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Abstract

Diagnosis and timely treatment play an important role in preventing brain
tumor growth. Clinicians are unable to reliably predict LGG molecular sub-
types from magnetic resonance imaging (MRI) without taking biopsy. Ac-
curate diagnosis prior to surgery would be important. Recently, non-invasive
classification methods such as deep learning have shown promising outcome in
prediction of glioma-subtypes based upon pre-operative brain scans. However,
it needs large amount of annotated medical data on tumors. This thesis in-
vestigates methods on the problem of data scarcity, specifically for molecular
LGG-subtypes.

The focus of this thesis is on two challenges for improving the classifica-
tion performance of gliomas and its molecular subtypes using MRIs; data
augmentation and domain mapping to overcome the lack of data and using
data with unavailable GT annotation to tackle the issue of tedious task of
manually marking tumor boundaries. Data augmentation includes generating
synthetic MR images to enlarge the training data using Generative Adversar-
ial Networks (GANs). Another type of GAN, CycleGAN, is used to enlarge
the data size by mapping data from different domains to a target domain. A
multi-stream Convolutional Autoencoder (CAE) classifier is proposed with a
2-stage training strategy. To enable MRI data to be used without tumor an-
notation, ellipse bounding box is proposed that gives comparable classification
performance.

The thesis comprises of papers addressing the challenging problems of data
scarcity and lacking of tumor annotation. These proposed methods can benefit
the future research in bringing machine learning tools into clinical practice for
non-invasive diagnostics that would assist surgeons and patients in the shared
decision making process.

Keywords: Deep learning, convolutional neural network, generative adver-
sarial network, cycleGAN, convolutional autoencoder, glioma subtype classi-
fication, 1p/19q codeletion, IDH mutation.
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CHAPTER 1

Introduction

For visualizing the anatomy of brain, medical imaging allows researchers and
medical personnel to diagnose and treat diseases through non-invasive radi-
ology. With the recent developments in imaging techniques, not only the
images have shown better quality and resolution but also the amount of im-
ages acquired is growing steadily. One of the most commonly used imaging
techniques for brain is magnetic resonance imaging (MRI) that shows soft
tissues of brain as high contrast images for understanding and distinguishing
between healthy and diseased anatomy. Since manual techniques can not in-
spect effectively this growing image data, hence medical image analysis aims
to develop automatic methods to help diagnosis.

Among many sub-fields of machine learning, deep learning is the one cur-
rently receiving a prominent prospect as it is outperforming other methods
on several image analysis benchmarks. However, its usage in health care is
still in infancy. Motivated by the success of deep learning and its demand in
health care in general and brain tumor (glioma and its subtypes) classification
in particular, this thesis contributes in investigating automatic methods that
may save valuable time of medical personnel and provide the patients with
improved prognosis. The importance of this thesis includes the use of MRI
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for improving automatic detection and diagnosis to support clinical decisions
of medical doctors and to deal with the challenges of limited size data and
unavailability of tumor annotations for MRIs. In the following section, glioma
classification and its molecular subtypes are introduced.

1.1 Brain Tumor Classification

Brain tumor is a central nervous system disease that appears like a mass in
the brain due to the growth of abnormal cells. Glioma is one of the most
common types of primary brain tumors that originates in the gluey support-
ive cells, called glial cells. These cells surround the nerve cells and help them
functioning. The types of glial cells involved in the tumor define the class of
gliomas as well as the genetic features of the tumor. These tumor features de-
termine the prognosis and assist the clinical decisions on treatment. Gliomas
affect the brain functions and are deadly depending on its rate of growth and
the location in brain. Usually, treatment options include surgery, radiation
therapy and chemotherapy.

Glioma Grading

The type of glial cell involved in glioma defines its type which can be astrocy-
tomas, ependymomas or oligodendrogliomas. Diffuse glioma is characterized
by its high infiltrate growth to its surrounding tissues, while non-diffuse glioma
has relatively well defined boundary and belongs to either pilocytic astrocy-
toma or ependymoma group. Depending on the aggressiveness of the tumor,
World Health Organization (WHO) has graded them into four grades (I-IV)
11].

Grade 1:

Grade 1 gliomas have slow growth rate, are non-invasive and belong to pilo-
cytic astrocytomas. These are benign (non-cancerous) with slow-growing rate
and well-defined boundaries carrying the longest prognosis. Because of this,
they can be cured and removed by surgery with low chances of recurrence.
These gliomas usually occur in children and young adults. Grade 1 gliomas
are also called low grade gliomas (LGGs).
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Grade 2:

Grade 2 gliomas are more common in adults and are benign. These gliomas
when arise in astrocytes (the supportive cells around the neurons) are called
low grade diffuse astrocytoma. These gliomas tend to grow into surrounding
healthy tissues and have ill-defined boundaries. For this reason, it is chal-
lenging to remove them completely through surgery. Depending on the size,
location and extent of the surgical removal, chemotherapy and radiation can
be applied for treatment. Due to better prognosis than grades 3-4, they are
put in low grade category. Astrocytomas often progress into gliomas of higher
grades.

Grade 2 glioma when arise in oligodendrocytes (cells that wrap around
nerve fibers to provide support) are called oligodendroglioma. The occurrence
of this type of glioma is relatively rare and have relatively slow growth rate.
As these gliomas occur in brain regions that control major body functions, so
the entire tumor is unable to be completely resected. Instead, radiation and
chemotherapy might be additionally suggested.

Grade 3:

Grade 3 gliomas are also called anaplastic gliomas and are malignant form
of brain tumors. Anaplastic means that the glioma brain tumor cells are
dividing rapidly. In some cases, astrocytoma or oligodendrogliom (grade 2)
grows into their aggressive forms to form their respective grade 3. Otherwise,
they appear in grade 3 tumors initially. They often spread quickly and are
likely to progress to grade 4. They are more challenging to treat than LGGs.

Grade 4:

Glioblastomas are highly malignant brain tumors and the most aggressive form
of astrocytomas called as glioblastomas multiforme (GBM). Grade 4 gliomas
have the shortest survival rate. Primary glioblastomas develop quickly, while
secondary glioblastomas are those progressed from low grade gliomas. They
are most commonly found in older adults and rarely occur in children. They
may have developed from lower grade gliomas, but the name changes once
they progress to high-grade.

