analyzed
by writing:

ηkT (λ) = exp {λ · s(k, T )}ηkT (0), s(k, T ) =
kT∑
s=1

k(T+1)∑
t=ds/kek+1

σ(s, t)

In Section 4, we present an approach to estimating the function σ from historical forward-rate data.
We also consider the modeling of the market price of risk vector λt as an affine function of past forward
rates and present a testing procedure for determining whether λt may be taken as a constant vector λ.
Finally, in Section 5, we investigate numerically, based on historical data, the market-consistent valuation
of an inflation-linked insurance cash flow and analyze how the market-consistent value differs from the
value based on traditional valuation.

4. Model Selection and Validation

The Swedish Riksbank provides market prices of Swedish government bills with maturities of 1, 3,
6 and 12 months and government bonds with maturities of 2, 5, 7 and 10 years from 1992 to 2014.
We choose the time unit as a quarter of a year, and here, we let t = 0 denote the time of the oldest market
prices of the historical sample. Historical zero-coupon yield curves:

u 7→ R(t, u), u > t, t = 0, . . . , N, (N = 90)

where R(t, u) := − 1
u−t logP (t, u) is the continuously-compounded spot rate at time t for maturity u,

are obtained by a standard bootstrap procedure assuming linearity in R between observed market rates.
Moreover, we assume that R(t, u) = R(t, t+ 40) for u > t+ 40, i.e., the rate for a maturity further away
than 10 years is set equal to the 10-year rate.
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Notice that rt = R(t, t + 1) and that the forward rates at time t are given by F (t, t + 1) = R(t, t +

1) and:

F (t, u) = (u− t)R(t, u)− (u− t− 1)R(t, u− 1), u > t+ 1

We assume an HJM framework with a volatility function satisfying σ(t, u) = σ(u − t).
This simplifying parametrization is rather common; see, e.g., Example 6.6 in [18,21,24], and Section
5.4 in [25]. Discussions of possible shortcomings and remedies of such a parametrization for HJM
models designed for interest-rate derivative pricing can be found in, e.g., [26,27]. We assume that the
market price of risk is a function of the previous forward rates and get the forward rate dynamics:

F (t, u) = F (t− 1, u) + µ(u− t,F t−1) + σ(u− t) · εt, 0 < t < u

where µ(m, z) = α(m) − σ(m) · λ(z) and F t−1 = (F (t − 1, t), . . . , F (t − 1, tmax)). Recall that
the conditional distribution of εt given Ft−1 is a multivariate standard normal distribution under the
real-world measure P. We define forward rate changes by:

∆F (t, u) = F (t, u)− F (t− 1, u), 0 < t < u

We would like to estimate the functions λ and σ simultaneously on historical data for sufficiently
flexible parameterizations of the two functions, for instance by maximum likelihood estimation.
Unfortunately, this approach will not work well. Instead, we perform a two-stage estimation by, in the
first stage, considering λ to be a constant vector and estimating σ, and, then, in the second stage,
considering the estimate of σ to be the true, but unknown volatility function and estimating a parametric
model for λ by maximum likelihood estimation. Finally, we validate our selected parametric model.

4.1. The Volatility Structure of Changes in the Forward Rates

As the basis for a statistical analysis of historical forward rate dynamics, we choose the vectors:

∆t :=

 ∆F (t, t+m1)
...

∆F (t, t+mn)

 , t = 1, . . . , N

where n = 5 and {m1,m2,m3,m4,m5} = {4, 8, 20, 28, 40}, since the elements in these vectors roughly
correspond to the changes in spot rates observable in the market data. According to our modeling
assumption, ∆t = µ(F t−1) + Σεt, where:

µ(F t−1) =

 α(m1)− σ(m1) · λ(F t−1)
...

α(mn)− σ(mn) · λ(F t−1)


and Σ is an (n× d)-matrix with σ(mj) as the j-th row. If the covariance matrix of µ(F t−1) is small and
does not vary much over time, then the covariance matrix of ∆t is approximately ΣΣT. In particular,
then, the function σ, the volatility structure, can be estimated from the sample covariance matrix of
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historical forward rate changes. To this end, we conduct a principal component analysis of the sample
covariance matrix of vectors of forward-rate changes for the chosen set of maturities.

We denote eigenvalue i by wi and eigenvector i by ei, i = 1, . . . , n. From the eigenvalues shown in
Table 1, we get that (w1 + w2)

/∑n
i=1wi = 0.89, which means that 89% of the variance is explained by

the first two components.

