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Abstract: Nonlinear mixed effects (NLME) modeling is a powerful tool to analyze time-
series data from several individual entities in an experiment. In this paper, we give a brief
overview of a package for NLME modeling in Wolfram Mathematica entitled NLMEModeling,
implementing the first-order conditional estimation method with sensitivity equation-based
gradients for parameter estimation. NLMEModeling supports mixed effects modeling of dynamical
systems where the underlying dynamics are described by either ordinary or stochastic differential
equations combined with observation equations with flexible observation error models. Moreover,
NLMEModeling is a user-friendly package with functionality for parameter estimation, model
diagnostics (such as goodness-of-fit analysis and visual predictive checks), and model simulation.
The package is freely available and provides an extensible add-on to Wolfram Mathematica.
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1. INTRODUCTION

In several applications, repeated measurements are col-
lected from a number of entities to study a specific system
of interest. The nonlinear mixed effects (NLME) model is a
popular statistical framework able to quantify variability
in response, and is especially popular in pharmacomet-
rics and drug development. The term ’mixed’ refers to
the fact that the model incorporates both fixed effects
(parameters assumed to be the same across entities) and
random effects (parameters assumed to be different across
entities). Typically, the underlying system of interest is
described by a system of ordinary differential equations
(ODEs) in combination with an observation model. In
recent years there has been an increasing interest in ex-
tending the NLME framework to incorporate stochastic
differential equations (SDEs), leading to a class of mod-
els called stochastic differential equations mixed effects
models (SDEMEMs) (Overgaard et al., 2005; Mortensen
et al., 2007; Picchini and Ditlevsen, 2011; Delattre and
Lavielle, 2013; Matzuka et al., 2016). There are several
software tools available for parameter estimation in NLME
models with ODEs, including both commercial tools such
as NONMEM (Beal et al., 2017), Monolix (Lixoft SAS,
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2020), and Phoenix (Certara, 2020), and open-source such
as nlmixr (Fidler et al., 2019). However, software options
available for SDEMEMs are limited (Klim et al., 2009;
Tornøe et al., 2005; Dion et al., 2019). Wolfram Mathe-
matica (Wolfram Research, Inc., 2020) is a platform for
technical computing well suited for modeling and data
analysis, but there is currently no built-in functionality
for mixed effects modeling.

Here we present the software package NLMEModeling used
for NLME modeling of dynamical systems in Mathemat-
ica. The NLMEModeling package provides an easy-to-use,
integrated NLME modeling environment. The current ver-
sion supports dynamical models with mixed effects where
the dynamical system is described by either ODEs or
SDEs. By utilizing the symbolic computation capabilities
and compact syntax in Mathematica, a user-friendly pack-
age is provided. Moreover, users can develop additional
functionality to tailor the package to their own needs.
The modeling environment has previously been applied in
several applications, including oncology (Cardilin et al.,
2019), single-cell experiments (Almquist et al., 2015a),
and pharmacokinetic (PK) and pharmacodynamic (PD)
modeling (Leander et al., 2015; Andersson et al., 2016).
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the fact that the model incorporates both fixed effects
(parameters assumed to be the same across entities) and
random effects (parameters assumed to be different across
entities). Typically, the underlying system of interest is
described by a system of ordinary differential equations
(ODEs) in combination with an observation model. In
recent years there has been an increasing interest in ex-
tending the NLME framework to incorporate stochastic
differential equations (SDEs), leading to a class of mod-
els called stochastic differential equations mixed effects
models (SDEMEMs) (Overgaard et al., 2005; Mortensen
et al., 2007; Picchini and Ditlevsen, 2011; Delattre and
Lavielle, 2013; Matzuka et al., 2016). There are several
software tools available for parameter estimation in NLME
models with ODEs, including both commercial tools such
as NONMEM (Beal et al., 2017), Monolix (Lixoft SAS,

� This work has been partly founded by the Swedish Foundation
for Strategic Research by the project Hierarchical Mixed Effects
Modeling of Dynamical Systems (Grant no. AM13-0046).

