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Recent works have proved the existence of symmetry-protected edge states in certain one-dimensional topo-
logical band insulators and superconductors at the gap-closing points which define quantum phase transitions
between two topologically nontrivial phases. We show how this picture generalizes to multiband critical models
belonging to any of the chiral symmetry classes AIII, BDI, or CII of noninteracting fermions in one dimension.
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I. INTRODUCTION

The presence of topological edge states, decoupled from
the bulk, is a key characteristic of symmetry-protected topo-
logical phases of quantum many-body systems [1]. In one
dimension (1D), these states are exponentially localized at
the physical boundaries of the system, making their energy
vanish identically in the thermodynamic limit (and sometimes
also at certain fine-tuned points in the phase diagram of a
finite system). With no interactions present, the possible 1D
fermionic topological phases are those of the topological band
insulators and mean-field superconductors [2,3], classified by
the “tenfold way” [4–6]. For this class of models the very
existence of edge states is a consequence of the topologically
nontrivial phase structure of the single-particle bulk states
(“bulk-boundary correspondence” [7]), with their robustness
against local perturbations (or uncorrelated disorder) being
ensured by the symmetries enforced on the perturbations.
Well-known examples include the fractionalized soliton mode
of the Su-Schrieffer-Heeger model [8] and the Majorana zero-
energy mode of the Kitaev chain [9].

The existence of edge states has conventionally been
thought to require that perturbations do not close the insulat-
ing band (or quasiparticle) gap. This assumption was proven
wrong in 1D in a work by Verresen, Jones, and Pollmann [10].
These authors showed that exponentially localized edge states
may survive at quantum criticality, at the gap-closing quantum
phase transition (QPT) between two topologically nontrivial
gapped phases, i.e., phases which both support topological
edge states. Earlier works [11–24] exploring specific models
in 1D had anticipated that distinct topological phases, sup-
porting robust edge states, may in fact form also at quantum
critical points (and possibly also in higher dimensions in the
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presence of additional gapped degrees of freedom [25,26]).
However, why and how this happens was first unveiled in
detail by Verresen et al. [10], providing important intuition.

Their theory is underpinned by a study of QPTs
within the BDI symmetry class of the tenfold way, where
the single-particle Hamiltonians H exhibit spinless time-
reversal symmetry T HT −1 = H, particle-hole symmetry
CHC−1 = −H , and chiral symmetry SHS−1 = −H , where
T, C, and S are the corresponding first-quantized symmetry
operators [27] with T 2 =C2 =1. The critical point separating
the two topologically nontrivial phases is labeled by two num-
bers: A topological invariant ν, which, if positive, counts the
edge states, and the central charge c of the conformal field the-
ory (CFT) which describes the scaling limit of the unperturbed
Hamiltonian, with no gapped degrees of freedom present [28].
The key to the analysis is provided by a meromorphic function
which encodes the properties of BDI Hamiltonians, the zeros
and poles of which control the values of ν and c [10]. Given
this, Verresen et al. argue that two critical Hamiltonians in
the BDI class can be smoothly connected (by tuning a control
parameter) only if they share the same values of ν and c. In
a followup work it is shown that ν and c can be encoded
also by correlation functions of certain nonlocal string or-
der parameters [29]. The theory was subsequently put into a
larger framework of “symmetry-enriched quantum criticality”
[30,31] where the presence of nonlocal symmetry operators
implies localized and topologically robust edge modes. Also,
a generalization to all symmetry classes where the topological
classification is larger than Z2, independent of dimension, was
put forward by Verresen in Ref. [32].

The case when a lattice system is not strictly translational
invariant (with respect to the underlying lattice), but instead
has a repeating enlarged unit cell, is briefly touched upon in
Ref. [33], but then only for the BDI symmetry class, and with
no proof of the existence of the critical edge states. In this
paper we wish to add to the picture by addressing the unit-cell
problem for all three chiral symmetry classes of noninteract-
ing fermions in 1D, i.e., the symmetry classes in 1D with
a topological classification beyond Z2: BDI, CII, and AIII,
containing models subject only to perturbations which respect
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chiral invariance. Note that other symmetry classes in 1D
exhibit at most a single topologically nontrivial gapped phase
and, therefore, in keeping with Refs. [10,32], do not support
critical edge states. One should here recall that an enlarged
unit cell implies that the spectrum of the model, be it a band
insulator or a mean-field superconductor, displays a multi-
band structure in the Brillouin zone. Aside from the possible
relevance for experiments, including studies of multiband
topological nanowires [34–37], quasi-1D fermionic gases in
synthetic gauge fields [38], and 1D topological quantum phase
transitions out of equilibrium [39,40], an analysis of the
multiband problem introduces several new facets which may
advance our general understanding of topology at quantum
criticality. One may here mention that the extended scenario
presented in Ref. [32] builds on a low-energy representation
of an appropriate Hamiltonian and is therefore not directly
applicable to multiband systems where higher-energy bands
may impact the topological classification. This provides yet
another motivation for a more thorough study of the multiband
problem, here narrowed to critical chiral phases in 1D.

The paper is organized as follows. In the next section we
address the problem of 1D gapless chiral phases in sym-
metry class AIII. This is the most general case supporting
such phases in 1D since only chiral invariance is enforced
on the allowed perturbations; time-reversal and particle-hole
symmetries, if at all present, are considered as accidental
symmetries. As a warmup, in Sec. II A we construct the
topological invariant for the simple two-band case, borrowing
some of the machinery from Ref. [10], but slightly adapted
so as to be immediately extendable to the multiband case, as
shown in Sec. II B. In Secs. II C and II D the critical edge
states are constructed explicitly for the two-band and multi-
band case, respectively. While our approach for the two-band
case in Sec. II C again closely follows Ref. [10], the approach
in Sec. II D is new. Section III contains a test of our approach
in Sec. II when applied to symmetry class BDI, here treated as
a special case of AIII, where, in addition to chiral symmetry,
time-reversal and particle-hole symmetries are also enforced.
This section aims to thoroughly compare our results to those
in Ref. [10] where class BDI is treated explicitly. In Sec. IV
we turn to the CII symmetry class, with the same symmetries
enforced as for BDI but with T 2 = C2 = −1, thus comprising
spinful free-fermion models protected by all three symme-
tries: chiral, time-reversal, and particle-hole symmetries. For
transparency, and also to chisel out the similarities and dif-
ferences between the treatment of critical BDI models in
Ref. [10], we here focus on the case of a CII spinful Majorana
chain with four bands. Section V contains a numerical check
of the robustness of critical edge states against uncorrelated
disorder, employing the spinful Majorana chain from the pre-
vious section as benchmark model. Section VI, finally, briefly
summarizes our work.

II. SYMMETRY CLASS AIII

A. Topological invariant for two-band gapless
AIII systems in 1D

A noninteracting fermion system with first-quantized
single-particle Hamiltonian H is said to possess chiral

symmetry if there exists a unitary operator S such that
SHS−1 = −H . For a lattice system one can then define two
effective sublattices associated with this symmetry by using
projectors PA = (1 + S)/2 and PB = (1 − S)/2 where PA/B

projects states onto the sublattices labeled by A and B, respec-
tively. Note that by using this definition, A and B act indeed
as sublattices: The terms present in H cannot couple states
from the same sublattice due to the restriction imposed by
SHS−1 = −H .

Now, let us consider a two-band fermionic lattice system
from the AIII symmetry class, defined by requiring that all
perturbations, and also the Hamiltonian, respect chiral sym-
metry. By this, any AIII Hamiltonian H can connect only sites
from different sublattices, implying the generic expression

H =
∑

j,n

tn|A, j〉〈B, j + n| + H.c., (1)

where j (n) runs from 1 to N (from −N to N), with N the
number of lattice sites. The two sublattices are denoted by
A and B, and tn are the corresponding hopping amplitudes,
here allowed to be complex but restricted to a finite range, i.e.,
tn = 0 for large enough |n|. Note that A and B denote states
which correspond to a pair of internal degrees of freedom.
This can be spin, the two sites of a unit cell, or Nambu degrees
of freedom.

The Hamiltonian in Eq. (1) is easily diagonalized by a
Fourier transformation:

H =
∑
k,n

tn exp (ikn)|A, k〉〈B, k| + H.c., (2)

with k = 0, 2π/N, . . . , 2π (N − 1)/N , or simply

H (k) =
(

0 f (k)
f †(k) 0

)
, (3)

with f (k) = ∑
n tn exp (ikn) in the basis spanned by

|A, k〉, |B, k〉. Importantly, the function f (k) is seen to be in
one-to-one correspondence with H (k). It follows from Eq. (3)
that the eigenenergies are given by εk = ±| f (k)| [which
means that f (k) = εkeiϕk for some ϕk] and therefore the zeros
of εk coincide with the zeros of f (k). If nondegenerate, such
a zero, k = k0, implies that εk ∼ k − k0, bringing about a
massless relativistic excitation of the critical theory (with the
bulk energy gap being closed). When the internal states A
and B in Eq. (1) are Nambu degrees of freedom, allowing
for a nontrivial Majorana representation of the Hamiltonian
in Eq. (1), the excitations are those of Majoranas (as in
Ref. [10]), else they are ordinary fermions. Provided that all
zeros of f (k) are nondegenerate, precluding the appearance of
dispersions εk ∼ (k − k0)m with m �= 1 a dynamical exponent,
one infers that the effective field theory which describes the
critical phase is that of a conformal field theory [10].