Table 1. Eigenvalues (wi) of the sample covariance matrix of forward rate changes (∆t).

w1 13.6 · 10−6

w2 3.9 · 10−6

w3 1.1 · 10−6

w4 0.8 · 10−6

w5 0.4 · 10−6

In order to have a smooth dependence on maturity, we fit functions ξ1 and ξ2 to the eigenvectors e1
and e2, respectively. Plots of the eigenvectors suggest functions of the following form: ξ1(m) = ξ1 and
ξ2(m) = α− βe−γm. Other parameterizations are possible; see, e.g., Example 6.6. in [18].

The vectors:

ξ1 :=

 ξ1(m1)
...

ξ1(mn)

 and ξ2 :=

 ξ2(m1)
...

ξ2(mn)


should satisfy ||ξ1|| = 1, ||ξ2|| = 1 and ξ1 · ξ2 = 0. To satisfy the first condition, we set
ξ1 = −1/

√
n. Since ξ1 is independent of m, the third condition can be written 1 · ξ2 = 0, which

implies that α = β
n

∑n
i=1 e

−γmi , and we get:

ξ2(m;β,γ) = β

(
1

n

n∑
i=1

e−γmi − e−γm
)

We let e2,i denote the i-th component of the second eigenvector e2 and find the pair of arguments
(β̃, γ̃) that minimizes:

n∑
i=1

(e2,i − ξ(mi;β,γ))2

We are almost done, but ||ξ2(β̃, γ̃)|| = 0.988, so a slight modification is needed to get ξ1 and ξ2

orthonormal. Setting:

β = β̃/||ξ2(β̃, γ̃)|| ≈ 1.716

γ = γ̃ ≈ 0.0536

α =
β

5

5∑
i=1

e−γmi ≈ 0.735
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yields the desired result. To summarize, ξ1(m) = −1/
√
n, ξ2(m) = α− βe−γm, and:

ξ1 =


−1/
√

5

−1/
√

5

−1/
√

5

−1/
√

5

−1/
√

5

 ≈

−0.447

−0.447

−0.447

−0.447

−0.447

 , ξ2 =


α− βe−4γ

α− βe−8γ

α− βe−20γ

α− βe−28γ

α− βe−40γ

 ≈

−0.650

−0.383

0.147

0.352

0.534


The eigenvectors e1 and e2 are plotted together with the functions ξ1 and ξ2 in Figure 1.
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Figure 1. Eigenvectors e1 (blue crosses) and e2 (red circles) together with the functions ξ1

(blue solid line) and ξ2 (red dashed line).

To compensate for only considering variance in the plane spanned by ξ1 and ξ2, due to the reduction
in the dimension of the driving input noise from five to two, we must have higher variances along these
vectors in our model than what we see in the data. To this end, we find the κ that minimizes:

n∑
i=1

(
Var [∆F (t, t+mi)]− κw1ξ1(mi)

2 − κw2ξ2(mi)
2
)2

We get κ = 1.084 and set σ(m) = (σ1(m),σ2(m)), with σi(m) = νiξi(m) for i = 1, 2,
where νi =

√
κwi.

4.2. The Market Price of Risk and Model Validation

We now assume the forward rate dynamics given by ∆t = µ(F t−1) + Σεt, where Σ is known,
set to the estimate above, and (εt)t=1,...,N is an i.i.d. sequence of standard normal bivariate vectors
under P. Since:

Σ :=

 σ(m1)
T

...
σ(mn)T

 =
(
ν1ξ1 ν2ξ2

)
and ξ1 and ξ2 are orthonormal,

ΣTΣ =

(
ν21ξ1 · ξ1 ν1ν2ξ1 · ξ2

ν1ν2ξ1 · ξ2 ν22ξ2 · ξ2

)
=

(
ν21 0

0 ν22

)
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Hence, the forward-rate dynamics ∆t = µ(F t−1) + Σεt can be rewritten as:

(ΣTΣ)−1ΣT∆t = (ΣTΣ)−1ΣTµ(F t−1) + εt (9)

The left-hand side in Equation (9) corresponds to a known affine transformation of observed changes
in forward rates for the chosen maturities. We assume that the market price of risk is an affine
transformation of previous forward rates and, therefore, express Equation (9) as:

