
Architecture evaluation in continuous development

Downloaded from: https://research.chalmers.se, 2025-05-16 09:25 UTC

Citation for the original published paper (version of record):
Ågren, M., Knauss, E., Heldal, R. et al (2022). Architecture evaluation in continuous development.
Journal of Systems and Software, 184. http://dx.doi.org/10.1016/j.jss.2021.111111

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



The Journal of Systems & Software 184 (2022) 111111

S

w
g
t
c
h
s
t
w
S

e
p

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Architecture evaluation in continuous development✩

. Magnus Ågren a,∗, Eric Knauss a, Rogardt Heldal b,a, Patrizio Pelliccione c,a,
Anders Alminger d, Magnus Antonsson d,1, Thomas Karlkvist d,2, Anders Lindeborg d,3

a Chalmers | University of Gothenburg, Sweden
b Western Norway University of Applied Sciences, Norway
c Gran Sasso Science Institute (GSSI), Italy
d Volvo Cars, Sweden

a r t i c l e i n f o

Article history:
Received 6 October 2020
Received in revised form 3 August 2021
Accepted 26 September 2021
Available online 19 October 2021

Keywords:
Architecture evaluation
Continuous software engineering

a b s t r a c t

Context In automotive, stage-gate processes have previously been the norm, with architecture created
mainly during an early phase and then used to guide subsequent development phases. Current iterative
and Agile development methods, where the implementation evolves continuously, changes the role of
architecture.
Objective We investigate how architecture evaluation can provide useful feedback during development
of continuously evolving systems.
Method Starting from the Architecture Tradeoff Analysis Method (ATAM), we performed architecture
evaluation, both in a national research project led by an automotive Original Equipment Manufacturer
(OEM), and at the OEM, in the context of continuous development. This allows us to include the
experience of several architects from different organizations over several years. Using data produced
during the evaluations we perform a post-hoc analysis to derive initial findings. We then validate and
refine these findings through a series of focus groups with architects and industry experts.
Findings We propose principles of continuous evaluation and evolution of architecture, and based on
these discuss a roadmap for future research.
Conclusion In iterative development settings, the needs are different from what typical architecture
evaluation methods provide. Our principles show the importance of dedicated feedback-loops for
continuous evolution of systems and their architecture.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In traditional and stage-gated systems development, a soft-
are architecture is a high-level abstraction of the system that
uides its implementation. A software architecture provides struc-
ure and balances different, potentially conflicting, stakeholder
oncerns. What the architecture should address is informed by
igh-level product requirements and business goals. Current
oftware-intensive systems are, however, increasingly expected
o evolve continuously. This drives the automotive domain to-
ards more exploratory ways of working (Hohl et al., 2017;
tupperich and Schneider, 2011; Ågren et al., 2019). Furthermore,

✩ Editor: Neil Ernst.
∗ Corresponding author.

E-mail addresses: magnus.agren@chalmers.se (S.M. Ågren),
ric.knauss@gu.se (E. Knauss), rogardt.heldal@hvl.no (R. Heldal),
atrizio.pelliccione@gssi.it (P. Pelliccione).
1 Present affiliation: GE Additive.
2 Present affiliation: CMON Consulting.
3 Present affiliation: Malama AB.
ttps://doi.org/10.1016/j.jss.2021.111111
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
current, predictive ways of requirements engineering are difficult
to combine with open-ended work (Ågren et al., 2019). With a
more dynamic approach to requirements, the requirements that
form the basis for a system architecture will be changing more
frequently. Thus, for systems intended to continuously evolve,
there is also a need for more continuous approaches to software
architecture. Woods describes the need for architecture as a
stream of decisions, provided as they are needed (Woods, 2019).
For large-scale software development, architecture has also been
described as an enabler of agility (Nord et al., 2014). This point of
view is also supported by the hypothesis from practitioners, that
‘‘when developing large and complex systems a clear and well-
defined architecture facilitates and enables agility’’ (Pelliccione
et al., 2017, p. 6). Therefore, it is important that the architecture
is of ‘‘good quality’’. For instance, it is important to answer
the question: Do architectural design decisions of an (envisioned)
system fulfill the stakeholder concerns and satisfy the business goals?

We should also consider that an architecture description easily
becomes obsolete, an effect which is increasingly evident when
architectural erosion and architectural drift start to be visible,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111111
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111111&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:magnus.agren@chalmers.se
mailto:eric.knauss@gu.se
mailto:rogardt.heldal@hvl.no
mailto:patrizio.pelliccione@gssi.it
https://doi.org/10.1016/j.jss.2021.111111
http://creativecommons.org/licenses/by/4.0/


S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

a
t
T
l
a
c
q
t
a
a
a

o
u
t
d
m
s
a
m
e
n
t
a
t
a
t
i

f
W

R

R

R

i
w
w
p
i
p
t
s
l
a
c
n
a
s

P
S
d
d
s
o
c
L

i
s
t
a
i
s

s
q
s
t
n
T
e
t
t
Q
a
s

s

s

a

e

r

m

t

s

s

a

e

r

m

2

v
m
i
A
s
o

nd in general when the ‘‘quality’’ of an architecture descrip-
ion decreases (Pelliccione et al., 2017; Wohlrab et al., 2019).
his opens a different understanding of quality, which is re-
ated to technical debt (Cunningham, 1992; Kruchten et al., 2012)
nd aims to answer questions like: Does the implemented system
onform to its architecture description? A third understanding of
uality is related to the architecture description, rather than to
he architecture, and it aims to answer questions like: Is this
rchitecture description complete? (ISO/IEC, 2011) intending that
ll the important aspects, according to the stakeholders’ concerns,
re properly described.
It is then important to properly specify the intended notion

f quality and to make use of a systematic approach to contin-
ously reason about the quality of an architecture. For this, we
urn to existing evaluation methods. Architecture evaluation, as
escribed by Knodel and Naab (Knodel and Naab, 2016), has ‘‘[the
ission] to determine the quality of the (envisioned) software
ystem and the quality of the (auxiliary) artifacts created during
rchitecting or derived from the architecture’’. However, existing
ethods are limited in their support for continuous architectural
valuation (Buchgeher and Weinreich, 2014). Our interest here is
ot the evaluation per se, but, since we believe that the archi-
ecture cannot be defined upfront once for all, in how to make
n argument that the architecture is good at a certain point in
ime during the system development and evolution. We take into
ccount all three interpretations of quality discussed above: does
he architecture fulfill its stakeholders goals, do architecture and
mplementation conform, is the architecture complete.

We investigate how architecture evaluation can provide useful
eedback during development of continuously evolving systems.
e operationalize this as the following research questions:

Q1: How can architectural evaluation in a continuous setting
provide timely feedback on whether a specific capability is
supported by the current architecture?

Q2: What information should be provided to support architec-
tural evaluation in a continuous setting?

Q3: How in principle can existing frameworks for architectural
evaluations be made fit for continuous evaluation?

The motivation for the analysis comes directly from an Orig-
nal Equipment Manufacturer (OEM) in the automotive domain,
hich also brings the architecture, processes, and the context in
hich the evaluation should be performed. The investigation was
erformed in the context of a national project led by the OEM and
nvolving many suppliers. Among the project aims was deriving
rinciples for continuous reasoning about the quality of archi-
ectural decisions and the quality of architecture in continuous
ystem development. To this end, the project setting had the fol-
owing properties of interest: (i) a concrete and real architecture
nd product, together with defined processes and organizational
onstraints, (ii) the freedom to investigate the problem in a fi-
ancially independent research project with its own management
nd time-schedule, and (iii) access to experts and consultant
elected by the OEM and the other project partners.

aper outline. The rest of this paper is structured as follows.
ection 2 gives background on architecture evaluation. Section 3
escribes related work and anticipates our findings. Section 4
escribes our method, including the studied case. Section 5 de-
cribes the individual principles we derive, and Section 6 answers
ur research questions by describing the interplay of the prin-
iples. Section 7 then discusses the implications of our findings.
astly, Section 8 concludes the paper.
2

2. Architecture evaluation

This section covers related topics from literature, to provide a
background of concepts utilized throughout the paper.