For gapped systems, with εk �= 0, f (k) = εkeiϕk is a well-
defined function on the unit circle with the phase factor eiϕk

prescribing a mapping S1 → S1. By this, the winding number
ν which defines the topological invariant for the 1D AIII
symmetry class can be identified with the number of times
that f (k) winds around the origin in the complex plane as k is
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swept through the Brillouin zone (BZ), k ∈ [0, 2π ],

ν ≡ 1

2π i

∫
BZ

dk ∂k ln[ f (k)]. (4)

This standard formula for a winding number topological in-
variant breaks down for gapless AIII phases since now εk

vanishes for at least one value of k. However, as realized by
Verresen et al. for the BDI symmetry class [10], one may cir-
cumvent this difficulty by performing an analytic continuation
of f (k) to the entire complex plane, i.e., taking f (k) → f (z)
in such a way that

f (z) =
∑

n

tnzn. (5)

The winding number ν can now be calculated using Cauchy’s
argument principle as

ν = Nz − Np, (6)

with Nz the number of zeros of f (z) inside the unit disk,
|z| < 1, and where Np is the number of poles (counting multi-
plicities) also inside the unit disk. Importantly, the right-hand
side of (6) remains well defined also in the gapless case. The
only difference to the BDI case is that tn are now allowed to
be complex-valued constants since time-reversal invariance is
not enforced for AIII. The quantity on the right-hand side of
Eq. (6) is well defined even for gapless systems and hence
can be used for topological distinction of such systems in
symmetry class AIII. To readers familiar with the work by
Verresen et al., let us point out that for the BDI symmetry class
(with real-valued hopping amplitudes), a unitary transforma-
tion connects the function f (z) in Eq. (5) to its namesake in
Ref. [10], constructed using a Majorana representation. For
details, see Sec. IV.

B. Multiband case

We next consider the extension to the case with 2n distinct
states per unit cell, with n > 1. The corresponding single-
particle Hamiltonian H (k) in k space will now be represented
by a 2n × 2n matrix, implying 2n bands in the Brillouin zone.

To set the stage, let us choose a basis for the unit cell
that diagonalizes the chiral operator S, and call the corre-
sponding basis states |X, i〉 (with eigenvalue +1) and |Y, i〉
(with eigenvalue −1) where the labels X , Y run over the 2n
different states within a cell and i runs over the cells. We
can always go to this basis by a unitary transformation. To
satisfy the chiral symmetry condition SHS−1 = −H we can
have couplings only between states of opposite eigenvalues,
in other words, |X, i〉 can couple only to |Y, j〉. Therefore,
the most general single-particle multiband Hamiltonian can
be written as H = ∑

X,Y HXY , where

HXY =
∑
i, j

tXY
j |X, i〉〈Y, i + j| + H.c., (7)

with i, j running over all cell indices. The labels X and
Y run over the internal degrees of freedom A, B,C, D, . . . ,
partitioned according to the evenness and oddness of the
corresponding states under chirality, X ∈ {A, B, . . . } and Y ∈
{C, D, . . . }. tXY

j , finally, are hopping amplitudes, which, as for
the two-band case, are allowed to be complex.

We now diagonalize H by performing a Fourier transfor-
mation, writing

H =
∑
X,Y

∑
k, j

tXY
j exp (ik j)|X, k〉〈Y, k| + H.c., (8)

with k = 0, 2π/N, . . . , 2π (N − 1)/N . Reading off the Hamil-
tonian in k space,

H (k) =
(

0 F (k)
F †(k) 0

)
, (9)

with the n × n matrix F (k) composed of elements fXY (k) =∑
j tXY

j exp (ik j). For example, with four bands we have

F (k) =
(

fAC fAD

fBC fBD

)
. (10)

Clearly, the eigenenergies are zero if and only if det F (k) is
zero. Therefore, the zeros of H (k) coincide with the zeros
of d (k) = det F (k), with F (k) in one-to-one correspondence
with H (k).

The winding number ν for a multiband gapped system is
now calculated as

ν = 1

2π i

∫
dk ∂k ln[d (k)]. (11)

For the same reason as for the two-band case, this formula
becomes inapplicable for gapless phases. To get around this
we again use analytic continuation d (k) → d (z), with

d (z) = det
∑
XY

∑
j

tXY
j z j |X 〉〈Y |

= det
∑

j

Tjz
j, (12)

where Tj is the corresponding hopping matrix constructed
out of the tXY

j coefficients. By employing Cauchy’s argument
principle, we obtain the same expression for the winding
number ν as in the two-band case ν = Nz − Np, now with Nz

the number of zeros and Np the number of poles (including
multiplicity) of d (z) inside the unit disk. By construction, this
expression for the winding number is valid also for a gapless
multiband system in the AIII symmetry class and hence can
be used to label its distinct critical phases.

1. Extending the unit cell

Any lattice system invariant under a translation by a unit
cell has an equivalent description in which the unit cell has
been enlarged, but now with more internal degrees of freedom.
In particular, chiral symmetry is preserved under an extension
of the unit cell since the new Hamiltonian, written in a basis
with the enlarged unit cell, still only couples sites belonging
to distinct sublattices. We can enlarge the unit cell until we
end up with hopping only between nearest-neighbor cells, i.e.,
only the matrices T−1, T0, and T1 in Eq. (12) are nonzero (with
the row and column indices of these hopping matrices now
running over all internal states in the extended unit cell). This
drastically simplifies the analysis since we are left with only
three terms in the summation over j in Eq. (12). As a result,
the winding number ν = Nz − Np can now be calculated using

d (z) = det F (z) = z−n det(T−1 + T0z + T1z2). (13)
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The poles in this expression appear only in the prefactor z−n

and it follows that we can write ν = N̄z − n where N̄z is the
number of zeros inside the unit disk of det F̄ (z), where

F̄ (z) = T−1 + T0z + T1z2. (14)

Note that the counting of zeros includes possible zeros at the
origin that will cancel one or several of the poles of z−n in
Eq. (13). This is a useful result that we shall exploit when
proving the existence of critical edge states for a multiband
system. Also important to note here that the enlarging of the
unit cell does not change the generalized winding number ν =
Nz − Np [33]. In passing, let us stress that the overbars in the
formulas above and in the rest of the paper are used to denote
different variables, not complex conjugation.

2. Short comment

Any chiral critical noninteracting fermion system in 1D,
i.e., any system exhibiting a critical phase and belonging to
symmetry class AIII, BDI, or CII, can be classified using
the approach above. While we have here exploited only the
presence of chiral invariance, assuming symmetry class AIII,
the additional symmetries enforced by CII and BDI will only
add restrictions on F (z), and hence on d (z) in Eq. (13). It
may also be worth emphasizing that we have not assumed
any specific form for the chiral symmetry operator S, but only
used that S is unitary and that hence there exists a basis which
diagonalizes S.

C. Edge states in two-band gapless AIII systems in 1D

We now turn to the demonstration of AIII critical edge
states. Our plan of attack for the case of two bands is very
similar to that of Verresen et al. for the BDI symmetry class
[10] (with substantial changes when we later turn to multiband
systems). The goal is to construct ν linearly independent states
(per edge) “by hand,” with the properties that (i) their energies
vanish identically for a semi-infinite chain, and (ii) their wave
functions decay exponentially as one moves away from the
edge, by this establishing a bulk-boundary correspondence [2]
for 1D critical two-band systems in the AIII symmetry class.

1. ν = Nz − Np > 0

For clarity, let us again write the Hamiltonian in Eq. (1),
but now explicitly for a semi-infinite chain:

H =
�∑

n=−�

∑
i�1

tn|A, i〉〈B, i + n| + H.c. (15)

Here ±� are cutoffs beyond which the range of hopping
vanishes. The state |B, i + n〉 is a null vector for i + n � 0.
Introducing a state

|ψα〉 =
∑
i�1

(
a(α)

i |A, i〉 + b(α)
i |B, i〉), (16)

this state will represent a zero mode of H if

H |ψα〉 =
�∑

n=−�

∑
i, j�1

(tn|A, i〉〈B, i + n| + H.c.)
(
a(α)

j |A, j〉

+ b(α)
j |B, j〉)

=
�∑

n=−�

∑
i�1

(
tnb(α)

i+n|A, i〉 + t∗
n a(α)

i |B, i + n〉)

= 0, (17)

with the sum over unit cells constrained by i+n�1. This
gives us the following conditions on the coefficients which
multiply the |A, i〉 and |B, i〉 states in Eq. (17), call them CA,i

and DB,i respectively:

CA,i ≡
i+�∑

m=i−�

tm−ib
(α)
m = 0, (18a)

DB,i ≡
i+�∑

m=i−�

t∗
i−ma(α)

m = 0, (18b)

with i � 1. The idea is now to use the zeros of f (z) [Eq. (5)] to
prove that the coefficients in Eqs. (18) and (19) can be chosen
so as to yield precisely ν edge states |ψα〉 at edge edge of the
chain, α = 1, . . . , ν, with the properties (i) and (ii) above. We
denote by zα the largest ν zeros within the unit disk, with the
rest of the zeros denoted z̃s: f (zα ) = 0 with α = 1, . . . , ν, and
f (z̃s) = 0 with s = 1, . . . , Np.