∆̃t = ã+
n∑

i=0

b̃iF (t− 1, t− 1 +mi) + εt

where n = 5, {m0,m1,m2,m3,m4,m5} = {1, 4, 8, 20, 28, 40} and ã and the b̃i are unknown
vectors. Notice that the conditional distribution of ∆̃t given Ft−1 is a bivariate normal distribution with
uncorrelated components with unit variances and mean vector ã+

∑n
i=0 b̃iF (t−1, t−1+mi). Therefore,

maximum likelihood estimation of ã and the b̃i coincides with ordinary least squares estimation:

ˆ̃
βj = (MTM)−1MT∆̃

j
, j = 1, 2

with:

β̃
j

=


ãj

b̃j0
...
b̃jn

 , ∆̃
j

=

 ∆̃j
1

...
∆̃j

N


and:

M =


1 F (0,m0) · · · F (0,mn)

1 F (1, 1 +m0) · · · F (1, 1 +mn)
...

... . . . ...
1 F (N − 1, N − 1 +m0) · · · F (N − 1, N − 1 +mn)


Maximum likelihood values for different numbers of non-zero b̃i are shown in Table 2.

Likelihood-ratio tests based on these values suggest that we should not use more than three non-zero b̃i.

Table 2. Maximum log-likelihood values.

Number of Non-Zero b̃i Non-Zero b̃i Maximum Log-Likelihood

6 b̃0, b̃1, b̃2, b̃3, b̃4, b̃5 −226.21
5 b̃0, b̃1, b̃2, b̃3, b̃5 −226.29
4 b̃0, b̃1, b̃2, b̃3 −228.28
3 b̃0, b̃1, b̃3 −230.92
2 b̃0, b̃1 −234.69
1 b̃0 −243.09
0 - −246.55

Scatter and QQ plots of the innovations for the cases with 0, 1, 2 and 3 non-zero b̃i, respectively,
are shown in Figure 2, and auto- and cross-correlations are shown in Figure 3. Since the innovations
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look very similar in all four cases, we select the simplest model, i.e., the model with a constant market
price of risk.
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Figure 2. Scatter and QQ plots of the innovations for the cases with 0, 1, 2 and 3 non-zero
b̃i, respectively.
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Figure 3. Auto- and cross-correlations of the innovations for the cases with 0, 1, 2 and 3
non-zero b̃i, respectively.
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Writing λ(F t−1) = λ and using the invariance property of the maximum likelihood estimator, the
maximum likelihood estimator of λ is given by:

λ̂ = (ΣTΣ)−1ΣTα− ˆ̃a

We get λ̂ = (0.12,−0.68). Notice that λ− λ̂ = ˆ̃a− ã = 1
N

∑N
t=1 εt, so we may calculate confidence

regions for λ using:

λ̂ = λ +
1√
N
g (10)

where g is a bivariate standard normal random variable. We have:

P
(
||λ− λ̂|| > r

)
= P

(
1

N
||g||2 > r2

)
= P

(
χ2
2 > Nr2

)
where χ2

2 is chi-square distributed with two degrees of freedom. We get r = 0.258 by solving
P
(
||λ− λ̂|| > r

)
= 0.05.

4.3. The Relation between the Consumer Price Index and the Short Rate

Statistics Sweden (Statistiska centralbyrån in Swedish) provides monthly values of the Swedish
Consumer Price Index (CPI). However, we prefer to study changes over a one-year horizon to get rid
of seasonal effects and to get less sensitivity to price-stickiness. We denote the change in the consumer
price index for year t by q4t , i.e., q4t = log{CPI4(t+1)/CPI4t}, and the risk-free rollover for the same year
by r4t . Notice that r4t is known already at time 4t, while q4t is not known until time 4(t + 1). Moreover,
if we remove linear trends from q and r and denote the detrended values by q̃ and r̃, respectively, we get
the strongest cross-correlation when q̃ lags r̃ by one year (see Figure 4). Thus, it is natural to study the
differences d4t := q4t−1 − r4t .
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Figure 4. Cross-correlations between r̃ and q̃ and time series plots of r̃4t (blue crosses) and
q̃4t−1 (red circles).

We define:

ρk
t := rkt −

kt∑
u=k(t−1)+1

(
ru−1 +

1

2
||λu||2 − λu · εu

)
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and notice that the factorization condition in Proposition 1 is satisfied if the ρk
t and dkt are jointly normally

distributed and Cor
[∑

t ρ
k
t ,
∑

t d
k
t

]
= 0.