2020), and Phoenix (Certara, 2020), and open-source such
as nlmixr (Fidler et al., 2019). However, software options
available for SDEMEMs are limited (Klim et al., 2009;
Tornøe et al., 2005; Dion et al., 2019). Wolfram Mathe-
matica (Wolfram Research, Inc., 2020) is a platform for
technical computing well suited for modeling and data
analysis, but there is currently no built-in functionality
for mixed effects modeling.

Here we present the software package NLMEModeling used
for NLME modeling of dynamical systems in Mathemat-
ica. The NLMEModeling package provides an easy-to-use,
integrated NLME modeling environment. The current ver-
sion supports dynamical models with mixed effects where
the dynamical system is described by either ODEs or
SDEs. By utilizing the symbolic computation capabilities
and compact syntax in Mathematica, a user-friendly pack-
age is provided. Moreover, users can develop additional
functionality to tailor the package to their own needs.
The modeling environment has previously been applied in
several applications, including oncology (Cardilin et al.,
2019), single-cell experiments (Almquist et al., 2015a),
and pharmacokinetic (PK) and pharmacodynamic (PD)
modeling (Leander et al., 2015; Andersson et al., 2016).
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2. METHODS

The mathematical foundations of NLMEModeling will be
provided by first introducing the NLME model. Next, we
describe how the estimation of model parameters is done
according to the maximum likelihood approach and give
a high-level description of the numerical methods used. A
more detailed description of the methodology can be found
in (Almquist et al., 2015b; Ólafsdóttir et al., 2018).

2.1 The Nonlinear Mixed Effects Modeling Framework

The statistical model We consider models where the
underlying system is described by either ODEs or SDEs.
In the case of ODEs, the dynamical system for individual
i is given by

dxi = f(xi, t,ui,θ,ηi)dt, xi(t0) = x0(θ,ηi), (1)

where xi is a vector of state variables, ui is a vector of
system input or covariates, θ is a vector of fixed effects
parameters, and ηi is a vector of random effects. The
random effects ηi are assumed to be multivariate normal
distributed with mean zero and covariance matrix Ω,

ηi ∼ N (0,Ω). (2)

In the case of stochastic dynamics, the underlying model
is described by an SDE on the form

dxi = f(xi, t,ui,θ,ηi)dt+G(xi, t,ui,θ,ηi)dWi,

xi(t0) = x0(θ,ηi),

where G is a weighting matrix and Wi is a standard
Wiener process with increments dWi ∼ N(0, dtI) with
I being the identity matrix. A model for the observations
of the dynamical system is given by

yij = h(xi,ui, tij ,θ,ηi) + eij , (3)

where the vector yij denotes the jth observation for the
ith individual. We let N denote the total number of
individuals and ni denote the total number of observations
for individual i. In the observation model, eij are assumed
to be multivariate normal distributed according to

eij ∼ N (0,Σ(xi, tij ,ui,θ,ηi)). (4)

Derivation of the likelihood function Given an NLME
model and a set of observations, we are interested in esti-
mating the fixed effects θ, the random effects covariance
matrix Ω, and the observation error covariance matrix Σ.
To simplify the notation, we use θ to denote all parameters
of interest, including parameters in Σ and Ω.

NLMEModeling estimates the model parameters using an
approximate likelihood approach, called the first-order
conditional estimation method (FOCE). The approxima-
tion of the likelihood has been derived previously (Over-
gaard et al., 2005; Leander et al., 2015; Wang, 2007), and
we here present a brief overview of the derivation. Let
Yij = {vi1,vi2, . . . ,vij} denote the collection of observa-
tions for individual i up to time index j, and let Y denote
all observations for all individuals. The residuals εij are
defined as

εij = vij − ŷij (5)

where the expected observation value ŷij and covariance
Rij are given by

ŷij = E[yij |Yi(j−1)] (6)

Rij = Cov[yij |Yi(j−1)] (7)

For ODE models, Rij is equal to the observation error
covariance matrix Σ as the dynamical model is determin-
istic. For SDE models, on the other hand, NLMEModeling
utilizes the extended Kalman filter (Jazwinsky, 1970) to

estimate ŷij and Rij (Leander et al., 2015; Ólafsdóttir
et al., 2018).

