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Abstract 

The combination of a concentrated solar power (CSP) plant and a thermal energy storage (TES) system is 

a promising technology for power generation, in that it overcomes the challenges commonly faced by 

renewable energy systems, such as intermittency, dispatchability, and the gap between the energy supply 

and energy demand. The third generation (Gen3) CSP plants are designed to increase plant efficiency by 

using supercritical carbon dioxide (sCO2) instead of steam for the Brayton cycle gas turbines, requiring a 

minimum operating temperature of 750°C for the TES materials. Operating the TES tanks at higher 

temperatures poses a serious challenge in terms of corrosion for the metallic tank components and risks 

catastrophic failure of the plant. This study aims to provide useful insights into the corrosion behaviour of 

metallic materials that come in contact with different salt melts. 

The first part of this licentiate thesis is a comparative study of the corrosion resistance of chromia forming 

(316H or 304L) vs alumina forming (Kanthal® APMT) alloys that were exposed to three salt melts chosen 

for the current and next-generation CSP plants. The following salt melts were selected: Solar Salt, which is 

a commercial binary nitrate salt mixture that is utilised in currently operating CSP plants; a ternary 

carbonate; and a binary chloride salt mixture, which are candidate TES media for the Gen3 CSP technology. 

Corrosion exposures were conducted at 650 °C for the nitrate experiments and 800 °C for the carbonate 

and chloride experiments. The corrosion assessments of the tested alloys focused on oxidation, dissolution, 

and internal attack.  

The main findings revealed that:  

 1) for nitrate exposures: alloy 316H and Kanthal® APMT showed good corrosion resistance in contact with 

the nitrate melts, even though an internal attack was detected on the chromia forming 316H alloy; this attack 

was relatively slow and predictable.  The relatively good corrosion behaviour of the alloys in nitrate melt 

is partly due to the lower operating temperature compared to the carbonate and chloride exposures.  

2) for chloride exposures: both 304L and Kanthal® APMT underwent rapid degradation upon exposure to 

chloride melt. The degradation of these materials is caused by leaching of elements, such as chromium and 

aluminium. Nonetheless, molybdenum in Kanthal® APMT affected the corrosion process by forming a 

Laves phase barrier to chromium leaching; however, this did not prevent the rapid leaching of aluminium 

from the alloy.  

3) for carbonate exposures: alloys in contact with the carbonate melt behaved differently based on the type 

of oxide scale formed. The stainless steel 304L showed the poorest corrosion resistance among all tested 

alloys in the three melts, wherein severe carburisation was detected. In strong contrast to 304L, 

Kanthal® APMT showed good corrosion resistance because it formed a thin protective layer of α-LiAlO2, 

which makes it a promising candidate for Gen3 CSP plants. After 168 h of exposure, a phase transition 

from α→γ-LiAlO2 oxide scale was observed. 

The second part of this thesis is dedicated to ranking five alumina-forming alloys in contact with alkali 

carbonate melt at 800 °C up to 1000 h. Four ferritic FeCrAl alloys: Kanthal® APMT, Kanthal® AF, 

Kanthal® EF 100, and Kanthal® EF 101, and one austenitic FeNiCrAl alloy, Nikrothal® PM58 were 

investigated in this study. All four ferritic alumina-forming alloys developed a thin, protective α-LiAlO2 

scale. The thermodynamically stable γ-LiAlO2 nucleates on top of the α-LiAlO2 scale and forms non-

protective crystals. However, no severe aluminium depletion was detected for at least 1000 h. The austenitic 

Nikrothal® PM58 did not form a α-LiAlO2 scale at 800 °C due to the relatively slow diffusion of aluminium 

from the alloy towards the alloy/melt interface.  
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1 Introduction 

1.1 Background 

In 2021, the Intergovernmental Panel on Climate Change (IPCC) published the first part of the Sixth 

Assessment Report on Climate Change. This report summarises the current climate situation and the role 

of humans in climate change. Since about 1750, human activities have been responsible for the observed 

increase in the concentrations of well-mixed greenhouse gases (GHGs). This increase in GHGs, especially 

in the last four decades, has warmed the climate at a rate that has not been witnessed for at least 2,000 years. 

Human-induced climate change has most likely induced changes in the weather patterns in almost all 

regions of the world, in addition to causing droughts, heatwaves, and tropical cyclones [1]. Therefore, it 

has become necessary to reduce these harmful GHGs. In 2015, 196 countries agreed at COP21 in Paris to 

limit global warming by taking serious steps and adopting strategies to reduce GHG emissions  [2].  

Most of the world’s energy supply is provided by fossil fuels. Since 1900, the burning of fossil fuels has 

increased dramatically, resulting in high levels of CO2 emissions [1, 3].  In contrast, renewable energy 

sources, such as solar and wind energy, have almost no CO2 emissions. Therefore, the use of renewable 

energy provides a solution for reducing emissions of GHGs  [3]. Concentrated solar power (CSP) plant is 

considered an interesting technology that utilises the sun, a clean, abundant, and inexhaustible energy 

source [4]. Two major technologies can be used for electrical power generation from solar energy: 

photovoltaic (PV) and CSP. Even though PV can be combined with batteries, in which electrical energy is 

stored as chemical energy, CSP is superior to PV due to its longer storage duration and better dispatchability 

at large scale [5, 6]. However, there is a growing need to increase the efficiency levels of CSP plants, to 

make them cost-competitive in relation to PV and have a higher penetration of the energy market.  

Third-generation (Gen3) CSP plants are designed to increase the plant’s efficiency by using supercritical 

carbon dioxide (sCO2) instead of steam for the Brayton cycle gas turbines. This requires a minimum 

operating temperature of 750°C for the thermal energy storage (TES) materials [7-11]. The higher operating 

temperatures entail serious challenges in terms of the thermal stability of the respective heat transport 

medium and the resilience of the metal components to high-temperature corrosion. Thus, corrosivity is a 

major obstacle to be overcome on the path to empowering the first Brayton cycle-operated CSP plant [12, 

13]. In this licentiate study, various alumina forming alloys of which some have just recently been 

commercialised were investigated and compared with common stainless steel alloys. The selected alloys 

were exposed to commercial nitrate melt and carbonate and chloride salt mixtures as potential TES material 

candidates for the next generation of CSP plants.  

Corrosion by salt species at high temperatures is certainly not a new issue in the field. However, depending 

on the choice of commercial alloy, the longevity and safety of a plant module can be substantially impacted. 

A chemical and microstructural understanding of the reasons for differences in performance of the alloys 

was the goal of this licentiate study. 

A novel laboratory setup was built to mimic the corrosive environment in TES hot tanks. The first part of 

this thesis investigates the differences in corrosivity between an alkali nitrate melt, which is known as Solar 

Salt and is currently used in commercial CSP plants  [14], and alkali carbonate and chloride salt melts, 

which are potential TES materials for the Gen3 CSP plants. The experiments were conducted at 

temperatures that exceeded by 50°–100°C those required in the power plants. The higher exposure 

temperature was used to accelerate corrosion and ensure the stability levels of the metallic materials in case 

of heat fluctuations in the hot storage tank, receivers, and piping. The corrosion resistances in the 

aforementioned salt melts of the chromia-forming alloys 316H/304L and the alumina-forming alloy 

Kanthal® APMT were investigated. 
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 The second part of this licentiate thesis is dedicated to evaluating the α/γ-LiAlO2 transition observed during 

the first carbonate exposures and providing a corrosion performance ranking for the five alumina-forming 

alloys in the carbonate melt. Four ferritic FeCrAl alloys were tested in this study, Kanthal® APMT, 

Kanthal® AF, Kanthal® EF 100, and Kanthal® EF 101, as well as the austenitic FeNiCrAl Nikrothal® PM58. 

The corrosion exposures were conducted isothermally at 800°C and for up to 1000 h. 

1.2 Concentrated Solar Power Plant Technology  

Despite the fact that the CSP technology dates back to the 1970s, the majority of the commercial CSP plants 

have only been established in the last decade [2–4]. In the International Energy Agency (IEA) report, the 

CSP technology could contribute 11.3% of the world’s electricity by Year 2050, assuming appropriate 

support [15]. However, the CSP technology is still not cost-competitive with other power generation 

technologies. To remedy this, the US Department of Energy (DOE) launched the SunShot Initiative 

roadmap in 2011, with a cost target of 6 ¢/kWh for electricity from CSP plants [14]. Reaching this goal 

necessitates increasing the plant’s efficiency, thereby improving the performances of different CSP plant 

components. Before discussing the proposed approaches by the SunShot Initiative to achieve the 6 ¢/kWh 

cost target, an overview of how the CSP plant works is provided below. 

The CSP plant is schematically illustrated in Figure 1.1. The CSP system comprises thousands of mirrors 

(heliostats) to track, concentrate, and reflect the solar radiation to the focal point located in a tower receiver, 

wherein the solar radiation is converted into thermal energy. A heat transfer fluid (HTF), also known as 

thermal energy storage (TES) material, is pumped into the top of the tower receiver to capture the solar 

radiation and collect it in the form of heat. The heat collected by the HTF is either used directly to generate 

electricity or transported and stored in the hot TES tank until electricity is required. When there is a demand 

for electrical power, the stored heat in the hot tank is used to drive a turbine, e.g., through steam or 

supercritical carbon dioxide, so as to drive a generator and produce electricity [4]. 

Since heat storage is one of the distinct advantages of the CSP technology, considerable efforts have been 

exerted to study materials that can act as the HTF or TES medium. The different TES storage media are 

classified as: i) sensible heat storage, where the amount of stored heat depends on the temperature, quantity 

of the employed TES material and its specific heat capacity without any phase change; ii) latent heat or 

phase-change materials, where thermal energy is stored during a phase change; and iii) thermochemical 

heat storage, where energy is stored/dispatched via a reversible thermochemical reaction. Despite the high 

storage capacity of the latent heat and thermochemical TES forms, currently active commercial plants 

employ sensible storage capacity due to its easier operation conditions and lower complexity level of the 

system [16]. 
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Figure 1.1 Schematic diagram illustrating components of concentrated solar power plant [14, 17]. 

Source: US Department of Energy Report: The Year of Concentrating Solar Power, DOE/EE-1101, May 2014. 

The SunShot Initiative roadmap proposes three pathways to achieve the 6 ¢/kWh cost target and an increase 

in CSP plant efficiency. One of the presented approaches is to utilise sCO2 Brayton cycle systems instead 

of the steam-Rankine cycle systems that are commonly used in CSP and other plants. At 

temperatures ≥ 700°C, the sCO2 Brayton cycle can achieve the required heat-to-power conversion 

efficiency of > 50%. Pushing the operation limits of the CSP plants necessitates the use of a TES material 

that can function at temperatures ≥750° C [7-11].   

Numerous studies have investigated TES materials for their potential to operate at such high temperatures 

(for reviews, see [16, 18-20]). The TES materials employed in the currently active commercial CSP plants 

are nitrate melts, among other commercial mixtures used. A eutectic salt mixture of (60 wt% NaNO3, 40 

wt% KNO3) known as Solar Salt  

A eutectic system is a homogenous mixture of two or more components that has a lower melting point than 

the respective pure substances at a particular ratio between the components. This temperature is called “the 

eutectic temperature”, E, (see Figure 1.2) [21]. For instance the Tm for pure KNO3 is 334 °C and Tm for 

pure NaNO3 is 308 °C while their eutectic mixture already melts at 230 °C [14].  

Solar salt has been selected for its favourable thermophysical properties, e.g., melting temperature, thermal 

storage capacity, thermal conductivity, density, vapour pressure, stability, and corrosivity. However, alkali 

nitrates are unsuitable for utilisation at temperatures above 550°C due to decomposition. 

A 
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Figure 1.2. Schematic phase diagram of binary NaNO3-KNO3 eutectic system [22], where E is eutectic temperature.  

Source: Zhang, X., et al., Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system, 2003. 

Reproduced with permission from the Journal of Phase Equilibria.  

Since the Gen3 CSP plants require higher operating temperatures, other potential TES materials have been 

investigated. Two of the most commonly proposed TES candidates are a ternary carbonate mixture (32.1 

wt% Li2CO3 -33.4 wt% Na2CO3- 34.5 wt% K2CO3) and a binary chloride mixture (64.4 wt% KCl- 35.6% 

wt% MgCl2). These salt mixtures differ in terms of cost, abundance, thermal stability, liquidus temperature 

range, and corrosivity [12, 14, 18]. 

Increasing the temperature of salt melts also increases their corrosivity towards metallic materials. 

Therefore, a significant improvement in the compatibility between the container material (tanks/pipes/heat 

exchangers) and the TES medium is necessary [13, 14]. Corrosion of the metallic materials in contact with 

the storage medium can lead to catastrophic failure of an entire CSP plant due to material loss or 

embrittlement.  

This licentiate thesis focuses on investigating the corrosion of hot storage tank materials by salt melts 

(see Figure 1.1). The first part of the Results chapter describes the corrosion behaviour of different FeNiCr 

and FeCrAl alloys in alkali nitrate, carbonate, and chloride salt melts. The second part evaluates the 

corrosion resistance levels of five alumina-forming alloys that are in contact with promising TES materials 

at 800°C. 

Since the corrosion of metal components in contact with molten salts is a critical aspect of the CSP 

technology, the following chapters present an overview of high-temperature corrosion in general, and 

molten salt corrosion in particular. 

 

E E 
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2 High-Temperature Corrosion and Oxidation 

High-temperature corrosion is defined as the thermodynamically driven degradation of materials at 

temperatures ≥ 400 °C. At high temperatures, metallic materials are at risk from degradation processes, 

such as oxidation, nitridation, carburisation, chlorination, and hot corrosion [23]. The inclusion of high-

temperature oxidation in this context of corrosion is debatable, since protective oxide layers are used to 

prevent other corrosive species from reacting with an alloy.  

2.1 Oxide Scale 

The term "oxidation of metals" is mostly used to describe the interactions of metal with the surrounding 

oxygen in the environment, to form a metal oxide scale. As shown in Figure 2.1, the oxide scale is initially 

formed by the adsorption of oxygen to the metal surface and oxygen reduction by electrons from the alloy 

elements to form O2-. When oxide ions and metal cations occupy their respective lattice positions at the 

metal/gas interface, the oxide scale nucleates and grows laterally until it covers the entire metal surface. 

Oxide scale growth can proceed outwards through metal ion transport to cationic vacancies adjacent to the 

adsorbed oxygen ions or inwards when oxygen ions occupy the oxygen vacancies formed at the alloy/oxide 

interface [24]. These principles have been described and established by Carl Wagner [25]. 

 

Figure 2.1 Oxide scale formation process, where 𝑉𝑂 
••is an oxygen vacancy and  𝑉𝑀

′′ is a metal vacancy. 

The oxide scale is considered beneficial because it acts as a corrosion-resistant barrier that prevents the 

surrounding environment from interacting with the metal. For an oxide scale to be protective, it needs to 

have the following characteristics: slow-growing, dense, continuous, well-adherent, and inert to reactions 

with the environment, such as dissolution [26].  

Understanding which types of corrosion products can form as a result of high-temperature oxidation of the 

alloy is essential. These products include an outer scale that acts as a protective barrier against the corrosive 

environment. In several studies, pre-oxidation has been applied to form a protective layer to protect against 

more-aggressive chemical species, such as attack by molten salts [27-30]. 

The following sections present an overview of the thermodynamics, kinetics, and growth of the oxide scale. 

Certain basic concepts apply to all high-temperature corrosion processes: a sequence of spontaneous 
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processes; electrochemical coupling of metal with the environment; and increasing entropy with increasing 

temperature [23, 26, 31]. 

2.2 Thermodynamics and Kinetics 

Equation (2.1) describes the oxidation of a single metal when exposed to oxygen: 

𝑥𝑀(𝑠) +
𝑦

2
 𝑂2(𝑔) ⇋ 𝑀𝑥𝑂𝑦(𝒔, 𝑙, 𝑔)      (2.1) 

where M is the exposed metal and x and y are the stoichiometric constants. To form an oxide scale, only 

solid oxides are relevant. 

Many factors influence the oxide scale formation, such as temperature, the alloy chemistry, exposure time, 

and the oxygen partial pressure p(O2) in the environment. To determine the comparative stabilities of metal 

oxide species at different temperatures, the second law of thermodynamics is used in terms of Gibbs free 

energy, assuming that the temperature and pressure are constant.  It is important to mention that there is a 

minimum value of p(O2) for oxidation at each temperature. If this value is not reached, the metal remains 

in metallic form. 

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆    (2.2) 

where G is the Gibbs free energy of the system, H is the enthalpy, T is the absolute temperature, and S is 

the entropy. When the ΔG of a reaction of a metal with oxygen in our case is <0 the reaction is 

thermodynamically favourable and occurs spontaneously, the oxide is stable. Whereas, when the ΔG of the 

system is >0 the reaction is thermodynamically unfavourable, and the metal remains metallic. If ΔG=0 the 

system is in at equilibrium. 

The Gibbs free energy for Eq. (2.2) per mole of oxygen can be written as follows: 

𝛥𝐺 = 𝛥𝐺° + 𝑅𝑇𝐼𝑛(
𝑎 (𝑀𝑥𝑂𝑦)

𝑎𝑀 
𝑥 .𝑝𝑂2

𝑦/2 )     (2.3) 

where 𝛥𝐺° is the standard Gibbs free energy, R is the universal gas constant, and a is the activity of the 

products and reactants.  

Since the activity of the solid materials equals one, the activity of the gases corresponds to their partial 

pressure. Equation (2.3) can be simplified as follows when the system is at equilibrium (𝛥𝐺 = 0):  

𝛥𝐺° = 𝑅𝑇𝐼𝑛(𝑝𝑂2

𝑦/2
)    (2.4) 

As can be concluded from Eq. (2.4), the formation or dissociation of the oxide scale depends on the 

temperature and the equilibrium pO2. Ellingham-Richardson diagrams are used to illustrate the stability of 

oxides as a function of temperature and pO2 (see Figure 2.2). The lower a metal oxidations Gibbs free 

energy is the higher is the comparative oxide stability. Al2O3 is among the most stable oxides. Other relevant 

oxides are iron and chromium oxide. 

Iron requires higher oxygen partial pressures to form its oxides compared to aluminium. Three iron oxide 

phases are depicted in Figure 2.2: wustite, FeO; magnetite, Fe3O4; and hematite, Fe2O3. Wustite has the 

poorest corrosion resistance, then comes magnetite, while hematite, with a corundum structure, is the most 

protective among the three oxides, depending on the corrosion environment. 
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Eskolaite (Cr2O3) has the corundum-type structure. For a corundum-type structure, oxygen anions form a 

hexagonal closed packed lattice in which the metal cations fill two-thirds of the octahedral holes. Chromium 

oxide forms a dense slow-growing scale with a high degree of stoichiometry, enabling it to be a protective 

corrosion barrier. 

Aluminium oxide has several allotropic forms of which α-Al2O3 is the most desirable and 

thermodynamically stable with a corundum structure. Other, metastable, forms of alumina, such as γ-Al2O3 

offer less corrosion protection compared to α-Al2O3.  

The corundum-type oxides such as hematite, eskolaite and alumina can form solid solutions.  

For this licentiate thesis, it is important to point out that the pure oxides described above can only be formed 

as inner oxide scale. Due to the incorporation of alkali species from the melt into outwards growing oxides, 

an alkali transition metal oxide (AMOx) is produced, as discussed in Chapter 3.  

The Ellingham-Richardson diagram visualizes the temperature and oxygen partial pressure dependence of 

the Gibbs free energy for individual element oxidation reactions.   

However, due to differences in reaction rates, it is not always the oxide with the highest thermodynamic 

stability that forms but rapidly nucleating metastable phases. Therefore, kinetic considerations are 

important for a better understanding of the corrosion process. Knowing the rate of reactions not only helps 

in understanding the corrosion mechanism but is also essential for estimating the lifetime of an alloy 

implemented in certain applications and under specific conditions.  
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Figure 2.2 Ellingham-Richardson diagram showing the stabilities of the different oxides as a function of temperature [10]. 
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Oxidation kinetics are generally determined by measuring the mass change of the corroded metal as a 

function of time. However, in some cases, and particularly in the present work, it is difficult to obtain 

accurate mass change measurements of the exposed samples due to the yet-unquantified dissolution of alloy 

elements into the liquid phase, and due to intense surface cleaning methods. In addition, the mass change 

values might not always refer to scale growth. Commonly, oxidation kinetics are defined in terms of ideal 

rate laws and are used to evaluate oxide scale growth. As depicted in Figure 2.3, kinetic laws of scale growth 

is often expressed by a small number of ideal behaviour: logarithmic, parabolic and combinations thereof. 

Logarithmic corrosion behaviour is present when an initial rapid increase in mass change is detected, and 

thereafter the mass gain rate declines significantly. Initially, relatively fast oxidation forms a thin oxide 

scale, which decelerates with time, obeying Eq. (2.5):  

𝑋 = 𝑘𝑙𝑜𝑔 log  ( 𝑡 + 𝑡0) + 𝐴             (2.5) 

where X is the oxide scale thickness, which can also be replaced by the measured mass gain ∆m, 𝑘𝑙𝑜𝑔 is the 

logarithmic rate constant, t is the exposure time, and A is a constant. This behaviour expresses very efficient 

passivation of a metal surface by scale formation. At high temperatures, α-Al2O3 presents similarly 

excellent oxidation behaviour due to the large band gap characteristic suppressing the transport of charge 

carriers across the oxide scale [32]. 

Most oxide scales formed during high-temperature oxidation are described by the parabolic kinetic reported 

by Carl Wagner [25], as shown in Eq. (2.6). In this process, scale growth relies on the diffusion of ions and 

electrons through the formed oxide scale; thus, the thicker the scale, the longer are the paths for the charged 

species travelling through the scale as has been shown previously in Figure 2.1. 

𝑋2 = 𝑘𝑝  𝑡 + 𝐶                                       (2.6) 

where X is the oxide thickness, kp is the parabolic rate constant, t is the exposure time, and C is the 

integration constant. The mass change ∆m can be employed instead of the scale thickness X.  

Breakaway oxidation, which can be distinguished from the alloy's kinetic behaviour, is described in terms 

of a transition from a slow-growing scale to a thick non-protective fast-growing scale, reflected by high 

mass gain values. For this study, the mass change diagram (Figure 2.4) has been extended by a mass loss 

curve which occurs in a special case that will be discussed in Chapter 5.1. In this case, mass loss occurs in 

the absence of oxidation, nitridation, carburization, where leaching by, for example, chloride attack occurs 

instead. 

The exponentially accelerating behaviour of the dissolution process can be attributed to the increase of area 

with time attributed to the increased accessibility of grain boundaries. 
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Figure 2.3 High temperature oxidation kinetic: where positive mass change values represent the kinetic behaviour for oxide 

scale growth [24]. Negative mass change values are attributed to mass loss due to leaching by the chlorides attack in the 

absence of an oxide scale. 

2.3 Charge Carriers in an Oxide Scale  

Following the initial rapid formation of a thin oxide scale, the thickness increases progressively through the 

transport of charge carriers across the scale. As shown in Figure 2.1 and described by Carl Wagner [25], 

the scale growth requires transporting metal cations, oxide ions, electrons, and oxygen or metal vacancies. 

We can distinguish between inward and outward growing oxide scales. Outward growing oxide scales grow 

by outward cation diffusion, while inward growing scale grows by inward anion diffusion, e.g., O2-. These 

charged species can travel through the oxide scale lattice via solid-state diffusion, depending on the grain 

size or crystal defect concentration. 

The diffusion paths that ions and vacancies can take are lattice diffusion and short-circuit diffusion. 

In lattice diffusion, ions travel through the most common types of crystal defects, i.e., vacancies, 

interstitials, and impurities. As lattice-defect diffusion typically requires higher activation energies 

compared to short-circuit diffusion, it usually occurs at relatively higher temperatures. Short-circuit 

diffusion relies on extended microscopic defects, such as vacancies along grain boundaries, dislocations, or 

segregated phases with higher conductivity. These are relatively easy paths, and since this requires lower 

activation energy, these paths facilitate oxide growth even at lower temperatures. 
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3 Corrosion by Salt Melts 

This chapter focuses on corrosion in a more complex environment, namely salt melts. An overview of the 

corrosion processes in nitrate, carbonate, and chloride melts is provided, covering the thermodynamics, 

corrosion products, kinetic processes and the roles of impurities in such corrosive environments. As 

discussed in Chapter 2, most high-temperature alloys form a protective oxide scale based on the selected 

alloying element and the specific exposure conditions. Nevertheless, high-temperature corrosion in molten 

salts is not that different from oxidation in a gas environment in respect with the basic anode process [Eq. 

(3.1)] and the reduction of oxidising species [Eq. (3.2)], resulting in metal oxide formation. 

M → Mn+ + ne-     (3.1) 

O2 + 4e- → 2O2-  (3.2) 

The identification of the decisive redox pairs allows us to apply, in this case, basic assumptions about the 

salt melt reactions with alloy species following the standard electrochemical series as well as 

thermochemical diagrams.    

However, the level of complexity is increased by the presence of more than one potential oxidising species, 

more than one reacting cation at the melt/oxide interface as well as an additional aggregation state, the 

liquid melt.  Gas environments that can cause high temperature corrosion commonly comprise more than 

one gas species with individual partial pressures < 1. The salt melts considered in this study are mixtures 

of nitrate, carbonate, and chloride salts. In these mixtures, the activity of the anion ion is 1. 

in contact with a sample surface has an activity 1 for all cationic and anionic species. 

The following section summarises the most relevant corrosion mechanisms in hot TES tanks.  

3.1 Acid/Base Model  

Molten salts are electrolytes and support electrochemical reactions. At the metal/melt interface, alloy 

elements can be oxidised, and salt species and impurities can be reduced. Corrosion by salt melts is referred 

to as a "complex corrosion environment" due to the complexity of the reactions that can occur in such 

environments, which contain solids, liquids, and gases, and all of these must be considered [2].  

The ionic salt species play significant roles in the corrosion process. The anionic species can be categorised 

as: oxyanions, such as sulphate, nitrate, and carbonate; and halide-based salts, such as chloride [2]. 

Corrosion in such a melt can be described in terms of the acidity/basicity of the salt melt, defined by the 

Lewis acid/base concept. A Lewis acid is an electron pair acceptor with empty valence orbitals available. 

In turn, a Lewis base is an electron-pair donor. Already at this stage, we can assign a metal cation with this 

role as a Lewis acid. 

Oxyanions (e.g., NO3
-) in molten salts can release oxide ions upon reduction by alloy components.    

Relevant examples are described in Eqs. 3.2, 3.3 and 3.4 and illustrated schematically in Figure 3.1: 

CO2 + 2e- → CO + O2-                                                                                        (3.3) 

or  

NO3
- + 8e- → N3- + 3O2-                                                                                     (3.4) 
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Figure 3.1 Alkali oxide scale formation when an alloy is exposed to alkali salt melt, where 𝑉𝑂 
••is an oxygen 

vaccancy,   𝑉𝑀
′′ is a metal vacancy and A+ is an alkali cation. 

The last example illustrates that not only oxide ions act as a Lewis base. In the following sections, nitrogen 

and carbon forming metal nitrides and carbides, respectively, also plays a Lewis base role. For instance, 

nitrogen undergoes stepwise reduction from the oxidation state +V in the nitrate melt, via +III in the 

transient form of a nitrite, with possible evaporation via +II, NO(g), but is also -III as a metal nitride, e.g., 

chromium nitride as precipitates beneath the oxide scale (Chapter 5.1.1). 