Architecture evaluation is the activity of evaluating the ar-
chitectural design decisions of an (envisioned) system to build
confidence that the system can fulfill the stakeholder concerns.
Typically, evaluation techniques actually evaluate what is doc-
umented in an architecture description. Using definitions from
the ISO/IEC/IEEE 42010 standard (ISO/IEC, 2011), stakeholders are
ndividuals, groups, or organizations holding concerns for the
ystem of interest. A concern is defined as any interest in the sys-
em. The term derives from the phrase ‘‘separation of concerns’’
s originally coined by Edsger Dijkstra. Examples of concerns
nclude (system) purpose, functionality, structure, behavior, cost,
upportability, safety, and interoperability.
Most widely used architecture evaluation methods are

cenario-based (Babar, 2014). Scenario-based methods express
uality attributes (for example flexibility and maintainability) as
cenarios, describing the response of the studied system to a cer-
ain stimulus. For a large-scale system, the architecture typically
eeds to balance many, potentially conflicting, quality attributes.
he quality attributes themselves are, however, rarely concrete
nough to be directly used for evaluation. For example, aiming
o evaluate whether a system is safe as a plain yes/no ques-
ion offers little guidance on how to actually concretize safety.
uality attribute scenarios are here an approach to make quality
ttributes concrete (Kazman et al., 2012). A quality attribute
cenario consists of six parts:

ource an entity that generates a stimulus

timulus a condition that affects the system

rtifact the part of the system that was stimulated by the stim-
ulus

nvironment the condition under which the stimulus occurred

esponse the activity that results because of the stimulus

easure the measure by which the system’s response will be
evaluated

The following example scenario, for the quality attribute main-
ainability, draws on the work done in our case project:

ource An automotive development organization

timulus has new software ready for deployment.

rtifact For affected product variants vehicles

nvironment that are stationary and connected

esponse the update is deployed and confirmed

easure to 90% of the fleet within 6 h

.1. Architecture tradeoff analysis method

The Architecture Tradeoff Analysis Method (ATAM) was de-
eloped by Kazman et al. (2000). As the name implies, the
ethod identifies tradeoffs, between quality attributes, result-

ng from the evaluated architecture decisions. An evaluation in
TAM takes several inputs, that can be grouped into two separate
treams: business and architecture. The business stream consists
f the business drivers of the system to be evaluated (e.g., high



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

a
t
a
s
s
a
u
t
F
b
a
a
t
a
b
A
p
e
s
P
d
l

f

e
b
p

t
e
t
A
T
d
s
c
l
T
i
(
t
1

n
t
2
2
F
a
s
d
a
r
m
R

vailability or time to market or high security), the quality at-
ributes needed to fulfill the business drivers (e.g., performance,
vailability, security, modifiability, usability), and quality attribute
cenarios concretizing the quality attributes, covering what the
ystem is intended to achieve. The architecture stream consists of
n architectural plan, architectural approaches, styles, or patterns
sed that contribute to achieving the quality attributes, and archi-
ectural decisions that cover how the system will achieve its goals.
rom the two input streams, the evaluation produces a num-
er of outputs; notably tradeoffs, but also sensitivity points, risks,
nd non-risks of the architecture decisions. A non-risk denotes
good decision that rely on assumptions frequently implicit in

he architecture. A sensitivity point denotes a property critical for
chieving a particular quality attribute; for example, security may
e sensitive to encryption strength (Kazman et al., 2000, p. 22).
tradeoff is when an architectural decision affects a sensitivity
oint for more than one quality attribute. Continuing the security
xample (Kazman et al., 2000, p. 23), changing the encryption
trength might increase security, but at the cost of performance.
rioritization between quality attributes depends on the business
rivers of the system, and the quality attribute scenarios thus
inks business goals to the architecture of the system.

The activities comprising ATAM can be broadly grouped into
our phases, numbered 0–3.

Phase 0 – Presentation deals with preparation before the
valuation itself starts. During this phase, all stakeholders to
e involved in the evaluation are brought on-board. This phase
roceeds informally, and thus has no set duration.
In Phase 1 – Investigation and Analysis, an initial evalua-

ion is done, procedurally consisting of six steps. First, (1) the
valuation method of ATAM itself is presented, along with (2)
he business drivers, and (3) the intended system architecture.
rchitectural approaches (4) are then identified, but not analyzed.
hen, the quality attributes (5) of the system are elicited, specified
own to the level of scenarios, annotated with stimuli and re-
ponses, and prioritized. A given quality attribute may optionally
onsist of several sub-attributes. Eventually, at the most detailed
evel, a quality attribute is expressed as one or more scenarios.
he number of levels is not prescribed by the process; the focus
s on reaching the concrete form of scenarios. As the sixth step
6) architectural approaches are analyzed against the quality at-
ribute scenarios identified in step 5. Phase 1 is typically run over
–2 days.
Before Phase 2 – Testing can begin, all information that is

ecessary for the evaluation needs to be extracted. Therefore,
here is, typically, a period of a few weeks between phases 1 and
, when the outcome of Phase 1 is extended and refined. In Phase
, the main evaluation is carried out, in two additional steps.
irst, (7) based on the scenarios from step 5, additional scenarios
re generated through brainstorming with the entire group of
takeholders. To keep the scope of the evaluation manageable, in
iscussion with stakeholders the scenarios are then prioritized,
nd those deemed most important are kept. In step 8, step 6 is
eiterated; therefore, architectural approaches are evaluated, but
ostly taking into account highly ranked scenarios from step 7.
unning Phase 2 typically takes 2 days.
Finally, in Phase 3 – Reporting (9) the evaluation results,

along with any proposed mitigation strategies, are presented to
the assembled stakeholders and documented in a report.

Although architecture evaluation is well established, we note
that existing approaches typically target architecture as a finished
output of an early project phase (Bashroush et al., 2004; Babar
and Capilla, 2008; Salger, 2009; Zalewski and Kijas, 2013; Choi
and Yeom, 2002; Barber et al., 2003; Jeong and Kim, 2006; Li et al.,
2007; Eloranta and Koskimies, 2010; Ovaska et al., 2010; Scheerer

et al., 2017). Many of these works also rely on the availability

3

of architectural models. The finished artifacts that describe the
architecture can thus be evaluated before a project proceeds to
implementation and further phases. In contrast, we are interested
in architecture evaluation during development of continuously
evolving systems, where also the architecture needs to evolve
throughout development.

3. Related work

This section relates our findings to previous and parallel re-
search.

Knodel and Naab (2016) provide an approach to architecture
evaluation that goes beyond what ATAM covers, also evaluating
whether business drivers are agreed on, the quality of the ar-
chitecture documentation, consistency between architecture and
implementation, and the quality of the implementation (source
code). While Knodel and Naab emphasize the usefulness of early
and regular architecture evaluation, they do not, however, pro-
vide specific instructions for how to integrate architecture evalu-
ation in a continuous workflow. They integrate ATAM as the way
to check if the architectural approaches at hand are adequate to
address the business drivers. Some changes are made to textbook
ATAM, notably not requiring the participation of all stakeholders
for the entire evaluation. This complements our finding to not
evaluate all decisions in one sitting. They also give a wide range
of examples of mistakes frequently made in practice during archi-
tecture evaluation. A number of these correspond to our findings.
Losing the good atmosphere due to the evaluation compares to the
most negative reactions we experienced during our evaluation
efforts. Securing buy-in remains important also in a continuous
setting. Losing overview over the number of drivers and decisions
matches the problems we faced of concluding evaluations within
the available time. Lack of a clear goal for an evaluation corre-
sponds to the need we identify to evaluate on demand when a
tradeoff is needed. Having a clear goal is important for archi-
tecture evaluation in general. For continuously evolving systems,
what is particular is the need to be able to trigger an evaluation
on demand.

Galster and Avgeriou (2014) propose an approach to achieve
variability-handling architecture, in which architecture evalua-
tion has a prominent role. To make the approach work in an agile
setting, they divide it into two phases, executed at different times
of a product life cycle. The first phase is executed once, creating
an initial architecture. Here, effort-intensive methods such as
scenario-based evaluation can be used. The second phase, which
is intended to be run continuously (e.g. once per sprint) uses
a more lightweight checklist-based evaluation. Although their
approach specifically targets variability, the suggested division of
efforts could be one mitigation for the problems we experienced,
of completing evaluations within the available time.

Buchgeher and Weinreich (2014) cover architecture analysis,
both in general and for continuous settings. They observe that
most approaches have been developed for plan-driven processes,
where a finished architecture is available for analysis at a spe-
cific point during the process. Similar to our setting, they note
that in agile processes architecture will need to be evaluated
incrementally, as the architecture is continuously evolving and
thus inherently incomplete. In line with our findings to limit the
evaluation scope, they suggest that evaluation methods should be
able to focus on specific parts of an architecture. They suggest that
increased automation would facilitate integration of architecture
evaluation with continuous ways of working; while also observ-
ing that evaluation focusing on semantics rather than structure
cannot easily be automated.

Erder and Pureur (2016) consider ATAM ‘‘appropriate for con-
ducting an in-depth architecture review at a critical phase of a



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

T
P

a
i
p
w
c
(
T
d
o
s
a

4

o
t
t
t
p

o
w
u
i
g
b
t
t
e
m

able 1
roject partners, providing staff with specific competencies as needed by the project. For each partner, a few persons served as core participants.
Partner Id Roles of core participants Expertise provided to the project

Original Equipment Manufacturer (OEM), project lead
P1 Senior architects Architecture and vehicle-level development competence.

Suppliers: electronics and software
P2 CEO, Architects Adaptive AUTOSAR and Continuous integration
P3 CTO, Technical expert Networking technologies (CAN, TCP/IP).
P4 Researcher, Architect Safety-certified components.