Since the random effects ηi are unobserved quantities,
they are marginalized out to obtain an expression of the
likelihood function that depends only on θ. Assuming
independence between individuals, we have

L(θ|Y) =
N∏

i=1

∫
p(Yini

|θ,ηi)p(ηi|θ)dηi =

N∏
i=1

∫
exp(li)dηi.

In the expression above, li = li(ηi) is the individual joint
log-likelihood given by

li = −1

2

ni∑
j=1

(
εT

ijR
−1
ij εij + log det

(
2πRij

))

−1

2
ηT

i Ω−1ηi −
1

2
log det

(
2πΩ

)
.

(8)

In most cases, there is no closed-form expression for the
integral in the expression for the likelihood. Here, we
utilize the Laplace approximation (Vonesh, 1996), which
uses a second-order Taylor expansion of li around a point
η∗

i . Here, the point is chosen to be the mode of li,

η∗
i = argmax

ηi

li(ηi). (9)

Using this η∗
i and taking the logarithm, the approximate

population log-likehood becomes

logLL =

N∑
i=1

(
li(η

∗
i )−

1

2
log det

[
−∆li(η

∗
i )

2π

])
, (10)

where ∆li(η
∗
i ) denotes the Hessian of li with respect to

ηi evaluated at η∗
i . Depending on the number of terms

that is kept in the expression of the Hessian of the
individual log-likelihood, the FOCE and the FOCE with
interaction method are obtained, where the latter is used
in NLMEModeling.

2.2 Gradient-based Optimization

The maximum likelihood estimate is obtained by maximiz-
ing the log-likelihood with respect to the model parameters

θ∗ = argmax
θ

logLL, (11)

which is achieved using the gradient-based optimization
method named the Broyden-Fletcher-Goldfarb-Shanno
(BGFS) algorithm (Nocedal and Wright, 2006).

In NLMEModeling, the gradient of the objective function
is calculated using an exact method. Instead of the com-
monly used finite difference approach, the gradient is cal-
culated using forward sensitivity analysis. This requires
symbolic differentiation of the model equations with re-
spect to the model parameters, which is achieved using
the symbolic computation capabilities in Mathematica and
numerical integration of the hereby obtained state sensi-
tivity equations. For a derivation of the exact gradients in
NLMEModeling, we refer the interested reader to (Almquist

et al., 2015b; Ólafsdóttir et al., 2018).

To obtain the uncertainty in the estimated parameters,
NLMEModeling uses the variance-covariance matrix of the
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where the expected observation value ŷij and covariance
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2.2 Gradient-based Optimization

The maximum likelihood estimate is obtained by maximiz-
ing the log-likelihood with respect to the model parameters

θ∗ = argmax
θ

logLL, (11)

which is achieved using the gradient-based optimization
method named the Broyden-Fletcher-Goldfarb-Shanno
(BGFS) algorithm (Nocedal and Wright, 2006).

In NLMEModeling, the gradient of the objective function
is calculated using an exact method. Instead of the com-
monly used finite difference approach, the gradient is cal-
culated using forward sensitivity analysis. This requires
symbolic differentiation of the model equations with re-
spect to the model parameters, which is achieved using
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numerical integration of the hereby obtained state sensi-
tivity equations. For a derivation of the exact gradients in
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et al., 2015b; Ólafsdóttir et al., 2018).

To obtain the uncertainty in the estimated parameters,
NLMEModeling uses the variance-covariance matrix of the

estimated parameters, given by the negative inverse of the
Hessian matrix at the optimum.

The point η∗
i , calculated given the optimal parameter

values θ∗, is the most likely parameters for each subject.
These are referred to as the empirical Bayes estimates
(EBEs).

2.3 Model Evaluation

Functionality for goodness-of-fit analysis and model evalu-
ation are provided in NLMEModeling. This includes popula-
tion predictions versus observations, individual predictions
versus observations, individual weighted residuals versus
time, and individual weighted residuals versus individual
predictions. In addition, several diagnostics of the EBEs
are provided as well as functionality for visual predictive
checks (VPCs). The VPC functionality supports both
the standard VPC plot and prediction-corrected VPC
(Nguyen et al., 2017; Bergstrand et al., 2011).