The oxide ion activity a(O2-) is used as a descriptor of melt basicity and to construct thermochemical 

diagrams [33]. Thermochemical diagrams are useful to identify conditions for oxide scale stability and for 

dissolution into the melt.  

Chloride melts are potential candidates as HTF and TES media for Gen3-CSP plants due to their superior 

thermal stability and favourable thermal properties [14]. Considering the standard electrochemical series of 

elements, alkali chlorides are theoretically good candidates with respect to high-temperature corrosion, due 

to the fact that neither the A+ nor Cl- ions, can be reduced by metal species from the alloy: 

𝑀(𝑎𝑙𝑙𝑜𝑦) + 𝐴+  + 𝐶𝑙− ↛ 𝑀+  + 𝐴(𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐) + 𝐶𝑙− (3.5) 

which in turn disallows corrosion [33].  

3.2 Solubility and Fluxing  

Among the different corrosion mechanisms in salt melts, oxide fluxing has been extensively discussed. The 

fluxing process in an oxidising environment can be defined as accelerated corrosion through the dissolution 

and reprecipitation of metal oxides into the salt melts. The oxide fluxing process depends on the metal/metal 

oxide and the salt basicity/acidity [34]. Diffusion processes in liquid salts are very rapid compared to solid-

state diffusion in an alloy or oxide. The activation energies for the dissolution of ionic species into a melt 

are generally lower than those for evaporation of molecular species into a gas stream. 

3.3 Corrosion of Alloys in Chloride Melt 

Indacochea et al. studied the corrosion of low-alloy steel and different stainless-steel alloys exposed in LiCl 

melt at 725 °C for 30 days in argon under extremely pure and dry conditions; it has been reported that 

corrosion is successfully suppressed under these conditions. However, after replacing argon with Ar-10% 

O2, the alloys underwent severe corrosion, forming non-protective oxides [35, 36]. Thus, alloy constituents 
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can reduce oxygen or water; we can conclude that high-temperature corrosion in alkali chlorides is driven 

by oxidising impurities in the melt. 

Intergranular corrosion (IGC) is relatively common in molten chlorides, a form of localised corrosion 

defined as preferential attack on the grain boundaries. IGC is considered a type of galvanic corrosion, where 

some heterogeneity is observed at the grain boundary region. According to [37], in the case of IGC, “the 

grain boundary is considered anodic to the bulk or adjacent alloy microstructure.”. In IGC, one of the 

alloying elements is depleted due to its interaction with oxidising species and further precipitation at the 

grain boundary [12].   

Numerous studies have investigated the corrosion behaviour of several alloys in contact with chloride melts 

under different conditions [27, 33, 38-44]. The key findings related to this study are that MgCl2-containing 

melts tend to precipitate MgO on the surfaces of the tested alloy and Cr depletion beneath the surface [44, 

45].  

As mentioned earlier, one of the envisaged eutectic melts for the operation of Gen3-CSP equipped with 

thermal storage capacities is the MgCl2/KCl mixture. In this eutectic melt, impurities such as moisture, 

oxygen are potential oxidants. Thus, they significantly increase the corrosivity of the chloride melts. 

Therefore, chloride salt mixtures containing the highly hygroscopic MgCl2 face a serious corrosion 

challenge due to the thermal dehydration of MgCl2.nH2O to MgCl2 and H2O, and the hydrolysis of MgCl2 

to form MgOHCl which decomposes further to MgO precipitates and HCl. 

Several studies have been dedicated to removing corrosive impurities by thermal and/or chemical 

purification methods [46-49]. For instance, the hydrolysis reaction of anhydrous MgCl2 forming MgOHCl 

can be suppressed by applying stepwise controlled heating. Recently, Zhao and Vidal [47] have investigated 

a chemical purification method by adding elemental Mg to an MgCl2 containing salt mixture, see Eq. (3.6), 

as a corrosion inhibitor, reducing the concentration of corrosive MgOHCl. The following procedure 

achieved the corrosion inhibition process: a) the addition of 6.5 wt% of NaCl and less than 0.1 wt% of 

elemental Mg to commercial KMgCl3; b) applying controlled heating to reduce the impurities concentration 

MgOHCl and produce a eutectic salt with a lower melting temperature. 

2𝑀𝑔𝑂𝐻𝐶𝑙 + 𝑀𝑔 ⇋ 2𝑀𝑔𝑂 + 𝑀𝑔𝐶𝑙2 + 𝐻2 (3.6) 

Considering the massive amounts of salt (thousands of tonnes) required as TES material in a CSP plant, the 

purification process will entail additional costs for the power plant. In this context, many studies have been 

conducted to find a cost-effective way to purify the salts [2, 50, 51].  

Lately, Ding and Bauer [49] have reviewed and summarised recent studies that have employed molten 

chlorides as HTF/TES and described the characteristic corrosion challenges that metallic components face 

when in contact with these salts. Some of the key points identified are: a) that salt purification in conjunction 

with corrosion mitigation strategies shall be adopted; and b) the importance of identifying new materials 

that can endure such aggressive environments. 

3.4 Corrosion in Nitrate and Carbonate Melts 

Since nitrate melts, mainly Solar Salt, have been utilised as HTF and TES materials for commercial CSP 

plants, the corrosion behaviour in these melts has been extensively studied at both laboratory and industrial 

scale [12]. As discussed earlier, corrosion by salt melts depends mainly on the salt’s chemistry, the gas 

environment, and the exposure temperature.  
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Nitrate salts spontaneously decompose at high temperatures, as shown in equations Eqs. (3.7) and (3.8) 

[33].  

The thermodynamics of the nitrate melts can be described in terms of equilibrium with the oxide ion and 

appropriate gas species [33, 38]. 

NO3
- ⇋ 𝑁𝑂2

− +  
1

2
 O2                                                                  (3.7)  

2NO3
- ⇋ 𝑂2−  + 2𝑁𝑂 +  

3

2
 O2                                                                  (3.8) 

Besides the spontaneous decomposition of salt species, metal surfaces can act as an electron source for 

reduction as illustrated in Figure 3.1, resulting in reduced anionic species, e.g., NO3
- which can take up two 

electrons forming a NO2
- and releasing an O2- ion instead of oxygen compared to Eq. (3.7).  

Alkali oxide scale formation in nitrate/carbonate melts can be summarised as follows: the first step is the 

adsorption of the salt to the metal surface. Anions are reduced by electrons to from oxide ion. Alkali cations 

are attracted to the reduced anions and take part in the scale formation process. The alkali oxide scale 

nucleates when the reduced anions and metal cations occupy their respective sites at the metal/melt 

interface; the scale grows laterally with time until it covers the entire metal surface. The scale grows either 

outwards through metal ion transport by cationic vacancies adjacent to the adsorbed oxygen ions or inwards 

when oxygen ions occupy the oxygen vacancies formed at the alloy/oxide interface 

Theoretical and experimental viewpoints have been adopted to study corrosion in the above-described 

melts. The extent of corrosion in nitrate melt depends on the acidity/basicity of the melts. The 

acidity/basicity of a salt melt can be defined by Eq. (3.9) as [33]: 

𝑝𝑂2− =  − log  𝑎𝑂2−                                                                                            (3.9) 

The formation of corrosion products can be predicted using the pO2- of the melt, in combination with  

electrochemical measurements, thereby defining the corroding metal and salt species and setting the 

exposure conditions [33].  

Picard et al., used another approach by adjusting the activity of O2- using different NO3
- and NO2

- ratios to 

construct a predominance diagram, iron (III) at 420-500 °C [50, 51], see Figure 3.2. In those studies, the 

pO2- diagrams predicted mainly three solid corrosion products based on the basicity of the medium. 

Na4Fe2O5(s) was expected to form in strongly basic media, whereas alkali ferrites, NaFeO2(s), and iron 

oxide, Fe2O3(s), were expected to form in moderately basic and acidic media, respectively [50, 51].  What 

these diagrams failed to predict is, of course, the potential nitride formation, which occurs at very low 

oxygen partial pressures, present beneath the oxide scale, as described in the result section of this licentiate 

study occurs (Section 5.1.1).  
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Figure 3.2 Stability diagram for iron species in nitrate-nitrite melts as a function of basicity at 500 °C [33, 51]. 

Source: Picard, G.S., H.M. Lefebvre, and B.L. Trémillon, 1987. Reproduced with permission from the 

Electrochemical Society [51]. 

Numerous studies have employed theoretical or experimental approaches, or a combination of both, to study 

the corrosion performance of alloys in nitrate melts. The metallic materials investigated in nitrate melts can 

be classified as carbon and low-alloy steels, stainless steel, and FeCrAl alloys [12, 52-67]. 

The main insoluble corrosion products formed in contact with nitrate melts and related to this licentiate 

study are summarised as follows: an inner scale of (Fe,Cr)3O4 [58], or an outer NaFeO2 and inner Fe3O4, 

Fe2O3 scales [61, 62]. The corrosion products detected depend on the alloy chemical composition and the 

exposure conditions. 

Carbonate salt mixtures are considered a potential candidate for Gen3 CSP plants. However, corrosion in 

this melt environment has not been as intensively studied as in nitrate melts. Nevertheless, corrosion 

resistance has been investigated in molten carbonate fuel cell (MCFC) applications, since carbonate salts 

are used as electrolytes in these processes. The carbonate salt decomposes upon temperature into the 

cationic alkali species (A+), oxide ions, and CO2. The basicity of the melts, measured by Eq. (3.10), depends 

on the equilibrium with the oxide ion and CO2  [33]:  

A2CO3 ⇋ 2𝐴+ + 𝑂2−  + 𝐶𝑂2                                                                                (3.10)  

Since the oxide-melt interactions in carbonates are acid-base reactions, their products are expected to be 

similar to those produced in nitrates [33]. The stability of the corrosion products are mainly dependent upon 

the salt’s chemistry, acidic/basic fluxing in the melts and temperature [68].  

In the present study, alkali carbonates in contact with alloys have been investigated under CO2 gas, in 

contrast to the cases of alkali nitrates, which were operated in air. This means that we have two sources of 

CO2, one resulting from the spontaneous decomposition of alkali carbonate at the metal surface and the 

other in the form of CO2 dissolved into the melt from the gas phase. Both of these sources of CO2 can be 

reduced by alloy species, carbon monoxide (gas evolution), as shown in Eq. (3.11), or even inwards 

diffusing carbon at the metal/oxide interface, which are able to cause carburisation underneath the oxide 

zone [Eq. (3.12)]. 
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2𝑀 + 𝑛𝐶𝑂2 ⟶ 2𝑀𝑛+ + 𝑛𝐶𝑂(𝑔) + 𝑛𝑂2− (gas evolution)                              (3.11) 

or 

4𝑀 + 𝑛𝐶𝑂2 ⟶ 4𝑀𝑛+ + 𝑛𝐶 + 2𝑛𝑂2− (carburising)                                        (3.12) 

Carburisation can be described as an internal corrosion attack that occurs when a scale-forming alloy 

component such as chromium is selectively bound to carbon in the alloy interior. Internal carbide 

precipitation suppresses the migration of, e.g., chromium to the oxide/metal interface to form an oxide 

scale. Initial internal carburisation occurs as precipitates along grain boundaries. Carburisation is not 

desirable, as it compromises the alloy’s chemistry and changes its mechanical integrity [69, 70]. 

Many studies have been dedicated to the corrosion of metallic materials in carbonate melts under various 

conditions [34, 71-79]. The main corrosion products detected relevant to this licentiate study can be 

classified as: i) insoluble corrosion products, such as LiFeO2 [34], LiCrO2, and FeCr2O4 [40]. In addition to 

Al2O3, Fe2O3 or NiFe2O4 and CrFe2O4 [43]; ii) soluble corrosion products such as K2CrO4 [40]. The detected 

corrosion products depend on the alloy’s chemistry and the exposure, see [34, 71-79]. 

All the publications concerning alkali carbonate melts point out that chromia-forming alloys at high 

operating temperatures do not resist rapid alkali oxide scale formation and internal attack [80]. In strong 

contrast, alumina-forming alloys show far better corrosion resistance to molten carbonate attack by slow 

alkali aluminate scale growth and limited or even absent internal carburisation. 

In summary, previous studies on the corrosion resistance of chromia-forming stainless steel alloys have 

highlighted the need to identify alternative alloys or utilise corrosion mitigation methods for metallic 

components considered for use in Gen3 CSP plants [33, 43, 52, 80-84]. 
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4 Experimental Layout 

The flow chart depicted in Figure 4.1 provides an overview of the experimental work conducted in this 

thesis. The figure shows that two main studies have been conducted. The following sections provide 

detailed descriptions of the salts, alloys, experimental set-ups, and characterisation. 

 

Horizontal tube furnace, 650 °C 
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Figure 4.1 Flow chart illustrating the experimental layout for the thesis. 
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4.1 Materials 

4.1.1 Salt Melts 

As described in Chapter 1, the eutectic salt melts were selected based on their favourable thermophysical 

properties, cost, and other factors that recommend their potential usage in commercial CSP plants [14].  

In this licentiate thesis, the following eutectic salts were chosen: a binary nitrate salt mixture, which is also 

known as Solar Salt (60 wt% NaNO3, 40 wt% KNO3); a ternary carbonate salt (32.1 wt% Li2CO3, 33.4 wt% 

Na2CO3, 34.5 wt% K2CO3); and a binary chloride mixture (64.4 wt% KCl, 35.6% wt% MgCl2). The 

thermophysical properties of these salt mixtures have been discussed in several articles  [44, 85-87]. 

Salts were purchased from the following suppliers: NaNO3 (Alfa Aesar, 99.0%); KNO3 (Alfa Aesar, 

99.0%); Li2CO3 (VWR Chemicals, 99.0%); Na2CO3 (EMSURE, anhydrous, 99.9%); K2CO3 (ThermoFisher 

Scientific, 99.8%); KCl (Alfa Aesar, 99.0%); and MgCl2 (Alfa Aesar, anhydrous, 99.0%). Since impurities 

play a vital role in the corrosion process [12, 39, 86-88], the impurities concentrations of each salt are 

provided in Table 4.1. The tabulated values for impurities have been obtained from the salts' chemical 

datasheets. 

Table 4.1 The overall impurities’ concentrations in the salts, as reported by the suppliers. 

Salt Moisture 
Chloride 

(Cl-) 

Phosphate 

(PO4
3-) 

Silicate 

(as 

SiO2) 

Total 

Sulphur 

(as SO4
2-) 

Calcium 

(Ca2+) 

Magnes

ium 

(Mg2+) 

Others 

NaNO3 Detected 
0.0006

% 
1.2 ppm - 0.0020% 0.0008% 

0.0005

% 

Heavy metals (e.g., 

Pb2+/4+), Fe2+/3+ 

1 ppm for each 

KNO3 Detected 0.002% 5ppm - 0.003% 0.005% 0.002% 

Heavy metals 

5 ppm, Fe2+/3+ 

3 ppm, IO3
- 5 ppm, 

NO2 0.001%, Na+ 

0.005% 

Li2CO3 Detected ≤ 0.02% - - ≤ 0.05% 0.01% 

Heavy metals (e.g., 

Pb2+/4+) ≤20 ppm, 

Fe2+/3+ 3 ppm 

Na2CO3 

Loss on 

drying 

≤ 1.0% 

 

≤ 

0.002% 
≤ 0.001% 

≤ 

0.002% 
≤ 0.005 % 

≤0.005 

% 

≤ 

0.0005

% 

Heavy metals (e.g., 

Pb2+/4+), Fe2+/3+, N3-

/3+/5+, Al3+, K+ 

K2CO3 0.113% 

KCl 

0.0043

% 

- - 
K2SO4 

12 ppm 
- - 

KOH 0.106%, Na+ 

0.20%, 

Fe2+/3+ 0.40 ppm 

KCl detected 

Chlorate 

and 

Nitrate 

≤0.003 

% 

≤ 5ppm  ≤0.001% ≤0.002% 
≤0.001

% 

Ba2+ ≥ 0.001%, Br-  

≤0.01%, I- ≤ 

0.002%, Fe2+/3+  

≤3 ppm, Na+ 

≤0.005%, Heavy 

metals (e.g., Pb2+/4+) 

≤5 ppm 

MgCl2 
Detected 

0.97% 

NaCl 

36 ppm 

CaCl2 

47 ppm 

- - - - - MgO (100 ppm) 
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As already mentioned, the experiments in this study were conducted about 100 °C above the anticipated 

operation temperature in thermal storage for two reasons: 1) likely, metallic parts in a large CSP plant 

wetted with salt melts are experiencing temporary overheating, and 2) accelerated corrosion provides 

relevant results within the timeframe of this study. 

The eutectic mixtures were prepared according to the following procedure. In 100-g batches, the salts were 

weighed and mixed to the correct ratio, then ground using a mortar and pestle. Lastly, the salts were furnace-

dried at 110 °C for a period of at least 24 h.  

Since the water content is critical for the corrosion experiments, chloride mixtures were prepared using a 

purification process under Ar to reduce the moisture content in the salts [27, 49, 89]. 

Based on previous studies [27, 49, 89], the chloride mixtures were purified using a stepwise thermal 

purification process. The purification process starts with drying the salt mixture at 110°C for at least 5 hours 

under an Ar flow. Then, the temperature is raised to 200°C and held for a 2-hour dwell time. Then, the 

temperature is increased again to 300°C for 2 hours. Thereafter, the set-up is allowed to cool to room 

temperature under argon flow. As the last step, an alloy sample is dipped into a salt-filled crucible before 

initializing the corrosion experiment. The vessels that contain the salt-filled crucible are purged with Ar for 

12 h, then heated to 120°C for at least 12 h. Lastly, the temperature is raised to 750°C and held for 1 hour 

before the corrosion experiment starts, as described later in this chapter.   

4.1.2 Alloys 

Table 2. summarises the nominal compositions of the alloys investigated.  

The following procedure describes how the samples were prepared. First, metal coupons of initial 

dimensions of 15 × 15 × 2 mm were ground using up to 1200-grit SiC abrasive paper, then polished with 

suspensions containing 9, 3, and 1µm diamonds till a mirror-like finish was obtained. The polished samples 

were cleaned in three steps with deionised water, acetone, and ethanol using an ultrasonic bath at room 

temperature. Finally, the coupons were dried using an air gun, and then dipped into salt-filled alumina 

crucibles. 

Table 4.2 Nominal alloy compositions. 

Alloy (publication) Fe  Ni Cr Al Si Mn Mo Others 

316H [Paper I (a and b)] balance 11.5 17 X 0.6 1.5 2.1 C 0.05 

304L [Paper I (a and b)] balance 9.5 18.5 X 0.4 1.3 X C 0,02 

Kanthal® APMT [Paper I (a and 

b), Paper II]) 

balance X 21 5 0.7 0.4 3 RE; C 0.08 

Kanthal® AF (Paper II) balance X 21 5.3 0.7 X X RE; C 0.08 

Kanthal® EF101 (Paper II) balance <0.5 11-14 3.2-4.2 1.2 <0.7 X RE; C 0.08 

Kanthal® EF100 (Paper II) balance <0.5 9.5-13 3.8-4.2 <0.5 <0.7 X RE; C 0.08 

Nikrothal® PM58 (Paper II) 18 balance 19 5 0.4 X X RE  
 

4.2 Experimental Setup 

In this work, two set-ups were used. Initially, a horizontal tube furnace was utilised for corrosion exposures 

in nitrate melt. Subsequently, a novel vertical set-up was designed and implemented for the exposures 

involving carbonate and chloride melts.  Table 4.3 summarises the experimental parameters and corrosion 

conditions in the different environments. 
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Table 4.3 A summary of eutectic melting points, and decomposition temperature of the different salt mixtures, in 

addition to the experimental parameters for the corrosion experiments,  

Eutectic salt 

mixture 

i.) Nitrates 

(60 wt% NaNO3- 40 wt% KNO3) 

ii.) Carbonates 

(32.1 wt% Li2CO3 -33.4 wt% 

Na2CO3- 34.5 wt% K2CO3) 

iii.) Chlorides 

(65 wt% KCl- 35% wt% MgCl2) 

Teutectic (°C) 230 [14] 398 [90] 423 [91] 

Tmax (°C) 530-565 [14] >650* [86] >800 [87] [91] 

Gas filtered air CO2 argon 

Exposure 

temperature 

650 °C (isothermal) 

(72 h cyclic refilling of the salt) 
[Paper I (a and b)] 

800 °C (isothermal) 

(336 h cyclic refilling of the salt) 
[Paper I (a and b), Paper II]) 

800 °C (isothermal) 

(336 h cyclic refilling of the salt) 
[Paper I (a and b), Paper II]) 

Total exposure 

time 

168 & 1000 h 
[Paper I (a and b)] 

168 & 1000 h 
[Paper I (a and b)] 

72, 168, 500 and 1000 h 

(Paper II) 

168 & 500 h 
[Paper I (a and b)] 

* Decomposition temperature varies with atmosphere. The actual temperatures were 1000 °C, 700 °C and 670°C for 

the exposures in CO2, argon, and air, respectively [86]. 

 

 The schematic in Figure 4.2 describes the first set-up employed. The horizontal tube furnace was used for 

the corrosion experiments conducted in nitrate melt equipped with a quartz tube (50-mm diameter). The 

exposures were conducted isothermally at 650°C ± 5°C with filtered air at a flow rate of 20 ml/min.  

 

 Figure 4.2 Experimental setup for horizontal-tube furnace nitrate exposures. 

Among the reasons for building a new setup was the partial immersion of the coupons in the melts in the 

horizontal-tube furnace. The novel laboratory vertical setup was designed for complete immersion 

experiments. A top-loader furnace (model top 60 Nabertherm) was purchased and subsequently redesigned 

in the workshop by Esa Väänänen to comply with carbonate and chloride exposures in controlled gas 

environments. The detailed procedure for designing and building the vertical setup are provided in paper I 

(b) [92]; see a schematic diagram of the cylinder vessel Figure 4.3. The corrosion experiments were 

conducted isothermally at 800 ± 5 °C. The temperature was calibrated at the crucibles lowest point, with a 

gas (Ar or CO2) at a 50 ml/min flow rate for each vessel. Each exposure was carried out at least twice to 

guarantee minimum reproducibility.   

The novel laboratory setup is superior to the tube furnace because it provides the following advantages: i) 

the ability to test six coupons in each vessel in addition to providing duplicate samples. Overall 12 coupons 

can be tested simultaneously; (see a schematic diagram of the cylinder vessel Figure 4.3.); ii) the ability to 

remove coupons directly from the melts before they solidify; (see Paper I (b) section A5, since the 

solidified melts otherwise must be washed away from the tested coupons; and the washing procedure 

changes the alloy surface chemistry; and iii) one of the duplicate samples goes through washing for mass 

change measurements as described in the literature [27], [54, 93-98]. The second sample is dedicated to the 

cross-section analyses in unwashed form. 
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Figure 4.3 i) Novel laboratory vertical setup built for the carbonate and chloride exposures ii) Cylindrical vessel 

components iii) Schematic diagram of the cylindrical vessel. Reproduced with permission from Elsevier [92]. 

4.3 Analytical Methods 

As mentioned earlier, high-temperature corrosion of metallic materials in contact with molten salts is highly 

complex. Different analytical techniques have been employed to attain a better understanding of the 

corrosion behaviour of the selected alloys. Duplicate samples were used to allow post-exposure analyses 

that required different sample preparation methods (see Figure 4.4), such as washing for mass change 

measurements, and X-ray diffraction (XRD) analysis being performed on one sample and cross-section 

preparation (including salt remnants) on the other sample.  

After completion of the exposure experiment, the "unwashed" sample was extracted from the crucible filled 

with molten salt using the following procedure. After the required exposure is completed, the temperature 

is reduced and maintained at 50 °C higher than the mixture’s eutectic melting point. This enables pouring 

of the salts away from the coupons while they are in a molten state, and they are thereafter collected for 

further analysis. Only a small amount of the salts remains on the sample surface.  

Following the standard cleaning method, the duplicate sample in the second vessel is washed, to remove 

all residual salts and solvable corrosion products from the sample surface [99]. At room temperature, the 

samples are sonicated and brushed until cleaning is complete. If any salt remains, the sonication is 

Sample 
Duplicate 

Washed 
• Mass Change 

Measurements 

• XRD Analysis/ 

Rietveld Refinement 

• Surface Morphology 

Not washed • SEM/EDX cross-section 

Analysis 

• Corrosion Layer 

Thickness Measurements 

Collected salt residue after 

exposure, future work ICP-

OES analysis 

Crucible 

Figure 4.4 Schematic illustration showing the procedures for sample evaluation after the exposures. 

ii) 
i) iii) 
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interrupted, and the coupon is softly brushed to remove the salt. Thereafter, the sonication procedure is 

restarted to ensure that the salts are dissolved completely. It is worth noting that the results involving washed 

samples, such as the XRD analysis and weight change values, need to be carefully considered. Weight 

change measurements are not considered reliable data for corrosion evaluation, but rather as a supplement 

showing indications in the context of other characterisation techniques. 

4.3.1 X-ray diffraction analysis 

X-ray diffraction (XRD) is a non-destructive analytical technique that gives phase identification of a 

crystalline sample, in addition to providing information about lattice parameters and grain size. The XRD 

technique is based on constructive interference of a monochromatic and coherent X-ray beam with the 

sample, where interaction occurs between the X-rays and the sample’s crystal structure. X-rays are 

diffracted when conditions satisfy Bragg's Law, as stated in Eq. (4.1), see Figure 4 [100]. 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 𝑠𝑖𝑛𝜃                                                                          (4.1) 

Where n is order of reflection (an integer number), λ is the wavelength of the X-rays, 𝑑ℎ𝑘𝑙 is the interplanar 

spacing of lattice planes, and θ is the angle between the diffracted beam and the crystal plane.   

 

Figure 4.5 Schematic illustration of Braggs’ law. An incident beam is reflected by a crystal plane at an angle . 

Source: Bragg, W.H.S., X-rays and crystal structure ed. L.S. Bragg, 1915 [101]. 

XRD analysis is used to identify the corrosion products formed. In addition to providing information about 

crystal structures, XRD analysis is the only tool, in this study, that is capable of detecting Li-containing 

corrosion products. 

A Siemens D5000 grazing-incidence XRD equipped with a Cu source, a secondary Si monochromator, and 

a point detector was employed for the analysis of corrosion products. The grazing-incidence XRD technique 

uses a low incidence angle of the X-ray beam, limiting the penetration to the bulk material, thereby 

identifying crystalline phases in thin oxide scales. As mentioned in Figure 4.1, an interesting observation 

regarding the α/γ-LiAlO2 phase transition detected on Kanthal APMT exposed to carbonate melt at 800 °C. 

To understand the α-LiAlO2 to γ-LiAlO2 phase transition, it is essential to quantify these crystalline phases 

on the sample surface with respect to the exposure time. The Rietveld refinement technique was used to 

quantify the crystalline phase in materials by implementing their XRD patterns.  
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The Rietveld refinement analysis is based on comparing the XRD patterns of a sample with a calculated 

diffraction pattern based on crystallographic data such as the crystalline system and atomic positions [102]. 

In the Rietveld method, "refinement" refers to the process of fine-tuning the model of parameters used to 

calculate a diffraction pattern to the closest observed value.  

In this thesis, in collaboration with Dr. Michal Strach (Chalmers Materials Analysis Laboratory, Physics 

Department), the Rietveld refinement method with the acquired XRD patterns was employed using the 

TOPAS V6 software to calculate the α/γ-LiAlO2 phase fraction ratios. More details about parameters used 

in this method can be found in Paper II. 