Table [[.I] summarizes glioma grades with their corresponding occurrence
and 5-year survival rates. For clinical decision making and planning, it is of
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high practical value to know the glioma type before surgery or other treat-
ments. It can assist the tumor progression prediction over time and the treat-
ment planning for patient’s prolonged survival and quality of life. Usually,
clinicians can tell the glioma grade by looking at brain MRI scans [2].

Table 1.1: WHO grading of gliomas [1] and their occurrence rate 2] and 5-year
survival rates [3|

Glioma Glioma Occurrence rate  5-year
Grade Type in primary survival
brain tumors rate
1 Pilocytic astrocytoma 15.6% curable
5 Diffuse astrocytoma 2-5% 50%
Oligodendroglioma 1.4% 80%
Anaplastic astrocytoma 1-2% 30%
Anaplastic oligodendroglioma 1.4% 80%
4 Glioblastoma 14.9% 5%

Glioma-subtype Classification

Low grade gliomas (LGGs) that include grade 2 and 3 gliomas, can be fur-
ther classified into three molecular subtypes according to the revised WHO
grading [1]. According to this, isocitrate dehydrogenase (IDH) mutation and
1p/19q codeletion are the hallmarks of diffuse low grade glioma (dLGG) sub-
types which beyond classification also provides important information con-
cerning prognosis and response to therapy |3]. Therefore, knowing the molec-
ular marker prior to surgery would be of practical value. Glioblastomas
(HGGs) have two subtypes: Glioblastoma IDH wildtype and Glioblastoma
IDH-mutant [4].

Figure [I.I] shows a detail flowchart on LGG subtypes. Oligodendroglioma
(grade 2) is associated with abnormal chromosomes with missing sections
of chromosomes 1p and 19q called 1p/19q co-deletion. Oligodendroglioma
also must have mutation in the genes IDH. Anaplastic oligodendroglioma,
grade 3, is more aggressive than the one in grade 2 and is caused in some
cases when grade 2 progresses over time otherwise it is present as grade 3
initially. Oligodendroglioma is sensitive to oncological treatment [5], [6], so the
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role of extensive resection has been discussed and surgical management could
be directly affected by knowing dLGG subtypes. From Figure diffuse
or anaplastic astrocytomas can have abnormal genetic signatures, including
mutations in IDH genes. If no IDH mutations are detected, then they are
called wild-type. IDH mutations are detected in 70-80% of dLGG [7] and
12% of glioblastomas. The survival rate for dLGG IDH mutated patients
are higher than IDH wild-type hence their prognostic importance of extensive
cytoreductive surgery is highly convincing [8],[9].

LGG
IDH-wildtype IDH-mutant
| |
1p/19q 1p/19q
non-codeletion codeletion

Diffuse/Anaplastic Diffuse/Anaplastic Oligodendroglioma/

Astrocytoma Astrocytoma Anaplastic

IDH-wildtype IDH-mutant Oligodendroglioma

Figure 1.1: A flowchart of the subtypes of LGG [10].

1.2 Thesis outline

To address the issue of non-invasive glioma and its subtype classification,
this thesis explores deep learning techniques. It consists of two parts. Part
I presents the introductory part on the research background and gives the
summary of the appended papers. The remainder of part I is organized as
follows: Chapter 2 reviews several background theories and methods on which
the proposed studies are built. Chapter 3 summarizes the main work and
contribution of each method. Finally, the conclusion and future work are
discussed in Chapter 4. Part II includes the appended papers.






CHAPTER 2

Background Theories and Methods

2.1 Convolutional Neural network

Convolutional Neural Network (CNN) is a category of machine learning meth-
ods used for classification and regression. During the last decade, it has re-
ceived extensive attention from the image analysis and computer vision com-
munity predominantly for image classification [11] and object detection [12].
One of the main reasons of this success is the increased computational power
of modern GPUs (Graphical Processing Units) and the access to large labeled
datasets. CNNs are feed forward networks to generate feature maps for fur-
ther processing from the output of the previous layer or the input layer. For
learning to happen, layers contains thousands or millions of parameters that
are automatically updated during training.

Computational layers

A simple CNN consists of an input layer, one or more hidden layers and one
output layer. Comparing to other image analysis algorithms, raw image data
is often used directly. The hidden layers map the input to the desired output.
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To enable this mapping, the hidden layers, as shown in Figure consist of
different building blocks such as sets of filters, pooling layers and nonlinear
activation functions. The output layer gives probabilities of predefined classes
for classification.

Convolutional layers: The purpose of convolutional layers is to generate
feature maps with the help of filters of a certain size from the previous layer.
Filter size of small odd dimensions is usually selected. During convolution,
a filter slides on the input feature map/image with a step size called stride.
The bigger the stride size, the more pixels are skipped, resulting in a smaller
feature map at the output. Typically, first few convolutional layers extract
low level features, such as lines, edges, corners etc., while the succeeding layers
combine these low level features into high level features such as human faces.
This shrinking in the size of feature map may cause the image borders to
vanish which can be avoided by padding zero values around the input feature
map. If stride is one, convolutional layers only changes the input volume
depth-wise without changing its size. The filter parameters commonly called
as weight parameters are learned automatically during the training.

Feature Learning Classification

i
“ | - g®
| ol
Input—» . OO- () ° (]
e OO 9 "'OOO Labels
g ~ OOO ® Softmax
2 FC

(ConvolutionalLayer ‘ReLU ﬁPoolingLayer Flatten

Figure 2.1: Example of a Convolutional Neural Network (CNN). ReLU: Rectifier
linear unit, FC: Fully connected

Pooling layers: Pooling is usually performed with the aim to downsample
the feature map. It introduces non-linearity in the feature map and also
reduces noise. There are many pooling methods where most commonly used
ones are max pooling and average pooling as shown in Figure 222 In max
pooling, the maximum value in the pooling window is obtained, for latter one,

10
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the average value in the window is obtained.

