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Abstract: An open source toolbox, FSID, implemented in the Python, Julia and MATLAB
programming languages is described. The toolbox provides scripts which estimates linear multi-
input multi-output state-space models from sample data using frequency-domain subspace
algorithms. Algorithms which estimate models based on samples of the transfer function matrix
as well as frequency domain input and output vectors are provided. The algorithms can be
used for discrete-time models, continuous-time models as well as for approximation of rational
matrices from samples corresponding to arbitrary points in the complex plane. The algorithms
can handle frequency dependent weighting which enable to obtain approximate BLUE estimates.
To reduce the computational complexity for the estimation algorithms, an accelerated algorithm
is provided which evaluate the state-space realization of the transfer function matrix at arbitrary

points.
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1. INTRODUCTION

Providing software implementation of estimation algo-
rithms is a way to make them available to a larger com-
munity of both researchers and industry. In the system
identification area there is a long history of implemen-
tations both commercial Kolldr et al. (1997); Ljung and
Singh (2012) and non-commercial and open source type
Ninness et al. (2013); Garnier and Gilson (2018).

Many system identification toolboxes are script in the
MATLAB language which require the commercial software
MATLAB to be able to execute. Besides being available
as a MATLAB package, the FSID toolbox is ported also
as Python and Julia language packages. The use of the
Python language for scientific computing and data anal-
ysis has increased with todays huge interest in machine
learning, where the most used algorithms are opens source,
see e.g. Pedregosa et al. (2011); Chollet and Others (2018);
Barham et al. (2016) and available in the Python language
VanRossum and Drake (2010). Python is an open source
programming language Oliphant (2007) and there exists
implementations available for the most common operating
systems of todays computers, e.g. Linux, Apple’s macOS
and Microsoft’s Windows. A much more recent open source
language suited for scientific computing is Julia, see Bezan-
son et al. (2017), which has gained much interest, e.g.
in the control community with many software packages
available.

To enable ease of access to the general public, the FSID
toolbox is released as open source McKelvey (2019) and in
a Python implementation based on the Python libraries
NumPy Oliphant (2006) and SciPy Virtanen et al. (2019)
which provide high level access to data types for matrices
and vectors (N-dimensional objects) and high level access
to LAPACK numerical linear algebra algorithms like sin-
gular value decomposition, matrix inversion, and solutions
to least-squares problems etc.

Frequency domain identification refers to methods and
algorithms where the model fitting is formulated in the
frequency domain Ljung (1999); Pintelon and Schoukens
(2001). Frequency domain subspace methods are a sub-
class of methods which produces models in the state space
form and can directly be used for identification of MIMO
systems Van Overschee (1995); McKelvey et al. (1996);
Van Overschee and De Moor (1996); Van Overschee et al.
(1997); Pintelon (2002).

The rest of the paper is organized as follows. In Section 2
we describe the various estimation scenaries the toolbox
covers and describe the FSID algorithm and the novel
frequency weighting approach which extends the ideas
for SISO systems given in Pintelon (2002) to the MIMO
setting. In Section 3 the key functions implemented in
the FSID toolbox are briefly described together with
the available options. In the final section the numerical
efficiency with respect to the execution time for the three
language implementations is investigated and compared.
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2. ESTIMATION PROBLEMS CONSIDERED

The FSID algorithms provide estimation of matrix valued
rational functions given numerical samples of the ratio-
nal function. The frequency domain system identification
problem can be seen as a particular instance to this more
general class of problems. We consider the measurement
relation is given by
Yk = G(Zk)Uk + Vk

where z; € C, Y} € CP is the measured output, U, € C™
is the input and Vj, € CP is noise which we model as zero
mean complex random variables with covariance matrix
Ry, = E{V;,V,'} where (-)* denote Hermitian transpose and
E{-} denote expectation. Define the matrix W}, such that
Wi Wy = R;;'. A possible choice of W, is the Cholesky
factor of R,:l. We assume we are faced with data in a set
of samples in the form

D = {(zk, Yi, U, W) 1l (1)
and we seek a rational function matrix G(z) € CP*™ which
minimize

M
Z Wi (Y — G(z)Us)|I3 (2)
k=1

The weighting matrix W}, will whiten the equation error
Y — G(2x)Ug and minimizing (2) would result in the best
linear unbiased estimate (BLUE) Kay (1993) if the transfer
function G(z) would be linear in the unknown parameters.

An alternative formulation is obtained if samples of the
transfer matrix constitues the given data, i.e.