4.3.2 Microstructural Analysis 

Scanning electron microscopy (SEM) is used to investigate the microstructure of corroded samples by 

emitting electrons over a sample surface, where it interacts and generates signals that are translated further 

to produce an image. After the electron beam hits and interacts with the sample, signals are emitted and 

detected, providing information about the sample microstructure and elemental composition. Among these 

signals: i) secondary electrons (SE) are emitted upon electron interactions close to the sample surface. 

Accordingly, they are generally used to reveal the surface topography; and ii) backscattered electrons (BSE) 

have higher energy levels than the SE, which means that they have the capability to be emitted from deeper 

sections in the sample. The quantity of the collected BSE is influenced by the sample's density and chemical 

composition, apart from the operating parameters such as the electrons accelerating voltage. For instance, 

atoms with higher atomic numbers appear brighter in the BSE image than atoms with lower atomic numbers 

(Z-contrast) [103].  

As illustrated in Figure 4.4, washed samples were subjected to surface morphology inspection. While 

unwashed samples were used in the investigation of cross-sections. The cross-section preparation procedure 

for the samples was as follows: i) samples underwent dry cutting with a low-speed diamond saw and were 

then sputter-coated with gold; ii) three methods were used before the cross-sectional microscopy analysis: 

cold embedding in epoxy resin, hot mounting in Bakelite or utilising broad ion beam (BIB) milling with a 

Leica TIC 3X instrument; and iii) before BIB milling, a thin polished silicon wafer was applied to the 

sample's surface to protect the oxide scale. Details of the milling parameters are provided in Paper I (b).  

The surface and cross-section inspection were conducted using a JEOL JSM-7800F Prime or Phenom ProX 

Desktop SEM equipped with an energy dispersive x-ray (EDX) detector. The EDX spectra were collected 

using an electron beam with a 15 kV accelerating voltage.   
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5 Results and Discussion 

Two primary aims are pursued in this licentiate thesis: 1) to compare the corrosion behaviour of chromia- 

and alumina-forming alloys in contact with different salt melts. The melts employed in this study are current 

and potential salt mixtures utilised in commercial CSPs; and 2) to understand and rank the corrosion 

performance of five alumina forming alloys in contact with alkali carbonate melt by investigating scale 

formation. 

Towards these goals, the research findings in this chapter are divided into two parts. 

Part I:  

Comparison of the corrosion performance of FeNiCr and FeCrAl alloys in three environments.  

• Corrosion of 316H and Kanthal APMT in Nitrate Melt at 650 °C 

• Corrosion of 304L and Kanthal APMT in Carbonate Melt at 800 °C 

• Corrosion of 304L and Kanthal APMT in Chloride Melt at 800 °C 

Part II:  

Ranking of five alumina-forming alloys in terms of their corrosion performance in contact with alkali 

carbonate melt at 800 °C. Lithium ions in the mixed alkali melt induce the formation of lithium aluminate 

(LiAlO2) at the alloy/melt interface. Alumina-forming alloys have an ability to prevent internal corrosion 

by forming α-LiAlO2 layer. Thus, Part II focusses on the characteristics of the LiAlO2 layer and 

distinguishes between: 

• "Normal" formation and transformation of LiAlO2 

• "Deviating" formation and transformation of LiAlO2  

In this work, a combination of quantitative and qualitative approaches was adopted to evaluate samples 

after exposure. Weight change and scale thickness measurements of exposed samples provide a quantitative 

overview. Compositional and microstructural investigations and Rietveld analysis provide qualitative and 

semi-quantitative analysis. As described in Chapter 4, mass change was measured after rinsing the samples 

with water, entailing the loss and dissolution of soluble corrosion products. Therefore, the evaluation of 

corrosion is based mainly on top-view and cross-section microscopy investigations, while the mass change 

values are used as complementary data. 

Figure 4.4 gives an overview of how the corroded samples are evaluated after exposure. 

As discussed earlier, high-temperature corrosion of metallic materials in contact with salt melts is highly 

complex. While Chapter 3 gives an overview of the corrosion mechanisms related to salt melts, Figure 5.1 

(Path A) summarises the corrosion propagation steps identified in this work for the nitrate and carbonate 

exposures. Figure 5.1 (Path B) describes the corrosion in the chloride melt, as discussed in Section 5.1.3. 

Path A comprises: alkali oxide nucleation at the metal/melt interface and formation of alkali metal oxide 

scale. This path can progress either in the absence of internal corrosion following Case I and II, i.e., AMOx 

scale growth and eventually α→γ-LiAlO2 phase transformation. Alternatively, an internal attack can occur 

following Case III and IV by inwards diffusion of oxidising species simultaneously to the AMOx growth.  

Path B comprises: Case V) no oxide scale formation; and Case VI) formation of cavities due to leaching 

and environmentally induced intermetallic precipitation.  
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In Path A, during oxide scale growth, a depletion zone is created adjacent to the growing oxide scale, 

depending on whether or not the oxidising alloy element replenishes rapidly. Furthermore, the bulk 

diffusion of, e.g., Al can be compromised by precipitation of AlN. The scale-forming elements derived 

from the alloys are Al and Cr in the first publication and mainly Al in the second one. The availability of 

Al and Cr at the metal/melt interface defines the elemental composition of the oxide scale. Thus, the bulk 

diffusivities and grain boundary diffusivities are decisive for the formation process.  

Notably, if a melt interacts with metal and forms an insoluble corrosion product, this means the possibility 

of this corrosion product to be protective for the alloy [104].  

Another mechanism discussed in Section 5.2 is "oxide transformation", as shown for Case II in Figure 5.1, 

where a phase transition in the oxide scale is observed. 

 
Figure 5.1 Schematic illustration of paths A and B for scale nucleation, growth, possible transformation, and 

degradation in the alloys exposed to salt melts. 

Finally, as discussed in Chapter 3, the bulk alloy may suffer from an internal attack, as shown for Case III 

and IV in Figure 5.1. The attack occurs via the diffusion and permeation of specific reactants, such as carbon 

in the case of carbonate melts. Carbon interacts with the alloy to form internal chromium carbide 

precipitates. These precipitates alter the alloy chemistry and raise technical challenges. 

In the following sections, the corrosion of the alloys will be discussed based on these mechanisms.   



Chapter 5. Results and Discussion 

 

27 

 

5.1. Comparative Study of the Corrosion Performance of Chromia- and Alumina-

Forming Alloys in Three Different Salt Melts 

Figure 5.2 shows an overview of a corrosion assessment of chromia- and alumina-forming alloys exposed 

to different salt melts. This evaluation is based on measurements of corrosion zone thickness. The alloys 

tested in the nitrate melt were 316H (a chromia-forming alloy) and Kanthal® APMT (an alumina forming 

alloy), while 304L (a chromia-forming alloy) and Kanthal® APMT were used for exposures to alkali 

carbonate and chloride. In the same Figure, the materials are ranked based on three main features: outward 

growing zone, inward growing zone, and internal oxidation/attack. Figure 5.2 shows the significant 

differences in corrosion behaviour between the chromia-forming and the alumina-forming alloys, 

particularly with respect to internal attack.  

Figure 5.2 Comparative schematic for all the corrosion layer thickness measurements made in this study. The 

differences between the outward-growing and inward-growing zones are distinguished. The horizontal axis is 

placed at the apparent initial material surface. Reproduced with permission from Elsevier [77]. 

Figure 5.3 shows the mass change for 304L and Kanthal® APMT exposed to carbonate and chloride melts. 

Mass change data in nitrate melt were not collected due to the partial immersion of the samples, as described 

in Section 4.2. Due to the post-exposure treatment of samples before the mass change measurements (see 

Section 4.3), the observed mass change trends (dashed trendlines in Figure 5.3) need to be interpreted with 

caution.   

For exposures to carbonate melt, Kanthal APMT showed a significantly lower mass gain than 304L, 

indicating a sub-parabolic behaviour. However, after 1000 h, the mass gain values for Kanthal APMT 

deviated from the indicated curve; this aspect will be addressed in Section 5.1.2. 

When alloy 304L was exposed to the carbonate melt, it maintained a steady-state behaviour after a rapid 

initial mass gain.  
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Whereas the carbonate melt caused a mass gain for the exposed samples, the chloride melt caused mass 

loss for both tested alloys. However, the mass loss was lower for the Kanthal APMT samples. The chloride 

melt was the only environment where a notable loss of sample thickness was detected, as discussed in 

Section 5.1.3. 

 

Figure 5.3 a) Mass change plots for 304L and Kanthal® APMT in carbonate and chloride melts at 800°C. b) Mass 

gain of Kanthal® APMT in carbonate melt, showing the trend line. c) Mass gain of alloy 304L in carbonate melt, 

showing the trend line. d) Mass losses of 304L and Kanthal® APMT in chloride melt, with trend line. Note the 

difference in the scales. b)-d) The error bars indicate the minimum and maximum values around the average value; 

In the cases when error bars are not shown, the scatter in mass change are smaller than the apparent size of the 

symbols used. Reproduced with permission from Elsevier [77]. 
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5.1.1 Corrosion Performance of 316H and Kanthal® APMT in Nitrate Melt at 650 °C 

Electron microscopy and XRD analysis were used to assess the corrosion performance of the alloys in Solar 

Salt. In addition, the FactSage databases and software were used to calculate the Gibbs' free energy for 

potential corrosion reactions to illustrate our findings. 

Table 5.1 summarises the XRD analyses of the chromia- and alumina-forming alloys exposed to alkali 

nitrate, carbonate, and chloride melts (see Paper I (a)). The detection of alloy signals, for example, for 

Kanthal® APMT in alkali carbonate melt, indicates a thin scale. 

Table 5.1 Summary of the XRD analyses from Paper I (a) for chromia- and alumina-forming alloys exposed to 

different salt melts. 

Exposure conditions Alloys 
Exposure 

time 

Corrosion products detected via 

XRD-analysis 

XRD alloy 

signal 

Nitrate melt,  

air, 650 °C 

 

316H 
168 

NaFeO2 Not detected 
1000 

Kanthal® APMT 
168 NaAlO2 and NaFeO2 

Detected 
1000 

 

Carbonate melt, 

CO2, 800 °C 

304L 
168 

LiFeO2 Not detected 
1000 

Kanthal® APMT 
168 α-LiAlO2 

Detected 
1000 α- and γ-LiAlO2 

 

Chloride melt, 

 Ar, 800 °C 

304L 168 MgO 

Detected 

500 

Kanthal® APMT 168 MgAl2O4, MgCr0.086Al1.914O4 

(traces) and Laves phase 

MoFe2 
500 

Table 5.2 summarises the SEM/EDX findings for the chromia- and alumina-forming alloys exposed to the 

different salt melts. Based on the SEM/EDX investigations together with XRD analysis, the corrosion 

propagation of alloys immersed in molten alkali nitrate at 650°C can be schematically depicted, as in Figure 

5.1 Path A Case I for Kanthal® APMT and Case III for 316H, respectively. Both alloys 316H and Kanthal 

APMT formed an AMOx scale at the alloy/melt interface. The oxide scale was comprised of an outwards 

growing alkali-bearing species, either sodium aluminate or sodium ferrite, and an inner oxide zone, which 

is protective in the case of Kanthal APMT and a permeable chromia layer in the case of 316H. Finally, 

internal nitridation was noted in the case of 316H. However, the degree of protection provided by each 

alloy differed remarkably. Exposing 316H to Solar Salt for at least 1000 h resulted in four corrosion zones, 

(see Paper I (a)).  

The EDX mapping reveals Cr-rich precipitates beneath the oxide scale. Internal nitridation, the capture of 

chromium by the nitrogen diffusion into the bulk alloy, also inhibits further formation of a protective 

chromia scale.  

Kanthal APMT exhibited good corrosion behaviour compared to 316H. A smooth sodium aluminate scale 

covered the surface of the Kanthal APMT samples after exposure to Solar Salt at 650 °C for 168 h and 

1000 h, as shown in Figure 5.5. After 1000 h of exposure, local nodules of sodium ferrite were found; in 

agreement with the XRD findings. However, the presence of an alumina scale beneath these nodules 

indicated an early stage of sodium ferrite formation and the inability of these nodules to grow further. 
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Unlike 316H, no internal nitridation was detected in Kanthal APMT samples. However, it is essential to 

pinpoint that AlN formation is thermodynamically spontaneous, and in case of defects in the outer scale 

allow for nitrogen ingress into the alloy. This means that the aluminium activity in the bulk may decrease 

through AlN formation. Therefore, it is paramount to sustain the aluminium oxide scale at the surface. See 

the thermodynamic calculations in Table 5.3 for relevant Gibb’s free reaction energies at 650°C. 

Table 5.2 Summary of SEM/EDX inspections of chromia and alumina-forming alloys in different salt melts. 

Exposure 

conditions 
Alloys Outward growing zone 

Inward growing 

zone (inner) 
Internal attack 

Nitrate melt, 

air, 1000 h, 

650 °C 

316H NaFeO2 

Mn, Ni-enriched 

oxide zone 

and Cr-rich scale 

Nitridation, 6 µm beneath the 

oxide scale 

(Case III, Figure 5.1) 

Kanthal® 

APMT 
NaFeO2 (nodules) NaAlO2 Not detected 

 

Carbonate melt, 

CO2, 1000 h, 

800 °C 

304L NaFeO2 

Heterogeneous 

oxide zone: 

Cr-rich Fe-Cr 

spinel, 

Fe oxide, and 

high Ni-fractions 

zone 

Detected, severe attack 

(increase with time), 

Case III (168 h) and IV 

(1000 h), Figure 5.1 

Kanthal® 

APMT 
γ-LiAlO2 α-LiAlO2 Not detected 

 

Chloride melt, 

Ar, 1000 h, 

800 °C 

304L 
Magnesium oxide 

(Case V, Figure 5.1) 
Cavities 

Kanthal® 

APMT 

MgAl2O4, MgCrAl 

oxide (traces) 

(Case V, Figure 5.1) 

Molybdenum-

rich intermetallic 

phase (Laves 

phase 

(Fe0.75Cr0.25)2Mo), 

and traces of 

Al2O3 

Cavities surrounded by 

environmentally induced 

precipitates 

(Case VI, Figure 5.1) 
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Table 5.3 Gibb’s free energy of selected corrosion reactions in a nitrate melt at 650°C.The experimentally verified 

species are highlighted in bold font.  NaCrO2 was not observed in the outwards growing oxide scale, supposedly due 

to further oxidation to Cr(VI) and dissolution into the melt. On the other hand, CrN has been detected. FactSage 7.3 

databases were used [105]. 

No Reaction 
∆G923K 

kJ /[mol metal] 

 (1) Al (s) + NaNO3  (l)  → NaAlO2 (s) + NO (g)   -676 

 (2) Cr (s) + NaNO3  (l)  → NaCrO2 (s) + NO (g)  -376 

 (3) Fe (s)+ NaNO3 (l)  → NaFeO2 (s) + NO (g) -258 

 Considering internal nitridation: Only CrN was observed 
 

 (4) 8 Al (s) + 3 NaNO3 (l)  → 3 NaAlO2 (s) + Al2O3 (s) + 3 AlN (s) -539 

 (5) 8 Cr (s)+ 3 NaNO3 (l)  → 3 NaCrO2 (s) + Cr2O3 (s) + 3 CrN (s) -299 

 (6) 23 Fe (s) + 4 NaNO3 (l)  → 4 NaFeO2 (s) + Fe3O4 (s) + 4 Fe4N (s) -88 

 

 

Figure 5.4. a) Backscatter electron microscopy image of 316H sample cross-section after 1000 h exposure to 

Solar Salt. b) Higher magnification of the zone beneath the oxide layer highlighted in image a). c) Element 

maps of the oxide scale corresponding to image a). Reproduced with permission from Elsevier [77].  
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Figure 5.5 Backscatter electron images of Kanthal® APMT samples after exposure to solar salt. a) and b) top 

view after 168 h. Cross-section after c) 168 h and d) 1000 h. Reproduced with permission from Elsevier [77]. 

5.1.2 Corrosion Performance of 304L and Kanthal® APMT in Carbonate Melt at 800 °C 

The XRD analysis of 304L showed spinel oxide and lithium-containing oxides, in agreement with findings 

in the literature [106, 107]. The Kanthal APMT diffractograms showed signals for only one crystal structure 

after 168 h exposure, which was identified as -lithium aluminate. After 1000 h, an additional crystal 

structure signal was detected, which was identified as -lithium aluminate (see Paper I (a)). 

Figure 5.6 (a and b) shows large octahedral crystallites completely covering the 304L alloy surface after 

168 h of exposure to alkali carbonate melt. XRD identified these fast-growing crystallites as lithium ferrite, 

which agrees with previous studies [108-111]. This finding was supported by the reaction energies 

calculated in Paper I (b), Section C. The corrosion propagation of 304L in carbonate melt after 168 h and 

1000 h are schematically illustrated in Figure 5.1, Cases III and IV, respectively. For a detailed analysis of 

the corrosion products' microstructures, topography, and chemistry, see Table 5.1 and Paper I (a). 

Gibb’s free reaction energy for lithium ferrite formation by reacting iron with lithium carbonate was found 

to be exothermic, whereas NaFeO2 was endothermic considering the same reactants apart from the alkali 

ion species. This also clarifies the absence of NaFeO2 in the corrosion products, see Table 5.4. For the 

detailed calculations, see Paper I (b), section C [Eqs. (7) and (8)].  
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Figure 5.6 a) SEM image of surface morphology, b) SEM image of a cross-section of the 304L alloy after exposure 

to carbonate melt at 800°C for 168 h. Higher magnification cross-section showing the internal oxidation zone 

after168 h c), and chromium carbide precipitates after 168 h d). Reproduced with permission from Elsevier [77]. 

Figure 5.6  (d)) shows that carbon permeates these non-protective oxides and captures chromium by 

precipitating chromium carbide particles. The precipitation of chromium carbides is critical for sample 

corrosion resistance. It lowers the chromium activity in the alloy, thereby hindering the outward diffusion 

of chromium to the metal oxide interface and, consequently, forming a protective chromia oxide scale. In 

addition, these chromium carbide precipitates change the microstructure and mechanical properties of the 

alloy [112]. 

The severe internal attack observed for 304L in the carbonate melt point towards a high mass gain. 

However, the mass gain is stagnant in Figure 5.3 (c). This could be due to the dissolution of metal ions into 

the carbonate melt. This is substantiated by the melt colour observed after the exposures; the salt has been 

collected for future ICP-OES analysis. In addition, thermodynamic calculations show that chromia reacts 

exothermically with lithium carbonate and CO2 at 800°C to form lithium chromate (see Paper I (b), section 

C). These findings are in agreement with a previous study [113]. 

In strong contrast to 304L, Kanthal APMT showed a high corrosion resistance in the carbonate melt by 

forming a thin slow-growing oxide scale. Thermodynamic calculations were made to predict the corrosion 

products that can form. It was found that both aluminium and chromium can interact with sodium and 

lithium carbonates exothermally, which means that the reaction is spontaneous. However, the formation of 

lithium aluminate has the highest exothermicity, (see Section C; Eqs. (9-11)). 
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Table 5.4 Gibb’s free energy of selected corrosion reactions in a carbonate melt at 800 °C. Experimentally verified 

species are highlighted in bold font. NaFeO2, NaCrO2 and NaAlO2 were not observed in the outwards growing oxide 

scale, while Cr23C6 has been detected. Databases from Factsage 7.3 were used [105]. 

Unlike 304L, the Kanthal® APMT sample surface was covered by a smooth layer comprising very small α-

LiAlO2 crystallites, as shown in Figure 5.7 (a). Interestingly, after 1000 h of exposure, some large prismatic 

crystallites appeared (see Figure 5.7 (b)). The appearance of these prismatic crystals is associated with the 

second phase signal that arises in the XRD analysis, defined as γ-LiAlO2. Several groups have investigated 

the thermophysical properties of the two lithium aluminate polymorphs [114-117]. α-LiAlO2 was found to 

be stable at temperatures up to ~747°–777°C, after which the α→γ-LiAlO2 phase transformation occurs. 

This transformation is influenced by different parameters, such as the operating temperature, environment, 

and exposure time. It is essential to monitor this α→γ-LiAlO2 transformation from the corrosion 

perspective, since the small α- LiAlO2 crystallites form a protective film [16], while the large γ-LiAlO2, 

which nucleates and grows individually, does not confer the same level of corrosion resistance. Therefore, 

the α→γ-LiAlO2 phase transformation is undesirable. This transformation may explain the greater 

uncertainty related to the mass change value of Kanthal® APMT, which increased to the end of the exposure 

after 1000 h. The mass gain is accelerating [Figure 5.3 (b)] simultaneously with the appearance of the γ-

LiAlO2 phase. The corrosion propagation patterns of Kanthal® APMT in carbonate melt after 168 h and 

1000 h are schematically illustrated in Figure 5.1 Case I and II, respectively.   

Compared to 304L, the overall mass gain of Kanthal® APMT was two orders of magnitude lower, and 

neither aluminium nor chromium leaching from the alloy into the melt was detected after 1000 h. However, 

the impact of the α→γ-LiAlO2 phase transformation on the long-term performance of the alloy must be 

considered.  

No Reaction 

∆G1073K 

kJ /[mol 

metal] 

(7) 2 Fe (s) + Na2CO3 (l) + 2 CO2 (g)  → 2 NaFeO2 (s) + 3 CO (g) +22 

(8) 2 Fe (s) + Li2CO3 (l) + 2 CO2 (g)  → 2 LiFeO2 (s) + 3 CO (g) -7 

(9) 2 Al (s) + Li2CO3 (l) + 2 CO2 (g) → 2 LiAlO2 (s) + 3 CO (g) -414 

(10) 2 Al (s) + Na2CO3 (l) + 2 CO2 (g) → 2 NaAlO2 (s) + 3 CO (g) -393 

(11) 2 Cr (s) + Na2CO3 (l) + 2 CO2 (g) → 2 NaCrO2 (s) + 3 CO (g) -99 

(12) 69 Cr (s) + 23 Na2CO3 (l) + 40 CO2 (g) → 46 NaCrO2 (s) + Cr23C6 (s) + 57 CO (g) -70 
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Figure 5.7 a) Overview back-scatter electron microscopy image of a cross-section of Kanthal® APMT exposed to 

molten carbonate salt mixture at 800°C for 1000 h. b) Top-view image of the surface. c) Higher magnification of 

the cross-section. d) Aluminium and oxygen elemental maps of position c) and corresponding line-scans. 

Reproduced with permission from Elsevier [77]. 

5.1.3 Corrosion Performance of 304L and Kanthal® APMT in Chloride Melt at 800 °C 

As shown in Table 5.1, Kanthal® APMT exhibited a distinct diffraction pattern from a molybdenum-rich 

intermetallic phase, a so-called ‘Laves phase’. The position and role of the Laves phase will be discussed 

later in this section. For a description of the XRD analyses of 304L and Kanthal® APMT immersed in 

chloride melt, see Paper I (a). 

It is important to emphasize that the oxidation reactions that occur during the chloride melt exposures are 

limited by the contaminating oxygen in the Ar gas and the residual humidity of the salt, as clarified in 

Section 4.2. The only oxides that can form under these extreme conditions must have very high 

thermodynamic stability. Among these oxides are magnesium oxide and magnesium aluminate [9]. 

Recalling the mass change data presented in Figure 5.3 (d), both tested alloys underwent accelerating mass 

loss, with a more pronounced effect on 304L compared to Kanthal® APMT. In addition, the overall coupon 

thickness decreased as documented in Paper I (b), Section B. The dissolution processes of alloy elements 

have also been reported in previous studies [118].  

Microstructural analysis of the 304L samples revealed that the chloride melt immediately leached the alloy 

elements, (see Paper I (a)). The MgCl2 /KCl eutectic melt reacted with oxygen impurities to induce MgO 

precipitation on the alloy surface. The SEM/EDX analyses revealed the presence of MgO precipitates all 

over the surfaces of the 304L samples after 168 h of exposure. EDX elemental mappings detected alloy 

species, such as chromium and nickel, in the salt residue covering the top of the sample, which is in 

agreement with the Ding et al., who reported chromium dissolution into chloride melt [45, 55]. As these 

metals leached from the bulk alloy, cavities were formed and reached a depth of ~10 µm into the alloy's 

microstructure after 168 h. After 500 h, a chromium depletion zone with depth >100 µm was observed in 

the EDX maps [see Figure 5.8 (c)]. The chromium concentration within this zone was only 2%; see line-

scan Figure 5.8 (c). In addition, cavities were found within the depletion zone and reached more than 150 

bc 

d

) 
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µm into the alloy. The cavities were filled with MgO and traces of chlorides; these findings are similar to 

those of a previous study [45], and might indicate a three-dimensional cavity network into the specimen. 

Figure 5.8 Alloy 304L cross section after exposure to molten chlorides at 800 °C,500 h, and corresponding EDX 

element maps c). The chromium element map in c) is extended by a line scan to highlight chromium depletion. 

The higher magnification in the top view image b) shows magnesium oxide and pores distributed over the surface 

of the sample. With permission from Elsevier [77]. 

The corrosion propagation patterns of 304L and Kanthal® APMT in chloride melt after 168 h, and 1000 h 

are schematically illustrated in Figure 5.2, Path B (Case V). No oxide scale was formed; instead, cavities 

and environmentally induced precipitates were formed, Figure 5.2, (Case VI). 

It is important to bear in mind the crucial effect that humidity (as an impurity) has on the alloys. Previous 

publications have identified water as an impurity that has the greatest acceleration effect on stainless steel 

corrosion [91, 119-121]. Despite the use of an additional drying step for the chloride salts in inert gas before 

exposure, the influence of residual humidity was significant. However, as discussed in Chapter 3.3, 

controlling the humidity is a significant cost factor for CSP plants, wherein thousands of tons of salt are 

required for the TES tanks. 

As mentioned above, the XRD spectra of Kanthal® APMT revealed the presence of a molybdenum-rich 

intermetallic phase, in addition to MgAl2O4. EDX cross-section spot analysis confirmed the presence of 

alumina particles on the top surface of the sample [Figure 5.9 (a, b)]. A bright Z-contrast in the subsurface 

region was also observed [Figure 5.9 (b)]. Interestingly this bright Z-contrast region was due to 

molybdenum enrichment. This enrichment was sufficient to stabilise the Laves-phase precipitates. 

Detailed thermodynamic calculations regarding the stability of the Laves phase are provided in Paper I (b), 

Section D. The thermodynamic calculations confirm the presence of a two-phase regime at 800°C, 

comprising BCC and C14 Laves phase with the approximate composition of (Fe0.75Cr0.25)2Mo deduced for 

the latter. 

After 168 h of exposure, the Kanthal® APMT had not yet suffered from an internal attack. However, after 

500 h, the chloride melt managed to attack the alloy and change its integrity by selectively leaching 

aluminium, creating a cavity network to a depth of 280 µm.  

Figure 5.9 (c-e) shows that only fragments of alumina remained at the surface. In addition, a pattern of 

pores was detected at the alloy surface. The line-scan in Figure 5.9 (h) shows the deep depletion of the 

aluminium in a cross-sectional analysis of the attacked sample. Similar to what was observed for 304L, the 

cavities were filled with MgO and traces of chlorides. Aluminium leached most efficiently through the 

cavity network, leaving a molybdenum-rich Laves-phase rim around several individual cavities. After 

500 h, these Laves-phase rims around cavities were measured at the minimum distance of ~100 µm from 
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the metal/salt interface. In conclusion, the Laves-phase precipitates appeared transiently during the overall 

leaching process. It was observed that they had already disappeared from the upper region of the sample, 

indicating delayed chromium leaching from the said phase. 

