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Abstract

Large-scale genomic alterations play an important role in disease, gene expression, and

chromosome evolution. Optical DNA mapping (ODM), commonly categorized into sparsely-

labelled ODM and densely-labelled ODM, provides sequence-specific continuous intensity

profiles (DNA barcodes) along single DNA molecules and is a technique well-suited for

detecting such alterations. For sparsely-labelled barcodes, the possibility to detect large

genomic alterations has been investigated extensively, while densely-labelled barcodes

have not received as much attention. In this work, we introduce HMMSV, a hidden Markov

model (HMM) based algorithm for detecting structural variations (SVs) directly in densely-

labelled barcodes without access to sequence information. We evaluate our approach using

simulated data-sets with 5 different types of SVs, and combinations thereof, and demon-

strate that the method reaches a true positive rate greater than 80% for randomly generated

barcodes with single variations of size 25 kilobases (kb). Increasing the length of the SV fur-

ther leads to larger true positive rates. For a real data-set with experimental barcodes on

bacterial plasmids, we successfully detect matching barcode pairs and SVs without any par-

ticular assumption of the types of SVs present. Instead, our method effectively goes through

all possible combinations of SVs. Since ODM works on length scales typically not reachable

with other techniques, our methodology is a promising tool for identifying arbitrary combina-

tions of genomic alterations.
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Introduction

Optical DNA mapping (ODM) provides a sequence-specific fluorescence “fingerprint” (DNA

barcode) for single DNA molecules, which is well suited for analyzing ultra-long DNA mole-

cules (> 105 basepairs (bp) long). The barcodes are created by fluorescent labelling of individ-

ual DNA molecules in a sequence-specific manner, stretching the molecules using

nanochannels or surface adsorption, and imaging them using a fluorescence microscope [1].

Currently, the most common approach of DNA labelling is sparse enzymatic labelling. The

output of this approach is an array of sequence-specific “dots” along the DNA. An alternative

approach is dense labelling ODM, with examples including dense enzymatic labelling with

methyltransferases [2], DNA melt mapping [3], and competitive binding (CB) [4]. When

using dense labelling, individual dots are not discernible (the resolution of a single dot is

described by a point spread function with a width σpsf, typically around 1 kb) and, rather, the

output is a sequence-specific continuous intensity profile (barcode) along the DNA.

Note that DNA barcodes can be predicted using DNA sequences as input. However, DNA

barcodes can also be used as stand-alone sequence-specific “fingerprints” which do not rely on

DNA sequence information. In this study, we are investigating the latter case, i.e., the use of

DNA barcodes as stand-alone fingerprints.

A DNA barcode contains information of larger genomic alterations along the DNA, which

are referred to as structural variations (SVs) [5]. There are several types of SVs, including

insertions, deletions, inversions, repetitions, and translocations, and each of these are visible

directly in the results from the densely-labelled barcodes of long DNA molecules without

access to sequence information.

SV-detection using sparsely-labelled barcodes has been investigated extensively previously

[6–9], and new methods are being continuously developed to make the detection more effi-

cient and compatible with various experimental techniques [10]. The data produced by

densely-labelled ODM has, however, not received as much attention with respect to SV-detec-

tion. In this work, we provide tools for SV-detection in densely-labelled barcode analysis that

complements those which already exist for sparsely-labelled barcodes.

In this study, the application of our new SV method involves plasmids, mobile genetic ele-

ments that enable the spread of antibiotic resistance genes between bacteria. Antibiotic resis-

tance genes encoded on plasmids are often flanked by mobile genetic elements (insertion

sequences, integrons, transposons) and can have a high rate of transfer creating frequent inser-

tions and rearrangements as well as exchange of DNA between different plasmids or between

plasmids and chromosomes [11]. This makes SVs very common on plasmids and analysis of

these are important for identification of novel combinations of resistance genes and under-

standing the evolution of resistance plasmids. Rapid identification of how and when plasmid

transfers occur is also of importance in forming efficient countermeasures preventing the

spread of antibiotic resistance.

The CB DNA labelling method, from which all experimental data in this study originate, is

an enzyme-free densely-labelled ODM assay based on the competitive binding of two small

molecules, YOYO-1 (fluorescent) and netropsin (non-fluorescent), to DNA molecules [12].

This method has been extensively used for plasmid analysis, both to identify plasmids from

sequence databases [13] and to investigate possible spread of resistance in hospitals [14–16].