D¢ = {(zkak’Wk)};cVIzl (3)
and we seek an approximation

M

D IWk(Gr = Gl (4)

k=1

where the norm ||- || 7 is the Frobenius norm. However, the
approximation problem in (3) and (4) can be recast to the
original problem by for each sample G in Dg generate
the samples for i =1,...,m

Unk=1)+i = €is  Ymk—-1)+i = Gk€is  Zmk—1)+i = 2k
()

and e; is column ¢ in I,,, the identity matrix of size m x m.

Hence, we will focus the algorithm presentation on the

problem formulation in (2).

To solve the minimization of (2) the FSID algorithm
is based on the frequency domain subspace algorithm
described in McKelvey et al. (1996) augmented with the
frequency weighting introduced above. From the data set
D, the algorithm generates a state-space tuple (A, B, C, D)
of order n and the estimated rational matrix function is
given by

G(z2)=D+C(2I — A)~'B. (6)
where A is of size n x n, I is the identity matrix and
the size of the other matrices follows from the size of
the rational matrix function. For a discrete time (DT)
system identification problem the argument to the rational
function in (6) is z = €/ while if the problem is of
continuous time (CT) type then z = jw. Hence, G(e/)
and G(jw) are the DT and CT frequency function matrices
of the underlying linear systems respectively see, e.g. Ljung
(1999); Pintelon and Schoukens (2001).

In the next section we summarize the FSID algorithm.
2.1 The FSID algorithm

The FSID algorithm can be summarized as a multi step
procedure:

(a) From the data particular structured matrices are
formed and a low dimensional range space is approx-
imated which form an estimate of the observability
matrix for a state-space realization.

(b) From the estimated observability matrix the A and C
matrix in the state-space tuple is determined.

(c) Fixing A and C the rational matrix function G(z) is
linear in D and B and optimizing (2) w.r.t. D and B
is a linear least-squares problem.

(d) Fixing A and B the rational matrix function G(z) is
linear in D and C and optimizing (2) w.r.t. D and C
is a linear least-squares problem.

As demonstrated in Gumussoy et al. (2018) iterating
between step (c) and step (d) a few times can reduce the
approximation error significantly for true MIMO systems.

The details of the step (a) is as follows. Let integer n

denote the desired model order. From the data set D we

define the weighted block Vandermonde matrix with ¢

block rows satisfying ¢ > n. The parameter ¢ is known
as the auxiliary model order.
Ui U,

zlwlUl ZQUQ

Uq _ Z%Ul Z%UQ

Unm
2 U

2
whiw @)

z‘ll_lUl zg_lUg z?w_lUM
which we assume has full rank mgq. The weighting matrix
W is defined as

W = diag(wy,ws, ..., war) (8)
where the operator diag(wi,ws,...) results in a diagonal
matrix with the ordered arguments on the main diagonal
and wyg = tr(Wy)/p, i.e. the average of the diagonal ele-
ments of the weight matrix. Define the projection matrix

P,=1-U;(U,U;)"'U, (9)
which projects onto the nullspace of U, so U,P, = 0.

From the samples Y}, in the data set D we define the similar
scaled and weighted block Vandermonde matrix

Zlyl 2’2}/2 ZMYM
Zil_lyl Zg_lyé e Z?M_1YM

If the data in the set D are related as

Yi = (D + C(zI — A)™'B)Uy (11)
and (A, B,C, D) is a minimal realization of order n then,

if M >n+mq
range(Y,P,) = range(O4 (A4, C)) (12)

where
C
CA
0,(4,0) & (13)

O A1
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is the (extended) observability matrix and range(X) de-
note the range space of matrix X. See McKelvey et al.
(1996) for the details.

A matrix representing the range space is extracted by
solving the structured matrix approximation problem
Z,L = arg min |ZL — Y ,P,|%.

ZeCpaxn [eCnxM (14)

The matrix ZL is the optimal rank n matrix approxima-
tion to Y,P,. A singular value decomposition of Y P,
provide the solution to (14). If, again, the data is related

as in (11) we have range Z = range O,(A,C) which im-
p}y that there exist a non—§ingular matrix T such tl}at
ZT = 04(A,C) and hence Z = O4(A4, C) where C = CT
and A = T~ AT. This yields the estimates

C=1I,02Z2

R ) . . 15
A=argmin|| [Ig-1)p 0] ZX — [0 Lg-1)p] 2|7 (15)
where the last problem is a standard least-squares prob-
lem.