As shown in Figure 5.3 (d), the overall mass loss for Kanthal APMT was lower than that for 304L. This 

difference in mass loss between the two alloys can be attributed to the lower degree of chromium leaching 

found for Kanthal APMT. However, Kanthal APMT suffered from a deeper internal attack which 

compromised the integrity of the alloy. Gomez-Vidal et al. have studied the corrosion performance of a 

pre-oxidised Kanthal APMT in contact with the chloride melt and shown that this procedure did not result 

in Laves-phase precipitates [44]. 

 

Figure 5.9 Cross-section of Kanthal® APMT after exposure to molten chlorides at 800 °C for: a) 168 h, and c) 500 

h, and the corresponding EDX elemental maps b) and g, h). The aluminium and chromium elemental maps in h) are 

extended with line-scans to highlight the aluminium depletion and the lower degree of chromium leaching. Higher 

magnification of the top-view image e), showing how magnesium oxide and pores are distributed over the surface. 

The higher magnification cross-section in d) shows a fragment of the alumina scale remaining at the surface. f) 

Laves-phase rims around the voids. Reproduced with permission from Elsevier [77].   
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5.2 Ranking the Corrosion Performance of Five Alumina-Forming Alloys in Carbonate 

Melt at 800 °C 

As discussed earlier [Paper I (a and b)], Kanthal® APMT showed potential for applications in contact with 

carbonate melt, particularly for the next-generation CSP plants. Therefore, it is essential to address the 

following questions: Will all alumina-forming alloys show the same good corrosion behaviour? Do the 

different chemical compositions of the alloys play a role in their resistance to corrosion by the carbonate 

melt? Moreover, there is a need to monitor the interesting α/γ-LiAlO2 transition. 

In this context, referring to Paper II, the scale formation and phase transition for five alumina-forming 

alloys in contact with carbonate melt were investigated, and the α/γ–LiAlO2 phase fractions were assessed 

using the XRD Rietveld refinement. Cross-sectional and top-view electron microscopy images were 

combined with these results. The mass change values were calculated and used as complementary data. As 

cleaning the samples of salt residues is challenging, these mass change values are difficult to acquire. 

Combining the results of all of these analyses generates a comprehensive picture of the corrosion behaviour 

of the selected alloys. 

This study focuses on the oxide scale transformation mechanism and the α/γ-LiAlO2 phase transition. 

It is important to note that the concept adopted here was introduced by Evans et al. in 1978, who proposed 

the stress-assisted formation concept for a duplex oxide scale; this duplex oxide scale consisted of tetragonal 

and monoclinic zirconia polymorphs on zircaloy-1 [122]. Following the same principle, the growth of both 

α-LiAlO2 and γ-LiAlO2 at 800°C was discussed in this licentiate study. Evans et al. reported that, upon 

oxidation of zircaloy under compressive stress, a stress-stabilised tetragonal zirconia morphology emerged 

at the metal/oxide interface, which subsequently  relaxed to a monoclinic lattice. As shown in the 

Temperature–Pressure phase diagram in Figure 5.10 [123], tetragonal ZrO2 is allowed to form at a 

substantially lower temperature than its ambient pressure phase transition point, depending on the 

magnitude of the compressive stress. To date, several research studies have investigated and predicted a 

limiting scale thickness (also known as "steady-state thickness") [124, 125]. Such detailed investigations 

are crucial given their technological importance in various nuclear power applications [124]. 

Figure 5.10 Pressure-Temperature phase diagram of zirconia. Source: Bouvier, P., et al, 2000. Reproduced with permission 

from Physical review. B [123]. https://doi.org/10.1103/PhysRevB.62.8731. 

https://doi.org/10.1103/PhysRevB.62.8731
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In the study of Evans et al. [122], the emphasis was on the universality of their concept of a stress-stabilised 

inner oxide scale underneath another stress-relieved polymorph. In our case, the stress stabilisation could 

contribute to the otherwise thermodynamically unstable α-LiAlO2 crystal structure at 800°C. We assumed 

a limiting steady-state thickness of the α-LiAlO2 inner oxide layer based on our belief that the α→γ-LiAlO2 

transformation is one of the examples proposed by Evans et al. [122] It is worth mentioning that the density 

of γ-LiAlO2 is 25% lower than that of α-LiAlO2. In Figure 5.11, the crystal structures of α- and γ-LiAlO2 

are visualised. For α-LiAlO2, the layered packing of aluminium and lithium ion polyhedrons is highlighted 

along the c-axis. In contrast, the γ-LiAlO2 crystal structure consists of alternating Li/Al tetrahedrons [126]. 

 

 
Figure 5.11  Three-dimensional polyhedral visualisation of a) α-LiAlO2 and b) γ-LiAlO2 crystal [126, 127]. 

Reproduced with permission from Elsevier [128]. 

Mass change measurements are used to evaluate sample corrosion. However, as illustrated in Chapter 4.3, 

the mass change data must be interpreted carefully due to the loss of soluble corrosion products upon sample 

rinsing. Nonetheless, mass change data, combined with other observations, provide insights into scale 

formation and growth.  

It is clear from Figure 5.12, that all the five Fe(Ni)CrAl alloys have somewhat low mass gain values. After 

1000 h of exposure, Nikrothal® PM58 obtained the highest mass gain. Lower but similar mass gains were 

seen in Kanthal® APMT and Kanthal® AF, and the lowest mass gain was obtained for Kanthal® EF 101. 

Kanthal® EF 100, in contrast, showed an initial mass loss.  
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Figure 5.12 Overall mass change behaviour of the selected alumina forming alloys immersed in alkali carbonate 

at 800 °C as a function of exposure time. Reproduced with permission from Elsevier [128]. 

 

Table 5.5 depicts and utilises the mass change values, and α-LiAlO2 scale thickness measurements obtained 

from microscopy investigations. The obtained values are compared to phase fractions determined by XRD 

Rietveld analysis. 

The corrosion performance of the selected alumina-forming alloys can be differentiated into two behaviour 

categories. The first behaviour was referred to as the "normal" LiAlO2 formation without additional cations, 

e.g., Fe or Cr ions. Transformation of an inner α-LiAlO2 scale growth into a dominating outwards growth 

of γ-LiAlO2 crystals has been documented. The second behaviour was referred to as the "deviating" 

formation and transformation of LiAlO2, where the oxidation of Fe(Ni)CrAl alloys involved transient alkali 

oxide formation and pegging incorporating ternary cationic species. 

5.2.1 "Normal" Formation and Transformation of LiAlO2 

This section will present, discuss and summarise the main findings regarding the corrosion behaviour of 

FeCrAl alloys that have "normal" formation and transformation of LiAlO2. As stated earlier, besides the 

aluminium, no other cationic species from the alloy were found as scale components. Basically, the LiAlO2 

formed was as pure as in the synthesis route of Lehmann and Hasselbarth [129]. Since the results showed 

very similar corrosion behaviour among the three "normal" behaving alloys, XRD spectra of only one 

"normal" behaving alloy are presented. These alloys were Kanthal® APMT, Kanthal® AF and Kanthal® EF 

101.  

Figure 5.13 shows the XRD analysis of Kanthal® EF 101 exposed to carbonate melt at 800 °C. Short-term 

exposure (72 h and 168 h) revealed that only α-LiAlO2 was formed. With longer exposure durations (500 h 
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and 1000 h), signals for the γ-LiAlO2 phase appeared. The α/γ LiAlO2 phase ratios were measured and 

quantified by Rietveld analysis, and are summarised in Table 5.5.  

 

Figure 5.13 XRD patterns of Kanthal® EF 101 after exposure to alkali carbonates in CO2 at 800 °C for different 

exposure times. Reproduced with permission from Elsevier [128]. 

Key top-view images of Kanthal® APMT, Kanthal® AF, and Kanthal® EF 101 exposed to ternary carbonate 

melt over time are plotted in Figure 5.14. The three "normally" behaving alloys showed very similar 

features, where small α-LiAlO2 crystals entirely covered the surface after short term exposures (72 h and 

168 h), Case I (Figure 5.1). The larger prismatic γ-LiAlO2 crystals emerged after longer exposure times, 

such as 500 h and 1000 h, Case II (Figure 5.1)  
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Figure 5.14 Top view electron microscopy images for the three alloys with a "normal” LiAlO2 formation behaviour 

in the carbonate melt for different exposure times. The large crystals are γ- LiAlO2, small crystals are attributed to 

α- LiAlO2. Reproduced with permission from Elsevier [128]. 

Investigations of cross-sectional samples of Kanthal® EF101 showed a distinct double-layer structure 

composed of a compact inner α-LiAlO2 scale and outer γ-LiAlO2 crystals (see Paper II). The slight variance 

in the Z-contrast between the inner and outer layers corresponds to the density difference between the α- 

and γ-LiAlO2. Since both forms of LiAlO2 have the same atomic composition, the backscattered electrons 

will have a higher probability of scattering back into the detector when interacting with a more densely 

packed structure [103]. 

The average scale thicknesses of the "normal" behaving LiAlO2-forming alloys were measured (Table 5.5). 

It is clear that Kanthal® APMT has the thickest α-LiAlO2 scale among the "normal" behaving alloys and 

that its thickness increases over time. 

In the scenario with "normal" formation of LiAlO2, the measured mass gain ∆m(measured) represents the 

oxygen and lithium uptake into the scale. To calculate the amount of LiAlO2 substance (n), the mass gain 

measured for the contribution of aluminium from the alloy (41% of the molar mass MLiAlO2) is corrected, 

and then divided by the total MLiAlO2, as in Eq. (5.1). A homogeneous scale is formed at the surface with 

the α-LiAlO2 phase exhibiting the "normal" formation behaviour with a mean thickness X(α). An 

approximate total mass of α-LiAlO2 and, consequently, an amount of substance, n(α), can be determined 

by multiplying the mean thickness X(α) by the α-LiAlO2 theoretical density, which is derived from the 

crystallographic database [126], and the sample area.  

𝑛 (𝐿𝑖𝐴𝑙𝑂2 𝑡𝑜𝑡𝑎𝑙) =  𝑛(𝛼) + 𝑛(𝛾) =  
∆𝑚(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) ∙ 1.69

𝑀(𝐿𝑖𝐴𝑙𝑂2)
                 (5.1) 
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By combining the gravimetric and microscopy data, the α/γ-phase ratio was calculated for each sample in 

the "normal" LiAlO2 formation scenario using Eq. (5.1). Such calculated ratios can quantify the contribution 

of the α-LiAlO2 scale to the total mass gain. In addition, quantification of the α/γ-LiAlO2 ratios was 

performed using the Rietveld refinement for the XRD patterns of each sample. These two methods of 

calculating α/γ-LiAlO2 ratios were compared, to ensure confidence in the findings and more-accurate 

assumptions. Such quantification provides information about the evolution of the γ-LiAlO2 coverage of the 

sample surfaces. Of note, the scale thickness and mass gain used for the calculations were derived from two 

different coupons; however, they were exposed simultaneously under the same conditions. 

Figure 5.15 depicts the evolution of the α- and γ-LiAlO2 phases over time, as represented by the Rietveld-

refinement α/γ-phase ratio and the scale thickness. It is noteworthy that the Rietveld-derived α/γ-phase 

ratio, decreases after 500 h in the cases of Kanthal® APMT and Kanthal® EF101. In contrast, the average 

thickness continues to increase steadily. Despite the steady increase in the average thickness, such 

deceleration in terms of fraction percentages can be explained by the top-view images in Figure 5.14. 

Although individual γ-LiAlO2 crystallites continue to grow significantly over time, the number of 

nucleation sites does not increase concomitantly; this may have influenced the slope of the Rietveld phase 

fraction curve shown in Figure 5.15. The rapid increases in the size and phase fraction of γ-LiAlO2 might 

have led to the depletion of Al in the alloy. Therefore, all the 1000 h exposed samples underwent a line-

scan analysis; however, the results revealed the invalidity of this assumption. Furthermore, growth of the 

α-LiAlO2 scale was found to decelerate over time. 
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Table 5.5 Mean scale thicknesses for α- and γ-LiAlO2, mass change Δm, gravimetrically and microscopically derived 

α/γ-phase ratio (calc. Eq.5.1) and Rietveld derived phase ratios (α to γ % Rietveld). The Table's n.a. (not available) 

data is attributable to duplicate sample loss in the repeated experiment due to alumina crucible breakdown during 

cooling. 

 

Exposure Time  Δm (mg/cm2) X measured (µm) α to γ % calc. α to γ % Rietveld 

Kanthal® APMT 

72 h α 
0.11±0.008 

0.30 (Max 0.6) 97 100 

γ - 3 0 

168 h α 
0.19±n.a 

0.75 (Max 2.4) 77 100 

γ - 23 0 

500 h α 
0.19±0.002 

0.95 (Max 3.2) 96 63.9 ± 0.9 

γ 1.60 (Max 2.3) 4 36.1± 0.9 

1000 h α 
0.32±0.06 

1.80 (Max 3.2) 94 78.1 ± 1.1 

γ 5.2 (Max 8.8) 6 21.9± 1.1 

Kanthal® AF 

72 h α 
0.10±0.01 

0.45 (Max 0.7) 94 100 

γ - 6 0 

168 h α 
0.13±0.02 

0.5 (Max 0.7) 66 85.5±2.5 

γ 0.42 (Max 0.6) 34 14.5±1.9 

500 h α 
0.21±0.01 

0.6 (Max 0.7) 48 70±1 

γ 0.85 (Max 4.4) 52 30±1 

1000 h α 
0.23±0.13 

1.13 (Max 1.8) 34 9.8±2.5 

γ 3.0 (Max4.3) 66 90.2±2.4 

Kanthal® EF 101 

72 h 
α 

0.05±0.01 
0.45 (Max 1.2)  100 

γ -  0 

168 h 
α 

0.12±n.a 
0.47 (Max 0.6) 76 64±0.9 

γ 0.75 (Max 1.25) 24 36±0.9 

500 h 
α 

0.24±0.13 
0.52 (Max 0.7) 27 18±5 

γ 1.4 (Max 2.7) 73 82±5 

1000 h 
α 

0.23±n.a 
0.6 (Max 1.1) 51 20.2±3.8 

γ 1.7 (Max 3.5) 49 79.8±3.3 
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Figure 5.15 Thickness of α- and γ-LiAlO2 for the four ferritic FeCrAl alloys and the corresponding results of the 

Rietveld analysis, Yellow column represents LiFeO2 cf. section 5.2.2. Reproduced with permission from Elsevier 

[128]. 

To sum up “normal behaving alloy section” in Paper II, Kanthal® AF, Kanthal® APMT and Kanthal® 

EF101 alloys showed a "normal" LiAlO2 formation behaviour. Minor deviations were observed with respect 

to scale thickness, crystal size, and surface roughness among the tested alloys. After 72 h of exposure to 

alkali carbonates at 800°C, a homogeneous covering of α-LiAlO2 scale was formed, which protected against 

the internal oxidation and carburisation of the bulk alloy. 

It is worth noting that α-LiAlO2 is not thermodynamically favoured at 800°C C [114]. This raises the 

question as to why the α-LiAlO2 scale is present at this temperature and grows with time. For this, it is 

essential to recall the oxidation mechanism proposed by Evans et al. for phase stabilisation under 

compressive growth stress [122]. Since α-LiAlO2 is significantly denser than γ-LiAlO2, the growing α-

LiAlO2 scale can accommodate higher numbers of oxygen and lithium ions in the same volume compared 

to γ-LiAlO2, which results in absorbing growth stresses. In terms of corrosion, α-LiAlO2 is the preferential 

crystal morphology because it forms a dense and protective scale that maintains a slow oxidation process. 

In the present study, a signal for undesirable γ-LiAlO2 morphology was detected in the XRD patterns after 

168 h for all the ferritic alumina-forming alloys, in conjugation with the appearance of larger-faceted 

crystallites at the surface. The γ-LiAlO2 crystallites are free-standing at the melt/oxide interphase and do 

not experience compressive growth stresses.  

Figure 5.15 shows that the thicknesses of α- and γ-LiAlO2 layers increase over time. At an earlier corrosion 

stage, α-LiAlO2 forms and grows slowly, after which the γ-LiAlO2 predominates. As discussed above, the 
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formation and growth of α-LiAlO2 rely on the presence of compressive stresses. Therefore, a steady-state 

behaviour of the inner scale is expected to be reached. The stress relaxation defines the limiting inner α-

scale thickness into γ-LiAlO2 modification at the gas/oxide interface. While the limiting α-scale thickness 

had not yet been reached in the present study, the rate of scale growth had already declined significantly 

after 1000 h, while the γ-crystallites kept on growing. The Rietveld refinement also confirmed increasing 

surface coverage by γ-LiAlO2 over time. 

According to Ribeiro et al. [130], the steady-state thickness of the α-LiAlO2 layer appears to be temperature-

dependent. Since α-LiAlO2 is thermodynamically favourable at temperatures below 750 °C, γ-LiAlO2 

nucleation is unlikely to occur. Thus, it can be concluded that the formation of γ-LiAlO2 results in limitation 

of the alloy lifetime in two ways. First, the absence of the protective α-LiAlO2 scale leaves the alloy surface 

vulnerable to attacks by various corrosive species. Second, the rapid growth of γ-LiAlO2 accelerates Al 

depletion from the bulk alloy and, subsequently, compromises the formation of a protective α-LiAlO2 scale.  

5.2.2 "Deviating" Formation and Transformation of LiAlO2 

Unlike the Kanthal® AF, Kanthal® APMT and Kanthal® EF101 alloys, the corrosive behaviour of the 

Kanthal® EF100 and Nikrothal® PM58 alloys do not follow the "normal" LiAlO2 formation pattern. The so-

called "deviating" formation and transformation behaviour is particularly noticeable after short-term 

exposure. For instance, the Kanthal® EF100 alloy surface was entirely covered with LiFeO2 crystals after 

72 [Figure 5.16 (c)], as confirmed by XRD analysis (see Paper II).  Such "deviating" behaviour, however, 

does not seem to predominate with longer exposure times. In the case of Kanthal® EF100, the LiFeO2 

crystals covering the alloy surface disappeared after 168 h of exposure. This is likely due to LiFeO2 

dissolution into the carbonate melt, as depicted in Figure 5.16 (d) and Figure 5.16 (g).  

This observation matches the observed mass loss demonstrated in Figure 5.12. Upon the dissolution of 

LiFeO2, small crystals of α-LiAlO2 start to grow. Furthermore, the growth pattern of γ-LiAlO2 crystals was 

observed to follow the "normal" formation behaviour after exposures longer than 500 h and 1000 h. 

Of note, calculation of the α/γ-LiAlO2 phase ratio using the coupled gravimetric/microscopic approach via 

Eq. (5.1) was not applicable due to the observed mass loss by the dissolution of the initially formed LiFeO2. 

Therefore, Rietveld refinement of the XRD patterns was employed to obtain the α/γ-LiAlO2 phase ratios 

after exposures for 168 h, 500 h, and 1000 h. Figure 5.15demonstrates the obtained Rietveld-derived data 

and the mean scale thicknesses. Based on these observations, Kanthal® EF 100 alloy is classified as a 

"normal" behaving-LiAlO2 forming alloy, after an initial transient "deviating" state. The long-term 

behaviour is controlled by γ-LiAlO2 crystallite nucleation on the slow-growing protective α-LiAlO2 scale. 
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Figure 5.16 Top-view of Kanthal® EF 100 exposed to alkali carbonate melt at 800 ºC, a, b) Cross-section after 

72 h. Top-view image of c) 72 h, LiFeO2 covers the surface, d)168 h, only α-LiAlO2 covers the surface, e) 500 h, 

γ-LiAlO2 crystallites appear, f)1000 h, γ-LiAlO2 crystallites size increased. Cross-section after g) 168 h, and h) 

1000 h. Reproduced with permission from Elsevier [128]. 

A rather different “deviating” behaviour was observed for Nikrothal® PM58. Although α-LiAlO2 is 

commonly formed during exposures at 750ºC [131], the formation of Li(Cr,Al)O2 (instead of the protective 

α-LiAlO2 scale) was observed with the austenitic alloy Nikrothal® PM58 at 800°C. Nikrothal® PM58 

exposed to alkali carbonate melt for 1000 h or  longer develops pegs that are filled mainly with Li(Cr,Al)O2 

in the sub-oxide zone, as demonstrated by the XRD (see Paper II) and cross-sectional microscopy analyses 

presented in Figure 5.17. Some fractions of aluminium-enriched scale were observed, [see Figure 5.17 (d-

e)].  Point analysis of the surface, depicted in [Figure 5.17 (c-e)], demonstrated the presence of nickel and 

iron particles at the oxide/melt interface. These transported or overgrown alloy particles can be leached into 

the alkali carbonate melt. In addition, we noted an aluminium-depletion zone at a depth of approximately 

14 µm in the sub-oxide region of the alloy. The aluminium content observed beneath the oxide layer was 

lower than the nominal composition by 1.2 wt% [Figure 5.17 (f)]. 

To summarise these results, the two alumina-forming alloys investigated in this study, namely Kanthal® 

EF100 and Nikrothal® PM58, were found to follow a "deviating" LiAlO2 scale evolution.  

In the case of Kanthal® EF100, the alloy adopts an initial "deviating" behaviour, forming external lithium 

ferrite (LiFeO2) crystallites after 72 h at 800°C. For longer exposure times, a protective α-LiAlO2 scale is 

formed, and thereafter the α→γ-LiAlO2 transformation occurs, as described in Section 5.2.1. These findings 

are very similar to the observations made by Asokan et al. when comparing the oxidation behaviour of 

Kanthal®  EF100 and Kanthal® EF101 in dry air [132]. Despite their similar chemical compositions, the Si 

contents of these alloys are significantly different. In the study of Asokan et al., Kanthal® EF101 grew an 

aluminium oxide scale in dry air, whereas Kanthal® EF100 rapidly grew iron oxide [132].  
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Si plays a role in forming the protective alumina scale, which possibly indicates a so-called 3rd element 

effect.  

In this work, when Kanthal® EF101 was in contact with the carbonate melt, the 3rd element effect of Si 

contributed to the formation of the protective α-LiAlO2. In contrast, Kanthal® EF100, which lacks the Si 

content, rapidly grows a covering LiFeO2 scale. After reaching a sufficient thickness (~8.0 µm after 72 h), 

the oxygen and lithium activities are low enough to nucleate a slow-growing LiAlO2 at the metal/scale 

interface, thereby decreasing the scale growth significantly. LiFeO2 completely dissolves into the melt 

before 168 h, revealing a pure α-LiAlO2 scale. This LiAlO2 undergoes further α→γ-transformation, as 

described in the section on "normal" LiAlO2 formation. 

Nikrothal® PM58 exhibits a unique "deviating" behaviour that differs from those of the FeCrAl alloys 

studied. Being an austenitic alloy, the diffusion of aluminium towards the metal/scale interface is slower 

than is the case for the ferritic alloys [133]. The slower aluminium diffusion process is evident in Figure 

5.17 (f) in the suboxide region. Even after exposure to alkali carbonates at 800°C, a covering α-LiAlO2 

scale failed to form; this is attributed to the fact that a steady-state supply of aluminium to the metal/scale 

interface is a prerequisite for maintaining an intact α-LiAlO2 scale. Temperature plays a critical role, since 

the findings obtained at 800°C are strongly discrepant with the results of an earlier study performed in the 

same laboratory at 750°C, where Nikrothal® PM58 formed a slow-growing, protective α-LiAlO2 scale that 

was sustained for at least 740 h [131]. 

This observation strongly agrees with the temperature-dependence of the LiAlO2 phase transition studied 

by Danek et al. [114], where the lower temperature limit for γ-LiAlO2 formation was 750°C.  

 

Figure 5.17 Nikrothal® PM58 exposed to alkali carbonate melt at 800ºC. Cross-section after a)1000 h, visualised 

with SEM contrast; and b) peg formation after 1000 h, visualised with back-scatter contrast. Top-view image after 

exposure for: c) 72 h, with Li(Cr,Al)O2 covering the surface; d) 500 h, showing the presence of nickel- and iron-

rich particles; and e) 1000 h, showing Al-enriched scale fractions, and f) Line-scan for the sub-oxide zone after 

1000 h. Reproduced with permission from Elsevier [128]. 
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6 Conclusions and Outlook 
 

6.1. Comparative study of a FeNiCr vs FeCrAl Alloys in Different Salt Melts 

Evaluation of corrosion of the tested alloys showed that both the chromia- and alumina-forming alloys had 

acceptable resistance to corrosion by Solar Salt at 650 °C compared to the other eutectic salt exposures at 

higher temperatures. However, the stainless-steel alloy 316H showed gradual growth of the oxide scale and 

penetration of nitrogen into the alloy, forming chromium nitride precipitates, and thereby lowering the 

chromium activity in the alloy. Kanthal® APMT developed a thin protective NaAlO2scale. Despite the 

absence of an internal attack underneath the NaAlO2-scale, the alloy is considered to be susceptible to 

nitridation.  

The poorest corrosion behaviour among all the alloys tested in the three melts was observed for the 

stainless steel alloy 304L exposed to the alkali carbonate melt at 800°C. The chromia-forming 304L alloy 

suffered severe carburisation, whereby chromium carbide precipitates reached several hundreds of 

micrometres into the alloy, altering the chemistry and mechanical properties of the alloy. In strong contrast, 

Kanthal® APMT developed a protective α-LiAlO2 scale, and no internal carburisation was detected for at 

least 1000 h. Interestingly, a phase transition from α-LiAlO2 to γ-LiAlO2 oxide scale was observed after 

168 h of exposure to alkali carbonate melt. 

Relatively fast material degradation was detected after exposure to the eutectic chloride melt together with 

mass loss. Both 304L and Kanthal® APMT alloys suffered mass loss due to leaching of elements into the 

melt, resulting in cavities in the alloy microstructure that were filled with melt components. After 168 h, 

Kanthal® APMT formed a magnesium aluminate scale on the alloy surface, preventing leaching of metals 

into the melt. Nonetheless, after 500 h, the magnesium aluminate was degraded. Furthermore, Al has been 

selectively leached from the Kanthal APMT. On the other hand, chromium has been leached selectively 

from 304L. In the bulk of Kanthal® APMT, cavities formed due to the leaching of metals. Those cavities 

were filled with magnesium oxide and chloride, surrounded by a (Fe0.75Cr0.25)2Mo Laves phase. This 

indicates that molybdenum was leached much slower than chromium and aluminium. Laves-phase rims, 

rich in molybdenum and chromium, appeared to protect Kanthal® APMT against rapid chromium leaching 

compared to alloy 304L. This may explain the overall lower mass loss measured for Kanthal® APMT. 

In summary, and considering the potential risks, the alkali nitrate melt seems to be the best option so far; 

even though the nitrogen internally attacks the chromia-forming alloy, it is acceptably slow and predictable. 

6.2. Comparative Study of Five Alumina-Forming Alloys in Alkali Carbonate Melt 

Five alumina-forming alloys were investigated in contact with carbonate melt at 800°C for up to 1000 h 

under CO2. Based on their corrosion behaviour, the alloys were differentiated as exhibiting "normal" or 

"deviating" α-LiAlO2 formation and transformation. A "normal" α-LiAlO2 formation behaviour refers to the 

absence of additional cations in the process, e.g., Fe or Cr ions. On the other hand, does a "deviating" α-

LiAlO2 behaviour summarise all other possibilities of formation, when, e.g., initially a transient alkali oxide 

formation or pegging occurs incorporating ternary cationic species, such as iron and chromium ions. 