3. MODELING EXAMPLE

Consider a PK-PD model where both the drug concentra-
tion c(t) and the drug effect R(t) are measured during an
experiment. The system equations are given by

dA1

dt = −kaA1, A1(0) = Dose (12)

dA2

dt = kaA1 − CLind

V A2, A2(0) = 0 (13)

dR
dt = kout

(
Eind

0 (1− c
EC50+c )−R

)
, R(0) = Eind

0 (14)

where ka = 1h−1, kout = 0.4 h−1, V = 50L and EC50 =
2mgL−1. In the equations above, the third differential
equation represents an indirect response where the drug
concentration c(t) = A2(t)/V inhibits the production. The
random effects η = (η1, η2) ∼ N (0,Ω) are assumed to be
uncorrelated with covariance matrix

Ω =

(
ω2
1 0
0 ω2

2

)
(15)

where ω1 = 0.3 and ω2 = 0.1, yielding log-normally
distributed clearance and baseline response

CLind = CL exp(η1) (16)

Eind
0 = E0 exp(η2) (17)

where CL = 10Lh−1 and E0 = 100. Observations are
assumed to be taken according to

y(t) = (c(t), R(t)) + e(t), e(t) ∼ N (0,Σ) (18)

where the observation error covariance matrix Σ is given
by

Σ =

(
σ2
add1 + (σpropc(t))

2 0
0 σ2

add2

)
. (19)

and σadd1 = 0.1mgL−1, σprop = 0.2, and σadd2 = 5.
Observations are taken at 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12,
18, and 24 hours after the dose. We consider three dose
groups (100 mg, 300 mg, and 1000 mg) with 15 subjects
in each group. The simulated data is depicted in Fig. 1.
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Fig. 1. Simulated data from the example PK-PD experi-
ment. Panel A: PK observations. Panel B: PD obser-
vations.

To estimate the model parameters, we formulate the model
in standard Mathematica syntax. Moreover, we make use
of an auxiliary expression for the concentration relation-
ship as well as for the inter-individual variability in clear-
ance and baseline response (a.k.a. phi-parameterization).
The system equations and observation equations, respec-
tively, take the following form

In[ ]:= sys = 
A1 '[t] ⩵ -ka * A1[t],
A2 '[t] ⩵ ka * A1[t] - phi1 V* A2[t],
R'[t] ⩵ kout*phi2*1 - 1* c[t](EC50 + c[t]) - R[t],
A1[0] ⩵ Dose,
A2[0] ⩵ 0,
R[0] ⩵ phi2,
phi1⩵ CL * Exp[η1],
phi2⩵ E0 * Exp[η2],
c[t] ⩵ A2[t] V;

obs = {c[t], R[t]};
In addition to the system definition, the user may also
provide a user-defined structure of the random effects
covariance matrix, Ω, and the observation error covariance
matrix, Σ. In this example, we consider a Σ matrix that
describes a combined error model for the PK observations
and an additive error model for the PD observations,
parametrized by three parameters as follows.

In[ ]:= SigmaMatrix =  add1^2 + (prop1* c[t]) ^2 0
0 add2^2

;
To estimate the model parameters, we need the model
definition, a list of the fixed effects parameters (ka, CL,
V , kout, E0, and EC50) together with their corresponding
start values, and a list of the random effects parameters
(η1 and η2). Additionally, in this example, we make use
of the advanced option for the Σ matrix and provide the
user-defined symbolic Σ matrix together with the related
start values. Moreover, the full covariance matrix of the
random effects, Ω, is estimated.

In[ ]:= modelFit = NLMEDynamicalModelFit[data, {sys, obs},{{ka, 0.8}, {CL, 20}, {V, 40}, {kout, 0.2}, {E0, 90}, {EC50, 5}}, {η1, η2},
Sigma→ {"Advanced", {{SigmaMatrix}, {{add1, 0.1}, {prop1, 0.1}, {add2, 6}}}},
Omega→ "Full"]

Out[ ]= FittedNLMEModel State variables: 3
Observables: 2 

The estimated model is summarized using the property
"ModelSummary" of the FittedNLMEModel-object returned
by NLMEDynamicalModelFit.
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In[ ]:= modelFit["ModelSummary"]