Case Np = 0. Let us first consider the case when there
are no poles in f (z). This means that tn<0 = 0 in Eq. (5)
since the corresponding terms are the ones that create poles
in f (z). In this case Eqs. (18a) and (18b) contain all hopping
amplitudes tn present in f (z). It is therefore easy to construct
the zero modes by taking b(α)

m = zm−1
α and a(α)

m = 0. It follows
that the coefficients reduce to CA,i = zi−1

α f (zα ) = 0 [using that
tn<0 = tn>� = 0 in the expression for f (zα )] and DB,i = 0.
The choice b(α)

m = zm−1
α , rather than the more intuitive b(α)

m =
zm
α , is mandated by the normalizability of a zero mode: With

b(α)
m = zm−1

α , the inner product 〈ψα|ψα〉 is guaranteed to be
nonzero,

〈ψα|ψα〉 =
∑
i, j�1

b(α)∗
i b(α)

j 〈B, i|B, j〉 =
∑
i�1

|zα|2(i−1)

= 1

1 − |zα|2 , (19)

with the second line obtained by summing the geometric
series, given that |zα| < 1. Note that we here use a notation
where (zα )0 = 1 also for zα = 0.

The ν states obtained by inserting b(α)
i =zi−1

α and a(α)
i =0,

α = 1, . . . , ν, into Eq. (16) have zero energy by construction
and, moreover, they decay with the unit-cell index i since
zα is inside the unit disk, implying an exponential decay
∼exp(i/ξα ) with localization length ξα = −1/ ln |zα|. Thus,
both conditions (i) and (ii) above are satisfied. Let us note
in passing that when a zero zα approaches the unit circle, the
localization length is seen to diverge, signaling criticality, with
the corresponding edge mode hybridizing with the bulk spec-
trum, leaving room for a massless bulk excitation at |zα| = 1,
in accord with the discussion in Sec. II A.

All cases with distinct zα, α = 1, . . . , Nz, yield Nz linear
independent edge states. But what if there are m degener-
ate zeros of f (z) (meaning that for α1, ..., αm the zeros are
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zα1 = · · · = zαm = zα)? Following Ref. [10] we can here take

b(α� )
m = d�−1zm−1

dz�−1

∣∣∣∣
z=zα

= (m − 1)!

(m − �)!
zm−�
α , �=1, 2, . . . , m

(20)

and one verifies that this implies

CA,i = zi−1
α

d�−1 f (z)

dz�−1

∣∣∣∣
z=zα

= 0, � = 1, 2, . . . , m (21)

thus producing m linear independent edge states as required.
Summarizing, when Np = 0 we can readily construct Nz

edge states with the required properties (i) and (ii), valid also
when the system is critical. Note that the edge states thus ob-
tained are nonzero only on sublattice B since we have chosen
a(α)

m = 0. One should here note that given a basis in which
the chiral symmetry operator S is diagonal, zero-energy edge
states of any chiral-symmetric model necessarily have support
on only one sublattice of a bipartite lattice [41].

Case Np �= 0. In this case we look for b(α)
m = zm

α +∑Np

s=1 λ(α)
s z̃m

s , with {λ(α)
s } complex numbers to be determined.

As before we take all a(α)
m = 0. We know that tn<−Np = 0 since

otherwise the multiplicity of the pole at the origin would be
larger than Np. It follows from Eq. (18a) that the condition
CA,i>Np = 0 is trivially satisfied. It remains to find a set of con-
stants λ(α)

s that will make the rest of the expansion coefficients
CA,1�i�Np vanish identically. Again invoking Eq. (18a), these
constants must satisfy the equations

Aisλ
(α)
s = −

i+�∑
m=i−�

tm−iz
m
α , i = 1, 2, . . . , Np (22)

where Ais = ∑i+�
m=i−� tm−i z̃m

s and summation over s is implied.
These equations are equivalent to a matrix equation of the
type Aλ = b, with A an Np × Np matrix with elements Ais. As
follows from the discussion in Ref. [33], provided that zα is
nondegenerate, a row reduction turns A into an invertible Van-
dermonde matrix, implying the existence of unique solutions
for the λ(α)

s .
If there are degenerate zeros of f (z) one can employ the

same device as in the case with degeneracies when Np = 0,
working with derivatives instead [cf. Eq. (20)]. However, we
shall not go into details here.

2. ν = Nz − Np < 0

Turning to the case of negative winding numbers, we can-
not directly employ the elegant inversion argument used in
Ref. [10] since in our case, with complex hopping amplitudes
allowed in the AIII symmetry class, inversion symmetry is
in general broken. However, the necessary modification of
the inversion argument is minor, and essentially comes down
to doing some “relabeling” in the preceding equations for
positive winding numbers.

We start off with the same Hamiltonian H as before,
Eq. (15), and interchange A with B, and n with −n. We thus
obtain

H ′ =
�∑

n=−�

∑
i�1

t ′
n|A, i − n〉〈B, i| + H.c., (23)

with t ′
n = (t−n)∗ and with |A, i − n〉 a null vector for i − n �

0. Note that this is just a rewriting of the Hamiltonian and
hence the edge states of H and H ′ must be the same. Let
us focus on H ′, in one-to-one correspondence with f ′(z) =∑

n(t−n)∗zn = f ∗(1/z∗) (where the summation is over n ∈
[−�,�]). Now assume that f (z) has N = NZ + NC + NO to-
tal number of zeros, with NC (NO) the number of zeros on
(outside) the unit circle. We can then write

f ′(z) = 1

z−NP

N∏
i=1

(
1

z
− z∗

i

)
= (−1)N

zN−NP

N∏
i=1

(
z − 1

z∗
i

)
z∗

i ,

(24)

with, as before, NP the multiplicity of the pole of f (z) at the
origin. It follows that the multiplicity of the pole of f ′(z)
is N ′

P = N − NP. Moreover, by the inversion z → 1/z, f ′(z)
must have the same number of zeros inside the unit circle as
f (z) has outside the unit circle, that is, N ′

Z = NO. The winding
number ν ′ for the inverted system is now easily calculated as

ν ′ = N ′
Z − N ′

P = NO − (N − NP)

= NO − (NZ + NO + NC − NP) = −ν − NC. (25)

Given this result we can construct the edge states for ν < 0
in exact analogy to the case ν > 0, using the zeros of f ′(z).
Acting with H ′, Eq. (23), on a state |ψα〉 = ∑

i�1(a(α)
i |A, i〉 +

b(α)
i |B, i〉), the condition that this state is a zero mode of H ′

takes the form

H ′|ψα〉 =
�∑

n=−�

∑
i�1

(
t ′
nb(α)

i |A, i − n〉 + (t ′
n)∗a(α)

i−n|B, i〉)

= 0, (26)

with the sum over unit cells constrained by i − n � 1. It
follows that the coefficients C′

A,i and C′
B,i which multiply the

|A, i〉 and |B, i〉 states, respectively, must satisfy

C′
A,i =

i+�∑
m=i−�

t ′
m−ib

(α)
m = 0, (27a)

D′
B,i =

i+�∑
m=i−�

(t ′
i−m)∗a(α)

m = 0 (27b)

with i � 1. These are the same equations as for the case with
ν > 0 [Eqs. (18a) and (18b)] and, hence, we can construct
the edge states in exactly the same manner, but now using the
zeros of f ′(z) that will give us ν ′ = −ν − NC edge states. It
may be worth pointing out that these states live on sublattice
A, reflecting the fact that we interchanged A and B when
rewriting the Hamiltonian, replacing H by H ′.

D. Edge states in 2n-band gapless AIII systems in 1D

We now proceed to generalize our finding from the previ-
ous section and establish a bulk-boundary correspondence for
1D critical multiband systems in the AIII symmetry class, i.e.,
systems with 2n bands (with n � 1, treating two bands as a
special case). As for the simple two-band case, our objective
is to construct ν linearly independent states per edge with
the properties that (i) their energies vanish identically for a

043048-5



BALABANOV, ERKENSTEN, AND JOHANNESSON PHYSICAL REVIEW RESEARCH 3, 043048 (2021)

semi-infinite chain, and (ii) their wave functions decay expo-
nentially as one moves away from the edge. Here we shall take
the unit cell large enough so that only the hopping matrices
T0, T±1 in Eq. (12) are nonzero. This is a convenient choice
which simplifies the analysis, and which does not impact the
result for the number of edge states.