The "normal" α-LiAlO2-forming alloys had similar corrosion behaviour, exemplified by the formation of a 

thin, protective α-LiAlO2 scale. The thermodynamically stable γ-LiAlO2 nucleated on top of the α-LiAlO2 

scale forming large, non-protective crystals. Detrimental aluminium depletion from the alloys was not 

detected for at least 1000 h, until the experiment ended.  
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The investigated Kanthal® EF100 and Nikrothal® PM58 were classified as "deviating" LiAlO2 scale 

evolution alloys. However, Kanthal® EF100 exhibited only an initial "deviating" behaviour by forming an 

external lithium ferrite after 72 h at 800°C. Upon longer exposure, it followed the "normal" α→γ-LiAlO2 

transformation process. Lastly, and due to the austenitic structure of Nikrothal® PM58, aluminium diffusion 

from the alloy towards the alloy/melt interface was relatively slow, and the alloy did not grow the desirable 

α-LiAlO2 scale at 800°C. 

6.3. Outlook 

In this work, the corrosion assessment of the tested alloys depended only on the bare alloy behaviour when 

exposed to certain conditions without applying any corrosion mitigation methods. In future work, corrosion 

mitigation strategies will be adopted, such as pre-oxidation of the samples.  

Longer exposures will be conducted on the alumina forming alloys to evaluate better their corrosion 

resistance, in addition to studying the effect of pre-oxidation of samples. 

Chemical analysis for the salts residues that have been collected after exposures will be conducted using 

inductively coupled plasma optical emission spectroscopy  (ICP-OES). 

 

https://www.lucideon.com/testing-characterization/techniques/inductively-coupled-plasma-optical-emission-spectroscopy-icp-oes
https://www.lucideon.com/testing-characterization/techniques/inductively-coupled-plasma-optical-emission-spectroscopy-icp-oes
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A B S T R A C T   

Increasing the operating temperature of molten salt-based concentrated solar power plants is of paramount 
importance to enable next-generation gas turbines and an overall increase in power conversion efficiency. The 
issue is how to mitigate the degradation of necessary metallic components in highly corrosive salt environments. 
In this study, three eutectic salt mixture candidates, nitrates, carbonates, and chlorides, are brought into contact 
with stainless steel (316H or 304L) and the FeCrAl alloy Kanthal® APMT. The post-exposure analysis is discussed 
in terms of the overall performance of each alloy as concerns mass change, scale growth, internal attack, and 
leaching. Significant reduction of corrosion is realised through the ability of Kanthal® APMT to form aluminium 
oxide species at the surface in contact with alkali nitrates and carbonates. On the other hand, aluminium is 
leached most efficiently in contact with chlorides, which causes a deeper attack on Kanthal® APMT than alloy 
304L. 

The overall conclusion is that only by employing a holistic perspective on all individual measurements can a 
long-term performance estimation be formulated.   

1. Introduction 

Concentrated solar power (CSP) is an appealing energy source uti
lising the most abundant energy source, the sun (Caitlin et al., 2019). 
CSP has evolved into a mature technology over the last decade and 
contributes to the fossil-free electricity production blend used in many 
countries. Low-cost thermal energy storage (TES), in other applications 
also referred to as heat transfer fluid (HTF), offers an extension for 
electrical power supply beyond sunset in CSP plants (Sarvghad et al., 
2018a; Walczak et al., 2018; Mehos et al., 2017). To enable greater ef
ficiency in energy conversion for the next generation of CSP technology, 
it is necessary to overcome the current temperature limit of 560 ◦C 
(Steinmann, 2015), which is the decomposition temperature of the 
currently used eutectic salt mixture of alkali nitrates, ‘Solar Salt’, which 
comprises sodium and potassium nitrates. Redesigning CSP plants for 
the Brayton cycle technology and utilising supercritical carbon dioxide 
instead of steam for the gas turbines, requires a minimum operating 
temperature of 750 ◦C for the TES (IEA, 2010; Zhao et al., 2017; 
Ellingham, 1944; Yin et al., 2019; Ho et al., 2016). Increasing the tem
perature of salt melts also increases their corrosivity towards metallic 
materials. Significant improvement in the compatibility of container 

material (tanks/pipes/heat exchangers) and the TES medium is there
fore necessary (Sarvghad et al., 2018b; Mehos et al., 2017). 

Considerable efforts have been dedicated to characterising the 
thermophysical properties of different types of TES media (Sarvghad 
et al., 2018a). While Solar Salt is already widely used, alkali carbonates 
or chlorides have been identified as TES candidates for the next gener
ation CSP. However, each of these candidates differs in abundance, 
thermal stability, liquidus range, price, and corrosivity (Sarvghad et al., 
2018a; Walczak et al., 2018; Mehos et al., 2017). Corrosivity is an 
apparent obstacle to enabling the first Brayton cycle operated CSP 
(Mehos et al., 2017). The corrosion of the materials in contact with the 
storage medium can lead to a catastrophic failure of an entire CSP plant 
due to material loss or embrittlement. 

Typical high-temperature corrosion phenomena that have been re
ported in TES tanks are localised corrosion and mechanically assisted 
corrosion (Walczak et al., 2018). The most common alloys and some 
recently considered grades of carbon steel, stainless steel, and nickel- 
based alloys have been evaluated using gravimetric, metallographic, 
and electrochemical techniques (Goods et al., 1994). Carbon and low- 
alloy steels were among the first candidates considered for TES com
ponents that come in contact with molten salts. In the 1990s, Sandia 
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National Laboratories published a report about the corrosion perfor
mance of the low-carbon steel A36, a common type of steel used in 
construction that come in contact with commercial Solar Salt in current 
CSP plants (Goods and Bradshaw, 2004). It was found that A36 was 
covered with a thin adherent oxide scale composed primarily of 
magnetite at 316 ◦C and over 7000 h of operation. It was concluded that 
the impurities found in the commercially available alkali nitrates had no 
significant effect on the corrosion behaviour of the alloy (Goods and 
Bradshaw, 2004). However, sensitivity to chloride impurities in the ni
trate melt has been found with the low-alloy steel A516 gr. 70. Instead of 
a protective magnetite layer, a thick hematite scale forms on A516 and 
spalls frequently, causing rapid metal thickness loss and even local 
pitting attack (Goods et al., 1994; Bradshaw and Clift, 2010; Liu et al., 
2016). The distinction between corrosion testing under static and flow 
conditions should also be emphasised. Tests in flowing TES media can 
easily increase corrosion rates by a factor of two (Goods et al., 1994; 
Bradshaw and Clift, 2010; Liu et al., 2016). 

Alloy T22, which is another low-alloy steel, has been selected for use 
in CSP plants after showing good corrosion behaviour at 390 ◦C in Solar 
Salt. However, at 550 ◦C and after 800 h, the alloy was reported to 
exhibit ‘catastrophic’ behaviour due to a severe intergranular attack 
(Goods et al., 1994). Generally, carbon or low-alloy steels, e.g., alloy 
A516 gr. 70 or T22, respectively, are recommended for moderate- and 
low-temperature service, considering the temperature range and impu
rities in Solar Salt (Goods et al., 1994). Grosu, Y. et al. investigated 
humidity and impurities effects on corrosion behaviour of three alloys, 
carbon steel A516.Gr70 and stainless steels 304 and 316, in contact with 
molten HitecXL salt. A516.Gr70 alloy suffered most from humidity, 
while 304 and 316 alloys showed good corrosion resistance under 
humid conditions. Despite the very low concentrations of impurities, e. 
g., Mg, Zn, and Cu in HitecXL salt, it has been reported that the impu
rities might lower the corrosion resistance of the studied alloys (Grosu 
et al., 2018). Li, H. et al. have also studied the effect of chloride impurity 
on the corrosion performance of stainless steels 304 and 316L exposed to 
Solar Salt. Results have shown that the more the chloride content, the 
lower the corrosion resistance and adherence of the oxide layer for both 
alloys. Also, stainless steel 316L has shown better corrosion resistance 
than 304 alloy (Li et al., 2021). 

Stepwise enhancing the chromium content, Cheng et al. reported 
that the corrosion resistance of steel exposed to molten 
LiNO3–NaNO3–KNO3 at 550 ◦C up to 1000 h under nitrogen could be 
drastically improved by the addition of chromium (9 wt%) (Cheng et al., 
2015). An outer LiFeO2 and inner (Fe,Cr)3O4 scale have been identified 
(Cheng et al., 2015). 

Stainless steels have been tested for higher temperatures and reli
ability. Most published studies describe the corrosion of stainless steels 
in contact with Solar Salt. It has generally been concluded that: i) the 
corrosion resistance of stainless steel alloys is better than that of carbon 
steels; and ii) corrosion increases with an increase in temperature and 
exposure time (Goods et al., 1994). 

The main corrosion products found on stainless steels in contact with 
Solar Salt are FeCrO4, Fe2O3, and a less dense and less protective outer 
scale of NaFeO2. Of these products, the formation of Fe-Cr spinels at the 
alloy-oxide interface renders the rate-limiting step of the corrosion 
process (Walczak et al., 2018; Bradshaw and Goods, 2001; Fernández 
et al., 2015b). It has generally been reported that corrosion resistance 
increases with increasing chromium content in stainless-steel alloys 
(Fernández et al., 2012; Kruizenga and Gill, 2014); however, it is still 
inconclusive how the actual amount of chromium affects the composi
tion of an oxide layer. Furthermore, other factors must be considered, 
such as the nickel and molybdenum content in the alloy chemical 
composition. However, the addition of molybdenum to alloys exposed to 
Solar Salt has not shown any effect on the corrosion of stainless-steel 
grades AISI 316/316L, 317L, and OC-4 with respect to Mo-free alloys 
(Fernández et al., 2014; Sarvghad et al., 2018a). This paper presents our 
findings for molybdenum effect on high-temperature corrosion caused 

by molten chlorides. 
Another alloying element that has been found to improve corrosion 

resistance of alloys in chlorides melt by forming a protective oxide scale 
is aluminium. Fernandez et al., have conducted a comparative study of 
alumina-forming, chromia-forming stainless steels, and a low-Cr steel 
alloy. OC-4, which is an alumina-forming austenitic (AFA) alloy, showed 
better corrosion resistance in Solar Salt at 390 ◦C than the 304 stainless 
steel and T22 steel (Fernández et al., 2014). Also, the relatively high 
amount of Nb and Ni in OC-4 might have improved the stability of the 
oxide scale, which led to better corrosion resistance (Yamamoto et al., 
2008). Meißner, T. et al. have studied corrosion mitigation by employing 
three different coatings, a pure Ni, a Cr and a combined Ni and Cr 
coating, on ferritic-martensitic X20CrMoV12-1 steel. The coated sam
ples has been immersed in molten Solar Salt and tested isothermally at 
600 ◦C for up to 1000 h. Results have revealed that the combined Ni and 
Cr coating has significantly improved the corrosion resistance of the 
investigated alloy (Meißner et al., 2021). 

Eutectic carbonate and chloride salts have been selected as feasible 
candidates for higher TES operating temperatures. The corrosion per
formance of different alloys in contact with those salts has been inves
tigated. Chromia-forming alloys, such as AISI 310 and HR3C, have been 
tested in Li2CO3–K2CO3 at 650 ◦C (Ni et al., 2011) and 
Li2CO3–Na2CO3–K2CO3 at 700 ◦C, respectively (de Miguel et al., 2016). 
These temperatures are still rather low. Results have shown degradation 
of the protective oxide, which can be explained by the lithiation process. 
This process has been described as the ‘successive formation of different 
oxides and lithiated phases’ (Selman, 1999). In this process, internal 
stresses may develop leading to crack formation that could contribute to 
mixed potential several oxidation and lithiation reactions (Tzvetkoff and 
Kolchakov, 2004). The corrosion behaviour of alloy 310 in a molten 
carbonate fuel cell (MCFC) has been studied at temperatures <600 ◦C 
and >675 ◦C, and no passive behaviour caused by the formation of 
porous LiFe5O8 has been reported (Frangini and Loreti, 2006). The main 
corrosion products detected during the performance of alloy HR3C 
exposed to Li2CO3–Na2CO3–K2CO3 for 2000 h, were LiFeO2, LiCrO2, 
NiO, and FeCr2O4. These produced a chromium-rich layer at the metal/ 
oxide interface. Degradation was found to be enhanced by the formation 
of soluble chromates, such as K2CrO4 , in early stage of the exposure (de 
Miguel et al., 2016). These soluble chromates successively leach chro
mium from the passive scale and the alloy. 

Gomez-Vidal et al., have also reported unacceptably high corrosion 
rates for the stainless steels 310, 321, and 347 exposed to K2CO3-Na2CO3 
at 750 ◦C (Gomez-Vidal et al., 2016). The overall conclusions of previous 
studies on chromia-forming stainless steel alloys in carbonate salts have 
underlined the need to consider alternative alloys or coatings that can be 
implemented in the next generation of CSP plants. Another study con
ducted by Fernandez et al. aimed at evaluating the corrosion of AFA 
alloys; in the study, OC-4 and HR224 grades were exposed to 
Li2CO3–Na2CO3–K2CO3 at 650 ◦C for 1000 h (Fernández et al., 2019). 
Both alloys showed significantly better resistance to the corrosion attack 
of the salts than chromia-forming alloys (Fernández et al., 2019; Goods 
et al., 1994). This promising performance was attributed to the multi
layer scale structure formed; two layers were identified on OC-4 
composed of NiO, alumina (Al2O3), and hematite (Fe2O3). The oxida
tion process reached steady state through external oxidation. Alloy 
HR224, however, showed a more complex structure with three layers 
composed of NiO and two spinels (NiFe2O4 and CrFe2O4) that under
went external oxidation during the isothermal test (Fernández et al., 
2019). In a recent study, Prieto et al. designed and built an experimental 
pilot plant for CSP that operates at a temperature higher than 650 ◦C; 
molten carbonates were used as the HTF in this pilot. In This pilot plant 
investigated other parameters, aspects, and materials compatibility, 
along with evaluating the corrosion performance of different alloys. 
Results showed that stainless steel 347 had the poorest corrosion resis
tance, while Kanthal showed sufficient stability (Prieto et al., 2020). 

Eutectic chloride melts pose another potential group of candidates 
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for the TES medium due to their superior thermal stability. However, 
chlorides are highly corrosive at high temperature. The stainless steel 
AISI 316L has shown poor corrosion resistance, with rapid formation 
and spallation of corrosion products, when exposed to LiCl–KCl (Ravi 
Shankar et al., 2010). Comparative tests on a low-carbon stainless steel 
(X2CrNi18–9) and a titanium-stabilised high-carbon stainless steel 
(X6CrNiTi18–10) in LiCl–KCl–CsCl melt in the range of 400–600 ◦C for 
up to 27 h have been conducted. It has been revealed that low carbon 
steel suffered from faster intergranular attack than high carbon steel 
‘Chlorination–oxidation’ is the term used to describe this behaviour by 
emphasising the role of oxygen. Unlike stainless steel alloys, a Ni-based 
superalloy (CMSX-4) has been tested at 800 ◦C for 3 h and showed 
almost no signs of corrosion (Hofmeister et al., 2015). 

Gomez-Vidal and Tirawat have also studied the corrosion behaviour 
of the alloys AISI 310 and 347 in NaCl–LiCl at 650 ◦C and 700 ◦C. Alloy 
AISI 310 showed relatively good performance, almost as good as In800H 
at 650 ◦C for 800 h, unlike alloy 347. The authors explained this the 
difference in corrosion performance with the alloys’ respective nickel 
content (Gomez-Vidal and Tirawat, 2016). 

High operating temperature TES media are very aggressive to com
mon chromia-forming alloys. Recent studies have tested different 
alumina-forming (Fe-based or Ni-based) alloys (Fernández et al., 2019; 
Gomez-Vidal et al., 2017a). Industries processing aggressive chemicals 
at high-temperatures employed Ni-based alloys instead of stainless steels 
because of their superior resistance to pitting corrosion and crevice 
attack. Gomez-Vidal et al., have investigated corrosion mitigation by 
surface passivation of alumina-forming austenitic (AFA) and ferritic 
alloys (AFF) (Inconel 702, Haynes 224 and Kanthal® APMT) (Gomez- 
Vidal et al., 2017a). 

The AFA alloys showed promising performance against corrosion 
attack by MgCl2–KCl in oxygen-containing atmospheres for at least 185 
h. The pre-oxidised In702 covered with a relatively thick alumina scale 
has shown best performance (Gomez-Vidal et al., 2017b). 

Ding, W. and Bauer, T. have reviewed and summarised recent de
velopments in an attempt to utilise molten chlorides as HTF/TES and the 
inherent corrosion challenges faced by metallic components in contact 
with these salts. Some leading suggestions have been reported, e.g., i) 
salt purification in conjunction with corrosion mitigation methods; ii) 
the identification of new materials that can withstand such harsh envi
ronments (Ding and Bauer, 2021). 

In the present study, performance results and requirements for 
different eutectic melts at intermediate and high operation temperatures 
were carefully compared. The corrosion behaviour of alumina-forming 
Kanthal APMT and chromia-forming 304L and 316H was evaluated in 
alkali nitrates, carbonates, and chlorides. The carbonate and chloride 
salt mixtures were selected for their potential use in next generation CSP 
plants, whereas the nitrate mixture, Solar Salt, is currently used in CSPs 
and thus acts as a reference environment (Walczak et al., 2018; Mehos 
et al., 2017). The alloys were challenged at temperatures ~100 ◦C 
higher than the operating temperatures of the respective melts for 168 h, 
500 h, and 1000 h. Here, the aim is to determine the limiting conditions 
for conventional alloys facing catastrophic corrosion, pitting, and in
ternal attack causing embrittlement. 

2. Experiments 

We compared the corrosion results of a stainless steel, 304L or 316H, 
and one distinct AFF, Kanthal APMT, in three different eutectic melts. 
Melts were selected based on their potential use in commercial CSP 
plants. The three melts used were: a mixture of alkali nitrates known as 
Solar Salt (60 wt% NaNO3- 40 wt% KNO3), carbonates (32.1 wt% Li2CO3 
-33.4 wt% Na2CO3- 34.5 wt% K2CO3), and chlorides (64.41 wt% KCl- 
35.59% wt% MgCl2). The thermophysical properties of the melts can be 
found in other studies (Gomez-Vidal et al., 2017b; Li et al., 2014; 
Vignarooban et al., 2015; Ding et al., 2018a). 

2.1. Salt preparation 

Eutectic mixtures were produced from the following salts: NaNO3 
(Alfa Aesar 99.0%), KNO3 (Alfa Aesar 99.0%), Li2CO3 (VWR chemicals 
99.0%), Na2CO3 (EMSURE anhydrous, 99.9%), K2CO3 (ThermoFisher 
Scientific 99.8%), KCl (Alfa Aesar 99.0%), and MgCl2 (Alfa Aesar 
anhydrous 99.0%). 

The salt mixtures were prepared as follows: weighed and mixed to 
the proper ratio in 100 g batches, thoroughly ground using mortar and 
pestle, dried at 120 ◦C in a dry oven for at least 24 h, and finally stored in 
a desiccator cabinet until further use. Chloride salt mixtures were pro
duced via a purification process under Ar to reduce water content crucial 
for the corrosion experiment (Phillips et al., 2019; Gomez-Vidal et al., 
2017a; Ding and Bauer, 2021). 

2.2. Alloy preparation 

The nominal compositions of the substrate alloys are shown in 
Table 1. 

Metal coupons of initial measurements 15 × 15 × 2 mm were ground 
and finally polished to a mirror-like finish with a 1 µm diamond sus
pension. The polished samples were thoroughly cleaned and dried, then 
dipped into the salt mixture in alumina crucibles. 

2.3. Experimental setup 

Two setups were used in this study, and different conditions were 
investigated, as summarised in Table 2. The first setup, a horizontal 
silica tube furnace for partial immersion experiments was used for the 
exposures to Solar Salt. The exposures were performed isothermally at 
650 ± 5 ◦C in this setup, with a filtered air at a flow rate of 20 ml/min. 
The second setup used for complete immersion experiments was a top- 
loader furnace (model top 60 Nabertherm) purchased and redesigned 
in the workshop to comply with carbonate and chloride exposures in 
controlled gas environments. The exposures were performed isother
mally at 800 ± 5 ◦C, calibrated at the lowest point of the crucibles, with 
a gas (Ar or CO2) flow rate of 50 ml/min for each vessel. Each exposure 
was conducted twice. 

The main purpose of building the Nabertherm setup was as follows: i) 
ability to test six coupons in each vessel and providing duplicate sam
ples, with an overall of 12 samples tested at a time. ii) Ability to remove 
coupons directly from the melts; since an otherwise necessary washing 
procedure of the solidified melts changes the alloy surface chemistry. 
These samples are dedicated for cross-section analyses. iii) However, the 
duplicate samples underwent thorough washing for mass change mea
surements, as recommended in literature (Bradshaw and Clift, 2010; 
Gomez-Vidal et al., 2017a; Ding, W., 2019; Fähsing et al., 2018; Sol
eimani Dorcheh et al., 2016; Gomes et al., 2019; Palacios et al., 2020; 
Encinas-Sánchez et al., 2019). 

2.4. Sample characterisation 

Sample surfaces and cross sections were investigated. Unwashed 
samples were subjected to cross-section investigation. A thin salt film 
remained on each sample after the residual melt was poured off. Cross- 
sections of the exposed samples were prepared either by cold embedding 
in epoxy resin, hot mounting in bakelite, or by broad ion beam (BIB) 

Table 1 
Nominal alloy compositions.  

Alloy Fe Ni Cr Al Si Mn Mo Others 

316H balance 11.5 17 X  0.6  1.5 2.1 C 0.05 
304L balance 9.5 18.5 X  0.4  1.3 X C 0,02 
Kanthal® 

APMT 
balance X 21 5  0.7  0.4 3 Y; C 0,08  
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milling with a Leica TIC 3X instrument. 
Washed samples were weighed and characterised with scanning 

electron microscopy (SEM) and energy-dispersive X-ray spectroscopy 
(EDX) using a JEOL JSM-7800F Prime or Phenom ProX Desktop SEM 
equipped with an EDX detector. The electron beam used to collect EDX 
spectra was operated at an accelerating voltage of 15 kV. A Siemens 
D5000 powder diffractometer with grazing-incidence geometry was 
used for XRD surface analysis. As it is hard to detect Li with EDX analysis 
because of the Li low molecular weight, it was important to use XRD to 
detect the Li-containing corrosion products. Therefore, the results for 
washed samples should be considered with caution. 

3. Results and discussion 

A quantitative overview of weight change and corrosion depth data 
showed a clear distinction between the effects of different salt melts on 
the stainless steels and Kanthal APMT, see Fig. 1. The corrosion attack 
was ranked according to five different measurables, three of them are 
presented in Fig. 1. These measurables are outward-growing facetted 
crystal growth, compact oxide scale thickness, and internal attack by 

secondary oxidants such as nitridation, carburisation, or chlorination. 
The fourth parameter is the average number of large oxide nodules on 
each coupon in conjunction with a local internal corrosion attack 
feature. The fifth parameter is the mass change of the alloys after 
exposure, as shown in Fig. 2. However, mass changes must be considered 
with caution even though the experiments were diligently conducted. 

Fig. 2 shows all the mass change data collected for 304L and Kanthal 
APMT at 800 ◦C in carbonate and chloride melts. No comparable mass 
change data for the nitrates’ exposures will be reported here because the 
samples were only partially immersed in nitrate melts. 

Exposures to carbonate melts caused mass gains for 304L and 
Kanthal APMT. The mass change trends indicated with dashed trend
lines must be considered with the utmost caution due to the intense 
handling of the samples, i.e., quenching, rinsing, and drying after 
exposure. However, few assumptions will be made based on the mass 
change data in the context of our overall data collection. Kanthal APMT 
had a much lower mass gain, and the overall mass gain trendline also 
reflects sub-parabolicity. The last measurement after 1000 h, however, 
deviates from the indicated curve. A change in oxide morphology was 
found, which indicates a difference in aluminium consumption, as dis
cussed in Section 3.2.2. Alloy 304L maintained steady-state behaviour 
after a fast-initial mass gain. Indications of a rapid corrosion-dissolution 
process supported by the steady-state progression of the mass change 
curve will be reported in Section 3.2.1. 

Exposure to chloride melts, on the other hand, caused accelerating 
mass loss behaviour for both alloys. This behaviour was slower for 
Kanthal APMT samples. 

3.1. Corrosion performance of the alloys in solar salt 

We will discuss the results from alloys exposed to the commercially 
used Solar Salt blend in this section. A comparison of the time-evolution 
of XRD spectra for stainless steel 316H and Kanthal APMT, see Fig. 3, 
shows that no alloy-specific signal was detectable after 168 h for the 
316H stainless steel, while this signal was present for Kanthal APMT, 
indicating the presence of a thin alumina scale at the surface of Kanthal 
APMT. 

The diffraction pattern observed for alloy 316H after one week 
exposure in Solar Salt confirms the presence of sodium ferrite species, 
which is in agreement with prior publications (Kruizenga and Gill, 2014; 
Tzvetkoff and Kolchakov, 2004; Soleimani Dorcheh et al., 2016; 

Table 2 
Experimental parameters, eutectic melting point, and decomposition tempera
ture of the different salt mixtures. * Decomposition temperature varies with 
atmosphere; it is was found to be 1000 ◦C, 700 ◦C and 670 ◦C in exposures to 
CO2, Ar and air (Vignarooban et al., 2015).  

Eutectic salt 
mixture 

i.) Nitrates 
(60 wt% 
NaNO3- 40 wt 
% KNO3) 

ii.) Carbonates  
(32.1 wt% Li2CO3 

–33.4 wt% Na2CO3- 
34.5 wt% K2CO3) 

iii.) Chlorides  
(65 wt% KCl- 35% 

wt% MgCl2) 

Teutectic (◦C) 230 (Mehos 
et al., 2017) 

398 (Wu et al., 2011) 423 (Ding et al., 
2019c) 

Tmax (◦C) 530–565 ( 
Mehos et al., 
2017) 

>650* (Vignarooban 
et al., 2015) 

>800 (Ding et al., 
2018a) (Ding et al., 
2019c) 

Gas filtered air CO2 argon 
Exposure 

temperature 
650 ◦C 
(72 h cyclic 
refilling of the 
salt) 

800 ◦C (isothermal)  
(336 h cyclic refilling 

of the salt) 

800 ◦C (isothermal) 
(336 h cyclic 
refilling of the salt) 

Total 
exposure 
time 

168 & 1000 h 168 & 1000 h 168 & 500 h  

Fig. 1. Comparative schematic for all corrosion layer thickness measurements in this study. The differences between outward-growing and inward-growing species 
are distinguished. The horizontal axis is placed at the apparent initial material surface, where corrosion layer thickness equals zero. 

E. Hamdy et al.                                                                                                                                                                                                                                 



Solar Energy 224 (2021) 1210–1221

1214

Fernández et al., 2015a). 
After exposure, Kanthal APMT presented sodium aluminates and 

sodium ferrites. Corresponding potassium containing species were ab
sent for both alloys. 

3.1.1. Microstructural evolution of alloy 316H in solar salt at 650 ◦C 
In this chapter, we discuss a metallographic cross-section of alloy 

316H after 1000 h exposure in Solar Salt. Electron backscatter images 
and element maps, presented in Fig. 4, reveal the presence of four zones: 
i) a thick sodium ferrite scale with an average thickness of 40 µm. ii) an 
intersecting oxide zone enriched in manganese and nickel, iii) a chro
mium rich metal oxide interface iv) internal attack consisting of chro
mium nitride vail. The chromium enrichment is an attempt of the alloy 
to form a protective chromia scale. However, this attempt fails, which is 
evident when the precipitates in the suboxide region are analysed. 