The ρ4
t are calculated using the estimated constant market price of risk and the observed innovations.

We remove linear trends from d and ρ and denote the detrended values by d̃ and ρ̃, respectively.
The sample standard deviation of d̃4t is σ̂d̃4t

= 0.0089. Scatter and QQ plots of ρ̃ and d̃ are shown in
Figure 5, and auto- and cross-correlations are shown in Figure 6. These plots suggest that

∑
t ρ

4
t and∑

t d
4
t are uncorrelated and jointly normally distributed, hence independent.
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Figure 5. Scatter and QQ plots of ρ̃ and d̃.
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Figure 6. Auto- and cross-correlations of of ρ̃ and d̃.

5. Model-Based Valuation

In this section, we value a cash flow linked to the Swedish CPI using our model. We consider the cash
flowX = (0, . . . , 0, XkT , 0, . . . , 0), where:

XkT = YkT exp

{
T∑
t=1

qkt−1

}
= YkT exp

{
T∑
t=1

dkt

}
exp

{
T∑
t=1

rkt

}
with dkt := qkt−1 − rkt .

According to Equation (1), the value of X today is E [φkTXkT ]. However, in practice, one
often assumes independence between the interest rates used for discounting and the claims payments,
and under this assumption, today’s value is E [φkT ]E [XkT ].

We set k = 4 and let q4t be the change in CPI for year t. The analysis in Section 4 suggests that
the d4t are normally distributed and that the factorization condition in Proposition 1 is satisfied. It also
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suggests that a constant market price of risk is a reasonable assumption. Assuming that Y4T represents
some actuarial risk independent of price inflation and interest rates, we get:

E [φ4TX4T ] = E [Y4T ]E [exp {DT}]A(4, T )

and:

E [φ4T ]E [X4T ] = E [Y4T ]E [exp {DT}]B(4, T,λ)

where DT :=
∑T

t=1 d
4
t , from Proposition 1. We assume that:

σ(s, t) = σ(t− s) =

(
−ν1/

√
n

ν2(α− βe−γ(t−s))

)

where the parameters are set to the estimates from Section 4.
The value E [φ4TX4T ] is independent of the market price of risk λ, but depends on the trend in future

price inflation (relative interest rates). We assume that DT is normally distributed with mean µDT
= cT

for some constant trend c and standard deviation σDT
= σ̂d̃4t

√
T = 0.0089

√
T , and we get:

E [exp {DT}] = exp

{
µDT

+
σ2
DT

2

}
≈ exp {(c+ 0.000040)T}

Values of E [exp {DT}] for different trends are shown in Table 3.

Table 3. Values of E [exp {DT}] with µDT
= cT .

T c = −0.04 c = −0.02 c = 0.0 c = 0.02 c = 0.04

1 0.961 0.980 1.000 1.020 1.041
2 0.923 0.961 1.000 1.041 1.083
5 0.819 0.905 1.000 1.105 1.221

10 0.670 0.819 1.000 1.221 1.492

At this point, it should be mentioned that if there exists a deep and liquid market of bonds linked to the
same index as the insurance liability cash flow, then a market-consistent value of the cash flow is given
by Pr(0, 4T )E [Y4T ], where Pr(0, t) denotes the price of an index-linked zero-coupon bond maturing at
time t. In our case, Pr(0, t) is the price paid today for receiving the amount CPIt/CPI0 at time t.

Swedish CPI-linked bonds (often called real bonds) are either bought at auctions held by the Swedish
National Debt Office (Riksgälden in Swedish) or over-the-counter (OTC) in the secondary market.
All OTC trades are reported to Nasdaq OMX, so there is some market data available. Market rates
on 28 November 2014 (the last day of our observation period) are shown in Table 4. These rates should
be interpreted as the yields to maturity given that the CPI remains at today’s level until the maturity date.
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Table 4. Market rates (in percent) of Swedish Consumer Price Index (CPI)-linked
government bonds on 28 November 2014.

