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Increasing concerns of environmental impacts and global

warming calls for urgent need to switch from use of fossil fuels

to renewable technologies. Biofuels represent attractive

alternatives of fossil fuels and have gained continuous

attentions. Through the use of synthetic biology it has become

possible to engineer microbial cell factories for efficient biofuel

production in a more precise and efficient manner. Here, we

review advances on yeast-based biofuel production. Following

an overview of synthetic biology impacts on biofuel production,

we review recent advancements on the design, build, test, learn

steps of yeast-based biofuel production, and end with

discussion of challenges associated with use of synthetic

biology for developing novel processes for biofuel production.
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Introduction
The rapid increase in green-house gas (GHG) emissions

due to the extensive use of fossil resources have necessi-

tated the production of renewable energy sources to

sustain current economic activities while reducing net

carbon dioxide emission. Compared with other renewable

energies, including solar, wind, tidal, thermal and hydro

energies, biofuels produced through biorefineries relies

on combustion to release its energy, and it is therefore

storable and compatible with the current fossil fuel infra-

structures. Many researchers, including the Intergovern-

mental Panel on Climate Change (IPCC), have envisaged

a major role of biofuel to both replace fossil fuels and

mitigate climate changes [1]. However, due to fluctuated

prices of fossil resources and the low-throughput of bio-

engineering, the commercialization of biofuels besides

bioethanol remains challenging.
www.sciencedirect.com 
Synthetic biology aims to integrate biology, mathematics,

chemistry, biophysics, and automation, to construct syn-

thetic enzymes, circuits, pathways, chromosomes and

organisms in a systematic, modular and standardized

fashion [2]. It has particularly advanced biofuel produc-

tion through accelerating the speed of strain engineering

resulting in prototype strains that can be evaluated for

industrial production. The repertoire of synthetic biology

and automation is revolutionizing the current biofuel

production pipeline, and ushering a new era of biorefi-

neries. For example, using synthetic biology biofoun-

dries, Casini et al. managed to construct 1.2 Mb of

synthetic DNA, built 215 strains spanning Saccharomyces
cerevisiae, Escherichia coli, 3 Streptomyces species and two

cell free systems within three months [3]. Yeast S. cere-
visiae is a widely used chassis with many available syn-

thetic biology tools and a long history of biofuel produc-

tion, in particular for ethanol production, and has

therefore been evaluated for bioproduction of a range

of chemicals [4]. Herein, we will discuss recent achieve-

ments in the design-build-test-learn (DBTL) cycle of

biofuel production by S. cerevisiae, and prospect chal-

lenges and future research directions towards the

advancements of biofuel productions.

Design for biofuel production
The design stage of synthetic biology involves model

construction [5], data mining [6], the sequence design of

synthetic promoters [7], terminators [8], enzymes [9], the

metabolic design of pathways and metabolisms [10], as

well as the process design of cell production and fermen-

tation [11] (Figure 1).

With the mass amounts of omics data and biofoundry data

available, model construction tools have been developed,

including COBRA for constructing biochemical con-

straint-based models [12] and FluxML for constructing

13C metabolic flux analysis models [13]. Moreover, Parts-

Genie is an open-source online software for optimizing

synthetic biology parts and bridging design, optimization,

application, storage algorithms and databases [14].

MAPPs can be used for mapping reference networks into

a graph and search for shortest pathways between two

metabolites [15]. novoPathFinder can be used to design

pathways based on stoichiometric networks under specific

constraints [16]. The robot programming language PR-PR

can be used in procedure standardization and sharing

among biofoundries, and ease communications between

protocols and equipment [17].