Severe chromium depletion and chromium capture by the formation of 
chromium nitride render the overall performance of the oxide scale as 
non-protective. Alloy 316H developed a 7 µm thick chromia scale after 
exposure to Solar Salt for 1000 h at 650 ◦C. Alkali ferrite crystals grew 
rapidly outwards (25 µm average) on this sample. Internal nitridation 
with an average thickness of 6 µm was detected beneath the oxide layer. 

3.1.2. Microstructural evolution of alloy Kanthal APMT in solar salt at 
650 ◦C 

In strong contrast to the 316H results, Kanthal APMT showed good 
corrosion resistance to Solar Salt at 650 ◦C for 168 h and 1000 h. In 
Fig. 5., Kanthal APMT samples show smooth sodium aluminate scales at 
the surface and locally occurring nodule formation that was identified as 
sodium ferrite, in agreement with the species identified in the XRD 
spectra, Fig. 3. 

Fig. 2. a) Mass change plot for 304L and Kanthal® APMT in carbonate and chloride melts at 800 ◦C, (without error bars), b) mass gain of Kanthal® APMT in 
carbonates and trendline, c) mass gain of alloy 304L in carbonates and trendline, d) mass loss of 304L and Kanthal® APMT in chlorides and trendline. Different scales 
must be taken into consideration. b)-d) show error bars indicating the minimum and maximum around the plotted average value. 

Fig. 3. XRD pattern for a) alloy 316H and b) Kanthal® APMT exposed to molten nitrate salt mixture at 650 ◦C for 168 h.  
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An underlying alumina scale beneath scars sodium ferrite nodules 
indicates an early stage of sodium ferrite formation and inability for 
further growth of those nodules. 

Internal nitridation, as found for 316H, was not detected in Kanthal 
APMT samples. This fact is crucial, since any direct contact of alkali 
nitrates with the alloy or the formation of a nitrogen-permeable oxide 
should be prevented. 

Any nitrogen ingress into the FeCrAl alloy drains the aluminium 
activity by the formation of thermodynamically stable AlN precipitates, 
until undergoing a critical concentration sustaining oxide scale growth. 
In case a defect occurs during sodium aluminate formation, Eq. 1, in
ternal precipitation will form aluminium nitride, Eq.4, over chromium 
nitride, Eq.5. 

3.2. Corrosion performance of the alloys in alkali carbonate melt 

XRD spectra for the surfaces of alloy 304L and Kanthal APMT sam
ples and their time-dependent evolution are shown in Fig. 6 a and b. 
Note that XRD was the only method used to detect lithium species in the 
corrosion products. 

The alloy signal from the 304L sample was no longer detectable after 
one week of exposure at 800 ◦C. Spectra for the 304L sample indicate 
spinel oxide and lithiated oxide species, as reported in previous studies 
(Cruchley et al., 2016; Sah et al., 2018). Kanthal APMT, on the other 
hand, maintained its alloy signal for at least 1000 h, indicating a 
significantly thinner and slow growing oxide scale. Interestingly, after 
168 h the α-lithium aluminate signal initially found on the Kanthal 
APMT surfaces was accompanied by a γ-lithium aluminate signal after 

Fig. 4. a) Backscatter electron image of an alloy 316H cross section after 1000 h exposure to Solar Salt. b) Higher magnification of the suboxide zone highlighted in 
image a). c) Element maps of the oxide scale corresponding to image a). 

Fig. 5. Backscatter electron images of Kanthal® APMT samples after exposure to solar salt. a) and b) top view after 168 h. Cross section after c) 168 h and d) 1000 h.  
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1000 h of exposure. 

3.2.1. Microstructural evolution of alloy 304L in 33 wt% Li2CO3 -32 wt% 
Na2CO3- 34 wt% K2CO3 at 800 ◦C 

Key images are summarised in Fig. 7, including top view images and 
cross sections of alloy 304L exposed for 168 h and 1000 h at 800 ◦C in 
molten carbonates. The surface morphology of the 304L sample was 
similar after both exposure times; the alloy surface was completely 
covered by rapidly growing octahedral crystallites. This finding is in 
agreement with the literature (Attia et al., 2002; Sarvghad et al., 2017). 
Lithium ferrite crystals rapidly grew with time on the surface of the 304L 
samples: from 33 µm after 168 h to 52 µm after 1000 h on average. Li- 
containing corrosion products were expected to form, based on the ba
sicity of alkali carbonates (Spiegel et al., 1997; Evans et al., 1977) and 
correlate well with the spectra in Fig. 6a. Sodium and potassium 
corrosion species were not identified in said spectra. One critical ques
tion is whether the carbon dioxide gas environment provides sufficient 
oxidation potential to oxidise metallic iron. 

Underneath the alkali ferrite crystals, a multi-layer oxide scale was 
revealed, which is in agreement with previous studies (Attia et al., 2002; 
Sarvghad et al., 2017). 

The internal oxide scale propagated more rapidly than the outer 
crystallite scale. This zone evidently grew linear with time, since its 
thickness increased from 35 µm to 180 µm by prolonging the exposure 
time by a factor of six. The internal oxidation zone’s chemistry is het
erogeneous, as can be seen in the Z-contrast in the electron backscatter 
images in Fig. 7. EDX spot analysis identified the darkest contrast as 
chromium-rich iron-chromium spinel. The medium shades contain 
mainly iron oxide, and the brightest spots contain high nickel fractions. 
None of the oxides offered protection; both of the oxide species allowed 
oxygen and carbon to permeate into the alloy causing carburisation 
(Cr23C6) beyond the internal oxidation zone, as shown in Fig. 7d and g. 
Based on the SEM/EDX analysis, the internal attack in form of carbide 
precipitation has reached a depth of ~490 µm after 168 h and 
throughout the sample after 1000 h. 

The precipitation of chromium carbides drains chromium activity 
from the alloy, inhibiting outward diffusion towards the metal/oxide 
interface to contribute to the formation of a protective oxide scale. 
Chromium carbide precipitates also lead to changes in the microstruc
ture and mechanical properties of the alloy. 

Severe internal oxidation and carburisation would point towards a 
significant mass gain over time. On the contrary, mass gain appears 
stagnant in the plot Fig. 2c. One reason could be a substantial mass loss 

due to the dissolution of metal ions into the carbonate melt as indicated 
by the melts’ colouring. Chromia reacts exothermically with lithium 
carbonate and carbon dioxide to form liquid hexavalent lithium chro
mate at 800 ◦C (Encinas-Sánchez et al., 2018). 

Alloy 304L was doubly compromised in its ability to form a protec
tive chromium-rich oxide scale by a severe internal attack via carbur
isation and the dissolution of hexavalent species into the carbonate melt. 

3.2.2. Microstructural evolution of Kanthal APMT in 32.1 wt% Li2CO3 
-33.4 wt% Na2CO3- 34.5 wt% K2CO3 at 800 ◦C 

Kanthal APMT shows very different top view features in Fig. 8 
compared to the 304L sample in Fig. 7. After 168 h exposure, a smooth 
surface with very small LiAlO2 crystallites emerged (Fig. 8a). The re
action of aluminium and chromium with sodium and lithium carbonates 
is spontaneous. Among these reactions, lithium aluminate has the 
highest exothermicity. 

After 1000 h, some significantly larger crystallites became locally 
visible see Fig. 8b. These crystals were identified as γ-LiAlO2 as shown in 
Fig. 6b. 

While after 168 h exposure, only one lithium aluminate phase, 
α-LiAlO2, was detected (Fig. 6b), a second phase, γ-LiAlO2, emerged 
after 1000 h of exposure, simultaneously with the appearance of large 
prismatic crystals. Several studies have been published on the thermal 
physical properties of the two lithium aluminate polymorphs (Danek 
et al., 2004; Heo et al., 2017; Bennett et al., 2003; Choi et al., 2010). 
α-LiAlO2 is stable up to ~747–777 ◦C before the α → γ- LiAlO2 phase 
transformation occurs. This transformation depends on different pa
rameters e.g., operating temperature, environment, and exposure time. 
The transformation of α-LiAlO2 to γ-LiAlO2 may affect the corrosion 
resistivity of an alloy. Small α- LiAlO2 crystallites form a protective film, 
while γ-LiAlO2 grows large individual crystals (Heo et al., 2017). This 
feature renders the α- to γ-LiAlO2 phase transformation undesirable. 
This transformation may also explain the larger window of uncertainty 
for the last mass change measurements after 1000 h in Fig. 2b. These 
measurements indicate an accelerating oxidation process. 

The overall mass gain of Kanthal APMT was reduced by two mag
nitudes, compared to 304L, and no aluminium had been dissolved from 
the alloy into the melt after 1000 h. However, the overall impact of the 
phase transformation must be considered in long-term assessments. 

Cross-section analysis was performed to test for an internal attack 
coinciding with the different lithium aluminate morphologies, Fig. 8c 
and 8d. The sample exposed for 168 h succeeded in forming a uniform, 
thin, and dense α-LiAlO2 scale, with a thickness in the range of 0.5–3.2 

Fig. 6. XRD pattern of a) 304L and b) Kanthal® APMT after exposure to alkali carbonates at 800 ◦C for 168 h and 1000 h.  
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µm. The α-LiAlO2 scale thickness increased slightly after 1000 h, but the 
second morphology, γ-LiAlO2, nucleated and formed larger crystals 
(about 6 µm high) on top of the underlying α-LiAlO2 scale. Additional 
EDX element maps clearly show the transition front between the two 
aluminate morphologies. An additional line scan showed no aluminium 
depletion zone in the alloy’s subsurface, for at least 1000 h exposure, 
and no indication of any internal attack. 

3.3. Corrosion performance of the alloys in magnesium potassium 
chlorides at 800 ◦C 

A comparison of the XRD spectra for the stainless steel 304L and 
Kanthal APMT after different exposure times are shown in Fig. 9. The 
only detectable corrosion species on 304L was magnesium oxide. 
MgAl2O4 and traces of a MgCrAl spinel oxide were found on Kanthal 
APMT. No metal chlorides were identified via XRD. 

Only oxides with very high thermodynamic stability can form under 
such extreme conditions, other species dissolve into the chloride melt. 
Magnesium oxide and magnesium aluminate are such stable species 
(Ellingham, 1944). 

Furthermore, the XRD spectra for the exposed Kanthal APMT had 

clear signals for a molybdenum-rich intermetallic phase, a so called 
Laves phase. The position and role of the Laves phase will be discussed 
more specifically in Section 3.3.2. 

The mass change data in Fig. 2 indicates that both alloys underwent 
accelerating mass loss, more for 304L than for Kanthal APMT. The 
dissolution processes of alloy elements is anticipated, in agreement with 
previously published data (Ding, W.J. et al., 2019). 

3.3.1. Microstructural evolution of alloy 304L in 65 wt% KCl- 35% wt% 
MgCl2 at 800 ◦C 

Alloy 304L underwent immediate leaching of alloy species by the 
salt. Residual humidity in the salt can only stabilise magnesium oxide 
originating from the melt. After 168 h of exposure a thin MgO film was 
found on the 304L surface (Fig. 10). Alloy species, i.e., chromium, 
nickel, and iron, were detected in salt particles on top of the sample as 
shown in EDX maps (Fig. 10b). The loss of chromium into chloride melts 
has also been reported by Ding et al. (Liu et al., 2016; Ding et al., 2018b). 
Cavities reaching ~10 µm deep int the alloy’s microstructure after 168 
h, formed where metals have been leached into the melt. In return, these 
cavities were found filled with magnesium oxide. A deep and easily 
distinguishable depletion zone had formed after 500 h as shown in the 
Chromium EDX map in Fig. 10e. This zone reached several hundred µm 
into the alloy and contained only about 2% chromium (see line-scan 
Fig. 10e). Cavities within the depletion zone, filled with magnesium 
oxide, and traces of chlorides, were found more than 150 µm into the 
alloy. Similar results have been reported by Ding et al. (2018b). 

Humidity has been identified as an impurity with the highest ac
celeration effect on the corrosion of stainless steels (Tian and Zhao, 
2013; Ge et al., 2018; Copson, 1953; Ding et al., 2019c). Despite the 
additional drying sequence for the salts in inert gas prior to exposure, 
the impact of remaining humidity has proven substantial. This must be 
taken into account when considering the dimensions of the several 
thousand tons of salt required for a thermal storage reservoir in a CSP. 
Humidity control is a major economic factor. 

3.3.2. Microstructural evolution of alloy Kanthal APMT in 64.41 wt% KCl- 
35.59% wt% MgCl2 at 800 ◦C 

Besides the MgAl2O identified via XRD, alumina particles were found 
by EDX top-view spot analysis (Fig. 11a). 

Fig. 11b shows a bright Z-contrast in the subsurface region. Inter
estingly, this bright contrast was caused by molybdenum enrichment. 
This enrichment was sufficient to stabilise Laves phase precipitates. 

The thermodynamic calculations confirm a two-phase regime at 800 
◦C comprising BCC and C14 Laves phase with the approximate compo
sition (Fe0.75Cr0.25)2Mo. 

No internal attack was detected after 168 h. 
After 500 h, however, the chloride melt compromised the alloy 

Fig. 7. a) SEM surface morphology of 304L alloy exposed to carbonate melt at 800 ◦C for 168 h, b) SEM cross section of 304L alloy exposed to carbonate melt at 800 
◦C for b) 168 h and e) for 1000 h. Higher magnification cross section shows: the internal oxidation zone for c) 168 h and f) 1000 h, and chromium carbide precipitates 
for d) 168 h and g) 1000 h. 

Fig. 8. a) Overview backscatter electron image of a Kanthal® APMT cross 
section exposed to molten carbonate salt mixture at 800 ◦C for 1000 h, b) top 
view image of the surface, c) higher magnification of the cross section, d) 
aluminum and oxygen element maps of position c) and corresponding 
lines cans. 
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integrity by selectively leaching aluminium, creating a cavity network to 
a depth of 280 µm. Only fragments of alumina remained at the surface. 
The bare alloy and a pattern of pores was present at the surface. A deep- 
reaching depletion of aluminium was found in a cross-section analysis of 
the attacked material, see line scan in Fig. 11h. The remaining cavities 
were filled with magnesium oxide and chlorides. Aluminium leached 
most efficiently through the cavity network, leaving a molybdenum rich 
Laves phase rim around several individual cavities. After 500 h, such 
Laves phase rims around cavities are measured at the minimum distance 
of ~100 µm from the metal/salt interface. Therefore, it can be concluded 
that the Laves phase precipitates were transient in the overall leaching 

process and had already been dissolved in the upper region of the 
sample. 

The overall mass loss for Kanthal APMT was lower than that for 
304L. This was due to the lower degree of chromium leaching found for 
Kanthal APMT, however, the internal attack progressed deeper, 
compromising the integrity of the alloy. 

In a previous exposure study by Gomez-Vidal et al., Kanthal APMT 
was pre-oxidised before being brought into contact with the chloride 
melt. This procedure did not result in Laves phase precipitates (Gomez- 
Vidal et al., 2017b). 

Fig. 9. XRD patterns for a) 304L and b) Kanthal® APMT alloy exposed to chloride melts at 800 ◦C for 168 h and 500 h.  

Fig. 10. Alloy 304L cross section after exposure to molten chlorides at 800 ◦C for a) 168 and c) 500 h, and corresponding EDX element maps b) and e). The chromium 
element map in e) is extended by a line scan to highlight chromium depletion. The higher magnification in the top view image d) shows magnesium oxide and pores 
distributed over the surface of the sample. 
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4. Conclusions 

Three eutectic melts that are currently under consideration for heat 
transfer fluid or a thermal energy storage medium, alkali nitrates, alkali 
carbonates, and chlorides were brought into contact with the stainless- 
steel alloy 304L or 316H and Kanthal APMT. 

Aspects of oxidation, dissolution, and internal attack on the alloys 
were systematically compared. 

Material degradation in contact with alkali nitrates was compara
tively slow for the stainless steel and Kanthal APMT, which was antici
pated because of the lower exposure temperature. It should, however, be 
noted that the stainless steel underwent gradual oxide scale growth, and 
nitrogen permeated into the bulk alloy, which caused chromium nitride 
precipitation in 316H alloy. This in turn significantly lowered the 
chromium activity of the alloy. Internal nitride precipitation, however, 
is not as severe as carburisation that occurs on alloy 304L in an alkali 
carbonates melt. Carbide precipitation reached several hundreds of 
micrometres deeper into the bulk alloy after the same exposure times, 
which altered the overall chemistry. Kanthal APMT, on the other hand, 
remained nearly unaffected when exposed to carbonates or to nitrates 
and did not suffer from an internal attack. However, under the influence 
of lithium ions from the carbonates melt, a slow conversion from the 
film-growing α-LiAlO2 to the locally growing larger γ-LiAlO2 crystallites 
occurred, and the long-term effect of this on aluminium consumption 
needs further evaluation. No internal scarburisation was observed for at 

least 1000 h. 
Chlorides melt leached elements from both 304L and Kanthal APMT. 

Chromium and nickel were gradually leached from the stainless-steel 
alloy 304L into the melt, and the resulting cavities in the microstruc
ture were filled with melt components. Kanthal APMT, however, resis
ted severe leaching of alloy elements during the first 168 h by forming 
magnesium aluminate on the sample surface. This resistance broke 
down after 500 h, resulting in the rapid leaching of aluminium, which 
reached deeper in Kanthal APMT than the depth of chromium leaching 
found for alloy 304L. Cavities created by the leaching were filled with 
magnesium oxide and chloride surrounded by a (Fe0.75Cr0.25)2Mo Laves 
phase, indicating that molybdenum leached much slower than chro
mium and aluminium. Laves phase rims seemed to prevent Kanthal 
APMT from rapid chromium leaching, compared to alloy 304L, thus 
explaining the overall lower mass loss measured for Kanthal APMT. 

The overall conclusion is that nitrates are the best choice as a 
calculated risk, since even the stainless steel that suffered an internal 
attack reacted comparably slow and predictably. Alkali carbonates 
degraded the stainless steel unacceptably fast through carburisation. 
Kanthal APMT is a very good alternative in this case provided that the α- 
to γ-transition of LiAlO2 is slow and does not lead to any aluminium 
depletion for at least 1000 h. Chloride melts were detrimental to both 
alloys investigated. However, molybdenum proved to be a possible 
influencing element. Molybdenum formed a Laves phase barrier to 
chromium leaching, which however, did not prevent the rapid 

Fig. 11. Kanthal® APMT cross section after 
exposure to molten chlorides at 800 ◦C for a) 
168 and c) 500 h, and corresponding EDX 
element maps b) and g, h). The aluminum 
and chromium element maps in h) were 
extended with line scans to highlight 
aluminum depletion and the lower degree of 
chromium leaching. The higher magnifica
tion in the top view image e) shows magne
sium oxide and pores distributed over the 
surface. The higher magnification cross sec
tion in d) shows a fragment of alumina scale 
remaining at the surface. f) shows Laves 
phase rims around voids.   
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dissolution of aluminium from the alloy. 
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Corrosion resistance of HR3C to a carbonate molten salt for energy storage 
applications in CSP plants. Sol. Energy Mater. Sol. Cells 157, 966–972. 

Ding, W., Bauer, T., 2021. Progress in research and development of molten chloride salt 
technology for next generation concentrated solar power plants. Engineering 7 (3), 
334–347. 

Ding, W., Bonk, A., Bauer, T., 2018a. Corrosion behavior of metallic alloys in molten 
chloride salts for thermal energy storage in concentrated solar power plants: a 
review. Front. Chem. Sci. Eng. 564–576. 

Ding, W., Bonk, A., Bauer, T., 2019. Molten chloride salts for next generation CSP plants: 
Selection of promising chloride salts & study on corrosion of alloys in molten 
chloride salts. AIP Conference Proceedings 2126(1), 200014. 

Ding, W.J., Gomez-Vidal, J., Bonk, A., Bauer, T., 2019b. Molten chloride salts for next 
generation CSP plants: electrolytical salt purification for reducing corrosive impurity 
level. Sol. Energy Mater. Sol. Cells 199, 8–15. 

Ding, W., Shi, H., Xiu, Y., Bonk, A., Weisenburger, A., Jianu, A., Bauer, T., 2018b. Hot 
corrosion behavior of commercial alloys in thermal energy storage material of 
molten MgCl2/KCl/NaCl under inert atmosphere. Solar Energy Materials and Solar 
Cells. Elsevier B.V. 22–30. 

Ding, W., Shi, H., Jianu, A., Xiu, Y., Bonk, A., Weisenburger, A., Bauer, T., 2019a. Molten 
chloride salts for next generation concentrated solar power plants: mitigation 
strategies against corrosion of structural materials. Solar Energy Materials and Solar 
Cells. Elsevier B.V. 298–313. 

Ellingham, J.T., 1944. Transactions and communications. J. Soc. Chem. Ind. 63 (5), 
125–160. 

Encinas-Sánchez, V., de Miguel, M.T., García-Martín, G., Lasanta, M.I., Pérez, F.J., 2018. 
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Walczak, M., Pineda, F., Fernández, Á.G., Mata-Torres, C., Escobar, R.A., 2018. Materials 
corrosion for thermal energy storage systems in concentrated solar power plants. 
Renew. Sustain. Energy Rev. 86, 22–44. 

Wu, Y.-T., Ren, N., Wang, T., Ma, C.-F., 2011. Experimental study on optimized 
composition of mixed carbonate salt for sensible heat storage in solar thermal power 
plant. Sol. Energy 85 (9), 1957–1966. 

Yamamoto, Y., Takeyama, M., Lu, Z.P., Liu, C.T., Evans, N.D., Maziasz, P.J., Brady, M.P., 
2008. Alloying effects on creep and oxidation resistance of austenitic stainless steel 
alloys employing intermetallic precipitates. Intermetallics 16 (3), 453–462. 

Yin, J.M., Zheng, Q.Y., Peng, Z.R., Zhang, X.R., 2019. Review of supercritical CO2 power 
cycles integrated with CSP. Int. J. Energy Res. 44 (3), 1337–1369. 

Zhao, Y., Li, P., Jin, H., 2017. Heat transfer performance comparisons of supercritical 
carbon dioxide and NaCl–KCl–ZnCl2 Eutectic Salts for Solar s-CO2 Brayton Cycle. 
Energy Procedia 142, 680–687. 

E. Hamdy et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0038-092X(21)00553-3/h0260
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0260
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0260
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0265
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0265
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0265
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0270
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0270
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0270
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0275
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0275
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0275
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0280
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0280
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0280
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0285
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0285
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0295
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0295
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0295
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0300
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0300
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0305
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0305
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0310
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0310
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0315
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0315
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0315
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0320
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0320
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0325
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0325
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0325
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0330
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0330
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0330
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0335
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0335
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0335
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0340
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0340
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0345
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0345
http://refhub.elsevier.com/S0038-092X(21)00553-3/h0345


Paper I (b) 

 

 

Additional data and experimental setups used for the study on alloys in 

contact to high temperature eutectic melts for thermal storage 

E. Hamdy, J. N. Olovsjö, and C. Geers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bibliography  

E. Hamdy, J.N. Olovsjö, and C. Geers, "Additional data and experimental setups 

used for the study on alloys in contact to high temperature eutectic melts for 

thermal storage " 2021, Accepted. 

  



 



Data in Brief 38 (2021) 107446 

Contents lists available at ScienceDirect 

Data in Brief 

journal homepage: www.elsevier.com/locate/dib 

Data Article 

Additional data and experimental setups, for a 

comparative study of alloys in contact to 

eutectic melts for thermal storage 

Esraa Hamdy 

a , ∗, Johanna Nockert Olovsjö b , Christine Geers a 

a Energy and Materials, Chalmers University of Technology, Gothenburg, Sweden 
b Kanthal AB, Hallstahammar, Sweden 

a r t i c l e i n f o 

Article history: 

Received 8 July 2021 

Revised 23 September 2021 

Accepted 29 September 2021 

Available online 4 October 2021 

Keywords: 

Experimental setups 

Impurities 

Reaction enthalpies 

Post-exposure analyses 

Alloy thickness loss 

Phase stability 

a b s t r a c t 

Three different eutectic salt mixtures have been brought into 

contact with three different high temperature alloys to as- 

sess corrosion damages for next-generation CSPs. This article 

contains additional material to support findings and assess- 

ments reported on our main article in the Solar Energy Jour- 

nal [ https://doi.org/10.1016/j.solener.2021.06.069 ]. Five sec- 

tions, A-E, provide data to ensure reproducibility and confi- 

dence in our claims in the main article. A newly designed ex- 

perimental setup for high temperature exposures is described 

as well as impurities within used chemicals. Material thick- 

ness measurements document alloy consumption by eutec- 

tic salts. Reaction enthalpies are listed illustrating individual 

metal species in contact with salt species at relevant temper- 

atures. Thermodynamic single point equilibrium calculations 

have extended environmentally induced Laves phase precip- 

itation found for alloy Kanthal APMT in contact with molten 

chlorides. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

DOI of original article: 10.1016/j.solener.2021.06.069 
∗ Corresponding author. 

E-mail address: esraah@chalmers.se (E. Hamdy). 

https://doi.org/10.1016/j.dib.2021.107446 

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.dib.2021.107446
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2021.107446&domain=pdf
https://doi.org/10.1016/j.solener.2021.06.069
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.solener.2021.06.069
mailto:esraah@chalmers.se
https://doi.org/10.1016/j.dib.2021.107446
http://creativecommons.org/licenses/by/4.0/


2 E. Hamdy, J.N. Olovsjö and C. Geers / Data in Brief 38 (2021) 107446 

Specifications Table 

Subject Materials Chemistry 

Specific subject area Experiments and analysis of high temperature alloys in contact with molten 

salts for thermal storage applications 

Type of data Table 

Image 

Graph 

Figure 

How data were acquired Chemical specifications by and impurity analysis by the suppliers 

Calibrated optical camera of the Phenom ProX table-top SEM setup to 

determine specimen thickness loss 

Software: Factsage 7.3 were used [1] 

Energy-dispersive X-ray spectroscopy (EDX) using a JEOL JSM-7800F Prime 

Software: Thermodynamic equilibrium calculation (Thermocalc Software, 

Database TCFE:Steels/Fe-Alloys v8.0 [2] 

Data format Raw sample thickness measurements 

Raw EDX measurement 

Input from Software Databases 

Parameters for data collection Alloy coupons were exposed at 650 °C or 800 °C, depending on the salt melt 

used and quenched after completion. All post-exposure analyses have been 

performed in ambient conditions using standard settings of the instruments 

listed for data acquisition. 

EDS point analyses were used as input for thermodynamical phase stability 

calculations of precipitates found in the alloy microstructures after exposure. 

Corrosion reaction enthalpies for relevant phases found by XRD and potential 

corrosion reactions were calculated by FactSage databases and software. 

Description of data collection This DIB manuscript contains additional information to support the findings 

shown in the Solar Energy article [DOI: 10.1016/j.solener.2021.06.069 ]. The data 

collection is basing on duplicates to ensure minimum reproducibility. 

Data source location Institution: Chalmers University of Technology 

City/Town/Region: Gothenburg 

Country: Sweden 

Data accessibility With the article 

Related research article E. Hamdy, J. N. Olovsjö, and C. Geers, "Perspectives on selected alloys in 

contact with eutectic melts for thermal storage: Nitrates, carbonates and 

chlorides," Solar Energy, vol. 224, pp. 1210-1221, 2021/08/01/ 2021, 

doi: https://doi.org/10.1016/j.solener.2021.06.069 . 

Value of the Data 

• Experiments in molten salts are very sensitive for chemical impurities, melt loss due to evap- 

oration, vessels and general setup qualities. Thus, a detailed description of our experimental 

conditions is essential to reach the necessary degree of reproducibility and applicability. Fur- 

thermore, we offer insight into our thermodynamic assessment routine on how to qualify 

our observations on environmentally introduced microstructural changes in our alloys. 