1. ν = Nz − Np > 0

For transparency, let us begin by explicitly writing the
Hamiltonian in Eq. (7) on a semi-infinite lattice, having cho-
sen a sufficiently large unit cell so that there are only three sets
of nonzero hopping amplitudes tXY

j , with j = 0,±1:

H =
∑

−1� j�1

∑
i�1

tXY
j |X, i〉〈Y, i + j| + H.c., (28)

where |Y, 0〉 is a null vector. As spelled out in Sec. II B, the
labels X and Y run over the 2n different states within a unit
cell, X ∈{A, B, . . .} on one sublattice and Y ∈{C, D, . . .} on
the other, with X and Y implicitly summed over in Eq. (28).
From now on, all occurrences of repeated indices X and Y
are summed over. Next, we write a general expression for a
multiband state,

|ψα〉 =
∑
i�1

(
a(α)

i,X |X, i〉 + b(α)
i,Y |Y, i〉). (29)

This state is a zero mode of H if

H |ψα〉 =
∑

−1� j�1

∑
i�1

[
tXY

j b(α)
i+ j,Y |X, i〉 + (tXY

j )∗a(α)
i,X |Y, i + j〉]

= 0. (30)

Similarly to the two-band case in Sec. II C [Eqs. (18a) and
(18b)], this gives us the following constraints on the coeffi-
cients which multiply the |X, i〉 and |Y, i〉 states:

CX,i =
i+1∑

m=i−1

tXY
m−ib

(α)
m,Y = 0, (31a)

DY,i =
i+1∑

m=i−1

(
tXY
i−m

)∗
a(α)

m,X = 0, (31b)

with i � 1. Using matrix notation,

Ci =
i+1∑

m=i−1

Tm−ib
(α)
m = 0, (32a)

Di =
i+1∑

m=i−1

T ∗
i−ma(α)

m = 0, (32b)

where Tm−i is the hopping matrix constructed out of the am-
plitudes tXY

i (and similarly for T ∗
i−m), and where a(α)

m and b(α)
m

are vectors with elements a(α)
m,X and b(α)

m,Y , respectively.
Case T−1 =0. For this case, with only T0 and T1 being

nonzero, it is straightforward to construct the zero modes.
Recall from Sec. II B that the winding number ν can be calcu-
lated from F (z) = T−1z−1 + T0 + T1z as ν = Nz − Np where
Nz (Np) is the number of zeros (poles) of det F (z). When
T−1 = 0 there are no poles, and the expression for the winding
number simplifies to ν = Nz. Let us take a more pragmatic

route here and simplify the computations by assuming that ev-
ery zero of det F (z) is nondegenerate. This is motivated by the
fact that since a degeneracy will split unless the hopping am-
plitudes are fine tuned, any generic experimental uncertainty
will wash away the degeneracies, making the degenerate case
irrelevant for applications.

Any zero of det F (z), denoted by zα with α = 1, . . . , Nz,
guarantees that there exists a nonzero eigenvector b̄

(α)
satis-

fying F (zα )b̄
(α) = 0. By taking b(α)

m = zm−1
α b̄

(α)
in Eq. (32a)

it is easy to verify that the coefficient Ci reduces to Ci =
zi−1
α F (zα )b̄

(α) = 0. Choosing a(α)
m = 0 in Eq. (32b) one infers

the existence of ν zero-energy states, living on one of the
sublattices.

In exact analogy to the two-band case, the states ob-
tained via the construction above, inserting b(α)

i,Y = zi−1
α b̄(α)

Y and

a(α)
i,X = 0 into Eq. (29), with a(α)

i,X and b(α)
i,Y the elements of a(α)

i

and b(α)
i , decay exponentially as exp(i/ξα ) with localization

length ξα = −1/ ln |zα|, |zα| < 1. Thus, also condition (ii)
above is satisfied.

Case T−1 �=0. Let us denote by zβ (with |zβ |<1) and by

b̄
(β )

all solutions to

F̄ (zβ )b̄
(β ) = (

T−1 + T0zβ + T1z2
β

)
b̄

(β ) = 0. (33)

Assuming that all zeros are nondegenerate (cf. the discussion
above when T−1 = 0), their total number is N̄z. The pairs
(zβ ; b̄

(β )
) define vectors b(β )

m = zm−1
β b̄

(β )
(taking a(β )

m = 0)
that are all linearly independent among each other because
they decay at distinct rates zm−1

β . Given this, we now aim

to construct independent edge states out of b(β )
m . Thus, we

look at superpositions b(α)
m = ∑N̄z

β=1 λαβb(β )
m and notice that

for each such superposition the coefficients Ci�2 = T−1b(α)
i−1 +

T0b(α)
i + T1b(α)

i+1 in Eq. (32a) vanish identically. The existence
of zero-energy states then hinges on the possibility to con-
struct independent vectors b(α)

m such that C1 = ∑N̄z

β=1 λαβvβ =
0 with vβ = T0b(β )

1 + T1b(β )
2 .

To take on this task, from all {vβ} we first select a set of
basis vectors {vbase

γ } spanning the space of {vβ}. Their number
cannot exceed n (dimension of the vectors vβ). Let us refer to
the rest of the vectors in {vβ} as {vnonbase

δ }. Each nonbasis vec-
tor vnonbase

δ may then be decomposed as vnonbase
δ = ∑

γ xδγ vbase
γ

with some coefficients xδγ . It follows that for each δ we
can then construct a state from b(α)

m = b(δ)
m − ∑

γ xδγ b(γ )
m

which trivially fulfills the condition C1 = 0. Importantly, the
states thus obtained are linearly independent since they are
each tied to a particular component b(δ)

m , with each b(δ)
m having

a unique decay rate zm−1
δ .

Following the protocol above, the vectors b(α)
m = b(δ)

m −∑
γ xδγ b(γ )

m are seen to define at least ν = N̄z − n = Nz − Np

independent edge states. This concludes the analysis for this
case.

2. ν = Nz − Np < 0

We approach this case in the same way as when we ana-
lyzed negative winding numbers for two bands in Sec. II B,
essentially relying only on a “relabeling” of the equations
derived for positive winding numbers.
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By interchanging the sublattice indices X and Y and
flipping the sign of the index j which labels the hopping
amplitudes tXY

j in Eq. (28), the multiband Hamiltonian H in
the same equation takes the form

H ′ =
∑

−1� j�1

∑
i�1

(t ′
j )

XY |X, i − j〉〈Y, i| + H.c. (34)

with (t ′
j )

XY = (tXY
− j )∗ and where |X, 0〉 is a null state. Re-

call that repeated indices X and Y are always summed over.
The function F (z) = T−1z−1 + T0 + T1z, associated to H , now
gets replaced by a new function F ′(z), with the property that
det F ′(z) = ( det F (1/z∗))∗. By exactly the same argument as
for the two-band case, it follows that if det F (z) calls for ν < 0
then det F ′(z) entails ν ′ = −ν − NC with NC the number of
zeros of det F (z) on the unit circle.

The construction of the edge states is simple, and can be
carried out with the case ν > 0 as a template. To see how, we
act with H ′ on the multiband state |ψα〉 in Eq. (29), reading
off the condition that |ψα〉 is a zero-energy state:

H ′|ψα〉 =
∑

−1� j�1

∑
i�1

[
(t ′

j )
XY b(α)

i,Y |X, i − j〉

+ [(t ′
j )

XY ]∗a(α)
i− j,X |Y, i〉] = 0,

where a0 = 0. This equation implies the following constraints
on the coefficients (for i � 1):

CX,i =
i+1∑

m=i−1

(t ′
m−i )

XY b(α)
m,Y = 0, (35a)

DY,i =
i+1∑

m=i−1

[(t ′
i−m)XY ]∗a(α)

m,X = 0 (35b)

or, using matrix notation,

Ci =
i+1∑

m=i−1

T ′
m−ib

(α)
m = 0, (36a)

Di =
i+1∑

m=i−1

(T ′
i−m)∗a(α)

m = 0. (36b)

These are the same equations as (32a) and (32b) for the
case with ν > 0, but with T replaced by T ′. Thus, we can
construct the zero-energy edge states in exactly the same
manner as for ν > 0, but now using the zeros of det F ′(z) that
will give us ν ′ = −ν − NC such states.