The conversion of feedstocks into biofuels is a nonlinear

and multiscale process, and mass conservation, the supply
Current Opinion in Microbiology 2022, 65:33–39
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Figure 1
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of building blocks, energy and cofactors, thermodynamic

feasibility, enzyme kinetics, cell growth, biofuel produc-

tion, biofuel transportation, and stress response all need to

be balanced and optimized. In the context of automation-

aid synthetic biology, model-based analysis has been

extensively used for pathway prediction, resource alloca-

tions, metabolism characterization and optimization to

improve biofuel production [18]. Various models have

been constructed, such as genome-scale metabolic mod-

els (GEMs), kinetic models, coarse-gained cell models to

design resource allocations [19�]. Recently, a whole-cell

model WM_S288C has been constructed expanding yeast

GEM model to cover 15 cellular states such as RNA,

protein, metabolite, cell geometry, as well as 26 cellular

processes such as replication, formation, consumption,

interaction and transportation [20��]. This model has been

demonstrated with the ability to simulate real-time cel-

lular landscape on a 1 s time-scale [20��]. Moreover, Yang

et al. established a complex metabolic reaction set by

integrating the natural reaction database MetaCyc and

the non-natural reaction database ATLAS, and used a

combined calculation algorithm to mine and design one-

carbon compound utilization pathways [21]. Through the

evaluation of kinetic traps, mining of new enzymes, and

optimization of thermodynamics, a pathway with a carbon

utilization rate of 88% has been constructed in vitro [21].
Current Opinion in Microbiology 2022, 65:33–39 
Build strains for biofuel production
The build stage of synthetic biology involves DNA

assembly, genome editing, genome regulation, and auto-

mation (Table 1). Recently developed automation plat-

forms have substantially accelerated our capabilities in

reconstructing engineered strains, but automation

requires development of technologies that are simple,

modular, multiplexable, and efficient.

Automation friendly DNA assembly tools include the

methyltransferase-assisted BioBrick that uses a site-spe-

cific DNA methyltransferase together with endonu-

cleases and allows consecutive constructions without

gel purification [22], Golden Gate that utilizes Type

IIs restriction enzymes with the ability to assemble 24-

fragments in a single reaction [23], Twin-Primer Assem-

bly (TPA) that is an enzyme free in vitro DNA assembly

method and could assemble 10-fragments with no sensi-

tivity to junction errors and GC contents [24], Gibson and

NEBuilder assembly that is an homology-based in vitro
method and is able to clone large DNA parts with high

GC contents [25], Ligase Cycling Reaction (LCR) that

employs bridging oligonucleotides to provide overlaps

and allows automated assembly in consecutive steps

[26], and yeast in vivo assembly that relies on the high

homology recombination efficiency of S. cerevisiae [27].

Many of these DNA assembly tools have already been

utilized in automation. For example, Q-metric has been
www.sciencedirect.com
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Table 1

Recent advancements of yeast-based biofuel production

Name Description Products Reference

Build stage

Golden Gate An assembly method using Type IIs restriction enzymes to assemble 24-fragments in a

single reaction

Free fatty acid [23]

Gibson Scarless, one-step, and isothermal DNA assembly method, which can assemble large

DNA parts with high GC contents

Triacylglycerol [54]

DNA assembler Large DNA fragment capture and cloning method depending on the highly efficient

homologous recombination system of Saccharomyces cerevisiae

Ethanol [55]

GTR-CRISPR A method that simultaneously disrupts six genes in three days and improves yeast

production of free fatty acid by 30-fold in 10 days

Free fatty acid [30]

Laboratory evolution The strategy involves a repeated liquid nitrogen freeze-thaw process coupled with

multi-stress shock selection

Bioethanol [56]

Test stage

Quorum sensing-

based biosensor

The sensor can turn on the expression of specific genes when the cell biomass

accumulates.

Ethanol [57]

Metabolite-based

biosensor

The medium-chain fatty acids (MCFA)-responsive promoters can be used in dynamic

regulation of fatty acids and fatty acid-derived products in Saccharomyces cerevisiae.

Fatty acids [58]

Transcription factor-

based biosensor

The biosensors can be used to screen large-scale libraries in vivo in a high throughput

manner

Fatty acyl-CoA [41��]

LTM-LPGC-MS

technology

A technology that allows efficient measurement of fatty acid methyl esters at the speed

of less than 1 min per sample

Fatty acid methyl

esters

[43]

MALDI-ToF-MS A screening method that allows rapid profiling of medium-chain fatty acids at the

speed of 2 s per sample

Medium-chain fatty

acids

[44]

Learn stage

Mathematical model The mathematical model is composed of three equations, which represent the

changes of biomass, substrate and ethanol concentrations

Ethanol [59]