Suppliers: technology consultants
P5 Security consultant Security
P6 Architect, Developer Continuous integration, Testing
P7 Business consultants, Senior architects Architecture, Agile methods
P8 Safety experts Safety cases, Architecture
P9 Business strategist, Architects Architecture, Continuous integration
P10 Technology consultant Continuous integration

Universities
P11 Researchers Architecture, Empirical research, Requirements, System-of-systems
P12 Researchers Networking technology, System-of-systems

Research institutes
P13 Safety experts Safety cases, Architecture
P14 Researchers System-of-systems, ATAM
P15 Researchers Continuous integration
P13 Researchers System-of-systems, Test equipment
a

project’’, but note that the time and resources required may pre-
vent ATAM from being used repetitively. For periodic evaluations,
they recommend using more lightweight approaches instead.
Furthermore, for continuous settings, they suggest supplementing
qualitative evaluation techniques with automated testing.

4. Method

Our research approach was to conduct a case study (Runeson
nd Höst, 2009). A case study is a suitable method for study-
ng a phenomenon in its natural context, especially when the
henomenon is difficult to study in isolation. For this study,
e had two such settings: (1) a research project with industry
ollaboration, where architecture evaluation would be one task;
2) an automotive company interested in architecture evaluation.
he case study method is appropriate since in both settings it is
ifficult to clearly delimit the architecture evaluation work from
ther activities in the context, and from the context itself. The
ettings are different in the type of observations that can be made
nd allow triangulation if carefully considering their differences.

.1. Overall study design

In our study, we had the opportunity to learn about continu-
us architectural evaluation as participant observers. The struggle
o make architectural evaluation work was observed in two set-
ings: within a research project and within the architectural
eams of company partners, in particular P1, of the same research
roject (see the next section on Case Description for details).
To derive our principles, we started with a post hoc analysis

f the data resulting from our case. Two of the authors separately
ent through the data and wrote down their reflections. We then
nified these reflections to a set of principles, which served as
nterview guide for a series of focus group meetings. The focus
roup participants were architects from project partner P1, who
rought their experience from introducing architecture evalua-
ion in the company setting. Through the focus group series, we
hen refined the principles to their current form, where industry
xperts and academic researchers agreed that they covered the
ost important lessons learnt in a small set of distinct principles.
 a

4

4.2. Case description

Next Generation Electrical Architecture (NGEA)4 was an au-
tomotive research project running from January 2015 until May
2019. The project was a joint research effort between automotive
companies, universities, and research institutes. Table 1 lists the
project partners, including their roles and areas of expertise. The
project was led by an OEM (partner P1) in the process of building
a new electrical and software architecture for its vehicles, and
experiencing an increase in the amount of software and the
adoption of agile ways of working (Pelliccione et al., 2017). This
study has been conducted in the context of both the NGEA project
and at P1. In total ten (mostly international) companies, two
universities, and four research institutes participated.

The project was of strategic importance for the participating
industry partners, and each company provided experienced ex-
perts, including lead architects and decision makers. For each
partner, as shown in Table 1, a few persons served as core par-
ticipants, with additional specialists attending depending on the
topic of each activity. In particular, four different lead architects
from P1 participated in the project, often at the same time. A
consultant at P14 with significant ATAM experience provided
training, but at the time, key persons from several partners had
built up a good level of expertise and the training turned out
to be mostly confirmatory. During the validation round in the
focus groups, we had access to those participants at P1 that were
responsible for architectural evaluation at this large automotive
manufacturer.

The project was part of an overall goal of building the next
generation of electrical software architecture for the OEM. The
focus within this project was to create new knowledge, as well as
experiment with new instruments and processes. The project in-
vestigated future needs from automotive electrical architectures
and, specifically, the following three areas: the future architecture
of a car in the form of topologies and support software, ways of
working and architecture to support continuous integration, and
the car as a constituent in a system-of-systems. The project thus
explored continuous development rather than the concept being

4 Project details at https://www.vinnova.se/en/p/next-generation-electrical-
rchitecture/ and https://www.vinnova.se/en/p/next-generation-electrical-
rchitecture-step-2/

https://www.vinnova.se/en/p/next-generation-electrical-architecture/
https://www.vinnova.se/en/p/next-generation-electrical-architecture/
https://www.vinnova.se/en/p/next-generation-electrical-architecture-step-2/
https://www.vinnova.se/en/p/next-generation-electrical-architecture-step-2/


S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

T
P

d
t
i
p
e
e

a
a
a
o
f
W
t
t
a
a
t
r
t

4

s
o
t
u
s
i
A
A
e
b
g
u
f
b
s
i
t
s

p
p

able 2
roject Workgroups.
Workgroup Topic

WGA Evaluation of the project outcomes
WGB Architecture topologies
WGC Cars as constituents in a system-of-systems
WGD Adaptive AUTOSAR
WGE Transparency between collaborating organizations
WGF Patterns and strategies for continuous integration

Fig. 1. Case Timeline.

efined beforehand. Van Der Valk et al. (2018) also studied con-
inuous development in this setting. The project was organized
n workgroups, as shown in Table 2. As mentioned above, de-
ending on the workgroup topic, and the specific session withing
ach workgroup, the project partners sent participants with topic
xpertise.
In order to make this new architectural knowledge as action-

ble and useful as possible, the project aims included reasoning
bout the quality of architectural decisions and the quality of
rchitecture in continuous system development. Consequently,
ne of the workgroups (WGA) had the task to evaluate proposals
rom the other workgroups and analyze tradeoffs between these.
e highlight that the rest of the workgroups were not defined for

he purpose of conducting the evaluation; they were defined for
he purpose of the project, which, as explained above, also had
dditional goals. The workgroups were to identify architectural
pproaches for their respective topics, and disseminate these to
he project partners together with a tradeoff analysis. For this
eason, workgroups WGB to WGF received guidance throughout
he project, from WGA, on how to perform the evaluations.

.3. Data collection

Each partner including the OEM selected experts and/or con-
ultants for performing the evaluation activities of WGA. Based
n the tradeoffs, WGA would derive recommendations for fu-
ure electrical architecture. For each topic, we thus wanted to
nderstand its impact on the architecture of an entire automotive
ystem. Architecture evaluation based on quality attribute scenar-
os was chosen as the evaluation instrument. We decided to use
TAM as the starting point for how to organize the evaluation.
TAM appeared to us to be the de facto standard architecture
valuation method, and, since we wanted to identify tradeoffs
etween different business goals, the outcomes of ATAM were a
ood fit. We were aware that ATAM would be heavy weight for
se in a continuous setting, but we had the ambition to adapt it
or more light-weight use. Also, connecting project outcomes to
usiness drivers was valued highly, and there was hope that the
trictness of ATAM would help shape and get the evaluation go-
ng. To allow this paper to be read on its own, without consulting
he report defining ATAM (Kazman et al., 2000), Section 2 gives a
ummary of the method.
The evaluation efforts spanned a range of activities in the

roject. Table 3 gives an overview, describing for each activity the
hases of ATAM it maps to, the activity itself, and the resulting
5

data available to us for analysis. At the level of the entire project,
WGA performed preparations, row WGA–WS in Table 3, corre-
sponding to Phase 0 of ATAM. An initial training session on ATAM
(row PROJ-Training) was given to participants from all the project
workgroups. Business drivers, to be used during the evaluation,
were also elicited (row PROJ-Drivers). Fig. 1 shows a timeline of
the case, giving an overview of how the project activities relating
to the evaluation map to the Data Collection, Data Analysis and
Refinement & Validation stages of this study.

All the workgroups knew there would be a tradeoff evaluation
towards the end of the project; however, the reports created
were not made with an ATAM evaluation in mind. Using ATAM
as a way to organize the evaluation was a later decision. Since
the respective workgroups had the expertise on each topic, WGA
could not alone prepare the output from the workgroups for an
ATAM evaluation. The workgroups were therefore tasked with
running a first evaluation of their work. This would include the
creation of artifacts necessary for the evaluation, such as quality
attribute scenarios. Each workgroup held evaluation workshops,
rows WG–WS–B to WG–WS–E in Table 3. One of these work-
shops, WG–WS–BC, also served as training, where a consultant
at P14 with ATAM experience participated, as mentioned above.
Which ATAM phases these workshops could cover depended on
how early during the project a workgroup started its evalua-
tion, and how the evaluation task was perceived. The perception
differed considerably across the workgroups and the individ-
ual participants. Some were enthusiastic, mainly in workgroups
WGD, WGE, and WGF. Most were positive, albeit taking a wait-
and-see stance, mainly reacting to efforts from the project lead
through WGA. Some were negative to the efforts, actively chal-
lenging the evaluation approach. All groups carried out Phase 1,
but not all continued with Phase 2. With the necessary materials
available, WGA would then facilitate continuous evaluation at the
project level, to find tradeoffs between the ongoing work of the
workgroups. We participated in this work, the outcome forms
part of the data. In Fig. 1, this is shown to the left in the Data
Collection stage.