III. SYMMETRY CLASS BDI

A. Two-band gapless BDI systems in 1D:
Topological invariant and edge states

The problem of critical edge states in the BDI symmetry
class of 1D models was solved by Verresen et al. [10] for
the case of two bands. Since any model which belongs to the
BDI symmetry class is also contained in AIII (the symmetry
class which we analyzed in the previous section, including the
multiband case) one may think that there is not much to add.
Still, it is instructive to revisit the problem to see how the BDI
formalism in Ref. [10] fits into the scheme presented here,
taking into account the symmetries which mark out the BDI

class. Beyond chiral invariance, intrinsic also to AIII, these
are time-reversal symmetry T HT −1 = H and particle-hole
symmetry CHC−1 = −H , with T 2 =C2 =1. To avoid any
misconception, it is important to stress that these symmetries
are to be considered as accidental when a Hamiltonian H
is placed in the AIII symmetry class, while being enforced
on any perturbation of the same Hamiltonian when placed in
BDI. In particular, this implies that the symmetry protection
of edge states is stronger if H is placed in AIII rather than in
BDI.

Verresen et al. [10] performed their analysis on a rep-
resentative BDI Hamiltonian HBDI, describing a spinless
superconducting wire. In real space, assuming translational
invariance on a chain with unit cells labeled by j, the second-
quantized Hamiltonian can be written as HBDI = ∑

n tnHn,
where

Hn = i

2

∑
j

γ̃ jγ j+n

= − 1

2

∑
j

(c†
j c

†
j+n + c†

j c j+n − c jc
†
j+n − c jc j+n). (37)

Here γ j = 1
2 (c†

j + c j ) and γ̃ j = i
2 (c†

j − c j ) are Majorana

modes, with c j and c†
j fermion operators. Note that time-

reversal symmetry precludes terms of the form iγ jγ� and iγ̃ j γ̃�

as well as complex hopping amplitudes in the decomposition
of HBDI. As implied by the notation, each unit cell with index
j contains two Majorana modes γ j and γ̃ j .

To make contact with our generic first-quantized AIII
Hamiltonian in Eq. (1) we can introduce Nambu spinors
�† = (c†

1 . . . c†
N c1 . . . cN ) and extract the corresponding

Bogoliubov–de Gennes (BdG) Hamiltonian, call it HBdG, from
HBDI = �†HBdG�. By this, one obtains

HBdG = −1

4

∑
j,n

tn(τz ⊗ | j〉〈 j + n| + iτy ⊗ | j〉〈 j + n|)

+ H.c., (38)

which acts on basis states |τ 〉 ⊗ | j〉, with |τ = 1〉 = (10)T

for a particle state and |τ =−1〉 = (01)T for a hole state, and
where the state | j〉 = (0, . . . , 1, . . . 0)T corresponds to the jth
site of the chain. τy and τz are Pauli matrices.

Particle-hole symmetry is built into HBdG, with C = τxK
(where τx is the Pauli x matrix and K the complex-conjugation
operator), as is also time-reversal symmetry with T = K,
with both operators here written in a k-space representa-
tion. Here T 2 = C2 = 1 as must be since the model is
spinless. The chiral symmetry operator S is given by τx in
the chosen basis. We can make a rotation to a “chiral ba-
sis” where S is diagonal by simply acting with U = (1 +
τy)/

√
2 on the basis states. As a result, τz → τx and τy →

τy and therefore HBdG → − 1
4

∑
j,n tn(τx ⊗ | j〉〈 j + n| + iτy ⊗

| j〉〈 j + n|) + H.c., now with chiral symmetry operator S =
τz. Rewriting HBdG in terms of the eigenstates of τz, call them
|A〉 and |B〉, one obtains HBdG = − 1

2

∑
j,n tn|A, j〉〈B, j +

n|) + H.c., of the very same form as our Eq. (1) (up to an
immaterial prefactor of − 1

2 ). It follows that the f (z) function
derived for the BDI symmetry class in Ref. [10] is given by the
same expression as in our Eq. (5), with the crucial difference
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that the parameters tn are now constrained to be real. Ac-
cording to the fundamental theorem of algebra, this restricts
the zeros of f (z) to be real or to come in complex-conjugate
pairs. Apart from this, the overall picture does not change. As
worked out by Verresen et al. [10], the number of topological
edge states is determined by the zeros and poles inside the unit
disk of the f (z) function, just as for AIII.

B. 2n-band gapless BDI systems in 1D:
Topological invariant and edge states

In Ref. [33], Verresen et al. present a formal proof that
the topological invariant for a critical translational-invariant
system in the BDI symmetry class is independent of the choice
of unit cell. While intuitively clear that this must be the case,
the proof primarily serves as a consistency check of the con-
struction of an f (z) function when the unit cell is enlarged.
If we restrict the generic AIII multiband Hamiltonian in
Eq. (1) to BDI by requiring invariance under time-reversal and
particle-hole symmetry where T = 1 ⊗ 1K and C = τx ⊗ 1K
in a k-space representation our d (z) function in Eq. (12), now
restricted by these symmetries, can be shown to be identical
to that of Ref. [33], denoted by f (z) in Eq. (S8) of that
same reference. Note that the unit matrix multiplying K in
the expressions for T and C acts in the n-dimensional space
of internal states contained in the unit cell (not counting the
Nambu degree of freedom with one particle and one hole
state). The necessary calculation is straightforward but long
winded, and for this reason we omit it here. Moreover, the
result is entirely expected: Our construction of critical edge
states for multiband AIII models ensures the existence of ex-
ponentially localized zero-energy edge states also for critical
multiband models in the BDI symmetry class, with the same
counting as before, ν = Nz − Np.

IV. SYMMETRY CLASS CII

A model which is placed in symmetry class CII is protected
by all three symmetries S, T, and C of the tenfold way [1],
analogous to BDI, but now with T 2 = C2 = −1. Thus, this
is the appropriate symmetry class to use for chiral-invariant
spinful fermion systems with topological edge states protected
by time-reversal and particle-hole symmetry. We address this
problem similar to how we approached the BDI class in the
previous section, where we analyzed how the functions f (z)
[for two bands, Eq. (5)] and d (z) [for the general multiband
case, Eq. (12)] get restricted by the additional symmetries T
and C. Here, we have to proceed with some care.

First, we cannot satisfy the constraints T 2 = C2 = −1 for
a two-band model. The reason is simple. For these constraints
to be satisfied, the symmetry operators T and C, both being
antiunitary, have to be represented by a product of a Hermitian
(and unitary) matrix with purely imaginary elements and the
complex-conjugation operator K. There is only one such 2×2
matrix, the Pauli y matrix and, hence, with T and C being
distinct operators, there is no faithful representation adequate
for two bands.

Second, turning to more than two bands, one still has to
be wary: There are multiple choices for the representation of
the symmetries and they may influence the d (z) function in

Eq. (12) differently. Here, for ease and clarity, we limit our
discussion to the simplest multiband case 2n = 4, with con-
ventional realizations of the time-reversal and particle-hole
symmetries; see below.

A. Topological invariant for four-band gapless CII systems in 1D

For the purpose of connecting the representative four-band
CII models to possible physical realizations (for examples see,
e.g., Refs. [42,43]), we shall begin by identifying the possible
varieties of spinful superconducting chains that satisfy the
required symmetries. The case of four bands is easy to picture,
thinking in terms of a Bogoliubov–de Gennes construction
using Nambu spinors as in our discussion of the BDI sym-
metry class, but now with an added spin- 1

2 degree of freedom
which doubles the number of bands. We take the time-reversal
symmetry operator to be of conventional type for spin- 1

2 sys-
tems, T = 1 ⊗ σyK (in a k-space representation), with the first
(second) factor acting in the particle-hole (spin) space, and
with K acting in both, yielding T 2 = −1. The particle-hole
symmetry is decoupled from the spin degree of freedom and,
therefore, its symmetry operator has to be C = τy ⊗ 1K (in
the same representation) in order to fulfill the requirement
C2 = −1. Here τy is also a Pauli y matrix, but acting in the
particle-hole space [cf. the text after Eq. (38)]. The chiral
symmetry operator S is fixed by S = T −1C. In the following
we shall explore how the restrictions implied by the T and C
symmetries map out the possible spinful chains belonging to
the CII class. With an eye to parallels with the BDI symmetry
class as studied in Ref. [10], we will work in a representation
with Majorana modes. Different from Ref. [10], the Majo-
ranas will now carry spin 1

2 .