Name Years to Maturity Average Rate

RGKB 3105 1.0 −0.168
RGKB 3107 2.5 −0.569
RGKB 3102 6.0 −0.505
RGKB 3108 7.5 −0.329
RGKB 3109 10.5 −0.048
RGKB 3104 14.0 −0.220

Now, say that we are interested in the price of a real ZCB maturing in 10 years. The average rate
of the bond maturing in 10.5 years (RGKB 3109) suggests a rather different 10-year rate than what a
linear interpolation of the average rates of the bonds maturing in 7.5 and 14.0 years (RGKB 3108 and
RGKB 3104), respectively, do. However, it seems reasonable to conclude that the 10-year real zero
rate lies somewhere between −0.3% and 0.0%, which implies that Pr(0, 40) ∈ (1.00, 1.03). Using the
nominal forward rates bootstrapped in November 2014, we get A(4, 10) = 1.039. Thus,

E [exp {D10}] =
Pr(0, 40)

A(4, 10)
∈ (0.963, 0.992)

which corresponds to c ∈ (−0.0038,−0.0008).
From Section 3, we get the valuation ratio:

η4T (λ) =
A(4, T )

B(4, T,λ)
= exp {λ · s(4, T )}η4T (0)

where:

s(k, T ) = (s1(k, T ), s2(k, T )) =
kT∑
s=1

k(T+1)∑
t=ds/kek+1

σ(t− s)

The valuation ratio depends on the market price of risk λ, but is independent of the trend in future
inflation. Plots of s1(4, T ) and s2(4, T ) are shown in Figure 7.
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Figure 7. Plots of s1(4, T ) (blue crosses) and s2(4, T ) (red circles), respectively.
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From Equation (10), we get that λ̂ ·s(k, T ) is normally distributed with mean λ ·s(k, T ) and variance
s(k, T ) · s(k, T )/N . Thus, η̂kT (λ) is log-normally distributed with mean:

ηkT (0) exp

{
λ · s(k, T ) +

1

2N
s(k, T ) · s(k, T )

}
Point estimates and confidence intervals of η4T (λ) for different values of T are shown in Table 5.

Table 5. Mean and confidence interval of η4T (λ) and valuation ratios for the market prices
of risks 0 and λbelief.

T η4T (0) η̂4T (λ) 95% CI of η4T (λ) η4T (λbelief)

1 1.000 1.011 (1.004, 1.019) 0.994
2 0.999 1.028 (1.007, 1.049) 0.983
5 0.991 1.059 (0.965, 1.160) 0.925
10 0.935 0.884 (0.638, 1.194) 0.780

A market price of a risk vector defines expected future forward rate curves via the expression:

E [F (t, u)] = F (0, u) +
t∑

s=1

α(u− s)− λ ·
t∑

s=1

σ(u− s) (11)

The expected forward rate curve in five years (t = 20) given the market price of risk λ̂ is plotted as a
black thick solid line in Figure 8.
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Figure 8. Valuation ratios η4T (λ(φ)) (left) and forward rate curves in five years for
the minimum and maximum valuation ratios (right). The blue solid line, the red dashed
line, the green dot-dashed line and the magenta dotted line correspond to T = 1, 2, 5, 10,
respectively. The black thick solid and dashed lines represent the market prices of risk λ̂ and
λbelief, respectively.

Now, consider market prices of risk of the type:

λ(φ) = λ̂ + r (cosφ, sinφ) , φ ∈ [0, 2π)

where λ̂ = (0.12,−0.68) here denotes the estimate and r = 0.258. Given T and under the assumption
that historical observations are representative for future conditions, these market prices of risk correspond
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to equal-probability valuation ratios and expected forward-rate curves. The valuation ratios and
expected forward-rate curves in five years corresponding to the maximum and minimum valuation ratio,
respectively, are plotted in Figure 8.

Any belief in a future yield curve, not just those suggested by historical observations, can be translated
to a market price of risk via Equation (11). If we believe that in five years, the one-year and 10-year rates
both will be 1%, we get the market price of risk λbelief = (0.10, 0.15) by solving the linear system:

E [F (20, 24)] = 0.01

E [F (20, 60)] = 0.01

Values of η4T (λbelief) are shown in Table 5, and the expected forward-rate curve in five years is plotted
as a black thick dashed line in Figure 8.

6. Conclusions and Discussion

In this paper, we present an approach, for assigning a monetary value to an index-linked cash flow,
that does not require full knowledge of the joint dynamics of the cash flow and the term structure of
interest rates. In the case when the amount and quality of index data do not match that of the interest
rate data, setting up a credible model for the dynamics of the term structure of interest rates may be
relatively straightforward, whereas a joint model for both the cash flow and the interest rates poses
significant challenges.