Partway through the evaluation work, P1 (the project lead
partner) continued internal architecture evaluation experiments
in parallel with the project work. This is shown in the middle
of Fig. 1, as part of the Data Collection stage. These experiences
were then fed back to the project, both to WGF, informing the
demonstrator implementation of tool support for architecture
evaluation, and as part of the project final report. In Table 3, this
corresponds to rows Demonstrator, P1-Eval, and PROJ-Report. Our
units of analysis are thus both the evaluation work done in the
project and the work done internally at partner P1.

Throughout the project, we gradually adjusted the evaluation
process. This was both in response to problems encountered,
such as the challenge of securing simultaneous participation of
stakeholders, the difficulty of concluding the evaluation sessions
in the allotted time, or opposition to the whole approach. The
work items from this process are part of the data used in this
study. Table 3 covers these on rows Database, PROJ-Process, and
NGEA-ATAM.

4.4. Data analysis

Throughout the project, all evaluation workshops conducted
by the project workgroups were attended by at least one of the
authors. We thus actively participated in the evaluation process.
Additionally, our role was to bring in state-of-the-art research on
architecture evaluation.

Each activity listed in Table 3 created data for this study. The
data itself is diverse. It consists of the evaluation reports created
during the project, but also of work items created during the



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

T
O

t
d
r
p
s
f

4

r
g
d
o
a
f
I
b
l
T

able 3
verview of activities related to the evaluation, both in NGEA and at P1.
Label Process Phase Activity, data available for analysis listed in parenthesis

Project level, doing ATAM
PROJ-Prep Phase 0 Preparation in WGA for evaluation, including the choice of ATAM. Discussion

of the need for architecture evaluation, decision to use ATAM (Slides,
discussion notes, decision)

WGA–WS Phase 0 Workshops in WGA to plan evaluation, WGA formally asks other workgroups
to prepare input to ATAM process (Slides, emails)

PROJ-Training Phase 0 Seminar on ATAM, given to the full project consortium. (Slides, discussions,
documentation)

PROJ-Drivers Phase 0 Workshop in WGA to elicit business drivers. (Slides)
P1-Drivers Phase 0 Workshop with P1 giving input to the project on P1 business drivers. (Slides)

WG level, doing ATAM
WG–WS–B Phase 0 and Phase 1 WGB workshops (Slides, Scenario format spreadsheet)
WG–WS–BC Phase 1 Evaluation with ATAM expert from P14 on topologies and system-of-systems.

(Evaluation report)
WG–WS–D Phase 1 and Phase 2 Two evaluation sessions in WGD on Adaptive AUTOSAR. (Workshop notes,

evaluation report)
WG–WS–E Phase 1 and Phase 2 One evaluation session in WGE on Transparency. (Workshop notes, evaluation

report)
Demonstrator Support activity WGF creating a tool implementation to support evaluation. (Proof-of-concept

demonstrator)

P1 internal work, doing ATAM
P1-Eval Phase 1 Internal work with architecture evaluation at P1. We visited internal sessions

as observers; the work items themselves are confidential, however. (Personal
communication)

Project level, adjusting ATAM to NGEA project needs
Database Support activity Work towards a database of reusable assets. This covered business drivers and

scenarios, and links between then. Served as starting input for the
demonstrator.

PROJ-Process Support activity Continuous work in WGA to define and adapt the evaluation process to NGEA
needs. (Internal document)

PROJ-Share Support activity Dissemination of adjustment ideas at trade-fairs (Slides, notes)

Project level, validation, reflections, and dissemination to company partners
FG Reflections after ATAM efforts Focus groups about the candidate principles.
PROJ-Report Reflections after ATAM efforts WGA report writing. Bringing up and discussing candidate principles.
evaluation efforts, such as whiteboard sketches, notes, and slide
decks. Additionally, materials (emails, reports, and slide decks)
created when defining the evaluation, as well as training materi-
als, are also included. We also visited internal evaluation sessions
at P1-Eval as observers. Furthermore, one of the authors kept
experience notes throughout the project. Fig. 2 shows four data
examples: (a) process chart from the process definition activity
PROJ-Process, (b) scenarios created by the workgroups, combined
in the template we defined, (c) notes taken during WG–WS–D,
and (d) whiteboard sketch from WGA–WS where we discussed
how to organize the evaluation.

To derive our principles, we first did a post-hoc analysis of
he data. Two of the authors separately went through the full
ata and wrote down their reflections. We then unified these
eflections to a set of principles, constituting a first draft of the
rinciples we present in Section 5. The Data Analysis stage of Fig. 1
hows this derivation of candidate principles, leading up to the
ocus group meetings.

.5. Refinement & validation

As the project was closing, participants of WGA wrote a final
eport (PROJ-Report) on the evaluation efforts. Two of the focus
roups (FG), where we reflected on the evaluation, were held
uring this writing period. Drafts of the principles that structure
ur study findings were also included in the report, and served
s interview guide for the focus group meetings. Throughout the
ocus group series we refined the principles to their current form.
n total, four sessions were held, by which time consensus had
een reached about the set of principles; that the most important
essons learnt was covered in a small set of distinct principles.

he focus group participants were senior architects from project

6

Fig. 2. Example Data.

partner P1. They brought their experiences from introducing ar-
chitecture evaluation at P1, which included taking lessons learnt
in the research project to the industrial context (P1-Eval). To the
right in Fig. 1, we show the Refinement & Validation stage of the
study.

The data from the evaluation efforts are similar to archive data,
in that they were created for another purpose, (conducting the
evaluation) rather than for this study (analysis of the evaluation).
Although the diversity of the data creates a rich account of events
to analyze, it does not remove this limitation. To handle this, we



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

u
p
T
o
t

t
t
p
a
o

s
i
r
g
a
p
n
b
b
f

5

e
p
t
n
u
h
e
o

l
k
v

n
e
t
s
d

se experience notes kept by one of the authors throughout the
roject, and we refine our initial analysis through focus groups.
he focus groups serve as a different kind of data collection,
ne done for the specific purpose of this study. This allows
riangulation between different kinds of data sources.

All authors participated actively in the evaluation efforts
hroughout the NGEA project. Furthermore, the industrial coau-
hors were, at the time of the evaluation work at P1 (P1–Eval),
articipating as employees. The interpretation of the data has
lso been extensively discussed among the authors, to achieve
bserver triangulation.
In line with our rationale for conducting a case study – to

tudy a phenomenon in its natural context – our findings are
nseparably tied to the studied case. By the study design, this
ealism of context comes at the expense of the possibility for
eneralization (Stol and Fitzgerald, 2018). Having two units of
nalysis allows comparing and contrasting the two. However, the
ossibility for generalization is inherently limited. Since we do
ot use statistical sampling, statistical generalization is not possi-
le. Analytical generalization to similar contexts may be possible
ut would require separate validation and is thus a question for
uture studies.

. Findings

We express our findings as principles for adapting architecture
valuation to continuous settings, summarized in Table 4. These
rinciples are the reaction to difficulties we encountered both in
he project and at company partners, and which are complex and
ot easily decomposed. In a continuous setting, the effort for eval-
ation must be significantly reduced, so that it can repeated. It is,
owever, unclear where effort can be reduced and how repeated
valuations can contribute to combined, overall, knowledge. In
ur experience, the problem has four major parts:

1. Without a clear and agreed upon demand for informa-
tion, it is impossible to give a clear answer. A change in
the demand for information will trigger a reevaluation in
the continuous setting. A question that is too broad, too
generic, or not made explicit will slow down evaluation to
an extent that makes continuous evaluation unfeasible.

2. Without a way of decomposing the evaluation scope, it is
impossible to evaluate continuously at the desired level
of abstraction. However, limiting the scope does not guar-
antee that the evaluation will allow continuous learning.
Completing the full scope could still be required.

3. Without a way to evaluate the impact of architectural de-
cisions on the top-level product scope, the evaluation does
not contribute to the body of product level architectural
knowledge. In a continuous development setting, the body
of architecture decisions will grow over time.

4. Without finding a constructive approach to architectural
evaluation, technical stakeholders will feel that they are
assessed personally. Otherwise, there is no clear value to
technical stakeholders and therefore no buy-in. Without
buy-in of technical stakeholders, continuous evaluation
will not work.