Even if our experimental data is from the CB assay, we point out that our methodology is suit-

able for the other types of densely-labelled barcodes as well.

Most previous ODM-based methods for comparing densely-labelled barcodes compared

intact barcodes assumed to have no SVs or have just single insertions or deletions. To compare

densely-labelled barcodes without any SVs to each other or to a database of theoretical
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barcodes (calculated using previously sequenced DNA as input), it is then sufficient to use a

correlation-based approach [5]. However, to compare barcodes with complex combinations of

SVs and without having a database as a reference is challenging, as neither the types nor the

lengths of the SVs are known.

A few previous methods for comparing densely-labelled barcodes with SVs exist. A study

using melt mapping (DNA denaturation) introduced a sliding-window analysis method [17,

18]. This method compares pieces (barcodes) of the molecule’s experimental denaturation

map to in silico maps computed from the reference genome to detect SVs. Using the sliding-

window analysis method, insertions and deletions down to 5 kb could be detected with a high

confidence. However, the approach uses a theoretical barcode computed using a reference

genome, can not detect inversions or translocations with the same confidence as insertions

and deletions, and the existence of SVs has to be validated visually. Therefore, remaining chal-

lenges for detecting SVs include making the analysis automated, implementing it for more

general SVs, and dealing with the case when no reference DNA sequence is available.

In order to address the remaining limitations of previous densely-labelled-ODM methods

for comparing barcodes with SVs, we here introduce a Hidden Markov Model (HMM) based

approach to solve the problem of detecting SVs in DNA barcodes. This approach borrows

ideas from “Multi Segment Viterbi”-based bio-informatics tools for protein alignment [19] in

order to compare a query barcode to a reference barcode. In this comparison we do not differ-

entiate between experimental and theoretical reference barcodes, therefore we overcome the

limitation of requiring a reference genome DNA sequence. We interpret the alignment of the

two barcodes as an optimal path through the hidden states of an HMM. The space of all paths

corresponds to all the possible alignments between the two barcodes. Based on our findings in

a previous study of contig assembly using ODM, we require that each of the aligned sub-bar-

code pairs of the two barcodes has to be longer than approximately 22 kb [20]. This length con-

straint is incorporated directly into our HMM, thereby extending the approach in [19] where

no such constraint is used. The output of our HMM is then post-processed in an automated

way with the help of a matrix profile [21] and p-value threshold in order to overcome the need

for visual inspection of the results. Our method can detect all 5 types of SVs, and any combina-

tion thereof, provided that the path through corresponding states is significant. In this way we

address the previously described limitations of other approaches.

We foresee that a potential future use of our HMM pipeline is to match barcodes of non-

sequenced plasmids to a database of theoretical barcodes. For regions that match we can then

obtain the sequence of parts of the non-sequenced plasmid by directly retrieving it from the

match in the database.

Materials and methods

We consider the problem of identifying structural similarities and differences between two

DNA barcodes (See Fig 1). The first of these barcodes is used as a query and is called the query

barcode, while the second barcode is called the reference barcode. These barcodes may have

one or more SVs (insertion, deletion, inversion, translocation or repetition). We developed a

method (See Fig 2) to identify these structural differences. The output of our method is a set of

pairs of sub-barcodes. A sub-barcode pair is a local alignment of a sub-barcode of the query

barcode to a sub-barcode on the reference barcode. Definitions of barcodes, sub-barcode and

other relevant terms are found in Sec. 1 in S1 Text.
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Fig 1. Schematics of the structural variations (SVs) problem using DNA barcodes. As an illustration of different

types of SVs, shown here are 6 different pairs (above: reference barcode, below: query barcode) of stacked barcodes:

(A) An insertion, a sub-barcode is inserted in the query barcode. (B) A deletion, a sub-barcode is deleted in the query

barcode. (C) An inversion, involves flipping a sub-barcode in the query barcode. (D) A repeat, a sub-barcode is

repeated two (or more) times. (E) A translocation, a sub-barcode in the query barcode is moved to a different place on

the reference barcode. (F) Inversion+Translocation, a complex SV involving both flipping a sub-barcode in the query

barcode and moving a sub-barcode in the query barcode to a different place compared to the reference barcode. In

these examples all query barcodes are random barcodes (see Table 1) of 500 pixels (�250 kb) length and the SVs are

100 pixels (�50 kb) long. Matching sub-barcodes are enveloped in boxes of the same colour.