Step (c) in the algorithm can be formulated as

M

A B : _ A _ Ayt 2

D,B= arg%}g;”Wk(Yk (D+C(zrl = A)" " B)Uy)|l3
(16)

and Step (d) as

M

A A . _ _ AV-1A 2

D,C= argfg}g;ﬂwk(i/k (D+C(zxl — A)" B)Uy)|[3-
(17)

Both (16) and (17) are linear least-squares problem but
requires some further reorganization to yield the standard
LS formulation min, >, |lyx — Agz|/?. Using the Kro-
necker product, the vectorization operator and the identity
vec(ABC) = CT ® Avec(B), the vector inside the norm
in (16) can be recast as

Wi(Ye — (D + C(zel — A)'B)UL)

= WYy, — Qk [:,/22 g] 18
where
Qw = [UF @ W, UF @ WiC(z — A)7Y] (19)
For the expression in (17) we have
Wi(Yi — (D + C(2I — A)7'B)UY)
= Wi Vi — Q [ngg] (20)
where
Qv = [Ul @ Wi, (zi] — A)'BUYT @ W] (21)

In the next sections we summarize the different system
identification cases that arises when primary data is given
directly as frequency domain data and the case when the
primary data is time domain samples.

2.2 Frequency domain input and output data

When the data is given as the set of tuples

{(2k, Yie, U, Wi) AL, we can regard Yy as the (noisy)
result of the evaluation of the matrix vector product
G(z)Uy € CP along the given vector U, € C™. Again

we seek a state-space model (A, B,C, D) which matches
the data by minimizing
M
> WD + C(ziI — A)™'B)U, — Vi) |-
k=1

(22)

The code also implements the augmented state-space
model where an additional vector z; is jointly estimated
with the state-space model according to

M
Z W (DU —|—C(ZkI—A)_1 [B x4 [g}j —Yk)H%‘ (23)

k=1

For linear systems we can regard Y} as the (noisy) sample
from the Fourier transform of the output Y(wy) € CP
and U, € C™ is the sample from the Fourier transform
of the input U(wy) € C™. For a linear system we have
Y (w) = G(w)U(w) and we hence seek a state-space model
(A, B,C, D) which matches the data. In CT we have the
function to be minimized as (z = jws).

2.3 DFT data from DT time domain samples

Assume data is given in the form of the set of tuples
{(y(n),u(n))})_, corresponding to DT samples of the
output y(n) € CP and input u(n) € C™ to a linear system.
If we generate the Uy and Yj from the DFT of the time
domain samples u(n) and y(n) respectively, a transient
effects occur which needs to be accounted for McKelvey

(2000a). In this case the frequencies are given by wy =
27 (k—1)

,k=1,..., N since the frequency domain samples
come from the DFT . If we assume the underlying linear
system is given by the state-space realization (A4, B, C, D)
then

e

Yk = DUk + C(ejwk.[ — A)_l [B .I't] |:€jwk
where the vector z; € C" captures the term which orig-
inates from the, in general, effects of a non-periodic in-
put. For details see McKelvey (2000a,b). When estimating
state-space models from such data we augment the model
class to (A, B,C, D, z;) and seek a minimum solution to

Uk
FAROIE
(25)
Here the set K C {i}¥, denote the frequency indices which
are used in the optimization. The indices in I corresponds
to frequencies where we want the model fit to be good.

> Wi (DU, + C(7 1 — A7 [B ]
ke

3. MAIN FSID FUNCTIONS

In this section we provide an overview of the main func-
tions included in the FSID-toolbox.

All estimation functions estimate a real valued state-space
tuple by default. If a complex valued solution is desired an
option can be given. If a strictly proper rational function is
desired the option gan be given which results in that the D
matrix is not estimated and a zero matrix is returned. The
calling syntax for the different language implementations
are slightly different and we refer to the help texts for the
specific syntax.
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3.1 Function gfdsid

Function gfdsid provides an implementation of the FSID
algorithm described in Section 2.1 and is based on the
algorithms described in McKelvey et al. (1996); McKelvey
(1997); McKelvey et al. (2002) augmented with the BCD-
iterations introduced in Gumussoy et al. (2018). The
frequency weighting approach is novel to this paper. Given
samples of the input and output data the algorithm solves
the problem in (22) or (23) depending on the function
arguments. The implementation has the following options:

o Choice of model order n.

e Choice of number of block rows ¢ (auxiliary order) in
the algorithm which must satisfy ¢ > n.

o As default the x; vector is estimated as illustrated
in (23). By supplying an optional argument the x;
vector is not estimated and problem (22) is solved
and a zero x; vector is returned.