111102 |2 1120 |3
2 (1 |10 |2 1110 4110 ol1l1 1 13
— =
1(0 |12 |1 @ 1/01(0 = |02 |1 3017 3|9
112 |11 |0 111 0|52 21210 |
1)1 (0|1 |1
Output 2x2
Feature map Filter feature map Max pooling

Figure 2.2: Elaboration on convolution and maxpooling functions. Left: Example
of a 2D convolution operation with stride =1. Right: Example of a
2D maxpooling function with stride =2

Activation function and loss function: Non-linearities are introduced for
each layer by using nonlinear activation functions, as linear combination of
convolutional layers would learn nothing useful except linear mapping. Non-
linear functions also put constrain on the range of outputs of each layer and
thus prevents accumulation of large values in the network. For this purpose,
rectifier linear Units (ReLUs) are most commonly used including many vari-
ants such as leaky ReLU [13] and parametric ReLU [14]. For the final layer of
network, softmax is mostly used that gives a probability estimate of classes.

In classification problems, a loss function is used at the output layer to
measure the difference between the labeled output y and the predicted output
7. A commonly used loss function for N number of training samples is the
cross-entropy loss given as:

N
b= _% Z(yilog(y%) + (1 —yi)log(1 — 7)) (2.1)

Hinge loss is another loss function often used to maximize the margin be-
tween the true and false class predictions. This loss penalizes not only the
incorrect predictions but also the correct ones with less confidence.

N

1 .
L= - ;max(o7 1—9.9) (2.2)

FC (fully connected) layers: Following the last convolutional layer, one

11
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or more FC layers are used to flatten the multi-dimensional output into 1D.
Other operation such as dropout are also used to assist the learning. For
classification problem, these layers end with an output layer that consists of
same number of neurons as the number of classes.
CNN training: In CNN, learning is performed by optimizing an objective
function that updates the parameters of each layer such that the difference
between the network’s prediction and the ground truth output is reduced. For
this purpose, gradient decent method is commonly used. The gradients are
computed using backpropagation [15] to update the weight parameters in each
layer of CNN. The most common choice is stochastic gradient descent (SGD),
where parameters in each iteration are moved in the direction of steepest
descent to reduce the loss. The limitation of SGD is that it uses a common
learning rate for all parameters. To improve the convergence, variants of SGD
such as, Adagrad [16], Adam [17] and RMSprop/AdaDelta [18] are used to
adaptively tune the learning rate. Batch normalization (BN) [19] also helps
to speed up the training.

Despite their huge potential, CNNs are prone to overfitting specifically when
a training dataset is small in size. To tackle this problem, different regulariza-
tion techniques are used. Some common choices include L1/L2 regularization
and dropout. To penalize large weights of a CNN, L1/L2 norm are added
as an additional loss function. Randomly dropping out neurons in FC layers
is another way to mitigate overfitting. Further more, BN also puts a small
regularization effect.

Few CNN models

o LeNet [20], the first CNN model, was used for hand written digit recog-
nition.

o AlexNet [21] on ImageNet dataset, brought up a major breakthrough
towards the revolution of CNN and was the winner of ILSVR-2012. This
network consisted of 5 convolutional layers with max pooling layers in
between followed by 3 FC layers to classify the inputs into 1000 classes.
ReLUs were used as activation functions and data augmentation and
dropouts were adopted to overcome over-fitting issues.

o ZFNet [22], another Convolutional network was the winner of ILSVRC
2013. It was the outcome of some improvement on AlexNet by adjusting

12
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some hyper-parameters. This includes expanding the size of middle
convolutional layers and shrinking the stride and filter size in the first
layer.

e GoogleNet [23], winner of ILSVRC 2014, proposed an inception module
for feature learning. The use of this module and average pooling at the
top of the CNN instead of FC layers reduced the number of parame-
ters dramatically. Later, the other versions such as inception-V4 were
introduced.

o VGGNet [24], winner of ILSVRC 2014, consisted a deep architecture
extending up to 16-19 weight layers. The parameters were reduced by
the use of small filters (3 x 3) and pooling (2 x 2) throughout the con-
volutional layers for learning deep architecture.

o ResNet [25], winner of ILSVRC-2015, used residual learning to overcome
the vanishing gradient problem and to ensure that the new added layers
are learning something new from the previous layers in the deep net-
work. This is realized by the frequent use of skip connections and batch
normalization.

These CNN models performed well on ImageNet dataset. However, differ-
ent architectures need to be explored for different datasets. As the image
modality, dataset size and other details vary in various applications. More-
over, understanding and interpretation of CNNs learning mechanism [26], |27
have become important to be studied.

2.2 Deep Autoencoders

For learning the representation, one type of unsupervised neural networks
is autoencoder [28]. Autoencoder is a feedforward network that consists of
3 parts, encoder layer, hidden layer and decoder layer. The encoder layer
learns essential features into a number of codes. To control the amount of
information, fewer neurons in hidden layers are used. If non-linear activation
functions are not introduced, a similar dimensionality reduction to that of
principal component Analysis (PCA) is observed.

As an analysis transform, CAE encodes the function as z = fp(x). As a
synthesis transform, it decodes the function as & = g¢e(2), where z is the

13
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input, & is the reconstructed input, z is the compressed feature codes and
the optimized parameters for encoder and decoder are represented by 6 and ¢
respectively. The unsupervised training algorithm tires to minimize the mean
square error (MSE) between the input and the output images for N number
of samples using following loss function:

1 N
L(z,8) = - Z 196(2) = fo(z)? (2.3)

An autoencoder is trained to be sensitive enough to build a reconstruction
of the inputs by minimizing the loss function. However, at the same time, it
should be insensitive enough to the inputs so that it may not just memorize
the input, which is performed by adding a regularizer in the objective function.
During training stage, gradient descent or stochastic gradient descent is used
for optimizing the reconstruction. This step is often called pretraining. When
this step is done properly, the encoder part acts as a feature descriptor and
can be connected to a classifier for supervised refined-training.