A static fermentation

model

The ethanol yields on biomass of deletion mutants for all yeast nonessential genes

encoding transcription factors and their related proteins in the yeast genome have

been examined using this model

Ethanol [60]

Systems biology

(Multi-Omics)

analysis

Through this multi-omics study, effects of fatty alcohol production on the host

metabolism have been discovered. This knowledge can be used as guidance for

further strain improvement towards the production of fatty alcohols

Fatty alcohol [61]

Machine learning A tool that leverages machine learning and probabilistic modeling techniques to guide

synthetic biology in a systematic fashion, without the need for a full mechanistic

understanding of the biological system

Limonene, bisabolene

and dodecanol

[62]

Constraint-based

model

By implementing SLIMEr (a formalism for correctly representing lipid requirements in

genome-scale metabolic models (GEMs) using commonly available experimental data)

on the consensus GEM of S.cerevisiae, accurate amounts of lipid species can be

represented, the flexibility of the resulting distribution can be analyzed, and the energy

costs of moving from one metabolic state to another can be computed

Lipid [63]
developed to standardizes automated DNA assembly

methods, and computes suitable assembly robotic prac-

tices, metrics and protocols based on output, cost and

time [28��]. Amyris Inc. managed to use transformation-

associated recombination (TAR)-based biofoundries to

assembly 1500 DNA constructs per week with fidelities

over 90% [29�].

Efficient and multiplexable genome engineering tools

include mutiplexed genome disruption [30], integration

[31], base editing [32], SCRaMbLE [33], automation [34].

Details could be referred to recent reviews [35]. For

example, Zhang et al. reported the efficient GTR-

CRISPR system that managed to simultaneously disrupt

six genes in three days and improve yeast production of

free fatty acid by 30-fold in 10 days [30]. Moreover, based

on large amount of loxP sites across the synthetic yeast
www.sciencedirect.com 
genome, SCRaMbLE managed to substantially improve

yeast tolerance towards ethanol and acetate [33]. Si et al.
reported the automation-aided genome-scale regulations

using overexpression and knockdown cDNA libraries,

and successfully screens mutants towards cellulase

expression and isobutanol production [36].

Test strains for biofuel production
The test stage of synthetic biology involves cell culture,

cell sorting and cell analysis, and automation has also

posed special requirements on the test workflow.

For cell cultivations, deep-well 96-well plates allows

high-throughput cultivation under global maintenance

of temperature and oxygen availability. Moreover, the

BioLector system integrated with robotics allows real-

time controlling of cell growth, pH and dissolved oxygen
Current Opinion in Microbiology 2022, 65:33–39
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[37]. High-throughput cell sorting often requires pheno-

types that could be correlate with cell growth such as

screening for substrate utilization and host robustness, or

phenotypes that can be read through fluorescence emis-

sions. Equipments such as plate reader, microfluidics,

fluorescence-activated single cell sorting can be used

for high-throughput cell screening. Biosensors are often

developed and utilized to convert screening targets to the

easily detected fluorescence phenotypes (Table 1). Cur-

rent used biosensors can be categorized as riboswitch-

based biosensors, reporter protein-based biosensors and

transcription factor-based biosensors [38,39]. For exam-

ple, Dabirian et al. developed a FadR-based biosensor and

demonstrated that the overexpression of RTC3, GGA2 and

LPP1 could enhance fatty acyl-CoA production by 80%

[40]. Baumann et al. developed a biosensor based on the

octanoic acid responsive PDR12 promotor, and demon-

strated that overexpression of KCS1 and FSH2 could

enhance for the production of branched-chain higher

alcohol octanoic acid by 55% [41��].
Current Opinion in Microbiology 2022, 65:33–39 
If the phenotype cannot be correlated to cell growth or a

fluorescence readout, conventional analytical measure-

ments using chromatographic, spectroscopic, and mass

spectrometric have to be used, but these are not suited for

high-throughput analysis as they generally take more than

20 min per sample, and are hence not compatible with

high-throughput screening and automation. Researchers

thus focus on developing advanced analytical technolo-

gies and platforms. For example, Fialkov et al. reported a

LTM-LPGC-MS technology that allows efficient mea-

surement of fatty acid methyl esters at the speed of less

than 1 min per sample [42��]. Similarly, Xue et al. reported

a colony-based screening method using MALDI-ToF-

MS that allows rapid profiling of medium-chain fatty acids

at the speed of 2 s per sample [43].