1. Spinful Majorana chains

To construct the possible CII Majorana chains we must an-
alyze what types of spinful Majorana bilinears that survive the
restrictions from time-reversal and particle-hole symmetry.
Our strategy is to first construct all real-space first-quantized
Hamiltonian matrices H allowed by these symmetries and
then use a Nambu representation to go to second quantization,
and from there, to a representation in spinful Majoranas, de-
fined by γ j,σ = 1

2 (c†
j,σ + c j,σ ) and γ̃ j,σ = i

2 (c†
j,σ − c j,σ ), with

c†
j,σ and c j,σ fermion operators at lattice site j with spin σ =↑

,↓. As an outcome we obtain the spinful Majorana chains

HCII =
�∑

n=−�

(
tnHCII

n + t̄nH̄CII
n

)
, (39)

with

HCII
n = i

∑
j,σ

γ̃ j,σ γ j+n,σ (40)

and

H̄CII
n = i

∑
j

(γ̃ j,↑γ j+n,↓ − γ̃ j,↓γ j+n,↑) (41)

serving as bases for all spin-preserving and spin-flipping Ma-
jorana chains, respectively. The amplitudes tn and t̄n are real,
with [−�,�] the range of couplings between the Majoranas.
The associated hopping matrix in spin space, constructed as

043048-8



TOPOLOGY OF CRITICAL CHIRAL PHASES: MULTIBAND … PHYSICAL REVIEW RESEARCH 3, 043048 (2021)

in Sec. II B, is readily read off from Eqs. (39)–(41):

Tn =
(

tn t̄n
−t̄n tn

)
. (42)

For details, see the Appendix.
By going to k space via a Fourier transform and performing

an analytic continuation to the entire complex plane, one can
now use Eq. (42) to define an F matrix by F (z) = ∑

n Tnzn, in
exact analogy to how it was done in Sec. II B for the AIII
symmetry class. We can again use the construction d (z) =
det F (z) for extracting the winding number ν = Nz − Np, with
d (z) well defined also at criticality when the gap is closed [and
d (z) has one or several zeros on the unit circle].

Any first-quantized Hamiltonian which can be put in sym-
metry class CII can also be put in AIII (however, with a
stronger protection of its topological edge states since now
there are many more types of perturbations against which
the states are protected, having removed the constraints of
time-reversal and particle-hole symmetry). One thus expects
that the bulk-boundary correspondence that we derived in
Sec. II for AIII should still be valid. In other words, one
anticipates that the winding number ν = Nz − Np obtained for
a 1D model in symmetry class CII correctly counts its number
of topological edge states, also at criticality. In fact, when
discussing the multiband problem for symmetry class BDI in
Sec III we relied precisely on this line of argument, grounded
in the work by Verresen et al. [10] on two-band models.
While the argument is expected to be valid also for CII, the
absence of results for two-band models in CII, since none
exists in this symmetry class!, may call for a closer look. To
this we turn next. However, rather than proving the existence
of edge states by an explicit construction for CII, we shall
again exploit the bulk-boundary correspondence for critical
edge states in AIII. To make the argument formally sound we
will make the connection between the CII and AIII winding
numbers mathematically manifest, taking off from the four-
band Majorana chain in Eq. (41). This will clarify why the CII
winding numbers can take only even integer values, whereas
there is no such restriction for AIII [1]. Let us here point
out that the generalization to 2n bands with n > 2 becomes
cumbersome to handle in the second-quantized Majorana rep-
resentation. Instead, it is preferable to start directly with a
first-quantized single-particle CII Hamiltonian and proceed as
for the multiband BDI systems in Sec. III B, exploiting the
results in Sec. II D for multiband single-particle models in the
AIII symmetry class. Again, the calculation is straightforward
but long winded. Since the existence of edge states is fully
expected given the analysis of the four-band case, we omit it
here.

2. Connection between CII and AIII winding numbers

We begin by writing the general CII Hamiltonian in
Eq. (41) on first-quantized form, reversing the Nambu pro-
cedure from above and by this extracting the corresponding
BdG Hamiltonian HCII

BdG, call it simply H :

H =
∑

j,n

[tn(τz ⊗ 1 − iτx ⊗ σy) + t̄n(iτz ⊗ σy + τx ⊗ 1)]

⊗ | j〉〈 j + n| + H.c. (43)

We then perform a sequence of unitary transformations acting
in the particle-hole and spin spaces, with the transformations
given by U = U3U2U1 with U1 = 1

2 (1 + τz ) ⊗ 1 + i
2 (1 −

τz ) ⊗ σy, U2 = 1√
2
(1 ⊗ 1 + iτy ⊗ 1), and U3 = 1√

2
(1 ⊗ 1 +

i1 ⊗ σx ). As a result, H → UHU −1 = H ′, with

H ′ =
∑

j,n

[tn(τx ⊗ 1 + iτy ⊗ 1)

+ it̄n(τx ⊗ σz + iτy ⊗ σz )] ⊗ | j〉〈 j + n| + H.c. (44)

The chiral symmetry operator S becomes diagonal in the
rotated basis and takes the form S = ∑

j τz ⊗ 1| j〉〈 j| (as
is easily verified by checking the identity SH ′S−1 = −H ′).
Moreover, H ′ is diagonal in spin space and can be decom-
posed as

H ′ =
∑

j,n

[(tn + it̄n)|A,↑, n〉〈B,↑, j + n|

+ (tn − it̄n)|A,↓, j〉〈B,↓, j + n|] + H.c., (45)

where |A, σ, j〉 and |B, σ, j〉 are particle and hole states, re-
spectively, with spin σ =↑,↓, attached to the unit cell with
index j. But this is nothing but two copies, labeled by ↑ and
↓ , of the general two-band AIII Hamiltonian in Eq. (1)! It
follows immediately that the winding number, is derivable
from d (z) = det F (z) = det

∑
n T ′

n zn, with

T ′
n =

(
tn + it̄n 0

0 tn − it̄n

)
. (46)

We can explicitly rewrite d (z) = det F (z) = f 2(z) + g2(z)
with f (z) = ∑

n tnzn and g(z) = ∑
n t̄nzn. This result is in per-

fect agreement with the one obtained above using a Majorana
representation, but now we can directly refer to the bulk-edge
correspondence proved for class AIII. This establishes that the
winding number ν = Nz − Np for symmetry class CII in 1D
correctly counts the number of topological edge states, also
at criticality. As mandated by the tenfold way for the 1D CII
symmetry class [1], ν is restricted to even integers: Factorizing
d (z) = [ f (z) + ig(z)][ f (z) − ig(z)], complex zeros are seen
to come in conjugate pairs, with real zeros coming with even
multiplicities since tn and t̄n are real. (The poles trivially come
with even multiplicities.)

B. Edge states in four-band gapless CII systems in 1D

Let us finally address the character of the zero-energy edge
states, showing that they are Majoranas.

Zero-energy states have support on only one sublattice in
a basis where the chiral symmetry operator S is represented
by a diagonal matrix. This transpired from our analysis in
Sec. II, and holds quite general [41]. Knowing that S is indeed
diagonal in the rotated spin-diagonal basis of H ′, we can
therefore consider, without loss of generality, a zero-energy
state, call it |φ〉, with support on the A sublattice only. When
writing Eq. (45) we associated A with a particle state (1 0)T

[with sublattice B being associated with a hole state (0 1)T ].
In this notation, and leaving out the spatial part of |φ〉, we thus
write |φ〉 = (1 0)T ⊗ (a b)T = (a b 0 0)T , with (a b)T a spinor
in spin space with amplitudes a and b. Particle-hole symmetry
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implies that C|φ〉 is also a zero-energy state, where, in the ro-
tated basis, C = τz ⊗ σxK. We can always construct two new
zero-energy states by adding and subtracting φ and C|φ〉, in
this way obtaining |φ〉± = (u±

1 u±
2 0 0)T with u±

1 = a ± b∗ and
u±

2 = b ± a∗. We now go back to the original basis by carrying
out the inverse transformations |φ〉± → |ψ〉± = U −1|φ〉± =
U †

1 U †
2 U †

3 |φ〉± = 1
2 (u±

1 −iu±
2 u±

2 −iu±
1 − u±

2 −iu±
1 u±

1 +
iu±

2 )T . Exploiting the Nambu spinor representation with �
†
A =

(c†
↑ c†

↓ c↑ −c↓) (with �
†
A acting in the composite particle hole

and spin space in any unit cell on the A sublattice), we then
express the |ψ〉± states in second quantization as

1

2
�

†
A(u±

1 − iu±
2 u±

2 − iu±
1 − u±

2 + iu±
1 u±

1 − iu±
2 )T |0〉

= 1

2
[(u±

1 − iu±
2 ) c†

↑ + (u±
2 − iu±

1 ) c†
↓ − (u±

2 − iu±
1 ) c↓

− (u±
1 − iu±

2 ) c↑] |0〉, (47)

with the composite particle hole and spin space spanned by
c†
↑|0〉 = (1000)T , c†

↓|0〉 = (0100)T , c↑|0〉 = (0010)T , and
c↓|0〉 = (0001)T . Reading off from Eq. (47), one immediately
identifies the mode operators which correspond to these states:

d± = (u±
1 − iu±

2 )c†
↑ + (u±

2 − iu±
1 )c†

↓

− (u±
2 − iu±

1 )c↓ − (u±
1 − iu±

2 )c↑. (48)

Using that u±
1 =±(u±

2 )∗, it follows that d± =±id†
±, implying

that the zero-energy states thus constructed are Majorana
states.