Recently, the basic structure of autoencoder has been converted from fully
connected layers to convolutional layers called convolutional autoencoder (CAE)
. The encoder layers consist of convolutional layers with pooling layers to
extract latent codes and the decoder layers consist of deconvolutional layers
with upsampling layers to reconstruct the input image from the latent codes
as shown in Figure Other than CAE, there exists many autoencoder

Encoder Decoder
|

(o

' Convolutional layer + RelLU ‘Pool\ng Layer / Upsampling Layer
Batch normalization I

Figure 2.3: Example of a Convolutional Autoencoder (CAE).

Output

Input___ |
image

image

variants depending on the regularizers used:

14
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o Denoising autoencoder [30]: This model tries to reconstruct the original
undistorted input from its noise corrupted copy. In this way autoen-
coder avoids to copy the input to the output without learning its actual
features.

o Sparse autoencoder |31]: Instead of reducing the number of nodes on
the hidden layer, this method constructs loss function such that the
activations on that layer are penalized. The highest activated nodes in
the hidden layer are taken while others are zero out. This is called sparse
penalty term that is added in the reconstruction error term.

o Contractive autoencoder [32]: To resist input perturbations, this model
tries to learn a robust encoding to contract a neighborhood of inputs into
a smaller neighbourhood of outputs. This works similar to denoising
autoenocoder, but there, it is the decoder that resists the noises. It is
done by adding a regularizer term to the loss function that penalizes
large derivatives of hidden layer activations with respect to the input
training samples.

o Variational Autoencoder [33]: This model is generative model and en-
codes the input data as a probability distribution instead of an arbitrary
function. The input samples are encoded into two parameters of the en-
coder (recognition model) to approximate the real posterior distribution
with an assumption of a prior knowledge being a normal Gaussian distri-
bution in the latent space. When a similar point from the distribution is
randomly sampled out, the decoder (generative model) maps that latent
space point back to the original input data.

2.3 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) [34] consists of two neural net-
works. One is a generator G that generates new data instances and the other
is a discriminator D which evaluates whether each instance of data it gener-
ated belongs to the actual training dataset or not. A simple GAN consists
of multilayer perceptron. The generator G(x;6,) learns a mapping from an
input variable z from a prior distribution p.(z) to a generated data distri-
bution p, over the target data x, where 64 shows the learnable parameters

15
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of G. The prior distribution p,(z) is typically a Gaussian normal distribu-
tion. While D(x;6y) learns to discriminate with parameters 64 between the
generated samples G(z) coming from p, and the real data samples z from
Pdata- During training, both D and G learn simultaneously with G aiming
to minimize log(1 — D(G(z))) in order to generate samples G(z) with high
probability that may look real and obtain the goal p; = pgqtq. Conversely,
D aims to maximize the loss function to learn distinguishing between p, and
DPdata- S0, D and G are supposed to play the two-player minmax game by
optimizing the following adversarial value function V (G, D):

mGin max V(G, D) = Expyoa(x)108D(X) + Ez ~ py(zlog(l — D(G(z))) (2.4)

The objective function in is maximized w.r.t to the parameters of D
using gradient ascent and minimized w.r.t to the parameters of G using gra-
dient descent. In practice, at the beginning before G learns anything, the
gradient is very small and when it starts learning, the gradients gets very
high and saturates quickly. Therefore, a reasonable approach is to maximize
E[log(D(G(z)))] rather than minimizing log(1 — D(G(z))). In this way, the
training process would alternate between optimizing D for k steps and op-
timizing G for one step on the mini-batch simultaneously using stochastic
gradient descent. Since the original GAN was introduced, many variants of
GANSs have been proposed, a few of them are discussed as follows:

DCGAN [35]: This GAN has a more stable architecture for training compare
to the original GAN [34] where convolutional layers are used. The discrimi-
nator uses batch normalization after each convolutional layer. This helps deal
with training problem which may arise due to poor initialization and prevents
vanishing gradient problem in deeper models. Here, to stabilize the learning,
LeakyReLU is used as the activation function. The generator consists of de-
convolutional layers with ReLU and tanh activation at the output layer. Fully
connected layers are just used at the input of Generator and at the output of
Discriminator for flattening the feature map of the last convolutional layer.
However, it still suffers from model instability and mode collapse where it
might not learn to generate some parts of the data.

Wasserstein GAN (WGAN) [36]: In the original GAN, Jensen-Shannon

16
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(JS) divergence could not eliminate the problem of mode collapse. In WGAN,
this problem is greatly reduced by using Earth Mover (EM) distance as a
distance measure for optimization given by:

W (Pdata,Pg) = _inf  Eguy)mfoyl (2.5)
VEH(Pdathg)

where v € [[(pdata,pg) is the set of all joint distribution with the marginal
distributions pgqs, and py.

Conditional GAN (cGAN) [37]: Normally GAN model generates random
images from the given input dataset irrespective of the type of images. Con-
ditional GAN (cGAN) allows the image generation of a given type. Both the
generator and discriminator models are conditioned on class labels. The best
practice that employs this idea is by using an embedding layer followed by a
FC layer with linear functions. This layer scales the embedding to the real
input size before presenting it to the model as an additional channel. For in-
stance, MNIST digits can be conditioned using its discrete class labels. When
the condition is any image, cGAN can perform image-to-image translation
[38]. For training this type of supervised cGAN, a dataset of paired images
are required as input.

Least Square GAN (LSGAN) [39]: In the orignal GAN, sigmoid cross
entropy loss function may lead to vanishing gradient problem, LSGAN uses
the least square losses i.e. Vg and Vp for the discriminator that enables
generation of high quality images and sustains more stability given as below:

_ 1 1

minVp = SBampyuee ) [(D(@) = 0)°] + SEep (0G0 -0, (26)
, 1

min Ve = SE.vp. (5 [(D(G(2)) = a)’] (2.7)

where a is the label for real samples and b for the generated samples.