Learnings on engineered strains
The learn stage of synthetic biology involves systems

biology analysis [44] and machine learning [45��]
(Table 1). Automation platforms can generate massive
www.sciencedirect.com
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amount of data, that need to be analyzed and integrated

back to the design stage to refine the models and guide

the following iterative DBTL cycles through standard-

ized procedures (Figure 2). Jayakody et al. performed

laboratory evolution and systems analysis and suggested

that macromolecule protection mechanisms and detoxifi-

cation mechanisms are required to alleviate aldehyde

toxicity [46]. Yu et al. reprogrammed yeast alcoholic

fermentation to lipogenesis through systems and syn-

thetic biology engineering and managed to improve the

production of free fatty acids to 30 g/L [47]. Hohenschuh

et al. developed a dynamic flux balance model integrated

with mRNA abundance data, and suggested that the

anaplerotic glyoxylate pathway is key to improve ethanol

production in xylose utilization [48]. To facilitate learn-

ings the Global Biofoundries Alliance was established in

2019 to share knowledges and resources among laborato-

ries and non-commercial biofoundries [49].

Machine learning and quantitative biology based on

constraint-based models has also gained considerable

progress for use in identification of correlations between

genotype and phenotype [50]. Various techniques have

been developed in machine learning to analyze the mas-

sive amount of data, including unsupervised learning and

dimensionality reduction [51]. Radivojevi�c et al. devel-

oped an automated recommendation tool based on

machine learning and probabilistic modeling techniques,

and improved the production of limonene, bisabolene and

dodecanol [45��]. Moreover, the development of auto-

mated learning technologies is particularly important to

realize the iterative engineering of microbial cell factories

in the automation procedure. Regarding this need,

Mohammad et al. developed a fully automated platform

BioAutomata that integrated machine learning algorithms

with the iBioFAB robotic system [52��]. This system as a

compelling proof of concept can be used to guided

automatically iterative DBTL cycles to accumulate ben-

eficial engineering for bioproduction.

Outlook
The rapid development of sequencing and bioinformatics

analysis techniques allows a mix and match pathway

design from different organisms, as well as whole cell

analysis and optimization of carbon and nitrogen flux

distribution, building block and energy balance, cell

resource allocation, transcriptional and kinetic cell

responses.

Continuous developments of automation-based DBTL

cycle is, however, still necessary as the costs of developing

strains that can be used for industrial production of

biofuels is still high and need to be reduced in order to

support bio-based production of fuels and chemicals at

low costs. Automation allows large-scale prototyping and

combinatorial analysis of related genetic and process

variables with much reduced operational biases, as well
www.sciencedirect.com 
as time and human investment [29�]. However, many

designed pathways and calculated yields could yet not be

realized. Future research directions in the context of

automated synthetic biology and biofuel production

include refining current model predictions through inte-

gration of high-throughput data and machine learning.

Furthermore, advancements towards constructing con-

straint and kinetic-based models that incorporate more

and more cellular processes, that is, moving towards a

whole-cell description, will improve the predictive

strength of models and can lead to better design tools.

Furthermore, improving standardization and interopera-

bility among methods and platforms to encourage interlab

collaborations will also advance build and test tools, and

hereby enable faster evaluation of different design strat-

egies. Here advancement in development of biosensors

with broad dynamic ranges and robust to various condi-

tions is important, but also capabilities of performing real-

time accessibility of omics data will enable better guiding

of designs. Finally, enhancing communications, establish-

ment of common databases and software, will ensure that

published data become more widely available for the

research community, and here trends to ensure that

raw data are more findable, accessible, interoperable

and reusable (FAIR) are extremely valuable [29�,53].
With these developments we are confident that synthetic

biology will enable development of more efficient cell

factories for biofuel production in the future, and this will

lead to establish more sustainable production of transpor-

tation fuels for our society.
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