Out[ ]=

Model summary

Estimation successful True

Covariance step successful True

Number of subjects 45

Number of observations 1080

LogLikelihood (LL) -2021.38
Objective Function (-2*LL) 4042.75

AIC 4066.75

BIC 4088.43

Condition number 10.724

Fixed effects Estimate Standard error RSE [%]
ka 0.980047 0.0328382 3.35067

CL 9.96922 0.356708 3.5781

V 49.0419 0.949498 1.9361

kout 0.404746 0.00789907 1.95161

E0 98.8206 1.67517 1.69516

EC50 2.00386 0.0546019 2.72483Ω matrix Ω standard error Ω RSE (%)
 0.0517205 -0.00349516-0.00349516 0.0119313

  0.0118723 0.00393226
0.00393226 0.00260447

  22.9547 112.506
112.506 21.8288


Σ matrix

0.0101352 + 0.0347157 ct2 0
0 24.0272

To perform a goodness-of-fit assessment, we use the func-
tion GoodnessOfFitAnalysis. The goodness-of-fit plots
for the PD observations are depicted in Fig. 2.
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Fig. 2. Standard goodness-of-fit plots for the PD observa-
tions.

To validate the assumption of normality of the random
effects, several functions are available in NLMEModeling.
To investigate the distribution and correlation of the EBEs
we use

In[ ]:= EBECorrelationAnalysis[modelFit]

Out[ ]=

η1 η2

η1
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0.2
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0.2
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-0.1
0.0

0.1

0.2

where the diagonal shows the quantile-quantile plot for
each random effect, the sub-diagonal plots show the pairs-
plot, and the above-diagonal plots show the Pearson cor-
relation coefficient between the EBEs. To check the distri-
bution of EBEs versus a specific covariate of interest (here
dose), we use

In[ ]:= EBEBoxWhiskerChart[modelFit, Stratify→ "Dose"]

Out[ ]= 

η1. Shrinkage: 0.0285266

Dose→ 100 Dose→ 300 Dose→ 1000
-0.4
-0.2
0.0

0.2

0.4

,

η2. Shrinkage: 0.00493456

Dose→ 100 Dose→ 300 Dose→ 1000-0.4
-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3



To create a prediction-corrected VPC plot for both the PK
and PD observations (using 10th, 50th and 90th percentiles
with 90% confidence interval) based on 200 simulated
datasets, we call

In[ ]:= VisualPredictiveCheck[modelFit, 200,
Quantiles → {0.1, 0.5, 0.9},
ConfidenceInterval → 90,
PredictionCorrection → True];

The resulting VPC plots are shown in Fig. 3.
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Fig. 3. Prediction-corrected VPCs for the PK-PD model,
stratified on observation variable. Panel A: PK obser-
vations. Panel B: PD observations.

Extension to Stochastic Dynamics

Here, we consider the same model as in the previous
example but replace the ODE (14) for R(t) with an SDE,

dR = kout

(
Eind

0 (1− c
EC50+c )−R

)
dt+ g dW (20)

where R(0) = Eind
0 and g = 10. The SDE is written

on differential form with dW being a differential of a
standard Wiener process. The parameter g is of special
interest in this example since it quantifies the influence of
the stochastic term on the dynamics. The random effects
covariance matrix Ω, the observation error covariance
matrix Σ, and the experimental design are kept the same
as in Fig. 1. A plot of the simulated data is shown in Fig. 4.
Note the increased variability in the PD observations
compared to the previous example, due to the stochastic
nature of the underlying model.
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In[ ]:= modelFit["ModelSummary"]
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Fig. 2. Standard goodness-of-fit plots for the PD observa-
tions.