In the presence of the previous problems, this makes it un-
ikely that architects throughout the product organization are
een on pro-actively help with providing knowledge about the
alue offered through architectural decisions.
In the following subsections, we describe each principle in a

arrative style, and link back to particular project activities. For
ach principle, we first elaborate on the problem we faced; then,
o connect to our data analysis, we describe observations from
pecific project activities informing our reflection; and, last, we
escribe how the principle helps mitigate the problem.
7

Table 4
Principles of continuous architecture evaluation.
CAP I Evaluate decisions on demand, in response to a clear

stakeholder question
CAP II Evaluate architectural decisions incrementally to manage

evaluation scope
CAP III Evaluate in the context of the full integrated product to

support incremental architecture evaluation
CAP IV Apply concepts of evaluation constructively to articulate the

rationale for an architectural decision

5.1. CAP I – evaluate decisions on demand, in response to a clear
stakeholder question

5.1.1. What is the problem?
In NGEA, the buy-in on the evaluation varied. Most partici-

pants were supportive of the general idea to perform evaluation,
but the proposed approach was not universally accepted as ben-
eficial. ATAM implicitly assumes that all stakeholders accept that
there is value in the answer to the question of whether the
architecture is fit for purpose. For any architectural evaluation,
one has to decide for an appropriate level of detail, and whether
continuous evaluation is needed or not. Since the project decided
to aim for a rather low level of technical detail in a continuous,
incremental way, the generic questions implied by ATAM were
not suitable. In particular, they did not resonate well with the
project, since no complete architecture was aimed for in each
iteration of the evaluation. While this may be the result of the
project setup, lack of buy-in of important stakeholders is a major
risk for any architectural evaluation, and even at the company
partners, we notice that the question of suitable abstraction level
and continuous evaluation is important. In the absence of a com-
plete evaluation on high-level in one sitting, the absence of an
explicit, clear, and agreed upon demand (i.e. a clear question)
creates a lack of involvement among stakeholders.

Derivation of the principle from observations made during the study.
(Table 3). The activities PROJ-Prep and WGA–WS, informed by
classical ATAM, asked for complete evaluation. WGB, in WG–
WS–B, was first to try to fulfill their part of this demand, by
preparing material for Phase 1 of ATAM from their material
on architecture topologies. Not without struggle, ATAM steps 1
through 5 were attempted in the workgroup, going from busi-
ness drivers via quality attributes to quality attribute scenarios.
Without a clear demand for an answer to a stakeholder question,
scenario creation proved challenging, particularly defining the
response and response measure parts. The difficulties prompted
an activity PROJ-Drivers, to elicit and refine business drivers on
the project level, with the hope of clarifying the overall goal
for the architecture to address. This did help clarify the project
business drivers; for example, the business driver the architecture
should handle multiple brands and markets impacts the quality
attribute Flexibility. However, buy-in on the evaluation remained
unaffected, and stakeholder questions also remained unclear and
difficult to articulate, and thus hard to answer.

At P1 (the company internal setting), the evaluation efforts
eventually received buy-in from most stakeholders. The way it
was presented – wordings such as evaluation and assessment
– needed work before senior architects bought in; we cover
this further in CAP IV. One notable exception remained: middle-
management responsible for human resource allocation; in other
words, the decision of how much time that could be put on archi-
tecture evaluation. We thus see two reasons for the lack of buy-in,
the lack of a clear stakeholder question, which the evaluation
should answer, and the perception that the approach was too
heavyweight. The latter concern we address further under CAP
II.



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

5

e

w
b
c
c

a
c
s
t
i
q
W
d
q
p
e

5
a

5

i
b
o
i
l
2
f
s
a
t
e

D
(
i
t
m

.1.2. How does CAP I help?
For a continuous setting, this principle addresses when to

valuate what. An evaluation that is to be performed throughout
a continuous way of working may well be ignored if there is no
demand for the evaluation results. If it is unclear whether the
proposed approach will address the task at hand, evaluation may
be seen as waste. This can cause a lack of feedback and thus a
lack of direction for the evolution of the product. Demand for
evaluation could come directly from the stakeholders, wanting
to know how an architecture supports their concerns. Then, it is
also clear when the demand is fulfilled — only clear questions
can receive a clear answer. When it is easy to see the value, it
is easier to make a case for investing in architectural evaluation.
Another possible source for demand is that a tradeoff between
different concerns needs to be made at the implementation level.
In the Demonstrator activity, we prototyped tool support for
detecting evaluation needs from implementation changes (Fig. 3
shows screenshots). The prototype tool-chain had two parts: a
database of scenarios, and architecture artifacts. The database
allowed tracking how scenarios related to each other – for exam-
ple if satisfying one scenario would constrain another scenario –
and tracking which business driver(s) that motivated a particular
scenario. The architecture artifacts then linked between scenarios
and affected parts of the architecture. For the prototype, graph
models were used as architecture artifacts. Accumulating a repos-
itory of evaluation artifacts gradually during development also
facilitates reuse (see also CAP II).

Although the tooling was not deployed beyond prototyping,
e see a need for tool support for continuous evaluation to
e feasible. Evaluating architecture impact of implementation
hoices is a means of avoiding different balancings of stakeholder
oncerns throughout the product. CAP III covers this topic further.
In a continuous setting, large and one-time evaluation efforts

re infeasible (Buchgeher and Weinreich, 2014). Rather than for
omplete evaluation, the demand will be for answering particular
takeholder questions. Specific demands occur as the implemen-
ation is underway, rather than in one big batch where all are
nitially known. The evaluation needs to answer the particular
uestions at hand, and match an overall iterative way of working.
hile quality attribute scenarios cover partial aspects in technical
etail, in the NGEA project we were lacking a clear stakeholder
uestion for the evaluation to address. In response to this, we
ropose evaluating decisions on demand as a way to divide the
valuation over iterations, and scope evaluation efforts.

.2. CAP II – evaluate architectural decisions incrementally to man-
ge evaluation scope

.2.1. What is the problem?
To provide valuable feedback through architectural evaluation

n a continuous setting, a sufficient level of technical detail must
e achieved. For evaluation at the level of technical detail of
ur case, an entire automotive architecture is too much to cover
n one session. Our experiences are in line with claims from
iterature (Buchgeher and Weinreich, 2014; Galster and Avgeriou,
014) that scenario-based approaches could be too heavyweight
or a continuous setting. Particularly, it may be infeasible to run
cenario-based methods often on all scenarios and decisions. If, in
ddition, the question is unclear, as prompted CAP I, it is difficult
o provide a concise answer; thus, evaluation will take even more
ffort.

erivation of the principle from observations made during the study.
Table 3). Finalizing the evaluation sessions proved difficult both
n NGEA and at P1. A particular difficulty was covering the in-
ended scope of the sessions in the allotted time; for example,

anaging to go through chosen scenarios for a chosen approach

8

and identify any tradeoffs. At P1, in line with Step 7 of ATAM, the
evaluation sessions aimed to cover a large number of scenarios,
elicited from stakeholders throughout the company. Prioritizing
the scenarios and concluding Step 8 of the evaluation process was
not reached within the available time. Thus, neither in NGEA nor
at P1, the resulting pruning of the utility tree was reached.

Throughout the NGEA project, in the PROJ-Process activity, we
refined the evaluation process. Various techniques were tried, to
keep the evaluation scope manageable: We restricted both the
technical decisions and the scenarios for evaluation. For example,
in both sessions of WG–WS–D, the evaluation was restricted to
only one decision: the choice between AUTOSAR Adaptive or AU-
TOSAR Classic for one ECU. For the latter session, the evaluation
was limited to only one scenario. Reaching a conclusive outcome
proved difficult nevertheless.

5.2.2. How does CAP II help?
For evaluation to be run frequently, the approach needs to be

lightweight. If we remove the ambition to evaluate all scenarios
and all decisions every time, we potentially gain an evaluation
approach that is feasible to run continuously. This would allow
for frequent runs, within available resource bounds. By running
it more frequently, a positive side-effect with respect to CAP I
might occur, since, in a continuous setting, concrete needs for
evaluating specific questions arise throughout development, thus
providing clear questions. The need for evaluation exists for the
entire duration of product evolution, but not of the same decision,
or all decisions, each time. Incremental, partial, evaluation can
work in a continuous setting.

We see two complementary approaches: (a) decompose the
overall evaluation by demand, as suggested in CAP I, or (b) de-
compose by architectural decisions and their areas, then relying
on automation to allow evaluation of all decisions to scale. Tool
support such as our prototype (Fig. 3) can allow us to collate
an overview of decisions taken throughout implementation. As
the screenshots show, scenarios are stored in a suitable tool and
information model, allowing for updating them as well as relating
them to new decisions and incremental evaluation results.

5.3. CAP III – evaluate in the context of the full integrated product
to support incremental architecture evaluation

5.3.1. What is the problem?
Contrary to what we had anticipated, the quality attribute

scenarios did not ultimately help clarify the architecture impact
of the studied technical topics. Using scenarios did however help
reveal a deeper aspect of the problem: the absence of a surround-
ing context, as part of which the solutions from the workgroups
would address something. Without a way to evaluate architec-
tural decisions with respect to the on the top-level product scope,
the evaluation does not contribute to the body of product level
architectural knowledge. Internal stakeholders tend to evaluate
local architectural concepts with regard to local concerns. This is
not because of ill intent or disinterest, but we experienced that at
scale, establishing the link to global, system-wide concepts was
very difficult to do.