• This additional data collection allows metallurgists, engineers and chemists working with 

thermal storage utilities to understand alloy consumption and microstructural changes in a 

more detailed way. 

• This additional data complementing our main comparative study [DOI: https://doi.org/10. 

1016/j.solener.2021.0 6.0 69 ] shall provide guidance for alloy selections for thermal storage 

utilities utilising molten salts. 

• Another interesting thought is using specific microstructural markers to assess the durability 

of an alloy in future plants by, e.g., electrochemical or ultrasonic online operation analysis. 

This data would, in this case, help significantly with the data interpretation and risk assess- 

ment. 

https://doi.org/10.1016/j.solener.2021.06.069
https://doi.org/10.1016/j.solener.2021.06.069
https://doi.org/10.1016/j.solener.2021.06.069
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1. Data Description 

The additional data provided in this article is divided into five main sections; (A) sections 

provide detailed descriptions of the experimental procedure followed in our main study [3] . 

Section A1 gives the alloys preparation recipe that has been used. Table A1 and section A2 pro- 

vide the reported chemical impurities of the employed salts in their respective datasheet. The 

chlorides purification process is thoroughly described in section A3. Section A4 comprehensively 

describes our newly built experimental setup of the corrosion and corrosion tests procedure. A5 

summarises how the metallic samples are treated after exposure. Whereas section A6 describe 

different parameters and conditions used during the characterisation analysis. 

Section (B) and Table B1 show the metal thickness changes of the exposed samples with 

a differential clarification between sample thickness, including oxide scales and the remaining 

metal thickness. 

Section (C) gives an overview of Gibb’s reaction enthalpies for metals (Al, Cr and Fe) reacting 

with respective alkali nitrate and alkali carbonate melts as investigated in the main article [3] . 

The output raw data files generated by Factsage 7.3 databases used to calculate Gibb’s reaction 

enthalpies in Tables C1 and C2 are provided in the supplementary section. 

Section (D) provides thermodynamic single-point calculations confirming the presence of 

Laves phase precipitates observed in Kanthal ® APMT samples exposed to molten MgCl 2 /KCl at 

800 °C, cf the supplementary files for the raw output data calculated by Thermocalc Software, 

Database TCFE:Steels/Fe-Alloys v8.0. 

Finally, section (E) gives a summarised technical features of alloy Kanthal ® APMT. 

2. Experimental Design, Materials and Methods 

2.1. A1 - Alloy preparation 

The procedure for sample preparation was as follows: metal coupons of initial measurements 

15 × 15 × 2 mm were ground using up to 1200-grit SiC abrasive paper, followed by subsequent 

polishing with suspensions containing 9, 3, and 1 μm diamonds to a mirror-like finish. The pol- 

ished samples underwent a three-step cleaning procedure with deionised water, acetone, and 

ethanol using an ultrasonic bath at room temperature. Afterwards, the coupons were dried us- 

ing an air gun, then dipped into the salt mixture in alumina crucibles. 

2.2. A2 - Salts chemical composition and impurities 

Eutectic mixtures were prepared using the following salts: NaNO 3 (Alfa Aesar 99.0%), KNO 3 

(Alfa Aesar 99.0%), Li 2 CO 3 (VWR chemicals 99.0%), Na 2 CO 3 (EMSURE anhydrous, 99.9%), K 2 CO 3 

(ThermoFisher Scientific 99.8%), KCl (Alfa Aesar 99.0%), MgCl 2 (Alfa Aesar anhydrous 99.0%). Sup- 

pliers provide the impurities concentrations in the salts. Table A1 summarises the impurities 

measured in the salts and has been reported in the salts’ chemical datasheets. 

2.3. A3 - Chlorides’ purification process 

The stepwise thermal purification process utilised in this work Ref. [main article] was based 

on previous studies [4–6] . The purification process conducted in this study followed these steps; 

(i) The chloride mixture was first dried at 100 °C for at least five hours. (ii) Afterwards, the 

temperature was increased to 200 °C and after a two-hour dwell time. (iii) The temperature 

was increased even further to 300 °C and kept for another two hours. (iv) The setup was left to 

cool down to room temperature, then samples were dipped into the salt-containing crucible. (v) 
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Table A1 

Impurities concentrations and chemical compositions of each salt 

Salt Moisture Chloride (Cl −) Phosphate (PO 4 
3 −) Silicate (as SiO 2 ) 

Total sulfur 

(as SO 4 
2- ) Calcium (Ca 2 + ) Magnesium (Mg 2 + ) Others 

NaNO 3 detected 0.0 0 06% 1.2 ppm - 0.0020% 0.0 0 08% 0.0 0 05% Heavy metals (e.g., Pb 2 + /4 + ), 
Fe 2 + /3 + 1 ppm for each 

KNO 3 detected 0.002% 5 ppm - 0.003% 0.005% 0.002% Heavy metals 5 ppm, Fe 2 + /3 + 

3 ppm, IO 3 
− 5 ppm, NO 2 

0.0 01%, Na + 0.0 05% 

Li 2 CO 3 detected ≤0.02% - - ≤0.05% 0.01% Heavy metals (e.g., Pb 2 + /4 + ) 
≤20 ppm, Fe 2 + /3 + 3 ppm 

Na 2 CO 3 Loss on 

drying 

≤1.0% 

≤0.002% ≤0.001% ≤0.002% ≤0.005 % ≤0.005 % ≤0.0 0 05% Heavy metals (e.g., Pb 2 + /4 + ), 
Fe 2 + /3 + , N 

3-/3 + /5 + , Al 3 + , K + 

K 2 CO 3 0.113% KCl 0.0043% - - K 2 SO 4 
12 ppm 

- - KOH 0.106%, Na + 0.20%, 

Fe 2 + /3 + 0.40 ppm 

KCl detected Chlorate & 

Nitrate 

≤0.003 % 

≤5 ppm ≤0.001% ≤0.002% ≤0.001% Ba 2 + ≥ 0.001%, Br −

≤0.01%, I − ≤0.002%, Fe 2 + /3 + 

≤3 ppm, Na + ≤0.005%, Heavy 

metals (e.g., Pb 2 + /4 + ) ≤5 ppm 

MgCl 2 Detected 

0.97% 

NaCl 36 ppm 

CaCl 2 47 ppm 

- - - - - MgO (100 ppm) 
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Table B1 

Change in metal thickness after being exposed to different salt melts. 

Conditions 

Sample thickness after exposure Gas 

Temperature 

( °C) 

Total exposure 

time (h) Salt Melts 

Measured metal thickness 

change (μm) 

316H Filtered air 650 10 0 0 h (60 wt% NaNO 3 - 

40 wt% KNO 3 ) 

Zero metal thickness loss 

Kanthal ® APMT 

Zero metal thickness loss 

( continued on next page ) 
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Table B1 ( continued ) 

Conditions 

Sample thickness after exposure Gas 

Temperature 

( °C) 

Total exposure 

time (h) Salt Melts 

Measured metal thickness 

change (μm) 

304L CO 2 800 10 0 0 h (32.1 wt% 

Li 2 CO 3 -33.4 

wt% Na 2 CO 3 - 

34.5 wt% 

K 2 CO 3 ) 

400 μm metal thickness 

loss 

Kanthal ® APMT Zero metal thickness loss 

( continued on next page ) 
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Table B1 ( continued ) 

Conditions 

Sample thickness after exposure Gas 

Temperature 

( °C) 

Total exposure 

time (h) Salt Melts 

Measured metal thickness 

change (μm) 

304L 

Ar 500 h (65 wt% KCl- 

35% wt% MgCl 2 ) 

10–40 μm metal thickness 

loss 

Kanthal ® APMT 10 μm metal thickness 

loss 
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Table C1 

Selected reaction energies between nitrates (650 °C) and relevant alloy elements correlating with experimental observa- 

tions. Databases from Factsage 7.3 were used [1] . 

No Equation �G 923K kJ /[mol metal] 

Eq.1 Al (s) + NaNO 3 (l) → NaAlO 2 (s) + NO (g) −676 

Eq.2 Cr (s) + NaNO 3 (l) → NaCrO 2 (s) + NO (g) −376 

Eq.3 Fe (s) + NaNO 3 (l) → NaFeO 2 (s) + NO (g) −258 

Eq.4 8 Al (s) + 3 NaNO 3 (l) → 3 NaAlO 2 (s) + Al 2 O 3 (s) + 3 AlN (s) −539 

Eq.5 8 Cr (s) + 3 NaNO 3 (l) → 3 NaCrO 2 (s) + Cr 2 O 3 (s) + 3 CrN (s) −299 

Eq.6 23 Fe (s) + 4 NaNO 3 (l) → 4 NaFeO 2 (s) + Fe 3 O 4 (s) + 4 Fe 4 N (s) −88 

Table C2 

Selected reaction energies between carbonates (800 °C) and relevant alloy elements correlating with experimental obser- 

vations. Databases from Factsage 7.3 were used [1] . 

No Equation �G 1073K kJ /[mol metal] 

Eq.7 2 Fe (s) + Na 2 CO 3 (l) + 2 CO 2 (g) → 2 NaFeO 2 (s) + 3 CO (g) + 22 

Eq.8 2 Fe (s) + Li 2 CO 3 (l) + 2 CO 2 (g) → 2 LiFeO 2 (s) + 3 CO (g) −7 

Eq.9 2 Al (s) + Li 2 CO 3 (l) + 2 CO 2 (g) → 2 LiAlO 2 (s) + 3 CO (g) −414 

Eq.10 2 Al (s) + Na 2 CO 3 (l) + 2 CO 2 (g) → 2 NaAlO 2 (s) + 3 CO (g) −393 

Eq.11 2 Cr (s) + Na 2 CO 3 (l) + 2 CO 2 (g) → 2 NaCrO 2 (s) + 3 CO (g) −99 

Eq.12 69 Cr (s) + 23 Na 2 CO 3 (l) + 40 CO 2 (g) → 46 NaCrO 2 (s) + Cr 23 C 6 (s) + 57 CO (g) −70 

Later, the vessels are purged with Ar for 12 h and heated up to 120 °C for at least 12 h. (vi) 

Finally, the temperature is raised to 750 °C and kept for one hour before starting the exposure 

at 800 °C. 

2.4. A4 - Corrosion tests procedure and experimental setups 

In this study, two setups were employed, a horizontal silica tube furnace and the Nabertherm 

setup. In this section, detailed corrosion tests procedure for each setup are provided. 

(i) Horizontal tube furnace 

This setup was used for partial immersion corrosion tests of alloys exposed to nitrates melt. 

After following the cleaning procedure of the alloy sample (coupon), the coupon is dipped into 

an alumina crucible filled with the salts’ mixture. Before exposure and to prevent contamination, 

samples were purged in filtered air for at least five hours. After exposure, the salt was drained 

from the metal coupons using a heat gun. The heating gun method was done to avoid leaching 

corrosion products by washing the coupons with water. However, using a heat gun was not 

possible for samples exposed to carbonates and chlorides because of the significantly higher 

melting points of carbonates and chlorides than the nitrates melt, as shown in Table 2 in our 

main article [3] . The crucibles were limited in volume and had to be refilled with salt every 72 h, 

and the samples were only partially immersed in salt. Consequently, a new setup was built to 

address these limitations. 

(ii) Vertical vessel setup 

The second setup used for complete immersion experiments was a top-loader furnace (model 

top 60 Nabertherm). The Nabertherm furnace was purchased and redesigned in the workshop to 

comply with carbonate and chloride exposures in controlled gas environments. The furnace lid 

holds were designed to contain two cylindrical vessels, as shown in figure A. The inner diameter 

for each cylinder is 80 mm with 250 mm height, and they were constructed from stainless steel 

253MA. 
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Fig. 1. (i) New laboratory setup built for the carbonate and chloride exposures (ii) cylindrical vessel components iii) 

schematic diagram of the cylindrical vessel. 

Aluminium-diffusion coated using a powder pack cementation process has been applied to 

increase both vessels’ durability [7] . The vessel’s lid was designed to allow gas flow in and out 

of the vessel and mount a thermocouple for calibration. A 75 mm diameter sample holder was 

machined with slots to accommodate six alumina crucibles, as shown in Fig. 1 . The purpose of 

designing two cylindrical vessels is to duplicate the number of samples that can be tested. Each 

cylindrical vessel enables investigating six samples/alloys under the same conditions. 

Prior to exposure, the flow rate was calibrated with a Bios Definer 220M, and the gas line 

was extended through the vessel lid so that the gas could flow below the crucibles. The tem- 

perature was kept above 100 °C before exposure for at least five hours to ensure the absence of 

water vapour in the system. The system was purged for at least 5 h and 12 h for the carbonate 

and chloride exposures, respectively, to avoid contamination. CO 2 was utilised as the gas flow 

to suppress the decomposition of the carbonate melts. The coupons were placed vertically in 

alumina crucibles that had been filled with the salt mixture. 

2.5. A5 - Sample post-exposure treatment 

After exposure, alloy samples have been treated in two ways depending on the characteri- 

sation technique required. Since the vertical setup was designed to provide duplicate samples, 

one sample was washed with water, then weighed before and after the exposure using a Sar- 

toriusTM balance with microgram resolution. Instead of washing, the duplicate sample was left 

with a corrosive salt film on its surfaces after pouring off the residual melt. The procedure for 

the melts removal from the duplicate sample followed the upcoming steps: the temperature was 

lowered and maintained at 50 °C higher than the eutectic melting point for the mixture after 

the required exposure was completed. Holding the temperature at 50 °C higher than the eutec- 

tic melting point enabled us to pour off the salts while they were in their molten phase. Only a 

minor amount remained on the sample surfaces, and this salt was collected as well. The second 

cylindrical vessel provided a duplicate sample that was treated differently. The surface of the 

duplicate sample was rinsed with water to allow for mass change measurements. Each exposure 

was conducted twice. 

According to the standard methods [8] , the sample washing procedure was conducted: (i) 

Samples were sonicated for ten minutes at room temperature. (ii) After five minutes, sonication 

was interrupted. (iii) If there was salt remaining, the sample was gently brushed to remove the 

salts remaining, (iv) the sonication process was resumed to assure a complete dissolution of the 

salts. Results based on washed samples, e.g., XRD analysis and weight change values, require 

careful consideration. Weight change values have not been considered reliable data for corrosion 

evaluation, but only as an additional data point for the overall evaluation performance. 
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2.6. A6 - Characterisation techniques 

Washed samples were weighed and characterised with scanning electron microscopy (SEM) 

and energy-dispersive X-ray spectroscopy (EDX) using a JEOL JSM-7800F Prime or Phenom ProX 

Desktop SEM equipped with an EDX detector. The electron beam was operated at an accelerat- 

ing voltage of 15 kV, and collected EDX spectra. A Siemens D50 0 0 powder diffractometer with 

grazing-incidence geometry was used for XRD surface analysis. 

Unwashed samples were subjected to cross-section investigation. Cross-sections of the ex- 

posed samples were prepared by dry cutting with a low-speed diamond saw, followed by broad 

ion beam (BIB) milling with a Leica TIC 3X instrument. This device is equipped with three argon- 

ion guns for sputtering. The guns were operated at 8V, and the total sputtering time was seven 

hours. Before milling, the samples were sputter-coated with gold, and a thin polished silicon 

wafer was affixed to the surface to protect the oxide scale during milling. 

2.7. B - Metal thickness changes 

Table B1 summarises metal thickness changes to 316H, 304L, and Kanthal ® APMT exposed to 

nitrate, carbonate, and chloride melts in this section. A calibrated optical camera of the Phenom 

ProX table-top SEM setup was employed to determine specimen thickness loss. It is essential 

to distinguish between the overall sample thickness, including oxide scales and the remaining 

metal thickness. 

2.7.1. Nitrates 

Alloy 316H and Kanthal ® APMT exposed to 60 wt% NaNO 3 - 40 wt% KNO 3 have not shown 

any loss in metal thickness; this agrees with their high corrosion resistance to the nitrate melts 

as reported in the main article’s chapter 3.1. [3] 

2.7.2. Carbonates 

Despite the increase in total thickness of the 304L sample due to rapidly outward grow- 

ing oxides, almost 400 μm of 304L metal thickness was lost. It is noteworthy that the remain- 

ing thickness of metallic components in 304L has been internally attacked and completely car- 

burised, which alters the overall alloy chemistry. In comparison, Kanthal APMT thickness has not 

changed after being exposed to the carbonate melt. 

2.7.3. Chlorides 

The metal thickness loss in 304L and Kanthal APMT, corroded by the 65 wt% KCl- 35% wt% 

MgCl 2, has been assigned to metallic elements leaching, and this could be observed as cavities 

in the bulk alloy. Unlike 304L exposed to carbonate melt, the cavities have not changed the 

chemistry of both alloys. Hence, the measured metal thickness for alloy 304L and Kanthal APMT 

included internally attacked zones comprising of MgO filled cavities. The metal thickness loss 

measured for 304L and Kanthal APMT was up to 10–40 μm and 10 μm, respectively. 

2.8. C – Reaction enthalpies 

Overview of Gibb’s reaction enthalpies for metals (Al, Cr and Fe) reacting with sodium nitrate 

at 650 °C in Table C1 and an equivalent overview in Table C2 for metals reacting with carbonates 

in a CO 2 gas atmosphere at 800 °C. The data has been normalised to per mol metal reacting with 

salt, which means that, e.g., the reaction enthalpy of Eq. (4) has been divided by 8. This provides 

direct comparability between all reactions. Factsage 7.3 databases were used to generate the 

data. 
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Table D1 

Thermodynamic equilibrium calculation (Thermocalc Software, Database TCFE:Steels/Fe-Alloys v8.0 [2] ) for the suboxide 

scale composition indicated in Fig. 11 (b) in the main article [DOI: 10.1016/j.solener.2021.06.069] normalised to 1 mol. 

(a,b) Laves phase elemental composition and (c) sublattices occupation at equilibrium at 800 °C. d) Theoretical tempera- 

ture dependent equilibrium phase composition plot for EDX measured composition (a) normalised to 1 mol (Thermocalc 

Software package and database TCFE: Steels/Fe-Alloys v8.0). (Thermocalc Software, Database TCFE:Steels/Fe-Alloys v8.0 

[2] ) 

(a) Measured input values 

(b) Elemental composistion of the Laves phase C14#1 

Constituents of the Laves phase 

Element Mole Fraction Mass Fraction Element Mole Fraction Mass Fraction 

Mo 0.1 0.167 Mo 0.333 0.469 

Al 0.03 0.014 Fe 0.484 0.396 

Cr 0.25 0.227 Cr 0.170 0.130 

Si 0.024 0.012 Si 0.013 0.006 

Fe 0.596 0.580 Al 1.44E-06 5.7E-07 

Output: Thermocalc single point calculation at 800 °C: 

BCC 68 mass% (73.3 mol%) 

Laves phase 

C14#1 

32 mass% (26.7 mol%) 

(c) Sublattice constitution for Laves phase C14#1 (Al,Cr,Fe,Mo,Si) 2 (Al,Cr,Fe,Mo,Si) 

Sublattice 1: Sublattice 2: 

Constituent Site Fraction Constituent Site Fraction 

Fe 0.725 Mo 0.998 

Cr 0.254 Cr 0.002 

Si 0.020 Fe 3.10E-04 

Mo 3.28E-04 Al 2.12E-06 

Al 1.10E-06 Si 4.54E-08 

(d) Temperature dependent phase composition plotted for EDX input values from (a). 
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2.9. D – Thermodynamic single-point analysis of Laves phase precipitates 

The exposure of a FeCrAl alloy, Kanthal ® APMT, to molten MgCl 2 /KCl presents with molyb- 

denum rich precipitates in the suboxide region (Fig. 11b, [3] ). EDS spot analyses on several 

precipitates were used to create input compositional data ( Table D1 a) for a Thermocalc sin- 

gle point equilibrium calculation [2] . The output file indicates a two-phase region consisting 

of 68 wt% BCC and 32 wt% Laves phase (A 2 B). The major fraction of molybdenum constitutes 

the B-sublattice in the Laves phase forming approximately (Fe 0.75 Cr 0.25 ) 2 Mo, see Table D1 b,c). 

Part d) in Table D1 shows a uni-axial equilibrium calculation which extends the single point 

calculation by the dimension of temperature. Laves phase is thermodynamically stable up to 

900 °C. Interestingly, the formation of a ternary sigma phase is possible below 800 °C, reducing 

the fraction of the BCC phase but not Laves phase. 

2.10. E – Description of alloy Kanthal ® APMT 

Kanthal ® APMT is a powder metallurgically produced alumina forming ferritic stainless steel. 

The alloy is available in several product forms. Kanthal APMT has excellent oxidation properties 

in air and good stability at high temperatures. At lower temperatures (i.e., below 10 0 0 °C), it is 

microstructurally stable. Some product might experience secondary recrystallisation at temper- 

atures above 10 0 0 °C. The high resistance of the alloy to oxidation and carburisation makes it 

useful in many demanding environments at elevated temperatures [9–11] . Kanthal APMT might 

not be cost-competitive with other conventional stainless steels, as its cost is roughly 20 times 

more expensive per kg than 304L and 316 alloys. Nevertheless, Kanthal APMT is considered a 

promising candidate for the next generation of CSP plants due to the following. (i) its high cor- 

rosion resistance in different molten salts compared to 304L and 316H alloys. (ii) the necessity 

to deviate from stainless steels due to unacceptable material loss and catastrophic failure risks. 

Ethics Statement 

Hereby, the authors assure that the manuscript adheres to Ethics in publishing standards. 

CRediT Author Statement 

Esraa Hamdy: Conducting exposure experiments, improving setup design, sample analyses, 

main author of this article; Johanna Nockert Olovsjö: Sample material advisor and main project 

partner for supplying Kanthal ® APMT, prototype vessel production, co-authoring this article; 

Christine Geers: Conducting exposure experiments, improving setup design, sample analyses, 

thermodynamic calculations, co-authoring this article. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal rela- 

tionships that could have appeared to influence the work reported in this paper. 

Acknowledgments 

This work was financially supported by Vinnova within the ALSTEr Project as part of the 

Jernkontoret initiative Metalliska Material. The Swedish Energy Agency continues to financially 



E. Hamdy, J.N. Olovsjö and C. Geers / Data in Brief 38 (2021) 107446 13 

support our effort s within the thermal storage for SOLEL initiative under contract number 

44653-1 (Jan-Erik Svensson) and as a partner in the High Temperature Corrosion Competence 

Centre (Lars-Gunnar Johansson). 

Supplementary Materials 

Supplementary material associated with this article can be found in the online version at 

doi: 10.1016/j.dib.2021.107446 . 

References 

[1] C.W. Bale , et al. , Factsage thermochemical software and databases - recent developments, Calphad 33 (2009) 17 . 
[2] J.O. Andersson , et al. , Thermo-calc and DICTRA, computational tools for materials science, Calphad 26 (2002) 

273–312 . 
[3] E. Hamdy , J.N. Olovsjö, C. Geers , Perspectives on selected alloys in contact with eutectic melts for thermal storage: 

nitrates, carbonates and chlorides, Sol. Energy 224 (2021) 1210–1221 . 

[4] W. Phillips , Z. Karmiol , D. Chidambaram , Effect of metallic Li on the corrosion behavior of inconel 625 in molten 
LiCl-Li 2 O-Li, J. Electrochem. Soc. 166 (2019) C162–C168 . 

[5] J.C. Gomez-Vidal , et al. , Corrosion resistance of alumina-forming alloys against molten chlorides for energy produc- 
tion. I: Pre-oxidation treatment and isothermal corrosion tests, Sol. Energy Mater. Sol. Cells 166 (2017) 222–233 . 

[6] W. Ding , T. Bauer , Progress in research and development of molten chloride salt technology for next generation 
concentrated solar power plants, Engineering 7 (3) (2021) 334–347 . 

[7] C. Oskay , et al. , Scale formation and degradation of diffusion coatings deposited on 9% Cr steel in molten solar salt, 

Coatings 9(10) (2019) 687 . 
[8] ASTM G1-03(2017)e1, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM 

International, West Conshohocken, PA, 2017 . 
[9] M. Sarvghad , et al. , Materials compatibility for the next generation of concentrated solar power plants, Energy Stor- 

age Mater. 14 (2018) 179–198 . 
[10] B. Jönsson , et al. , High temperature properties of a new powder metallurgical FeCrAl alloy, Mater. Sci. Forum 

461-464 (2004) 455–462 . 

[11] P. Steinmetz , I. G. Wright , G. Meier , A. Galerie , B. Pieraggi , R. Podor , High Temperature Corrosion and Protection of 
Materials 6, Illustrated, Trans Tech Publications Ltd, Zurich, Switzerland, 2004 . 

https://doi.org/10.1016/j.dib.2021.107446
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0001
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0001
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0001
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0002
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0002
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0002
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0003
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0004
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0004
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0004
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0004
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0005
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0005
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0005
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0006
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0006
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0006
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0007
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0007
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0007
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0008
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0009
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0009
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0009
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0010
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0010
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0010
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011
http://refhub.elsevier.com/S2352-3409(21)00728-9/sbref0011


  



 

Paper II 

 

 

Differentiation in corrosion performance of alumina forming alloys in 

alkali carbonate melts  

E. Hamdy, M. Strach, J. N. Olovsjö, and C. Geers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bibliography  

E. Hamdy, M. Strach, J. N. Olovsjö, and C. Geers, "Differentiation in corrosion 

performance of alumina forming alloys in alkali carbonate melts," Corrosion 

Science, p. 109857, 2021/09/20/ 2021, doi: 

https://doi.org/10.1016/j.corsci.2021.109857.

https://doi.org/10.1016/j.corsci.2021.109857


 



Corrosion Science 192 (2021) 109857

Available online 20 September 2021
0010-938X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Differentiation in corrosion performance of alumina forming alloys in alkali 
carbonate melts 

Esraa Hamdy a,*, Michal Strach b, Johanna Nockert Olovsjö c, Christine Geers a 
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A B S T R A C T   

Alkali carbonate melts are promising high temperature thermal storage media. In this work five alumina forming 
alloys have been exposed to a ternary LiNaK carbonate melt and CO2 at 800 ◦C. The corrosion propagation was 
found to depend on the formation of a slow-growing LiAlO2 scale. Furthermore, the two polymorphs contributing 
to the LiAlO2 phase were monitored for up to 1000 h: a dense α-LiAlO2 scale and γ-LiAlO2 crystallites. We suggest 
a growth stress assisted formation of α-LiAlO2 relaxing into the outwards growing γ-LiAlO2 phase. This implies a 
deceleration of the α-LiAlO2 scale growth towards a steady state-thickness.   

1. Introduction 

New generations of climate-neutral energy technologies, such as 
concentrated solar power (CSP) with thermal storage capacities, surpass 
current temperature limitations by utilising high temperature heat 
transport and storage media with superior thermal stability [1–5]. While 
reaching for increased energy conversion efficiency and grid stability, 
material challenges due to high temperature corrosion risks lack data on 
long-term performance, especially when it comes to selected molten salt 
mixtures in contact with metal components. These eutectic melts 
comprise commonly ternary alkali carbonates or binary chloride mix
tures. The first pilot plant operating with ternary carbonates comprising 
lithium-, sodium, and potassium carbonates (LiNaK) operates at 700 ◦C 
[1]. 