To validate the assumption of normality of the random
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Out[ ]=

η1 η2

η1
-0.10 -0.05 0.00 0.05 0.10

-0.4
-0.2
0.0

0.2

-0.12706

η2 -0.4 -0.2 0.2 0.4

-0.3
-0.2
-0.1
0.1

0.2

-0.02 -0.01 0.00 0.01 0.02

-0.3
-0.2
-0.1
0.0

0.1

0.2

where the diagonal shows the quantile-quantile plot for
each random effect, the sub-diagonal plots show the pairs-
plot, and the above-diagonal plots show the Pearson cor-
relation coefficient between the EBEs. To check the distri-
bution of EBEs versus a specific covariate of interest (here
dose), we use

In[ ]:= EBEBoxWhiskerChart[modelFit, Stratify→ "Dose"]

Out[ ]= 

η1. Shrinkage: 0.0285266

Dose→ 100 Dose→ 300 Dose→ 1000
-0.4
-0.2
0.0

0.2

0.4

,

η2. Shrinkage: 0.00493456

Dose→ 100 Dose→ 300 Dose→ 1000-0.4
-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3



To create a prediction-corrected VPC plot for both the PK
and PD observations (using 10th, 50th and 90th percentiles
with 90% confidence interval) based on 200 simulated
datasets, we call

In[ ]:= VisualPredictiveCheck[modelFit, 200,
Quantiles → {0.1, 0.5, 0.9},
ConfidenceInterval → 90,
PredictionCorrection → True];

The resulting VPC plots are shown in Fig. 3.
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Fig. 3. Prediction-corrected VPCs for the PK-PD model,
stratified on observation variable. Panel A: PK obser-
vations. Panel B: PD observations.

Extension to Stochastic Dynamics

Here, we consider the same model as in the previous
example but replace the ODE (14) for R(t) with an SDE,

dR = kout

(
Eind

0 (1− c
EC50+c )−R

)
dt+ g dW (20)

where R(0) = Eind
0 and g = 10. The SDE is written

on differential form with dW being a differential of a
standard Wiener process. The parameter g is of special
interest in this example since it quantifies the influence of
the stochastic term on the dynamics. The random effects
covariance matrix Ω, the observation error covariance
matrix Σ, and the experimental design are kept the same
as in Fig. 1. A plot of the simulated data is shown in Fig. 4.
Note the increased variability in the PD observations
compared to the previous example, due to the stochastic
nature of the underlying model.
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Fig. 4. Simulated data from the example PK-PD exper-
iment with the stochastic PD model. Panel A: PK
observations. Panel B: PD observations.

To define the SDE model in NLMEModeling and to align
with the ODE notation, we write the stochastic component
as the generalized derivative of the standard Wiener pro-

cess, also known as Gaussian white noise (w(t) � dW (t)
dt )

In[ ]:= sys = 
A1 '[t] ⩵ -ka * A1[t],
A2 '[t] ⩵ ka * A1[t] - phi1 V* A2[t],
R'[t] ⩵ kout*phi2*1 - 1* c[t](EC50 + c[t]) - R[t] + g* w[t],
A1[0] ⩵ Dose,
A2[0] ⩵ 0,
R[0] ⩵ phi2,
phi1⩵ CL * Exp[η1],
phi2⩵ E0 * Exp[η2],
c[t] ⩵ A2[t] V;

obs = {c[t], R[t]};
To estimate the model parameters, we make a similar call
as for the ODE case but with an additional start value
for the parameter g, as well as an additional positional
argument for a symbol or list of the symbols used to
represent white noise variables. In this example, we use
a diagonal random effects covariance matrix Ω.

In[ ]:= modelFit = NLMEDynamicalModelFit[data, {sys, obs},{{ka, 0.8}, {CL, 20}, {V, 40}, {kout, 0.2}, {E0, 90}, {EC50, 5}, {g, 5}}, {η1, η2}, w,
Sigma→ {"Advanced", {{SigmaMatrix}, {{add1, 0.1}, {prop1, 0.1}, {add2, 6}}}},
Omega→ "Diagonal"]

Out[ ]= FittedNLMEModel State variables: 3
Observables: 2 

The FittedNLMEModel object and functionality for evalu-
ating stochastic models are designed to be the same as for
the ODE models. We here show VPCs for the stochastic
mixed effects model (Fig. 5). For each dose group, we cre-
ate a VPC using the 50th percentile with 90% confidence
intervals (no prediction-correction).

4. DISCUSSION

We have presented the package NLMEModeling for per-
forming NLME modeling of dynamical systems in Math-
ematica. NLMEModeling offers a user-friendly environment
for both simulation and estimation of NLME models, and
the package also comes with functionality for VPCs and
standard goodness-of-fit plots. Furthermore, the model
object returned by the estimation procedure contains all
the necessary information for doing additional analysis.