CycleGAN [40]: Unlike supervised cGAN, cycleGAN also performs image-
to-image transformation but it doesn’t need input image pair. Instead, cycle-
consistency loss is employed as a constraint to guarantee the corresponding
input and output image relation as sketched in Figure[2.4] Two mapping func-
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Figure 2.4: A schematic of cycleGAN taken from [40]. (a) G an F are the two
mappings with their corresponding discrimnators Dy and Dx. (b)
Forward consistency loss is encouraged by F(G(z)) ~ z. (c) Backward
consistency loss is encouraged by G(F(y)) =~ y.

tions GG and F' are performed with their associated discriminators Dy and Dx.
Mapping G is trained such as G : X — Y where Dy learns to discriminate
between § = G(z),x € X and y € Y. Since inputs and outputs are not paired,
an additional constrain is needed such that the transformations remain cycle
consistent, which means if x is transformed to § and get it transformed back
to Z such that  ~ . To accomplish this, another generator F' is added in
the cycle that maps F' : Y — X where Dx learns to discriminate between
Z = F(9) and z. Both the mappings G and F are trained simultaneously
with the additional cycle consistency loss for F(G(x)) ~ x and G(F(y)) = y.
Using this loss with the adversarial losses on both domains perform unsuper-
vised domain-to-domain transformation.

Coupled Generative Adversarial Networks (CoGAN) [41]: This GAN
learns a joint distribution of multiple domains without requiring pair of images
in both the domains. This action is enforced by a weight sharing constraint as
shown in Figure that gives a joint distribution solution unavailable in any
of the domains. A single input vector can generate correlated outputs in both
of domains through two GANs with weight sharing. This sharing also reduces
the number of parameters. The network can be trained by back propagation
with the alternating gradient steps, i.e., train two discriminators one by one
and then train two generators one by one.

There exist many other GANs used in different applications such as super
resolution |42], sequential data generation [43], domain adaptation [44], object
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2.3 Generative Adversarial Network (GAN)

Generators Discriminators

GAN, 9@ fi %z))

. weight sharing

@ f2(922))
: = H H H O
GAN,

Figure 2.5: A schematic of CoGAN taken from [41]. It consists of two GANs;
GAN; and GAN; with generators g; and g2, two discriminators fi and
f2 and a common input z. The weights of first few layers of generators
and the last few layers of discriminators are shared which allows the
model to learn the join distribution of images without any supervision.

detection [45], etc.

GANs for Domain Mapping

Recently, many GAN based frameworks have been introduced for image-to-
image transformation or domain mapping. Adversarially learned Inference
(ALI) [46] suggests a method in which discriminator learns to discriminate
between two joint distributions over the data space x and latent variable z.
To perform this, GAN’s generator has been modified with the addition of an
encoder. One of the joint distribution comes from the encoder (where given z
what random variable z is likely to have produced it) and the other from de-
coder (given z which x is generated). However, due to the lack of restriction on
the conditional distributions, this method doesn’t satisfy the cycle-consistency.
Another work based on variational autoencoder was proposed in Unsupervised
Image-to-Image Translation Networks (UNIT) [47] with enforced cycle con-
sistency. When two domains have no clues on how to be mapped from one to
another, UNIT suggests that a pair of images from different domains can be
mapped to a shared latent representation. This representation with weight
sharing constraint further generates both the mapped image and the recon-
structed source domain image to be given to discriminators. Later in ALICE
[48], an extended version of ALI, the conditional entropy loss was used in op-
timization to satisfy the mapping in both reversibility and cycle-consistency.
Further, translation between two domains have been successfully done by Cy-
cleGAN [40] and DiscoGAN [49]. Both frameworks perform reversible map-
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pings and ensures cycle consistency by using explicit reconstruction error in-
stead of conditional entropy. However ALICE, CycleGAN and DiscoGAN
perform mapping between only two domains at a single time. On the other
hand, StarGAN [50] performs a multi domain transformation using a single
generator where the generator takes the target domain as its additional input,
though works only on the domains with no feature mismatch. A further work
to overcome feature mismatch in mapping among multiple domains is seen in
RadialGAN [51]. It addresses both the challenges of feature mismatch and
distribution mismatch between multiple domains.
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CHAPTER 3

Summary of the Main Contributions in This Thesis

3.1 Deep Learning for Glioma-Grading and its
Molecular Subtypes Classification

This chapter summarizes the thesis work for glioma grading and its subtyype
classification using deep learning methods. A summary of the structure is
depicted in Figure[3.1] In the following subsections, each paper’s contributions
are explained.

Deep Learning Methods for Classification of
Glioma Grading and its Subtypes

f ! Glioma subtype

Glioma grading LGG subtype classification
GAN synthetic data classification Data without

(LGG/HGG) GAN synthetic data tumor annotation

+ Domain mapping
Paper A
(Paper A) 1p/19q 1DH
1p/19q 1DH codeletion mutation
codeletion mutation
(Paper C)
(Paper B)

Figure 3.1: A flowchart of the contribution of the thesis work.
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Chapter 8 Summary of the Main Contributions in This Thesis

GAN for Data Augmentation and Glioma Classification using
Convolutional Autoencoder

(Summary of Paper A)

Problem addressed: This method addresses the issue of improving classi-
fication of glioma grades (LGG/HGG) by proposing a method for generating
synthetic MRIs in addition to a small dataset to mitigate over-fitting and im-
prove the generalization performance on the test set.

Motivations: In some studies, convolutional neural networks (CNN) [52] [53]
were used for glioma classification through feature learning. However, deep
learning needs large amount of training data for good test performance while
obtaining a large annotated medical training data remains a challenge. Also,
high dimensional features of MRIs could lead to over-fitting. Hence, this pa-
per proposes a framework that consists of a GAN to generate multi-modality
synthetic MRIs for extending the training data size, and a multi-stream CAEs
for feature extraction and fusion for effective glioma classification.

Basic idea: The main idea behind this study is to improve glioma classifica-
tion from multiple modalities and to prevent over-fitting issues. For feature
learning, we focus on learning good data representation. This is performed
by using Convolutional Autoencoders (CAEs) that learns the representation
of the data with high level features in the latent space. CAEs also offer noise
robustness and efficient feature reduction that may mitigate over-fitting. The
other matter of concern is the limited size of training data for glioma grading.
Conventional ways of data augmentation, e.g. rotation, scaling and flipping
cannot generate sufficiently good glioma statistics. GAN generated synthetic
MR images help to extend the training dataset with improved coverage of
statistics.