Derivation of the principle from observations made during the study.
(Table 3). In addition to the difficulty of finishing evaluations in
the allotted time, we also struggled to reach conclusive outcomes
of the evaluation sessions. Phase 1 of ATAM, where artifacts need
to be articulated, seemed promising for reaching descriptions
of the architectural impact. In particular, we hoped that the
quality attribute scenarios would allow concretizing what was
addressed at the level of each workgroup topic. In the context
of evaluation, workgroups WGB–WGF, who addressed different
technical topics, were tasked with describing the architectural



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

a

i
o
w
o
R
p

5

o
t
p
p
r
a
s
i

s
r
F
a
c

d
p
p
e

t
i
d
d
m
d

o
d
p
e
f
s
f
b
i
t

Fig. 3. Screenshots of the tool prototype from the Demonstrator activity: Quality attribute scenarios are stored in a database. Artifacts that describe the architecture
re linked to affected scenarios, which can be leveraged for an overview during architecture evaluation. For confidentiality, text in the images has been blurred.
mpact of their respective work. WGA would then evaluate trade-
ffs between them. The difficulty of finalizing evaluations at the
orkgroup level, WG–WS–B through WG–WS–E, meant that an
verall evaluation at the project level never came to fruition.
elating the output of the workgroups to an overall architecture
roved challenging.

.3.2. How does CAP III help?
For an architect to be able to provide feedback to developers

n the architectural impact of a decision, it needs to be possible
o evaluate the decision in the context of the full integrated
roduct, to relate the impact in a part of the system to the entire
roduct. Within the architecture evaluation of the NGEA project,
elating the output of the separate workgroups to an overall
rchitecture proved challenging. First, we tried to modify the
cenario template, by drawing on the user story format familiar
n continuous settings:

As <stakeholder> I want <concern> so that <rationale>

The stakeholder corresponds to the source in quality attribute
cenarios; the concern corresponds to stimulus, artifact, and envi-
onment; and the rationale corresponds to response and measure.
or example, As sourcing manager, I want to change the supplier of
component, so that from the date the component is available, new
ars can be produced with the new component within a week.
The format change helped to facilitate communication and

ialog. However, it did not help solve the deeper aspect of the
roblem; the lack of an artifact corresponding to a full integrated
roduct, making the architectural impact of the studied topics
lusive. Yet, improved communication certainly did not hurt.
Our focus groups confirm the need of relating implementa-

ion decisions back to the architecture level of the product. The
mpression is that decisions with architectural impact are taken
ay-to-day during implementation. It is, however, currently still
ifficult to identify the decisions that have this impact. This also
akes it challenging for an architect to provide feedback to the
evelopers.
ATAM emphasizes that the quality of the evaluation depends

n the quality of the architecture description. The architecture
escription determines what can be evaluated; it needs to be
ossible to test the scenarios at hand against it. For continuous
valuation, this suggests continuously working on a purpose-
ul architecture description. It is unclear if this is feasible for
cenario-based approaches. One hypothetical possibility, raised
rom the P1–Eval and Demonstrator activities, is to reuse artifacts
eyond the evaluation. For example, quality attribute scenar-
os can be used to express how a solution for a product is
o be defined, linking how the stakeholders expect a solution
9

to be constructed with why a particular construction is desir-
able. In a product verification context, quality attribute scenarios
could be used to define the product quality assurance test cases.
Thus, scenarios can add additional value beyond the architecture
evaluation.

5.4. CAP IV – apply concepts of evaluation constructively to articu-
late the rationale for an architectural decision

5.4.1. What is the problem?
In both settings of our case study – the NGEA project and

the company setting at P1 – we encountered difficulties to get
commitment of all important stakeholders. A reason for this
is that stakeholders were reacting negatively to words such as
architectural evaluation or assessment method. Project partners
started to worry about whether this would affect how their work
would be evaluated as part of the project. Architects felt that the
sudden need for assessing their work conflicted with the trust
that was put into them by installing them into this position.

While understandable, none of these fears matched the inten-
tion when it was decided to introduce architecture evaluation. In
NGEA, the goal was merely to reason about when a certain ar-
chitectural concept could be applied. In the company setting, we
noticed a growing gap between developers and architects (Elias-
son et al., 2015) and we hoped that a better line of argumentation
of why a certain architectural decision was made would provide
value.

With key stakeholders perceiving the idea of architecture eval-
uation so negatively, the original goals of architecture evaluation
in both NGEA and at P1 were endangered. Stakeholders would
stall, request and wait for additional input, not provide data,
or stop to attend meetings. In this situation, a huge invest-
ment was already done to initiate Phase 0 and Phase 1 of our
ATAM initiatives, yet, failure to achieve an evaluation appeared
imminent.

Derivation of the principle from observations made during the study.
(Table 3). In Phase 0, PROJ-Prep, WGA–WS, and PROJ-Training
activities attempted to get everybody on board. In particular,
the activities aimed to initiate an effective evaluation within
the scope of the project agreement. Project partners sensed that
the quality of their contributions, and thus indirectly themselves
were evaluated and proceeded only carefully. Reports from WG–
WS–B throughWG–WS–E surfaced despite these challenges. WG–
WS–D and WG–WS–E went furthest, to Phase 2 of the evaluation.
Comparing these to the activities not proceeding that far, we
found that workgroups WGD and WGE were more successful
in using ATAM terminology to describe their knowledge con-
structively, as opposed to a more defensive stance, where groups
challenged the evaluation approach, rather than reason about the
architectural knowledge they provided.



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

5

c
t
o
i
a

i
D
o
w
c
w
w
t
o
s
t
f
b
m

e
c

6

r
p
a

6
t

q
t
d
p
a
g

e
e
p
a
t
d

m
i
t
o
q
e
r
h
(
r
i

i
a
r

.4.2. How does CAP IV help?
With CAP IV, we aim to go back to our initial reasons for

hoosing ATAM, and for conducting architecture evaluation. In
he NGEA setting, this was mainly to allow us to qualify any
utcomes concerning new technologies and their architectural
mplications and to investigate how architectural decisions could
ffect the ability to do continuous integration or deployment.
At P1, in the separate company-internal efforts, the aim was to

ncrease the impact of architecture on continuous development.
evelopers perceived the architecture as not helpful or even
utdated. We therefore aimed to improve two aspects: Firstly,
e aimed to provide better rationales and arguments on why
ertain architectural decisions were made. We hoped that this
ould address any misperceptions among developers. Secondly,
e aimed to establish a feedback cycle towards continuous archi-
ecting efforts to ensure that architectural decisions indeed are
f high quality and usefulness for coordinating development at
cale. CAP IV thus aims to make use of the common language,
erminology, and structure that ATAM provides, but not primarily
or a group of assessors to investigate an architectural decision,
ut for the authors of this decision or concept, to allow them to
ake their argument and to present it in a useful way.
It is not our intention through CAP IV to replace architectural

valuation preformed by a wide range of stakeholders, but to
omplement it.

. On the interplay of the principles

In this section, we answer our research questions and nar-
ate the interplay and cross-cutting implications of our proposed
rinciples, with examples of feedback on architecture quality in
continuous setting.

.1. Timely feedback on whether a specific capability is supported by
he current architecture (RQ1)

ATAM does suggest to evaluate architectural decisions against
uality scenarios, which in turn are derived from quality at-
ributes and business drivers. In our context, we derive business
rivers from business goals. A driver is then a condition, ca-
ability, or constraint that relates to the potential of reaching
business goal (in ATAM usually seen as system functionality,
oals, constraints, and desired non-functional properties).
In a continuous setting, we must assume that business goals

volve and, therefore, also the view on business drivers. For
xample, the business goal to support shared mobility may raise
rivacy concerns. A business driver in this context could be the
bility to authenticate the vehicle user without a physical key and
he ability to divide the usage information into separate access
omains.
If the need for such business drivers emerges, management

ight approach the architecture group with the demand of check-
ng whether such capabilities are supported by the current archi-
ecture or, if not, how hard it would be to create them. In line with
ur CAP I, this is an opportunity to be embraced: here is a clear
uestion that, with a well-established continuous architecting
nvironment, should be possible to answer efficiently. With the
ight infrastructure in place, this answer can be given within
ours rather than days. It demonstrates value to management
they can decide whether to commit), and provide important
ationale to development. Further, this partial answer can provide
nput on similar answers in the future.

In this scenario, the ability to evaluate architectural decisions
ncrementally (CAP II) is crucial. Ideally, the architects take into
ccount only those architectural decisions and scenarios, that are

elevant for answering the question to management. If a new

10
business driver is given, quality scenarios may have to be adjusted
or newly created as well as aligned with the existing set of
ATAM-related information items (see Fig. 3 for an example).

Of course it is important that the answer to management is
evaluated in the context of the full integrated product, taking into
account the latest, incremental information about the overall ar-
chitecture, its decisions, and relationship to other business drivers
(CAP III). We argue that at a realistic scale, this demands appro-
priate tool and database support to integrate partial, incremental
information (CAP II).

Such tooling benefits in our experience from applying evalua-
tion concepts constructively (CAP IV), which suggests a common
language shared among all stakeholders and based on ATAM
to describe the findings with respect to the business question.
This also allows the use of a strong information model on how
database items relate to each other. The prototype in Fig. 3
gives an example of first steps towards such an infrastructure.
Additional automation promises to further quicken the feedback
loops.