Our approach essentially relies on that we can identify a simple proxy for the orthogonal projection
of the log index value onto the linear space spanned by the forward rates, such that the expected value
representing the monetary value of the cash flow factorizes into a product. One factor of the product
represents the expected value of the part of the index value that cannot be explained by interest rates, and
the other factor is the monetary value of the part of the index value that is explained by the interest rates.

The main difficulty for getting a realistic cash-flow value is to forecast the trend component of the
part of the index value that cannot be explained by interest rates. As seen in Table 3, this trend may
affect the value of the cash flow substantially. If there exist reliable market prices of bonds linked to the
same index as the insurance cash flow, then a market-consistent value of the cash flow can be derived.
If not, then the insurance regulator must decide on a reasonable value of the trend in order to get a fair
valuation principle for insurers to apply.

Due to the factorization, it is possible for a risk manager interested in dependence between losses for
different lines of business to analyze and model dependence due to insurance events, dependence due to
claims inflation and dependence due to exposure to interest rate changes independently. In this context,
a loss is a change in cash-flow valuation between two time points. The dependence between losses for
different lines of business affects the insurer’s aggregate loss, and the distribution of the aggregate loss
determines the solvency capital requirement in new regulatory frameworks (e.g., Solvency 2).

The transition from a yield-curve forecast to a market-price-of-risk vector via Equation (11) is
interesting in itself and useful for the valuation of cash flows that are not necessarily index-linked. More
research is needed on how to transform forecasts into consistent valuation principles for insurers.

The valuation machinery relies on that we set up an accurate model for the dynamics of the term
structure of nominal interest rates. Based on interest rate data, we investigate in detail model selection,
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estimation and validation in a Heath–Jarrow–Morton framework. Finally, we analyze the effects of
model uncertainty on the valuation of the cash flows and also how forecasts of cash flows and interest
rates translate into model parameters and affect the valuation. Even in the presence of a deep and liquid
market for index-linked bonds, the valuation machinery may prove useful as a basis for risk management
and investment purposes.
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Appendix

Proof. Proof of Proposition 1

E

[
φkT exp

{
T∑
t=1

rkt

}]
= E∗

[
(φkTBkT )−1φkT exp

{
T∑
t=1

rkt

}]

= E∗
[

exp

{
−

kT−1∑
t=0

rt

}
exp

{
T∑
t=1

rkt

}]

Notice that:

kT−1∑
t=0

rt =
kT−1∑
t=0

(
F (0, t+ 1) +

t∑
s=1

α(s, t+ 1) +
t∑

s=1

σ(s, t+ 1) · ε∗s
)

=
kT∑
t=1

F (0, t) +
T∑

u=1

ku∑
t=k(u−1)+1

t−1∑
s=1

(
α(s, t) + σ(s, t) · ε∗s

)

where α(s, t) = 0 and σ(s, t) = 0 if s ≥ t. Since rkt =
∑k(t+1)

s=kt+1 F (kt, s), we get:

T∑
t=1

rkt =
T∑

u=1

k(u+1)∑
t=ku+1

(
F (0, t) +

ku∑
s=1

(
α(s, t) + σ(s, t) · ε∗s

))
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Hence,

T∑
t=1

rkt −
kT−1∑
t=0

rt

=

k(T+1)∑
t=kT+1

F (0, t)−
k∑

t=1

F (0, t) +
kT∑
s=1

k(T+1)∑
t=kT+1

(
α(s, t) + σ(s, t) · ε∗s

)
−

k−1∑
s=1

k∑
t=s+1

(
α(s, t) + σ(s, t) · ε∗s

)

−
T−1∑
u=1

k(u+1)∑
t=ku+2

t−1∑
s=ku+1

(
α(s, t) + σ(s, t) · ε∗s

)

=

k(T+1)∑
t=kT+1

F (0, t)−
k∑

t=1

F (0, t)

+
k−1∑
s=1

( k(T+1)∑
t=kT+1

−
k∑

t=s+1

)[
α(s, t) + σ(s, t) · ε∗s

]

+
T∑

u=1

k(T+1)∑
t=kT+1

[
α(ku, t) + σ(ku, t) · ε∗ku

]

+
T−1∑
u=1

k(u+1)−1∑
s=ku+1

( k(T+1)∑
t=kT+1

−
k(u+1)∑
t=s+1

)[
α(s, t) + σ(s, t) · ε∗s

]
Using the definition of α in Equation (4), we get:

E∗
[

T∑
t=1

rkt −
kT−1∑
t=0

rt

]

=

k(T+1)∑
t=kT+1

F (0, t)−
k∑

t=1

F (0, t)

+
k−1∑
s=1

( k(T+1)∑
t=kT+1

−
k∑

t=s+1

)[
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

]

+
T∑

u=1

k(T+1)∑
t=kT+1

[
σ(ku, t) · v(ku, t)− 1

2
||σ(ku, t)||2

]

+
T−1∑
u=1

k(u+1)−1∑
s=ku+1

( k(T+1)∑
t=kT+1

−
k(u+1)∑
t=s+1

)[
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

]
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Using the independence of the ε∗s, we get:

Var∗

[
T∑
t=1

rkt −
kT−1∑
t=0

rt

]

=
k−1∑
s=1

∥∥∥ k(T+1)∑
t=kT+1

σ(s, t)− v(s, k)
∥∥∥2

+
T∑

u=1

∥∥∥ k(T+1)∑
t=kT+1

σ(ku, t)
∥∥∥2

+
T−1∑
u=1

k(u+1)−1∑
s=ku+1

∥∥∥ k(T+1)∑
t=kT+1

σ(s, t)− v(s, k(u+ 1))
∥∥∥2

The result follows from:

E∗
[

exp

{
T∑
t=1

rkt −
kT−1∑
t=0

rt

}]

= exp

{
E∗
[

T∑
t=1

rkt −
kT−1∑
t=0

rt

]
+

1

2
Var∗

[
T∑
t=1

rkt −
kT−1∑
t=0

rt

]}

Next, we compute the traditional value of the cash flow.

E [φkT ] = P (0, kT ) = exp

{
−

kT∑
t=1

F (0, t)

}

E [XkT ] = E [YkT ]E

[
exp

{
T∑
t=1

dkt

}]
E

[
exp

{
T∑
t=1

rkt

}]

We focus on the expectation:

E

[
exp

{
T∑
t=1

rkt

}]
= E∗

[
(φkTBkT )−1 exp

{
T∑
t=1

rkt

}]

= E∗
[

exp

{
−

kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)}
exp

{
T∑
t=1

rkt

}]

Notice that:

T∑
t=1

rkt =

k(T+1)∑
t=k+1

F (0, t) +
T∑

u=1

ku∑
s=1

k(u+1)∑
t=ku+1

(α(s, t) + σ(s, t) · ε∗s)

=

k(T+1)∑
t=k+1

F (0, t) +
kT∑
s=1

k(T+1)∑
t=ds/kek+1

(α(s, t) + σ(s, t) · ε∗s)
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where dxe is the smallest integer larger or equal to the nonnegative number x. Hence,

T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)
=

k(T+1)∑
t=k+1

F (0, t) +
kT∑
s=1

( k(T+1)∑
t=ds/kek+1

α(s, t)− 1

2
||λs||2

)

+
kT∑
s=1

( k(T+1)∑
t=ds/kek+1

σ(s, t)− λs

)
· ε∗s

If λs = λ is constant, then:

E∗
[

T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)]

=

k(T+1)∑
t=k+1

F (0, t)− kT

2
||λ||2 +

kT∑
s=1

k(T+1)∑
t=ds/kek+1

(
σ(s, t) · v(s, t)− 1

2
||σ(s, t)||2

)
and:

Var∗

[
T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)]

=
kT∑
s=1

∥∥∥− λ +

k(T+1)∑
t=ds/kek+1

σ(s, t)
∥∥∥2

= kT ||λ||2 − 2λ ·
kT∑
s=1

k(T+1)∑
t=ds/kek+1

σ(s, t) +
kT∑
s=1

∥∥∥ k(T+1)∑
t=ds/kek+1

σ(s, t)
∥∥∥2

The result follows from:

E∗
[

exp

{
T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)}]

= exp

{
E∗
[

T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)]}

× exp

{
1

2
Var∗

[
T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)]}

and:

B(k, T ) = E [φkT ]E∗
[

exp

{
T∑
t=1

rkt −
kT∑
s=1

(1

2
||λs||2 + λs · ε∗s

)}]
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19. Filipović, D.; Tappe, S. Existence of Lévy term structure models. Financ. Stoch. 2008, 12, 83–115.
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