Main contributions:

o Proposing a deep convolution GAN (DCGAN) architecture for generat-
ing multi-modality synthetic MRIs to enlarge the training dataset.

¢ Proposing glioma feature learning by 3-streams of CAEs and combining
the encoders from all streams through feature fusion layers followed by
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a classifier.

¢ Adopting a 2-round training strategy: pre-training on GAN generated
synthetic MRIs followed by refined-training on original MRIs.

o Evaluating the performance and comparing with the state-of-the-art
methods.

Overview: The proposed framework is shown in Figure where 2D image
slices from multi-modality MRIs (T1lce, T2 and FLAIR) training set are fed
into DCGAN to generate synthetic MRIs in each modality. The training of the
network is done in two phases: pre-training and refined-training. Depending
on the MRI modalities available, three streams of CAEs are used in this study.
For pre-training, synthetic MRIs from each modality are separately fed to
corresponding stream for feature extraction. Each stream of CAE consists of
an encoder (6 convolutional layers with max pooling layers in between) and
a decoder (5 layers of deconvolutional layers each followed by an upsampling
layer). For refined-training phase, features learned from the encoders of CAEs
are fused in the fusion layer, where feature maps are multiplied element-wise
followed by a bilinear feature layer. Then, the original MRIs are used for
refined-training to further improve the learned features.

CAE-I
Tlce
DCGAN e
CAE-II g
Pre-training phase = @,
MRI Tumor — 12 e E Class
i LT o =y
slices Enhancement E < labels
(a2 7
CAE-III -
Refined training phase
FLAIR

Figure 3.2: The block diagram of the proposed scheme for glioma classification.

Main results: This method was tested on MICCAI BraTS’2017 dataset with
210 patients from HGG and 75 patient from LGG. The tumor regions were
enhanced by tumor masks using a saliency-aware approach. The dataset was
re-partitioned patient-wise in each of the 5 runs, obtaining new training, val-
idation and test sets. The classification performance of the proposed network
with individual MRI modality and the combined performance after feature
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Table 3.1: Test performance of the proposed scheme on individual MRI-modality
and multi-modality inputs.

Run | Tlce (%) | FLAIR(%) | T2 (%) | 3-Modality
Fusion (%)
1 87.51 80.54 70.49 92.64
2 86.21 84.21 74.71 93.36
3 87.51 79.69 72.26 92.49
4 86.13 83.52 74.02 90.52
5 87.14 80.77 74.79 91.19
Mean 86.90 81.75 73.25 92.04
(£0) | (£0.61) | (£1.78) | (£1.65) | (+1.03)

fusion are shown in Table For comparison, we have selected a few exist-
ing works based on the same dataset with HGG/LGG classes and are shown
in Table Our results have shown improved performance.

Table 3.2: Comparison with existing methods for HGG/LGG classification using
BraTS dataset.

Method # of Subjects | Test Accuracy %
Ye[54] 274 82.10
Ge|55] 285 88.07
Ge[53] 285 90.87
Proposed Scheme 285 92.04

24



3.1 Deep Learning for Glioma-Grading and its Molecular Subtypes
Classification

GAN for Domain Mapping and Glioma Molecular-Subtype
Classification

(Summary of Paper B)

Problem addressed: When there are several small training datasets mea-
sured from different institutions, one wishes to combine these datasets into a
large one in order to increase the size of training dataset. However, simple
combination of datasets usually leads to reduced test performance due to do-
main mismatch. This method addresses the issue on how to overcome such
domain mismatch of several small MR image datasets from different indepen-
dent sources.

Motivations: Identification of molecular subtypes in LGGs is needed for
prognosis and oncological treatment. However, this usually requires to take a
biopsy from the brain tumor and could be risky. Using non-invasive ways such
as deep learning methods may provide solutions for predicting molecular sub-
types without requiring biopsy. However, such methods need a large training
MRI dataset with their corresponding molecular biomarkers. Usually LGGs
with molecular biomarkers were obtained from a local hospital/institution. A
classification model trained on such dataset is not reliable and cannot be used
for predicting tumor subtypes on the dataset from other institutions due to
large variety of MRI acquisition parameters. This calls for an efficient domain
mapping method to combine multiple small datasets into a common domain.
Recently, domain adaptation using deep learning techniques has gained much
attention, however for medical imaging such techniques are still in its infancy.

Basic idea: The main idea behind this study is to enlarge the clinical
MRI data on molecular subtypes of LGGs from multiple institutions. For
this reason, a framework based on CycleGAN is proposed that maps clinical
MRIs (without mask annotation) to a target domain without affecting subtle
molecular-biomarker information. To tackle the unavailability of annotated
masks for MRIs, a rectangular bounding box is used instead of exact tumor
boundary. A classifier based on multi-stream convolutional autoencoder is
then used for classification of 1p/19q codeletion and IDH genotype.

Main contributions:
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Chapter 8 Summary of the Main Contributions in This Thesis

¢ To map several small datasets onto a common domain, a domain adapta-
tion method based on unpaired-CycleGAN is introduced that preserves
molecular biomarker information of brain tumors.

e To overcome the large class imbalance of the data, augmented MRIs are
generated for each modality using DCGAN.

e To apply rectangular bounding box for MR images with unavailable
annotated tumor masks.

e To employ a two stage training strategy for effective feature learning.
Pre-training the multi-stream CAEs on DCGAN augmented MRIs, and
refined-training the final network coefficients on MRIs from mapped
domain.