V. ROBUSTNESS OF THE EDGE STATES:
A NUMERICAL TEST

In the previous sections we showed that the boundary states
in unperturbed critical 1D multiband chains are connected
to a topological number ν, generalizing the ordinary wind-
ing number for gapped systems to critical systems in chiral
symmetry classes AIII, BDI, and CII. In gapped systems the
edge states are robust to any perturbation from uncorrelated
disorder which respects the relevant symmetries and leaves the
bulk gap open. Here we numerically verify on a case study that
the edge states of a CII critical chain also exhibit robustness
to disorder although the gap is now closed. By a symmetry
analysis we identify the chiral symmetry as solely responsible
for the protection of the states. A possible mechanism of
such protection was proposed in Ref. [32] for the case of
two-band models, but its generalization to the multiband case
has remained somewhat unclear and requires a more thorough
investigation.

For a numerical test we take a topologically nontrivial
critical spinful Majorana chain with open boundaries HCII

{1,2} =∑2
n=1(HCII

n + H̄CII
n ) and study how its four edge states behave

under disorder respecting the various symmetries of the CII
class. [To confirm the criticality of HCII

{1,2}, insert the nonzero
hopping amplitudes of HCII

{1,2}, t1 = t̄1 = t2 = t̄2 =1, into Eq. (46)
and verify that the resulting d (z) has two zeros on the unit
circle.] As follows from Eq. (43), the Hamiltonian HCII

{1,2} can

be rewritten in first quantization as

H{1,2} =
∑

n={1,2}
j=1,2,...,N

[(τz ⊗ 1 − iτx ⊗ σy) + (iτz ⊗ σy + τx ⊗ 1)]

⊗ | j〉〈 j + n| + H.c., (49)

with |N + 1〉 and |N + 2〉 null states. Having placed H{1,2} in
symmetry class CII, its relevant symmetries are identified by
the time-reversal operator T = ∑N

j=1 1 ⊗ σy K ⊗ | j〉〈 j|, the

particle-hole operator C = ∑N
j=1 τy ⊗ 1K ⊗ | j〉〈 j|, and the

chiral symmetry operator S = ∑N
j=1 τy ⊗ σy ⊗ | j〉〈 j|, where

K is the complex-conjugation operator.
In analogy to gapped symmetry-protected topological sys-

tems we are interested to see if the edge states of H{1,2} in
Eq. (49) remain localized under symmetry-preserving locally
uncorrelated perturbations and, if so, if they stay pinned ex-
actly at zero energy. The localization of the edge states can
be quantitatively addressed by calculating the participation
ratio (PR) that is defined by R = 1/

∑
i p2

i , where pi is the
occupation of the Bogoliubov quasiparticle at site i, explicitly
obtained by summing up all probability amplitudes of the
corresponding Nambu spinor. The PR quantifies localization
of an eigenstate: A completely localized state has R = 1 while
a completely delocalized state, such as a plane wave, has
R = N (where N measures the extent of the chain, counting
the total number of unit cells). The robustness of an edge state
is established if both of the following conditions are satisfied:
Its energy level remains at zero and the PR is of order unity.

In Fig. 1 we have perturbed the edge states with random
uncorrelated onsite disorder proportional to τx ⊗ 1 (T and C
preserving), τy ⊗ σy (C breaking), and τy ⊗ 1 (T breaking).
The edge states display robustness when both symmetries are
preserved (implying that also chiral symmetry S = T −1C is
preserved) but get destroyed once one of the symmetries T or
C is broken (implying that also chiral symmetry gets broken
[1]). Thus, the critical edge states are seen to be well protected
in the CII symmetry class.

It is interesting to inquire what happens if allowing disor-
der which breaks both T and C symmetries but leaves chiral
symmetry unbroken. This is tantamount to put the Hamilto-
nian H{1,2} in the AIII symmetry class where any perturbation
which respects only chiral symmetry is allowed. One may
maybe object and say that this assignment of symmetry class
is impossible: “Particle-hole symmetry is a ‘built-in’ feature
of any second-quantized Hamiltonian expressed in a Nambu
spinor basis, implying that the corresponding first-quantized
BdG Hamiltonian (like H{1,2}), as well as any perturbation
thereof, is also particle-hole symmetric.” However, whereas
the use of the Nambu basis does preclude particle-hole
symmetry-breaking perturbations in the second-quantized
theory, there is no such constraint on perturbations of the BdG
Hamiltonian. In other words, once the BdG Hamiltonian ma-
trix has been extracted from the underlying second-quantized
theory using a Nambu basis, this matrix defines a single-
particle theory which can be put into the AIII symmetry class,
allowing for perturbations that break particle-hole symmetry.
True, such perturbations do not represent physical symmetry-
breaking perturbations of the original unperturbed theory of a
mean-field superconductor since they cannot be traced back to
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(a)
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FIG. 1. Number of disorder realizations M (linear scale) corre-
sponding to (a) energy and (b) participation ratio (logarithmic scales)
of the four edge states of the gapless CII Hamiltonian in Eq. (49).
The computations cover a total of 103 realizations of each type of
the following onsite uncorrelated disorder: Proportional to τx ⊗ 1
(blue, T and C preserving), τy ⊗ σy (light red, C breaking), and
τy ⊗ 1 (green, T breaking). (Partial) coloring of bins by dark red
corresponds to superposition of light red and green. Each realization
of disorder is obtained by summing up onsite perturbations with
random amplitudes ∈ [−1, 1]. The number of unit cells is N = 100.

a second-quantized formulation using the Nambu basis. How-
ever, the maneuver allows us to formally address the question
whether critical edge states of a first-quantized Hamiltonian
(like H{1,2}) are robust against perturbations which respect
only chiral symmetry. This is an important issue, independent
of whether such perturbations can be realized in an underlying
second-quantized theory or not.

With this as a backdrop, we now consider perturbations
which break both T and C but, different from the cases of
Fig. 1, preserve S. The results are displayed in Fig. 2 where
we have applied random uncorrelated onsite disorder propor-
tional to τx ⊗ σy and τz ⊗ σy (T and C breaking, S preserving),
showing that the critical edge states of H{1,2} do survive per-
turbations which respect only chiral symmetry.

Given these results we conjecture that it is precisely the
chiral symmetry S which protects the topological edge states
in disordered 1D critical phases. Numerical examinations of
other disorder types and critical chains support this conjecture
[44]. One should here note that while chiral symmetry by
definition is indeed the only possible protecting symmetry for
critical phases of AIII, it is a priori not evident that it actu-
ally fulfills this role. However, our numerical results provide
strong evidence that it does.

VI. SUMMARY

Building on the work by Verresen et al. [10] on critical
two-band BDI models in 1D, we have carried out a study of

(b)1500

Participation ratio 
0

M

1 N

1500

M

0

10-16

(a)

Energy 10-14

FIG. 2. Number of disorder realizations M (linear scale) corre-
sponding to (a) energy and (b) participation ratio (logarithmic scales)
of the four edge states of the gapless CII Hamiltonian in Eq. (49).
The computations cover a total of 103 realizations of each type of
the following onsite uncorrelated disorder: proportional to τx ⊗ σy

(red) and τz ⊗ σy (light blue), with both perturbations breaking T
and C but preserving S. (Partial) coloring of bins by dark blue
corresponds to superposition of red and light blue. Each realization of
disorder is obtained by summing up onsite perturbations with random
amplitudes ∈ [−1, 1]. The number of unit cells is N = 100.

critical multiband models in any of the 1D chiral symmetry
classes AIII, BDI, and CII. We use an approach where the
enlarged unit cell responsible for the multiband structure of
a model is further extended until one is left with intercell
hopping of fermions only between nearest-neighbor auxiliary
cells. This allows for a transparent and rigorous analysis of
the problem, enabling us to prove the existence of critical
edge states for any 1D multiband model belonging to one
of the chiral symmetry classes. As in the original work in
Ref. [10], the number of such edge states is coded by a topo-
logical invariant generalizing the winding number of gapped
1D models, now providing a bulk-boundary correspondence
for all chiral critical phases in 1D.

A numerical case study of a four-band model in the CII
symmetry class, perturbing its Hamiltonian by uncorrelated
disorder distributions of different symmetry contents, shows
that the robustness of its critical edge states is protected solely
by chiral invariance, with time-reversal and particle-hole sym-
metries playing no role. We conjecture that this picture is
general, with chiral symmetry being the sole protecting sym-
metry of 1D critical topological edge states not only in the
AIII symmetry class (where any perturbation which respects
only chiral symmetry is allowed), but also for any 1D model
belonging to the CII or BDI symmetry class. Put differently,
we expect that the subsets of the CII and BDI symmetry
classes composed of models that support topological critical
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phases are entirely contained within the AIII symmetry class,
demoting T and C to accidental symmetries when it comes to
protection of these phases.