Metal components are made of high temperature resistant alloys 
providing structural strength as well as containment of the salt, while 
growing a passivating oxide scale at the surface, preventing corrosion by 
molten species. Formation and slow growth of a passivating oxide scale 
are crucial for alloy components’ overall performance and, subse
quently, the entire power plant. Chromium oxide on stainless steels and 
aluminium oxide on ferritic alumina forming alloys are common can
didates to establish a high temperature corrosion protection in next- 
generation thermal storages utilising alkali carbonates at 700 ◦C or 
higher. However, a chromium oxide scale has proven insufficient to 
protect an alloy against internal oxidation and rapid carburisation, 

causing material embrittlement [6,7]. On the other hand, studies on 
alumina forming alloys showed that slow-growing alkali aluminate 
scales do not permeate carbon [8,9]. In this aspect, alumina forming 
alloys are superior to all chromia forming steels. In a previous study [7], 
we report specifically on the time-resolved performance of the alumina 
forming Kanthal® APMT at 800 ◦C immersed in LiNaK carbonates. 
Lithium ions have shown to be the predominant alkali species incor
porated into oxides growing on high-temperature alloys [7,10,11]. After 
72 h, the surface was covered by an α-lithium aluminate layer. After a 
few hundred hours, larger crystallites have been observed and identified 
as γ-lithium aluminate. 

In the spirit of identifying the higher temperature operation limit, 
this research was conducted at 800 ◦C. 

The solid-state synthesis of LiAlO2 and characterisation of its two 
polymorphs α and γ has been published by Lehmann and Hasselbarth in 
1961. In air, the low-temperature modification, α-LiAlO2, transforms 
into γ-LiAlO2 at 600 ◦C or higher [12]. In several studies, reacting 
lithium carbonate with alumina powder in different environments 
revealed that the upper-temperature limit for α-LiAlO2 formation is in 
the range of 747–777 ◦C [13–16]. 

Evans et al. introduced in 1978 a concept for the stress assisted 
formation of a duplex oxide scale comprising two polymorphs, i.e., 
tetragonal and monoclinic zirconia on zircaloy-2 [17]. In the present 
study, the same concept is adopted to express the growth of both α- and 
γ-LiAlO2 at 800 ◦C. In Evans’s case, a stress stabilised tetragonal zirconia 
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morphology forms at the metal/oxide interface under compressive stress 
until relaxing into a monoclinic lattice. The magnitude of the 
compressive stress allows tetragonal ZrO2 to form at a significantly 
lower temperature than its ambient pressure phase transition point, as 
indicated in the T-P-phase diagram [18]. Detailed investigations are still 
regularly published to understand and predict a limiting scale thickness 
[19,20], also referred to as steady-state thickness, due to its techno
logical importance for nuclear applications [19]. Evans et al. emphas
ised in 1978 that the concept of a stress stabilised inner oxide scale is 
universal under the condition of two possible polymorphs. We believe 
that the α- to γ-LiAlO2 transformation is one of these examples, which 
leads to the assumption of a limiting steady-state thickness of the 
α-LiAlO2 inner oxide layer. 

It should be mentioned that the density of γ-LiAlO2 is 25% lower 
compared to α-LiAlO2. The crystal structure visualisation in Fig. 1 [21, 
22] highlights the layered packing of lithium and aluminium ion poly
hedrons along the c-axis for α-LiAlO2, while γ-LiAlO2 comprises alter
nating Li/Al tetrahedrons [22]. 

In this study, the corrosion processes on the alumina forming alloys 
Kanthal® APMT, Kanthal® AF, Nikrothal® PM58, and two newly 
developed alloys, Fe10Cr4Al base, in LiNaK carbonate melt at 800 ºC 
will be described. 

2. Experimental 

Specimens of five alumina forming alloys have been prepared and 
investigated in this study. The alloys have relatively similar aluminium 
content. The nominal compositions of Kanthal® AF and Kanthal® APMT 
are almost identical, Fe20Cr5Al however, the latter differs in Mo and Mn 
content (Table 1.). 

The newly developed Kanthal® EF100 and 101, Fe10Cr4Al, differ in 
Si content. Nikrothal® PM58 is an alumina-forming austenitic alloy. 

A salt mixture of 32.1 wt% Li2CO3, 33.4 wt% Na2CO3 and - 34.5 wt% 
K2CO3 was prepared and have been purchased from VWR chemicals 
(99.0%), EMSURE anhydrous (99.9%), and ThermoFisher Scientific 
(99.8%), respectively. 

The salt preparation method, chemical composition and concentra
tion of each salt impurities are stated in [23]. A unique setup was built to 
provide a full immersion of coupons into the salt melt during exposures. 
A detailed description of the setup built is given in a previous publica
tion [23]. The isothermal exposures were conducted at 800 ± 5 ◦C under 
flowing CO2. Upon each experiment, two duplicate samples are pro
duced and are differently treated, as will be discussed further, depending 
on the characterisation technique. Each exposure was repeated at least 
two times for each material. 

Metal coupons of initial measurements 15 × 15 × 2 mm were pre
pared to a mirror-like finish (1 µm diamond polish). The polished sam
ples were thoroughly cleaned and dried, then immersed in the prepared 
salt mixture. Detailed procedure of metal coupons preparation is pro
vided in a former publication [23]. 

2.1. Post-exposure surface analysis 

After exposure, samples were differently treated based on the type of 
investigations required. For example, samples subjected to surface in
vestigations, X-ray diffraction (XRD) analysis, and mass change mea
surements have been rinsed with water by an ultrasonic cleaner at room 
temperature, see [23]. After weighing the washed samples, surface in
vestigations were conducted by scanning electron microscopy (SEM) 
and energy-dispersive X-ray spectroscopy (EDX) using a JEOL 
JSM-7800F Prime or Phenom ProX Desktop SEM with an EDX detector. 
The Siemens D5000 powder diffractometer equipped with a Cu source, a 
secondary Si monochromator, and a point detector with 
grazing-incidence geometry was used for XRD surface analysis. Li con
taining species were exclusively detectable through XRD. 

Rietveld refinement on the acquired XRD patterns was performed 
using the TOPAS V6 software. Rietveld refinement on the phases 
included zero-error corrections, polarisation factor, a fundamental pa
rameters approach for instrumental profile simulation, preferred 
orientation correction based on spherical harmonics, corresponding 
emission profile, and polynomial simulated background. The structures 
used in the refinement were trigonal R-3 M for the α-LiAlO2 phase, 
tetragonal P41212 for the γ-LiAlO2 phase, and cubic Im-3 m for the 
FeCrAl substrate phase. 

It has to be noted that the applied model does not include absorption 
effects in the layered structure. Signal from the inner oxide layer will be 
decreased by the growing outer scale, affecting the measured peak in
tensities. In addition, the penetration depth in the used grazing inci
dence geometry cannot be determined without exact incidence angle 
values and densities (packing) of the probed layers. Hence, the obtained 
phase fractions provide only qualitative insights and require additional 
parameters obtained by microscopic inspection of cross-sections. 

2.2. Post-exposure cross-section analysis 

For cross-sectional investigations, samples were not rinsed. After 
pouring out the melt, a thin salt film stays on the top of the sample. 
Cross-sections of the exposed samples were prepared via dry cutting 
with a low-speed diamond saw, followed by broad ion beam (BIB) 
milling with a Leica TIC 3X instrument. 

3. Results 

In this section, the corrosion behaviour of the selected alumina 
forming alloys will be discussed based on mass change measurements, 
XRD and Rietveld analysis, and microscopic investigations (surface 
morphology and cross-sectional analysis). 

3.1. Mass change measurements of alumina forming alloys exposed to 
alkali carbonate melts 

Corrosion performance is evaluated quantitatively by measuring the 

Fig. 1. Three-dimensional polyhedral visualisation of a) α-LiAlO2 and b) γ-LiAlO2 crystal structures, where red, yellow and blue spheres represent oxygen, lithium 
and aluminium atoms [21,22]. 
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mass change of the samples after being rinsed with water [23]. Due to 
the rinsing procedure, the soluble oxide species are dissolved; therefore, 
the mass change values must be interpreted cautiously. LiAlO2 was not 
found to dissolve by this procedure. Nevertheless, the mass change plot, 
besides other analyses, can give an indication on the scale formation and 
growth kinetics. As shown in Fig. 2, all alumina forming alloys have 
shown relatively similar mass gain values. After 72 h, the mass gain 
obtained shows that Kanthal® EF 101 has the lowest mass gain, followed 
by Kanthal® APMT and Kanthal® AF, which have relatively similar 
mass change values; Nikrothal® PM58 has the highest mass gain, while 
the Kanthal® EF 100 has shown a mass loss. 

The mass change data will be used in Table 2. to estimate α/γ-LiAlO2 
phase transformation ratios, in comparison to the Rietveld data. 

3.2. "Normal" formation and transformation of LiAlO2 

In this study, the selected alloys will be categorised into two groups 
based on their formation and transformation behaviour of LiAlO2: i) 
"normal" and ii) "deviating". The “normal” formation and transformation 
of LiAlO2 is incorporating no ternary cationic species from the alloy and 
is therefore chemically very similar to the synthesis products already 
described by Lehmann and Hasselbarth [12]. The “deviating” behaviour 
described in the next chapter involves at least one more metal ion in the 
scale formation. Fig. 3. shows the XRD patterns of the Kanthal® EF 101 
after exposure to alkali carbonate melts at 800 ◦C. After short-term 
exposure (72 h and 168 h), only one phase of LiAlO2 has been identi
fied, i.e. α-LiAlO2. After longer exposures (500 h and 1000 h), another 
lithium aluminate phase, γ-LiAlO2 emerged. These findings are similar 
for Kanthal® APMT and Kanthal® AF. In Table 2. the α/γ LiAlO2 phase 
ratios are quantified by Rietveld analysis. 

Fig. 4. displays the relatively similar surface morphology of Kant
hal® APMT, Kanthal® AF, and Kanthal® EF 101. After short-term 
exposure (72/168 h), small crystals, identified as α-LiAlO2, completely 
covered the surface. After longer exposure times (500 h/1000 h), the 
larger γ-LiAlO2 phase started to emerge. 

Fig. 5 shows an example of the characteristic double-layer structure 
composed of a compact inner α- LiAlO2 scale and outer γ-LiAlO2 crystals, 
on Kanthal® EF 101. The average scale thicknesses of the "normal" 
behaving LiAlO2 forming alloys have been measured and tabulated in 
Table 2. Kanthal® APMT shows the thickest α-LiAlO2 scale among the 
"normal" behaving alloys. 

The measured mass gain, ∆m(measured), for the "normal" LiAlO2 for
mers represents the uptake of lithium and oxygen into the scale. The 
amount of substance (n) for LiAlO2 is obtained by correcting the 
measured mass gain for the aluminium contribution from the alloy (41% 
of the molar mass MLiAlO2) divided by the total MLiAlO2, Eq. 1. The 
α-LiAlO2 phase in the "normal" scenario forms a rather homogeneous 
scale at the surface with a mean thickness X(α). The mean thickness X(α) 
derived from cross-sectional analyses multiplied by sample area and 
theoretical density of α-LiAlO2 from the crystallographic database [22] 
allows us to determine an approximate total mass of α-LiAlO2 and 
consequently an amount of substance, n(α). 

n(LiAlO2 total) = n(α) + n(γ) =
∆m(measured)⋅1.69

M(LiAlO2)
(1) 

For each sample of the "normal" LiAlO2 formers, the α/γ-phase ratio 
was determined using Eq. 1, combining gravimetry and microscopy. 
Rietveld refinement for each powder diffractogram has been used as an 
alternative quantification of α/γ-LiAlO2 ratios for comparison. 

The α/γ phase ratios derived by Rietveld refinement contain infor
mation on the increasing coverage of the sample surfaces by γ- LiAlO2. 
The ratios determined by combined microscopy and gravimetric mea
surements allow for a quantification of the α- LiAlO2 scale contribution 
to the total mass gain. All values are tabulated in Table 2. It is note
worthy that the mass gain and scale thickness used in the calculations 
are for two different coupons. However, they have been exposed 
simultaneously under the same conditions. 

Plotting scale thicknesses and the α/γ-phase ratio (Rietveld) in Fig. 6. 
reveals the growth of α- and γ-LiAlO2 phase over time. It is noteworthy to 
point out that the α/γ ratios derived by Rietveld analysis plotted in Fig. 6 
seem to indicate a deceleration or even reducing γ-LiAlO2 fraction after 
500 h for Kanthal APMT and Kanthal EF101, while the average thickness 
is steadily increasing. The top view images in Fig. 4. show that the in
dividual γ-LiAlO2 crystals grow significantly with time but the overall 
number of nucleation sites does not increase. This can have an effect on 
the Rietveld phase fraction slope in Fig. 6. The rapid increase of size and 
phase fraction of γ-LiAlO2 may lead to Al depletion in the bulk alloy. 
Thus, line scan analysis has been performed on all 1000 h exposure 
samples and did not substantiate that concern (Fig. 5.d). The α-LiAlO2 
scale growth decelerates over time. 

Summarising the observations for the "normally" behaving LiAlO2 
forming alloys, minor deviations can be found for each parameter, i.e., 
as surface roughness, crystals size and scale thickness. 

3.3. "Deviating" formation and transformation of LiAlO2 

The corrosion behaviour of the Kanthal® EF 100 and Nikrothal® PM 
58 deviates from the "normal" α- LiAlO2 forming alloys, particularly after 
short-term exposures. In the case of Kanthal® EF 100, the alloy surface 
was completely covered with LiFeO2 crystals after 72 h, as shown in  
Fig. 7.c and confirmed with XRD, Fig. 8. After 168 h, however, all traces 

Table 1 
Nominal alloy compositions.  

Alloy Fe Ni Cr Al Si Mn Mo Others 

Kanthal®APMT balance X 21 5  0.7 0.4 3 RE; C 0.08 
Kanthal® AF balance X 21 5.3  0.7 X X RE; C 0.08 
Kanthal® EF101 balance < 0.5 11–14 3.2–4.2  1.2 < 0.7 X RE; C 0.08 
Kanthal® EF100 balance < 0.5 9.5–13 3.8–4.2  < 0.5 < 0.7 X RE; C 0.08 
Nikrothal® PM58 18 Balance 19 5  0.4 X X RE  

Fig. 2. Overall mass change behaviour of the selected alumina forming alloys 
immersed in alkali carbonate at 800 ◦C after different exposure times. 
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of LiFeO2 have disappeared due to dissolution into the carbonate melt 
(Fig. 7d and g). This observation is in agreement with the observed mass 
loss, cf. Fig. 2. Instead, small crystals of α-LiAlO2 are formed. Further
more, after longer exposure times (500 h/1000 h), γ-LiAlO2 crystals 
started to grow similarly to the "normally" behaving alloys. Due to the 
initial mass loss induced by the transient α-LiFeO2, the coupled gravi
metric/microscopic determination of the α/γ-LiAlO2 phase ratio via Eq. 
1 was not applicable here. However, α/γ-LiAlO2 phase ratios have been 
obtained by Rietveld refinement of the XRD patterns obtained after 
168 h, 500 h and 1000 h exposures. The Rietveld data and mean scale 
thicknesses are shown for comparison in Fig. 6. Indeed, the slow growth 
of the thin α-LiAlO2 scale and scarce nucleation of γ-LiAlO2 crystallites at 
the surface lead us to classify Kanthal® EF 100 as one of the "normally" 
behaving LiAlO2 forming alloys after overcoming a deviating early 
stage. 

At 800 ◦C the austenitic alloy Nikrothal® PM58 forms Li(Cr,Al)O2 in 
contrast to the protective α-LiAlO2 scale that has been reported for ex
posures at 750 ºC [24]. Fig. 9. shows XRD and microscopic analysis re
sults of Nikrothal® PM58 after exposure to alkali carbonate melts for at 
least 1000 h. Cross-section and EDX analyses revealed that Nikrothal® 
PM58 developed pegs in the suboxide zone filled with mainly Li(Cr,Al) 
O2 and some fractions of aluminium enriched scale as well as nickel and 
iron-rich particles. In Fig. 9.c–e, point analysis on the surface reveal that 
Fe and Ni particles have been transported to the oxide/melt interface 

Table 2 
Mean scale thicknesses (X) for α- and γ-LiAlO2, mass change Δm, gravimetrically and microscopically derived α/γ-phase ratio (calc. Eq. 1) and Rietveld derived phase 
ratios (α to γ % Rietveld). The n.a. (not available) error data in the table is attributable to duplicate sample loss in the repeated experiment due to alumina crucible 
breakdown during cooling.  

Exposure Time Δm (mg/cm2) X (μm)measured α to γ % calc. α to γ % Rietveld

Kanthal® APMT

72 h α
0.11±0.008

0.30 (Max 0.6) 97.33 100

γ - 2.67 0

168 h α
0.19±n.a

0.75 (Max 2.4) 77.05 100

γ - 22.95 0

500 h α
0.19±0.002

0.95 (Max 3.2) 96.40 63.9 ± 0.9

γ 1.60 (Max 2.3) 3.60 36.1± 0.9

1000 h α
0.32±0.06

1.80 (Max 3.2) 93.67 78.1 ± 1.1

γ 5.2 (Max 8.8) 6.33 21.9± 1.1

Kanthal® AF

72 h α
0.10±0.01

0.45 (Max 0.7) 93.79 100

γ - 6.21 0

168 h α
0.13±0.02

0.5 (Max 0.7) 65.93 85.5±2.5

γ 0.42 (Max 0.6) 34.07 14.5±1.9

500 h α
0.21±0.01

0.6 (Max 0.7) 47.96 70±1

γ 0.85 (Max 4.4) 52.04 30±1

1000 h α
0.23±0.13

1.13 (Max 1.8) 33.59 9.8±2.5

γ 3.0 (Max4.3) 66.41 90.2±2.4

Kanthal
®

EF 101

72 h
α

0.05±0.01
0.45 (Max 1.2) 100

γ - 0

168 h
α

0.12±n.a
0.47 (Max 0.6) 75.84 64±0.9

γ 0.75 (Max 1.25) 24.16 36±0.9

500 h
α

0.24±0.13
0.52 (Max 0.7) 27.13 18±5

γ 1.4 (Max 2.7) 72.87 82±5

1000 h
α

0.23±n.a
0.6 (Max 1.1) 51.06 20.2±3.8

γ 1.7 (Max 3.5) 48.94 79.8±3.3

Fig. 3. XRD patterns of Kanthal® EF 101 after exposure to alkali carbonates in 
CO2 at 800 ◦C for 72 h,168 h, 500 h and 1000 h. 
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Fig. 4. Top view electron microscopic images for "normal behaving alloys" only LiAlO2 species exposed to carbonate melts at 800 ◦C after different exposure times. 
Larger crystals present γ- LiAlO2, small crystals are attributed to α- LiAlO2. 

Fig. 5. Cross-section of Kanthal® EF 101 immersed in LiNaK carbonate at 800 ◦C after a) 72 h, b) 168 h, c) 500 h and d) 1000 h and EDS mapping of Al and oxygen 
through crystals, e) line scans of Al and oxygen through crystals and in the bulk alloy. 
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and can easily leach into the alkali carbonate melt. An aluminium 
depletion zone in the suboxide region has been detected, reaching 
roughly 14 µm into the alloy. Just beneath the oxide, the aluminium 
content was lowered by 1.2 wt% compared to the nominal composition 
(see Fig. 9.f). 

4. Discussion 

From the experimental results, two fundamental oxidation behav
iours of alumina formers in alkali carbonate melts can be distinguished. 
One we call the "normal" lithium aluminate formation with an initially 
forming inner α-LiAlO2 and an outer γ-LiAlO2 phase. No other cationic 

Fig. 6. Thickness values for α- and γ-LiAlO2 of the four ferritic FeCrAl alloys 
and the corresponding results of Rietveld analysis, Column in yellow represents 
LiFeO2 cf. Section 3.3. 

Fig. 7. Top view of Kanthal® EF 100 exposed to alkali carbonate melts at 800 ºC, a, b) Cross section after 72 h. Top-view image of c) 72 h, LiFeO2 covers the surface, 
d) 168 h, only α-LiAlO2 covers the surface, e) 500 h, γ-LiAlO2 crystallites appear, f) 1000 h, γ-LiAlO2 crystallites size increased. Cross-section after g) 168 h, 
h) 1000 h. 

Fig. 8. XRD patterns for Kanthal® EF 100 after exposure to alkali carbonates in 
CO2 at 800 ◦C for 72 h,168 h, 500 h and 1000 h. 
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species is interfering or detected on the scale. Every other behaviour has 
been denominated "deviating" oxidation of alumina forming alloys in 
contact with alkali carbonates involving transient oxide formation and 
pegging. 

4.1. "Normal" LiAlO2 formation and transformation 

"Normal" LiAlO2 formation was observed for the alloys Kanthal® AF, 
Kanthal® APMT and Kanthal® EF 101. Exposure experiments in alkali 

carbonates at 800 ◦C revealed formation of a covering α-LiAlO2 scale 
after 72 h. This homogeneous α-LiAlO2 scale protects the bulk alloy 
against internal oxidation and carburisation. 

Worth noting, α-LiAlO2 is thermodynamically not favoured at 800 ◦C 
[13]; hence it is important to offer an understanding why the α-LiAlO2 
scale is present at this temperature and grows with time. At this point, 
we want to remind the reader of Evans’ et al. oxidation mechanism for 
phase stabilisation under compressive growths stress [17]. α-LiAlO2 has 
a significantly higher theoretical density compared to the γ-modifica
tion. Therefore, the growing α-LiAlO2 scale is able to accommodate not 
only a higher amount of oxygen but also lithium ions in the same volume 
compared to γ-LiAlO2 and thereby absorbing growth stresses. From a 
corrosion control point of view, α-LiAlO2 is the preferential crystal 
morphology because it forms a dense scale that maintains a slow and 
gradual oxidation process. 

However, in this study, we found the γ-LiAlO2 morphology signal 
after 168 h in the XRD patterns for all ferritic alumina forming alloys in 
conjunction with larger faceted crystallites at the surface. γ-LiAlO2 
crystallites are free-standing at the melt/oxide interphase and do not 
experience compressive growth stresses. 

The amount of both LiAlO2 modifications increases with time, 
whereby α-LiAlO2 is the only phase initially, while γ-LiAlO2 takes 
quickly over, as shown in Fig. 6. Since the formation and growth of 
α-LiAlO2 depends on the presence of compressive stresses, we, therefore, 
expect to find a steady-state behaviour of the inner scale. The stress 
relaxation will define the limiting inner α-scale thickness at the gas/ 
oxide interface into the thermodynamically stable γ-modification. In this 
study, we have not reached the limiting α-scale thickness yet; however, 
its scale growth rate already significantly declines after 1000 h, while 
the γ-crystallites keep growing. Rietveld refinement also confirmed an 
increasing surface coverage of γ-LiAlO2 with time. 

The α-LiAlO2 steady-state thickness is expected to be temperature- 
dependent. At temperatures below 750 ◦C, α-LiAlO2 is the thermody
namically dominating morphology and therefore, γ-LiAlO2 nucleation is 
unexpected. 

Due to the fast growth and individual crystallinity, γ-LiAlO2 limits 
the lifetime of the alloy in the melt in two ways. On the one hand, the 
absence of the covering α-LiAlO2 scale and consequently poor diffusion 
barrier increases accessibility of corrosion species to the metal surface. 
On the other hand, the faster growth of γ-LiAlO2 crystallites accelerates 
the depletion of aluminium from the alloy eventually compromising the 
formation of a protective α-LiAlO2 scale. 

4.2. "Deviating" LiAlO2 formation and transformation 

Two of the alumina forming alloys, Kanthal® EF 100 and Nikrothal® 
PM58, investigated in this study, have not shown the here called 
"normal" LiAlO2 scale evolution. 

As shown in the results for 800 ◦C, Kanthal® EF 100 presents with an 
external lithium ferrite, LiFeO2, after 72 h. After 168 h, the LiFeO2 phase 
has disappeared, presumably due to dissolution, and a “normal” LiAlO2 
scale has formed and remained at least until the end of the experiment. 
Lacking the beneficial silicon content, Kanthal® EF 100 rapidly grows 
initially a covering LiFeO2 scale. After reaching a sufficiently high 
thickness (~8.0 µm after 72 h), oxygen and lithium activities are low 
enough to nucleate a slow-growing LiAlO2 at the metal/scale interface, 
decreasing the growth significantly. LiFeO2 is leachable into the melt 
and has dissolved completely after 168 This LiAlO2 undergoes further α- 
to γ- transformation as described in the former section on "normal" 
LiAlO2 formation. 

This result is very similar to observations made by comparing the 
oxidation behaviour of Kanthal® EF 100 and Kanthal® EF 101 in dry air 
[25]. 

Even though the chemical composition for both alloys is very similar, 
differing exclusively in silicon content, Kanthal® EF 101 grows reliably 
on an aluminium oxide scale in the referenced case in dry air while 

Fig. 9. Nikrothal® PM58 exposed to alkali carbonate melts at 800 ºC, Cross- 
section after a) 1000 h in SEM contrast, b) peg after 1000 h in backscatter 
contrast. Top-view image after c) 72 h, Li(Cr,Al)O2 covers the surface, d) 500 h, 
presence of nickel and iron-rich particles, e) 1000 h, Al enriched scale fractions, 
f) line scan for the suboxide zone after 1000 h, g) XRD patterns for Nikrothal® 
PM58 after exposure to alkali carbonates in CO2 at 800 ◦C for 72 h,168 h, 500 h 
and 1000 h. 
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Kanthal® EF 100 rapidly grows iron oxide instead [25]. 
Of note, the newly developed Kanthal® EF 100 and Kanthal® EF 101 

have been used in former publications under names “model alloy 198′′

and “ model alloy 197′′, respectively. 
The silicon contribution to the protective alumina scale formation is 

addressed as 3rd element effect. In our study here, the 3rd element effect 
of silicon as alloying element extends even beneficially for the reliable 
formation of α- LiAlO2 in carbonate melts. 

Nikrothal® PM58 deviates in another way from all other exposed 
alumina forming alloys investigated in this study. As austenitic alumina 
forming alloy, aluminium diffusion towards the metal/scale interface is 
a priori slower than for the four ferritic alloys [26], as seen in the flat 
aluminium profile in the suboxide region (Fig. 9.f). As described in 
Section 4.1. on "normal" LiAlO2 formation, an intact α-LiAlO2 can only 
be maintained by a steady-state supply of aluminium to the metal/scale 
interface. A covering α-LiAlO2 scale could not be detected after exposure 
to alkali carbonates at 800 ◦C. This result strongly contrasts with an 
earlier study also undertaken in the same lab revealing that a protective 
slow-growing scale was formed and sustained at 750 ◦C for at least 
740 h [24]. This observation indicates a strong correlation with the 
temperature dependence of LiAlO2 phase transition investigated by 
[13], where the lower limit for γ-LiAlO2 formation was indeed 750 ◦C. 

5. Conclusions 

All ferritic alumina forming alloys investigated in this study formed a 
dense and adherent α-LiAlO2 scale after max. 168 h at 800 ◦C, fully 
immersed in alkali carbonates under flowing CO2. This scale grows 
slowly and protects the alloy from internal oxidation and carburisation, 
which are common major corrosion problems for chromia forming high 
temperature alloys in contact with carbonates or CO2. 

However, the α-LiAlO2 forms initially due to growth stress. On top of 
the α-LiAlO2 scale, the thermodynamically stable γ-LiAlO2 nucleates and 
rapidly grows non-protective crystals. Up to 1000 h of exposure, no 
detrimental aluminium depletion from the alloys was reached. The 
austenitic alloy Nikrothal® PM58 does not grow the preferable α-LiAlO2 
at 800 ◦C due to the relatively slow diffusion of aluminium from the 
alloy towards the alloy/melt interface. 
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