Overview: The overview of the method is shown in Figure It consists
of three modules: (i) mapping datasets to a target domain by CycleGAN to
increase the size of training dataset in the target domain; (ii) data augmenta-
tion by DCGAN to enlarge the training data and alleviate the class imbalance;
and (iii) a multi-stream CAE as a classifier with two stage training strategy.
Input 2D multi modality MRIs (Tlce, FLAIR) are fed into CycleGAN for
mapping from source domain A to target domain B to produce A mapped 2D
images. The total data D is obtained by combing the mapped data to the
target domain. To further increase the size of training data Dy,qn for each
modality, DCGAN is used to generate synthetic data Dyyqin for each modality.
Further, the tumor regions are extracted by fixing tight rectangular bounding
boxes around ROIs of images and are used in a two stage training strategy in
a multi-stream CAE classifier [56]. Once the model is trained (green dashed
box in Figure , the test data Dy is fed to test the performance (yellow
dashed box).

The overview of unpaired CycleGAN for domain mapping from source do-
main to target domain is given in Figure [3.4] where G4 and Gp are the
generators and D4 and Dp are the discriminators. The optimization is done
by training on the following loss function:

L(Ga,Gg,Da,Dp) = Laan(Gg,Dp, A, B)+

(3.1)
Laan(Ga,Da, B, A) + ALeyc(Ga,Gp)
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Figure 3.3: The block diagram of the proposed scheme. Blue dash box: domain
mapping; Green dash box: feature learning step; Yellow dash box:
testing step

FLAIR-MRI

Figure 3.4: Illustration of domain mapping from domain A to domain B for
FLAIR-MRIs. G4 and Gp are generators and D4 and Dp are the
discriminators.

Where Lgan are the corresponding least square losses for both the genera-
tors and discriminators in domains A and B and L.,. is the explicit reconstruc-
tion error to ensure the cycle-consistency with the regularization parameter .
It is called unpaired CycleGAN because it learns to map original MRIs from
the source domain A to the target domain B without any correspondences at
both ends. After mapping, the mapped domain A matches the sample dis-
tribution of the target domain B while retaining the tumor characteristics on
the molecular level. Further, the mapped data D = {A U B} is divided into
training, validation and testing set. The training set Dy,qin goes to DCGAN
for generating synthetic data Dtmin used in pre-training the multistream CAE
classifier. Once the network is trained with D4y , its performance is tested
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on Dtest~

Main results: This method is tested on two datasets (from USA and France)
for LGG molecular subtype classification. Two case studies have been con-
ducted. Case-A involves 1p/19q codeletion prediction while case-B consists
of IDH-mutation prediction. First, a primarily test was performed to decide
which domain performs better before domain mapping. USA dataset proved
to perform better for both cases studies than the France dataset. Therefore,
it was set as a target domain and France dataset as a source domain. Figure
shows visual effect of several 2D image slices when mapped from France
data domain to US data domain.

FLAIR Tlce FLAIR Tlce

USA - MRIs

France - MRIs
mapped to
USA domain

Figure 3.5: Visual inspection of 2D images for FLAIR-MRIs mapped from source
domain to target domain.

Another issue of concern is on how big the size of augmented data should
be used. For this reason, the selected size that gives the best performance
out of many settings is shown in Figure [3.6] Finally, a multistream CAE was
trained using 2-stage training strategy and the test performance with their
evaluation metrics averaged over 5 runs is obtained and shown in Figure 3.7
One can clearly see the improvement in the test performance on mapped data
in contrast to simple combination by adding two datasets without domain
mapping. In case study-A, for 1p/19q codeletion prediction, the test accuracy
(74.81%) was improved by 7.78%. In case study-B, for IDH-mutation, the test
accuracy (81.19%) was improved by 8.81%. It shows that unpaired-CycleGAN

28



3.1 Deep Learning for Glioma-Grading and its Molecular Subtypes
Classification

has overcome the domain differences while retaining the molecular information
of subtype-LGG gliomas.
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Figure 3.6: The best selected size of training (60%) data (GAN augmented +
Mapped MRI) using FLAIR-MRISs.

Metric Per Comparison
100 100
[ Case-A I without domain mapping
[EICase B 95 B with domain mapping
920
920
85
80 -
g g
E % 80
£ 70 g 7%
< °
@
§ % 70
= H
60 =
65
60
50
55
Accuracy  Precision Recall F1-score Case-A Case-B

Figure 3.7: Summary of the performance on both case studies. Left: Test re-
sults (averaged over 5 runs). Right: Comparison of the test results
with/without domain mapping.
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Glioma-Subtypes Classification without using Ground Truth
Annotations

(Summary of Paper C)

Problem addressed: Machine learning techniques may help in identifying
the molecular subtypes of gliomas and diffuse low grade gliomas (dLGGs) from
MRI scans but need annotated data. However, manual tumor annotations are
not always available for a given dataset. This study addresses the issue on
how to use such datasets for classification with unavailable annotations.

Motivations: Although, manual GT annotation by medical experts defines
perfectly the tumor boundaries and allocate ROIs but it is a time consuming
process. Likewise, automatic segmentation comes with its own challenges be-
cause its training phase is dependent on annotated data and is an ill-defined
problem. It doesn’t always guarantee accurate tumor boundaries. Inspired
by computer vision community’s successful research on visual object tracking
and classification using bounding boxes, this paper attempts to adopt this
strategy for the inputs of a molecular-based glioma subtypes classifier.

Basic idea: The aim of this study is to see whether it is possible to replace
GT tumor areas by ellipse shape tumor bounding box areas for classification
without a significant drop in performance using a deep learning classifier.

Main contributions:

e Proposing an alternate paradigm for tumor ROI selection using ellipse
shaped bounding box on MRI data without using tumor annotations.

o Using a classification scheme on the ellipse bounding box tumor data
and testing on two datasets.

e Repeating the experiment with the corresponding GT annotated data
and comparing the performances to make a conclusion.

Overview: The block diagram of the proposed approach is shown in Figure
3-8l In the proposed method, 2D MRIs are fed to ROI selection block either at
point a (using ellipse shape bounding box) or at point b (using GT annotation)
for ROIs selection, followed by a multi-stream 2D CNN for feature learning and
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classification. The classifier architecture was adopted from our previous work
[53]. The proposed strategy introduces ellipse shaped bounding boxes as ROIs
to occupy all the tumor areas as shown in Figure [3.9] Ellipse shape is chosen
because it better fits to the tumor shape as compared with that of rectangular
one. A comparison of the performance of the classifier was examined against
both types of input training data. First, the classifier was trained and tested
on ellipse ROI data. Then, the same experiment was repeated by training on
the manually annotated GT tumor data.