3.2 fdsid

The function £dsid is an interface to the general function
gfdsid suitable when we have access to the Fourier trans-
form of the input and output vectors for a linear system
either from a CT problem z; = wp or a DT problem
2, = e/“*. For the CT case, the CT problem is internally
converted to DT problem to improve the numerical condi-
tioning. Besides the options listed for gfdsid we have:

e As default the DT problem (25) is solved. By Supply-
ing an option a CT model is estimated according to
the problem with zp = jwy and the transient term x;
is not estimated.

e The x; vector is estimated as illustrated in (25). By
supplying an optional argument the x; vector is not
estimated and problem (22) is solved instead.

e If a CT problem is considered the scaling T can be
set to a positive real number which will scale the fre-
quency transformation in the bilinear transformation.
See McKelvey et al. (1996) for details.

3.8 ltifr

In the estimation algorithms described above it is nec-
essary is to derive the frequency response of the state-
space model. As key step towards the frequency response
is the evaluation of the frequency state. Given (A, B) and
{zk}k=1N, we want to calculate

Xp= (I -A)"'B, k=1,...,N (26)
with as low complexity as possible. A brute force imple-
mentation would require a solution to IV systems of linear
equations, each one involving a unique n X n complex
matrix (zxl — A). If N >> n it is beneficial to first
perform an eigen-decomposition of the A matrix. If A is
non-defective the set of the n eigenvectors to the A matrix
form a linearly independent set. Let T' € C™*™ be a matrix
with the n eigenvectors as columns. Then T is invertible
and

T 'AT = A (27)

where A is a diagonal matrix with the n eigenvalues
{Ai}_; on the diagonal. It directly follows that (26) can
be rewritten as

X = (2l —TAT Y 'B=T""2I—-AN)"'TB (28)

Timing comparison for data length N=400

I Python |
20

[ Julia
0.25 | 1Matlab
Fig. 1. Results from execution time comparison. Bar
graphs shows execution time variations for varying
model orders.
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o
N
:
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o

Since the matrix (2 —A) is diagonal its inverse is obtained
by inverting the n scalars z; — A\; which is significantly less
complex than the original formulation. If the A matrix is
defect and does not have n linearly independent eigenvec-
tors, the algorithm falls back to the original formulation
(26). The FSID function 1tifr provides this solution.

4. EXECUTION TIME COMPARISON

In this section we compare the implementations in the
three different languages with respect to the execution
time for different model orders and number of frequency
data. All tests are performed using gfdestim for estimat-
ing a systems with an input dimension 2 (m = 2) and
an output dimension of 8 (p = 8). A full factorial test is
conducted where the state-space model order (n) is varied
with values from the set {2,5,10,20} and the number
of frequency samples (N) is varied with values from the
set {100,200, 400,800}. For each setting investigated, 100
model estimations are performed and the average exe-
cution time is recorded. The auxiliary model order ¢ is
selected such that ¢ = n + 1 and the options are set
to estimate real-valued system matrices, estimate the D
matrix and the transient vector x;. The frequency weighing
was disabled which implies Wy, = I for all k. The computer
used for the test is an Apple MacBook Pro with a 2.9
GHz Quad-Core Intel Core i7 processor and 16 GB 2133
MHz LPDDR3 memory running macOS version 11.3.1.
The Julia version is 1.1.0, the Python version is 2.7.16 and
the MATLAB version is R2020b Update 1 (9.9.0.1495850).

The results on how the average execution time varies for
different model orders is illustrated in Figure 1 when the
number of frequency data samples is 400. In Figure 2 the
bar graph illustrates how the execution time varies with
the number of data (N) for a fixed model order of 10.
From these results we note that the Julia and MATLAB
langage implementations outperform the Python language
version and that the Julia implementation has slightly
better performance than the MATLAB implementation for
long data sets while the MATLAB version is slightly better
than the Julia version for larger model orders.
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Tlmlng comparlson for model order n-10

I Python
0.35 I Julia
[ IMatlab

bk ||

0.05
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Data length (N)

0.4

o
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o
N
(&)

Execution time [s]
o
- o
[6;] N
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-

Fig. 2. Results from execution time comparison. Bar
graphs shows execution time variations for varying
data lengts.

5. OPEN SOURCE IMPLEMENTATION

The open source implementation of the FSID toolbox, for
all three platforms, can be downloaded from
https://github.com/tomasmckelvey/fsid
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