6.2. Clarity about which information to provide to support architec-
tural evaluation in a continuous setting (RQ2)

In the NGEA setting, the discussion of ATAM and preparations
during Phase 0 quickly lead the project consortium to refine
the quality criteria for project reports. Each project report was
expected to answer how its content would affect electrical archi-
tecture or vice versa, how architecture could affect the content.
For example, a report on different network topologies made an
effort to discuss how each topology would affect related archi-
tectural decisions. A report on continuous integration proposed
quality attribute scenarios that should be used when deciding
about architectural tradeoffs.

We found the quality attribute scenarios to provide a way
to constructively articulate the value an architectural decision
provides. This allows us to create a solid argument about the
value of an architectural decision and to ‘‘sell’’ it to the orga-
nization. We believe that these are strong indications on how
constructive use of ATAM terminology and concepts helped to
better describe project outcomes, thus providing an example of
concrete practices to implement CAP IV.

By relying on ATAM terminology constructively (CAP IV), ar-
chitectural knowledge is provided in a language that stakeholders
find increasingly familiar. This benefit is facilitated by a strong
information model and support to integrate this architectural
knowledge on the system level (CAP III). As a consequence, even
small increments in architectural evaluation can be described in a
useful way, which enables CAP II. In addition, reusable knowledge
can be stored in a way that allows us to answer questions on
demand, thus facilitating CAP I.

6.3. Making architectural evaluation frameworks fit for continuous
evaluation (RQ3)

Over the course of our case, we worked on modifying the eval-
uation process (activity PROJ-Process), with the aim of better sup-
porting our goal of feedback in a continuous setting. Specifically,
our recommendations for architecture evaluation in continuous
settings are:

• Before running an instance of architecture evaluation, bring
everyone on board (one of the purposes of Phase 0 in ATAM).
We however recommend to revisit this onboarding and at
the same time to limit the scope of ‘everyone’. CAP I asks
for commitment and CAP II limits the scope.



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

7

f
q
i
s
b
t
n
R
s
b
r
d
t
c
s
s
f
t
s
p
b
e
m

H
a
t
o
c
v
B
p
l
a
k
d
d
m
t
w
l
f

• Before running an instance of architecture evaluation, make
sure that all stakeholders understand and agree on the ratio
of effort to the expected value of the evaluation. Our CAPs
help to do this in a continuous setting: CAP I demands for
a sponsor, CAP II limits the scope and effort needs, CAP IV
suggests that even with a small effort value can be created
since architectural knowledge can be packaged in a more
useful way.

• To support continuous architectural evaluation, agree about
the level of abstraction on the architecture to evaluate. CAP
II asks for this kind of scoping, CAP III complements this,
since still global value must be demonstrated.

• The people with the power to change the architecture should
be part of the evaluation. CAP I asks for this kind of commit-
ment.

• Be realistic about how much can be achieved in one meet-
ing. CAP II suggests relevant scoping, CAP III helps with
determining the value to be provided through the evaluation
meeting, and CAP IV may allow preparing the meeting to
significantly speed up the process.

• Have a strong facilitator, to keep meetings on track and to
avoid lengthy discussions out of scope. CAP I and CAP II
allow focusing on the value that evaluation should support.

. Implications for research

Continuous approaches to software engineering rely on short
eedback cycles. Small changes – deltas – are integrated fre-
uently, which creates a closed feedback cycle on the level where
ntegration happens. If that is the level of a whole system, the
ystem-level impact of a change in one part or subsystem can
e assessed. While there exist recommendations to do architec-
ure evaluation early and often (Knodel and Naab, 2016), it is
ot clear which parts can be done frequently and continuously.
ecent proposals to automate architectural evaluation focus on
yntactical, structural aspects of the architecture, and the match
etween architecture and implementation (Buchgeher and Wein-
eich, 2014). When trying to semantically connect architectural
ecisions to business drivers and stakeholders, there is a trend
owards scenario- and meeting-based evaluation. However, the
ontinuous aspect of the evaluation is not addressed in such
cenario-based methods and we experienced a lack of conceptual
upport. In particular, common process descriptions of ATAM
ocus on a single run. While we hoped to run evaluation multiple
imes with small adjustments, we discovered difficulties to do
o. Our CAPs capture the core of adjustments needed in our ex-
erience. Yet, they leave questions for future research that must
e investigated to make continuous architecting and architecture
valuation more focused and fast. In the following, we report the
ain open questions we identified.

ow to balance the tradeoff between too high-level of abstraction
nd too low-level of abstraction in architectural evaluation? On
he one extreme, one could opt only for infrequent evaluations
n very high-level, removing the need for dedicated support for
ontinuous evaluation. On the other extreme, one could choose
ery low-level evaluations, which might be easier to automate.
oth approaches may provide value in a continuous setting, es-
ecially if they are combined based on an approach on a middle
evel, in which frequent meeting- and scenario-based evaluations
re incrementally combined into a growing base of architectural
nowledge. However, what we had in NGEA and wanted to un-
erstand the architectural impact of were specific technically
etailed topics. As a system is evolving, decisions on the imple-
entation level need to be related back to the architecture level,

o avoid unwittingly impacting the architecture in uncontrolled
ays. For evaluation approaches that in this way balance the

evel of abstraction, we believe our CAPs to provide guidance, yet
urther future research questions arise.
11
How to balance scope and frequency of meetings in continuous
scenario-based architecture evaluation? We believe that the ambi-
tion in ATAM to invite all important stakeholders to all meetings
precludes frequently repeated evaluations. Our CAPs suggest to
evaluate on demand (setting the frequency), in evaluation meet-
ings that are scoped based on particular scenarios or decisions
(setting the scope), yet incrementally brought together on system
level. Open questions remain, however, regarding the frequency
versus effort associated with such meetings.

How to improve feedback (speed and quality) through smart au-
tomation and tooling? Current ways of, for example, continuous
integration achieves feedback largely through automation. The
integration, notably including testing, runs with little to no man-
ual intervention. Our findings point to a need for similar short,
frequent, feedback on architecture. With evolving systems, archi-
tecting the entirety in advance becomes infeasible. New needs
will emerge, similar to how we wanted to understand archi-
tecture impact of specific topics. For architecture, however, it
is unclear how to provide suitable support through automation
and tooling, as, for example, unit testing frameworks do for soft-
ware testing and integration. Future research could investigate
whether for example (i) automatic evaluation of architectural
debt, (ii) automated decision impact analysis techniques, (iii)
visualization tools, or (iv) analysis tools of quality attributes (for
example timing or security) are feasible and useful in this context.

How to make the right information available to an agile team so they
can take responsibility for the architectural impact of their work?
We believe that suitable architecture evaluation in continuous
development can increase the quality of architectural decisions
as well as the way they are communicated with important stake-
holders. In this way, additional value can be provided to agile
software teams, that can align on carefully evaluated system-
wide tradeoffs instead of local over-optimization. Our CAPs target
this usefulness to teams directly.

Yet, open questions remain on which concrete practices can
be introduced to implement these principles of continuous archi-
tecture evaluation. How should architectural work be included
in backlogs? How can architectural debt be made visible? How
to balance long-term strategy and short-term concerns? How to
facilitate feedback from different development teams or disci-
plines on architectural decisions? In an agile environment, that
encourages autonomy of teams with broad competencies, ways
for sharing architecture responsibility with the teams, while en-
suring quality of the architecture from a systems perspective, are
needed.

8. Concluding remarks

This paper aimed at investigating how to perform architec-
ture evaluation in continuous development and, specifically, how
architecture evaluation may provide valuable feedback during de-
velopment of continuously evolving systems. The study is based
on our experience of performing architecture evaluation in a
research project in the automotive domain, and also at the com-
pany leading the project. We report our findings in terms of
four principles for adapting architecture evaluation to continuous
settings (Section 5), as well as their interplay and cross-cutting
implications (Section 6). We also provide a discussion of the find-
ings and highlight some open questions that frame interesting
future research directions (Section 7).



S.M. Ågren, E. Knauss, R. Heldal et al. The Journal of Systems & Software 184 (2022) 111111

C

g

RediT authorship contribution statement

S. Magnus Ågren: Conceptualization, Methodology, Investi-
ation, Writing – original draft. Eric Knauss: Conceptualization,

Methodology, Investigation, Writing – original draft. Rogardt
Heldal: Conceptualization, Methodology, Investigation, Writing –
original draft. Patrizio Pelliccione: Conceptualization, Method-
ology, Investigation, Writing – original draft. Anders Alminger:
Conceptualization, Investigation, Validation. Magnus Antonsson:
Conceptualization, Investigation, Validation. Thomas Karlkvist:
Conceptualization, Investigation, Validation, Software. Anders Lin-
deborg: Conceptualization, Investigation, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This study was funded through the Vinnova project Next Gen-
eration Electrical Architecture (NGEA). We thank all participants
in the architecture evaluation efforts in NGEA for great collabo-
ration and project outcomes despite the difficulties we shared as
described in this paper. The authors also acknowledge financial
support from Centre of Excellence on Connected, Geo-Localized
and Cybersecure Vehicle (EX-Emerge), funded by Italian Govern-
ment under CIPE resolution n. 70/2017 (Aug. 7, 2017). Lastly, we
thank Colin Venters for sharing his insights on carrying out an
ATAM evaluation.