Tumor ROI Selection Feature Extraction

_____________________ by

= = [}
1 Multi-Stream CNN
Ellipse Bounding |
- —
) >, Box a’ -0 L Learned
|| : | Coefficients
R v Predicted
. —» Annotated GT |—» 1
Testing —»l b b’ @ . | Multi-Stream CNN Labels of
sl

LGG-subtype

Training

Figure 3.8: The pipeline of the method based on proposed strategy. Blue dash box:
Tumor areas separated by ellipse bounding box and manually drawn
GT boundary.

FLAIR-axial slice  Ellipse Bounding Ellipse Tumor FLAIR-sagittal slice
' Box for Tumor Area Ellipse Bounding Ellipse Tumor
| » Box for Tumer Area
\ I
A GT Tumor GT Tumor GT Tumor m GT Tumor
Boundary Area Boundary Area

Figure 3.9: Illustration of separating ROIs in both ways (using ellipse bounding
box and GT) on FLAIR modality

Main results: The method of using bounding box as ROIs is tested on two
datasets. One was TCGA dataset consisting of glioma patients, the other was
US dataset consisting of patients with diffuse low-grade gliomas (dLGG) ex-
clusively. Detailed experimental results are shown in Table From the test
results, the classification performance on US dataset seems more challenging
due to dLLGs with non-enhanced hyperintensive tumor areas.

We then compare the prediction performance through otherwise identical
DL pipeline, but using the DL scheme trained by annotated GT tumor areas
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Table 3.3: Comparison of the average test results for diffuse glioma-subtypes using
ellipse bounding box tumor data for 5 runs. The highest values obtained
in each run are displayed in bold text. (a) Case-A for US dataset
(1p/19q prediction). (b) Case-B for TCGA dataset (IDH genotype).

(a)

Case-A: Prediction Result on Ellipse Bounding Box Tumor Areas

Run Dataset Accuracy (%) Sensitivity (%) Specificity (%)
1 65.97 69.14 61.90
2 UsS 71.53 75.93 65.87
3 (1p/19q Codel/ 68.06 69.14 66.67
4 Non-Codel) 71.18 76.54 65.87
5 72.57 80.25 62.70

Mean(£0)  69.86 (£2.46)  74.20(+4.39)  64.60 (+1.92)

(b)

Case-B: Prediction Result on Ellipse Bounding Tumor Areas
Run  Dataset  Accuracy(%) Sensitivity(%)  Specificity(%)

1 79.55 71.71 87.37
2 TCGA 76.01 71.72 80.30
3 (IDH mut/ 80.30 72.73 87.88
4 wild-type) 82.58 75.25 89.90
5 79.04 70.20 87.88

Mean(+0)  79.50(£2.12)  72.32(£1.67)  86.65(+3.28)

with the same data re-partition in each run as in Table [3:3] Observing the
results and performance difference in Table one can see that the average
test accuracy with ellipse bounding boxes has resulted in slightly degraded
performance on the test datasets by 2.92% in US dataset and by 3.23% in
TCGA dataset. This shows a possible way to trade-off DL inputs between
using manually annotated tumors and using bounding boxes surrounding the
tumors, in terms of saving annotation time and accepting a small performance
degradation.
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Table 3.4: Performance difference on average prediction results (over 5 runs) by

using GT tumor data and ellipse tumor bounding box data for training,
where the standard deviation is included in ( - ) after each performance

value
Case Tumor Mean Mean Mean

Study Area Acc.(+0) Sen.(+o) Spec.(+0)
A Ellipse 69.86(4+2.46) 74.20(+4.39)  64.60(41.92)
GT 72.78(£1.45) 76.05(£1.63) 68.57(£1.78)
Difference 2.92(+1.45) 1.85(+1.78) 3.97(+1.63)
B Ellipse 79.50(£2.12)  86.65(+3.28) 72.32(41.67)
GT 82.73(£1.82) 89.70(£2.00)  75.45(£3.04)
Difference 3.23(+0.3)  3.05(+1.28) 3.13(+1.37)

33






CHAPTER 4

Conclusion

Limited access to labeled data is a common issue in medical imaging and also
in almost all the studies in this thesis. Specifically, after recent findings on
WHO'’s revision on grading gliomas according to molecular biomarkers for its
subtypes, the training data availability to distinguish such subtypes is quite
low. This thesis contributes to finding solutions on the above mentioned issues,
in various ways:

e The proposed multi-stream CAE classifier performs better as compare
to many of existing methods for glioma classification on a small dataset.
DCGAN generated syntehtic MRIs have shown to improve its general-
ization performance and mitigate overfitting.

e The unpaired-CycleGAN overcomes the domain mismatching by im-
proving the classification performance on the small clinical datasets ac-
quired from different hospitals with different scanner settings. This out-
performs the performance when that datasets were simply combined
without mapping.

o The strategy of using ellipse bounding box areas of tumors as the inputs
for training the classifier shows to perform well, with slightly degraded

35



Chapter 4 Conclusion

performance as that of GT annotated tumor areas. This provides an
alternate way to train a DL scheme without tumor annotations.

These suggested methods show promising outcomes and may benefit the

non-invasive glioma and its subtype detection.

4.1 Future Work

There are still much work required for glioma research, despite the recent
progress in this field. Some interesting and possible research issues include,
among others:

36

A more generalized and robust classification DL model could be pro-
posed that has the capability to use bad quality MR images which we
have been excluding from our training data.

Patients numeric data (e.g., age, gender, tumor size, survival years)
could be incorporated with MR images to improve the prediction accu-
racy.

The contribution of generative adversarial networks should be explored
more by improving its applicability in this research domain.

Classifiers for 3-groups of molecular subtypes should be explored, instead
of binary classification.

The features learned by the intermediate layers of deep models should be
made more interpretable to explain what makes the deep models arrive
at their predictions. Such transparency might accelerate the acceptance
of deep learning models among clinicians.
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