Our work may open a path towards a more comprehensive
study of symmetry protection of multiband topological phases
at criticality, including those of non-translational-invariant
models in higher dimensions and artificially generated phases
from Floquet topological engineering [45]. The classifica-
tion of periodically driven (Floquet) systems at criticality
is a particularly promising direction for exploration here:
Our multiband analysis should be quite useful for treating
critical time-periodic systems within Floquet theory, a the-
ory that is intrinsically multiband due to the repetition of
frequency zones [46,47]. In fact, the Floquet systems repre-
sented within frequency domain and truncated at sufficiently
large frequency index are mathematically equivalent to time-
independent multiband systems [46–48]. Any Floquet chiral
system is then anticipated to satisfy the time-independent chi-
ral relation after the truncation, and combined with our results
this shows the existence of the topological edge states. Impor-
tantly, these arguments are expected to hold also at the closed
induced gap (also called anomalous gap) corresponding to
the existence of the anomalous edge states [48,49], having no
analog in static systems, also at criticality.

Another important topic to explore is the effect of inter-
actions in multiband critical models. There are already some
results [10,30,32,33] on the robustness of critical topological
edge modes against interactions, using density matrix renor-
malization group (DMRG) and effective field theory methods,
but so far only for two bands. The extension to more bands is
technically challenging, but we expect that our present work
will be of use also here.

In conclusion, further theoretical work and the growing
backdrop of relevant multiband experimental systems [34–40]
hold up the prospect of some very interesting developments.
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APPENDIX: CII SPINFUL MAJORANA CHAINS

To obtain all possible CII spinful Majorana chains we first
construct all real-space first-quantized Hamiltonian matrices
H allowed by the proper time-reversal and particle-hole sym-
metries and then use a Nambu representation to go to second
quantization with complex fermions and, from there, to a
representation in spinful Majoranas.

Recall that the symmetry conditions are T HT −1 = H and
CHC−1 = −H , with T 2 = C2 = −1. In a real-space repre-
sentation (with H defined on a chain with N unit cells) we
have that

T =
N∑

j=1

1⊗σy K ⊗ | j〉〈 j|, C =
N∑

j=1

τy⊗1K ⊗ | j〉〈 j|,

(A1)

with j running over all unit cells, and where τα and σα

are Pauli matrices when α = x, y, z and equal to the 2×2
unit matrix 1 when α = 0. The operator K effects com-
plex conjugation. For the four-band case, with the real-space
Hamiltonian given by a Hermitian 4N×4N matrix, we make
the observation that any such matrix can be written as a linear
combination over real numbers of matrices

Hj, j+n = (i)mτα ⊗ σβ ⊗ | j〉〈 j+n| + H.c., m = 0, 1 (A2)

with j constrained by | j + n| � N . Examining all 32 such
matrices (for any fixed j and n), we find that 8 of them respect
the T and C symmetries. Writing out only the parts which act
in the spin- and particle-hole spaces (suppressing the common
| j〉〈 j+n| factors and the Hermitian conjugate to save space),
these are

(a) τx ⊗ 1; (b) τz ⊗ 1; (c) τy ⊗ σx; (d) τy ⊗ σz;
(e) i1 ⊗ σx; (f) i1 ⊗ σz; (g) iτx ⊗ σy; (h) iτz ⊗ σy.
To construct the symmetry-respecting second-quantized

Hamiltonians H j, j+n corresponding to (a)–(h), we introduce
four-component real-space Nambu spinors for the N unit
cells: �

†
j = (c†

j,↑ c†
j,↓ c j,↓ − c j,↑) and � j = (c j,↑ c j,↓ c†

j,↓ −
c†

j,↑)T , j = 1, 2, . . . , N , yielding the 4N-component Nambu

spinors for the full lattice, �† = (�†
1 . . . �

†
j . . . �

†
j+n . . . �

†
N )

and � = (�1 . . . � j . . . � j+n . . . �N )T , respectively. Inserting
the expressions for Hj, j+n implied by (a)–(h) [cf. Eq. (A2)]
into the prescription H j, j+n = (1/2)�†Hj, j+n�, we find that
only four of them, corresponding to (a), (b), (g), and (h),
give a nonzero second-quantized Hamiltonian. In the other
four cases, the Hermiticity of Hj, j+n when combined with the
fermion algebra cancels out the resulting second-quantized
expressions, signaling an incompatibility with fermion statis-
tics. Listing the four surviving contributions, one finds, from
Eq. (A2) and the table (a)–(h) above,

H(a)
j, j+n = 1

2�†H (a)
j, j+n�

= 1
2�†(τx ⊗ 1) ⊗ (| j〉〈 j+n| + | j + n〉〈 j|)�

= 1
2�

†
j (τx ⊗ 1)� j+n + 1

2�
†
j+n(τx ⊗ 1)� j

= c j,↓c j+n,↑ − c j,↑c j+n,↓ − c†
j,↓c†

j+n,↑ + c†
j,↑c†

j+n,↓,

(A3)

and similarly for the other three cases,

H(b)
j, j+n =

∑
σ=↑,↓

(c†
j,σ c j+n,σ + c†

j+n,σ c j,σ ), (A4)

H(g)
j, j+n =

∑
σ=↑,↓

(c j,σ c j+n,σ − c†
j,σ c†

j+n,σ ), (A5)

H(h)
j, j+n = c†

j,↑c j+n,↓ − c†
j,↓c j+n,↑ − c†

j+n,↑c j,↓ + c†
j+n,↓c j,↑.

(A6)

In Eqs. (A4) and (A6) an immaterial constant (from anticom-
muting the fermion operators) has been dropped.

Next, we rewrite Eqs. (A3)–(A6) in terms of spinful Majo-
rana operators, defined by

γ j,σ = 1

2
(c†

j,σ + c j,σ ), γ̃ j,σ = i

2
(c†

j,σ − c j,σ ). (A7)
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By this we obtain

H(a)
j, j+n=

i

2
(γ̃ j,↑γ j+n,↓−γ̃ j,↓γ j+n,↑−γ̃ j+n,↓γ j,↑+γ̃ j+n,↑γ j,↓),

(A8)

H(b)
j, j+n = i

2

∑
σ=↑,↓

(γ̃ j,σ γ j+n,σ + γ̃ j+n,σ γ j,σ ), (A9)

H(g)
j, j+n = i

2

∑
σ=↑,↓

(γ̃ j,σ γ j+n,σ − γ̃ j+n,σ γ j,σ ), (A10)

H(h)
j, j+n = i

2
(γ̃ j,↑γ j+n,↓ − γ̃ j,↓γ j+n,↑+γ̃ j+n,↓γ j,↑− γ̃ j+n,↑γ j,↓).

(A11)

By summing Eqs. (A9) and (A10) and then summing over
all unit cells, we obtain a basis {HCII

n } for all four-band spin-
preserving CII Majorana chains:

HCII
n = i

∑
j,σ

γ̃ j,σ γ j+n,σ . (A12)

Analogously, by summing Eqs. (A8) and (A11) and then again
summing over all unit cells, one obtains a basis {H̄CII

n } for all
four-band spin-flipping CII Majorana chains:

H̄CII
n = i

∑
j

(γ̃ j,↑γ j+n,↓ − γ̃ j,↓γ j+n,↑). (A13)

It follows that any spinful Majorana chain can be constructed
from Eqs. (A12) and (A13),

HCII =
�∑

n=−�

(
tnHCII

n + t̄nH̄CII
n

)
, (A14)

with real constants tn and t̄n, and where [−�,�] is the range
of couplings between the Majoranas.

For the purpose of verifying that HCII has the desired
CII symmetries, we introduce the time-reversal and particle-
hole symmetry operators T and C, respectively, acting on the
Nambu spinors � j = (c j,↑ c j,↓ c†

j,↓ − c†
j,↑)T introduced above

and constructed from the unitary parts of the corresponding T
and C operators [1] in Eq. (A1):

T ψkT −1 = (UT )�kψ�, T iT −1 = −i (A15)

and

CψkC−1 = (U ∗
C )�kψ

†
� . (A16)

Here UT = 1 ⊗ σy and UC = τy ⊗ 1 (after having suppressed
the extraneous cell index that labels the Nambu spinors), with
ψ1 = c↑, ψ2 = c↓, ψ3 = c†

↓, and ψ4 = −c†
↑ their common

elements in the composite spin and particle-hole space. It
follows from Eqs. (A7), (A15), and (A16) that

γ↑ → −iγ↓, γ↓ → iγ↑, γ̃↑ → −iγ̃↓, γ̃↓ → iγ̃↑ (A17)

under a T transformation, while

γ↑ → iγ↓, γ↓ → −iγ↑, γ̃↑ → −iγ̃↓, γ̃↓ → iγ̃↑ (A18)

under a C transformation. Reinserting the cell index, one con-
firms from Eqs. (A12), (A13), (A17), and (A18) that

T HCIIT −1 = HCII, CHCIIC−1 = HCII, (A19)
as required.
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