References

Ågren, S Magnus, Knauss, Eric, Heldal, Rogardt, Pelliccione, Patrizio,
Malmqvist, Gösta, Bodén, Jonas, 2019. The impact of requirements on
systems development speed: a multiple-case study in automotive. Requir.
Eng. 24 (3), 315–340.

Babar, Muhammad Ali, 2014. Making software architecture and agile approaches
work together: Foundations and approaches. In: Agile Software Architecture.
Elsevier, pp. 1–22.

Babar, Muhammad Ali, Capilla, Rafael, 2008. Capturing and using quality at-
tributes knowledge in software architecture evaluation process. In: 2008
First International Workshop on Managing Requirements Knowledge. IEEE,
pp. 53–62.

Barber, K. Suzanne, Graser, Tom, Holt, Jim, Baker, Geoff, 2003. Arcade: early
dynamic property evaluation of requirements using partitioned software
architecture models. Requir. Eng. 8 (4), 222–235.

Bashroush, Rabih, Spence, Ivor T.A., Kilpatrick, Peter, Brown, T. John, 2004.
Towards an automated evaluation process for software architectures. In:
Hamza, M.H. (Ed.), IASTED International Conference on Software Engineering,
Part of the 22nd Multi-Conference on Applied Informatics. Innsbruck, Austria,
February 17–19, 2004, IASTED/ACTA Press, pp. 54–58.

Buchgeher, Georg, Weinreich, Rainer, 2014. Continuous software architecture
analysis. In: Agile Software Architecture. Elsevier, pp. 161–188.

Choi, Heeseok, Yeom, Keunhyuk, 2002. An approach to software architecture
evaluation with the 4+1 view model of architecture. In: Ninth Asia-Pacific
Software Engineering Conference, 2002. IEEE, pp. 286–293.

Cunningham, Ward, 1992. The WyCash portfolio management system. SIGPLAN
OOPS Mess. 4 (2), 29–30.

Eliasson, Ulf, Heldal, Rogardt, Pelliccione, Patrizio, Lantz, Jonn, 2015. Architecting
in the automotive domain: Descriptive vs prescriptive architecture. In:
2015 12th Working IEEE/IFIP Conference on Software Architecture. IEEE, pp.
115–118.
12
Eloranta, Veli-Pekka, Koskimies, Kai, 2010. Using domain knowledge to boost
software architecture evaluation. In: European Conference on Software
Architecture. Springer, pp. 319–326.

Erder, Murat, Pureur, Pierre, 2016. Validating the architecture. In: Erder, Murat,
Pureur, Pierre (Eds.), Continuous Architecture. Morgan Kaufmann, Boston, pp.
131–159 (Chapter 6).

Galster, Matthias, Avgeriou, Paris, 2014. Supporting variability through agility to
achieve adaptable architectures. In: Agile Software Architecture. Elsevier, pp.
139–159.

Hohl, Philipp, Münch, Jürgen, Schneider, Kurt, Stupperich, Michael, 2017. Real-
life challenges on agile software product lines in automotive. In: Proc. of
Int. Conf. on Product-Focused Software Process Improvement. PROFES, pp.
28–36.

ISO/IEC, 2011. ISO/IEC/IEEE 42010:2011 systems and software engineering –
Architecture description.

Jeong, Gu-Beom, Kim, Guk-Boh, 2006. A study on software architecture eval-
uation. In: International Conference on Computational Science and Its
Applications. Springer, pp. 1032–1041.

Kazman, Rick, Gagliardi, Michael, Wood, William, 2012. Scaling up software
architecture analysis. J. Syst. Softw. 85 (7), 1511–1519.

Kazman, Rick, Klein, Mark, Clements, Paul, 2000. ATAM: Method For Architecture
Evaluation. Technical Report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

Knodel, Jens, Naab, Matthias, 2016. Pragmatic Evaluation of Software
Architectures. Springer.

Kruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw. 29 (6), 18–21.

Li, Jinhua, Guo, Zhenbo, Zhao, Yun, Zhang, Zhenhua, Pang, Ruijuan, 2007. Towards
quantitative evaluation of UML based software architecture. In: Eighth ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing. SNPD 2007, vol. 1, IEEE,
pp. 663–669.

Nord, Robert L., Ozkaya, Ipek, Kruchten, Philippe, 2014. Agile in distress:
Architecture to the rescue. In: International Conference on Agile Software
Development. Springer, pp. 43–57.

Ovaska, Eila, Evesti, Antti, Henttonen, Katja, Palviainen, Marko, Aho, Pekka,
2010. Knowledge based quality-driven architecture design and evaluation.
Inf. Softw. Technol. 52 (6), 577–601.

Pelliccione, Patrizio, Knauss, Eric, Heldal, Rogardt, Magnus Ågren, S., Mal-
lozzi, Piergiuseppe, Alminger, Anders, Borgentun, Daniel, 2017. Automotive
architecture framework: The experience of volvo cars. J. Syst. Archit. 77 (C),
83–100.

Runeson, Per, Höst, Martin, 2009. Guidelines for conducting and reporting case
study research in software engineering. Empir. Softw. Eng. 14 (2), 131.

Salger, Frank, 2009. Software architecture evaluation in global software devel-
opment projects. In: OTM Confederated International Conferences ‘‘on the
Move to Meaningful Internet Systems’’. Springer, pp. 391–400.

Scheerer, Max, Busch, Axel, Koziolek, Anne, 2017. Automatic evaluation of
complex design decisions in component-based software architectures. In:
Proceedings of the 15th ACM-IEEE International Conference on Formal
Methods and Models for System Design, pp. 67–76.

Stol, Klaas-Jan, Fitzgerald, Brian, 2018. The ABC of software engineering research.
ACM Trans. Softw. Eng. Methodol. 27 (3), 11.

Stupperich, Michael, Schneider, Stefan, 2011. Process-focused lessons learned
from a multi-site development project at daimler trucks. In: Proc. of 6th Int.
Conf. on Global Software Engineering. ICGSE. Helsinki, Finland, pp. 141–145.

Van Der Valk, Rob, Pelliccione, Patrizio, Lago, Patricia, Heldal, Rogardt,
Knauss, Eric, Juul, Jacob, 2018. Transparency and contracts: continuous inte-
gration and delivery in the automotive ecosystem. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software Engineering in
Practice Track. ICSE-SEIP, IEEE, pp. 23–32.

Wohlrab, R., Eliasson, U., Pelliccione, P., Heldal, R., 2019. Improving the consis-
tency and usefulness of architecture descriptions: guidelines for architects.
In: 2019 IEEE International Conference on Software Architecture. ICSA, pp.
151–160.

Woods, Eoin, 2019. Democratising software architecture. https://www.infoq.com/
news/2019/04/ICSA-2019-Software-Architecture/.

Zalewski, Andrzej, Kijas, Szymon, 2013. Beyond ATAM: Early architecture eval-
uation method for large-scale distributed systems. J. Syst. Softw. 86 (3),
683–697.

http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb3
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb5
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb8
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb8
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb8
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb11
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb11
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb11
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb11
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb11
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb15
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb15
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb15
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb15
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb15
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb16
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb16
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb16
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb18
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb18
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb18
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb19
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb19
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb19
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb20
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb23
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb24
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb24
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb24
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb27
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb27
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb27
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb29
https://www.infoq.com/news/2019/04/ICSA-2019-Software-Architecture/
https://www.infoq.com/news/2019/04/ICSA-2019-Software-Architecture/
https://www.infoq.com/news/2019/04/ICSA-2019-Software-Architecture/
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00208-9/sb32

	Architecture evaluation in continuous development
	Introduction
	Architecture evaluation
	Architecture tradeoff analysis method

	Related work
	Method
	Overall study design
	Case description
	Data collection
	Data analysis
	Refinement & validation

	Findings
	CAP I – evaluate decisions on demand, in response to a clear stakeholder question
	What is the problem?
	How does CAP I help?

	CAP II – evaluate architectural decisions incrementally to manage evaluation scope
	What is the problem?
	How does CAP II help?

	CAP III – evaluate in the context of the full integrated product to support incremental architecture evaluation
	What is the problem?
	How does CAP III help?

	CAP IV – apply concepts of evaluation constructively to articulate the rationale for an architectural decision
	What is the problem?
	How does CAP IV help?


	On the interplay of the principles
	Timely feedback on whether a specific capability is supported by the current architecture (RQ1)
	Clarity about which information to provide to support architectural evaluation in a continuous setting (RQ2)
	Making architectural evaluation frameworks fit for continuous evaluation (RQ3)

	Implications for research
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