NLMEModeling provides an easy-to-use modeling environ-
ment within Mathematica, which has a large library of
statistical models, simulation, and visualization capabili-
ties. By providing a mixed effects modeling environment
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Fig. 5. VPCs for the stochastic model. Panels A, C, E
(left): PK observations, dose 100, 300 and 1000 mg,
respectively. Panels B, D, F (right): PD observations,
dose 100, 300 and 1000 mg, respectively.

tightly linked to Mathematica, it is easy to integrate other
types of analyses.

In addition to NLME models defined by ODEs, SDE-
MEMs are supported in NLMEModeling. As discussed in
the recent review paper by (Irurzun-Arana et al., 2020),
incorporating stochastic behavior in mixed effects models
is a promising way of capturing three sources of variability:
inter-individual, intra-individual, and system stochastic-
ity. Moreover, as the syntax and functionality for ODE
and SDE models are closely linked in the package, the
extension to stochastic models is seamless. To the authors
best knowledge, this is also the first work that provides
functionality for VPCs for SDEMEMs. In the current ver-
sion of NLMEModeling, prediction-corrected VPCs are not
supported for SDEMEMs, but it is an interesting extension
to the approach presented in this work.

In terms of parameter estimation methods, NLMEModeling
uses the first-order conditional estimation method for ap-
proximation of the likelihood. In the case of stochastic
models, the extended Kalman filter (EKF) is used for
estimating the underlying state of the system conditional
on the observations. The EKF has previously successfully
been combined with both the FOCE method (Overgaard
et al., 2005; Tornøe et al., 2005) and the stochastic approx-
imation expectation-maximization method (Delattre and
Lavielle, 2013). In addition to earlier work, NLMEModeling
utilizes the exact gradient method where the gradient of
the objective function is calculated using the sensitivity
equations of the underlying system, leading to a faster and
more precise optimization routine, see (Almquist et al.,

2015b; Ólafsdóttir et al., 2018).

NLMEModeling currently estimates the model parameters
using an approximate likelihood approach. It might be of
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interest to consider a Bayesian setting, to enable the inclu-
sion of prior information and assessment of the posterior
distribution. Other types of sampling-based methods have
been proposed and might be a valuable addition to the
current functionality (Donnet and Samson, 2014).

The examples in this paper have been used to demonstrate
the model-building tools that NLMEModeling provides. For
additional details regarding function options, methods,
and additional examples, we refer the reader to the package
documentation in Mathematica.

The development of NLMEModeling is currently active
and it is available on request from http://www.fcc.
chalmers.se/software/other-software/nlmemodeling.
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Ólafsdóttir, H.K., Leander, J., Almquist, J., and Jirstrand,
M. (2018). Exact Gradients Improve Parameter Estima-
tion in Nonlinear Mixed Effects Models with Stochastic
Dynamics. AAPS J., 20(5), 1–13.

Overgaard, R.V., Jonsson, N., Tornøe, C.W., and Mad-
sen, H. (2005). Non-linear mixed-effects models with
stochastic differential equations: Implementation of an
estimation algorithm. J. Pharmacokinet. Pharmacodyn.,
32(1), 85–107.

Picchini, U. and Ditlevsen, S. (2011). Practical estimation
of high dimensional stochastic differential mixed-effects
models. Comput. Stat. Data Anal., 55(3), 1426–1444.

Tornøe, C.W., Overgaard, R.V., Agersø, H., Nielsen, H.A.,
Madsen, H., and Jonsson, E.N. (2005). Stochastic
differential equations in NONMEM®: Implementation,
application, and comparison with ordinary differential
equations. Pharm. Res., 22(8), 1247–1258.

Vonesh, E.F. (1996). A note on the use of Laplace’s
approximation for nonlinear mixed-effects models.
Biometrika.

Wang, Y. (2007). Derivation of various NONMEM estima-
tion methods. J. Pharmacokinet. Pharmacodyn., 34(5),
575–593.

Wolfram Research, Inc. (2020). Mathematica 12.1.