https://doi.org/10.1371/journal.pone.0259670.g001
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Datasets

In the first part of this study (see “Results”) we use “noisified random SV barcodes”, see

Table 1. These barcodes are, for practical purposes, similar to experimental barcodes, but have

the added value that we know exactly where the SVs are (the “ground truth” is known). To

generate noisified random SV barcodes, we first generate random barcodes by convolving an

array of random numbers with the optical point spread function (PSF) of the system. We then

noisify the random barcodes in order to mimic the effect of shot noise and other types of

experimental sources of errors. We finally add one or more SV to the noisified random bar-

codes, thereby generating noisified random SV barcodes. The location of the added SV is

noted in a table so that it could be later used to calculate which parts of the barcodes were

matched correctly using the our methods. Further details are found in the Secs. 3.1 and 3.2 in

S1 Text.

In the second part of the study (see “Results”) we compare experimental consensus bar-

codes against other experimental barcodes and theoretical barcodes. The details on how to

generate experimental barcodes are found in [13]. The details on how theoretical barcodes are

obtained, using a DNA sequence as input, are described in [20].

Fig 2. Hidden Markov Model (HMM) approach for detecting SVs in barcodes. The method consists of 5 steps: 1) The length of the query barcode

(barcode with SVs) is rescaled based on a range of length re-scaling factors around an initial estimate of length re-scaling factor. 2) The most likely path

through the states, which defines the final alignment, is found using Viterbi algorithm. This path corresponds to pairs of indices of sub-barcodes

between query and reference barcodes. 3) Sub-barcodes based on the most likely length re-scaling factor are selected. 4) Gaps and overlaps that are

separated by a distance no more than g are closed (sub-barcodes merged). 5) Unlikely matches are filtered out using a p-value threshold pthresh. Finally,

the output table with the detected matching sub-barcode pairs is given.

https://doi.org/10.1371/journal.pone.0259670.g002
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Analysis pipeline

We applied a Hidden Markov Model (HMM) based approach [22] for detecting SVs (see Fig

1) in densely-labelled DNA barcodes. In short, two barcodes of lengths q and d are aligned to

each other using a Viterbi algorithm for a probabilistic length-constrained HMM [23] contain-

ing 2q + 2 states. The method has hyper-parameters pMM, pGG (representing the probabilities

for jumping between different states, whereM represents a match state and G represents gap

state), l (minimum match length constraint) and lG (minimum gap length constraint).

Our method involves five steps as schematically illustrated in Fig 2 and described in more

detail below:

(1) In the first step a real valued query barcode Q = {a1, . . ., aq} is length re-scaled (the refer-

ence barcodeD = {b1, . . ., bd} is fixed), because although barcodes are averages of repeated

fluorescence measurements of the same type of DNA molecule, separate DNA molecules

(even of the same type) are extended to slightly different lengths in ODM experiments.

To deal with this, we consider different length re-scaling factors (within 2%) for barcodes

around the initially estimated length re-scaling factor. In the case where the initial length

re-scaling factor is not known, we compare length re-scaled barcodes Q against D using a

matrix profile algorithm called STOMP [24] to get the length re-scaling factor estimate

(See Sec 3.7 in S1 Text).

(2) Next, we find the most likely path between the reference barcode D and the query barcode

Q using a constrained Viterbi algorithm. We do not want to consider all possible paths,

since we do not want to match small (less than 22 kb long [20]) sub-barcodes. We there-

fore use constraints for the minimum number of consecutive match states l and for the

minimum number of consecutive gap states lG (l; lG 2 N�0). Consecutive elements in the

Table 1. List of the different types of DNA barcodes used in this study.

Name Explanation/Source

Individual experimental barcode Time-averaged intensity profile

from a single DNA molecule

Experimental consensus barcode Average of several individual experimental

barcodes / Table 1 in S1 Text

Theoretical barcode ODM barcode calculated from microscopic theory,

using a DNA sequence as input,

then convolved with a PSF

Random barcode Array of Gaussian random numbers

convolved with a PSF

Synthetic barcode Theoretical barcode + noise

SV barcode Theoretical barcode + structural variation (SV)

Synthetic SV barcode Synthetic barcode + SV

Noisified barcode Random barcode + noise

Random SV barcode Random barcode + SV

Noisified random SV barcode Random SV barcode + noise

The procedure for generating experimental barcodes is detailed in [13]. A theoretical competitive binding barcode is

calculated using the transfer matrix method from [20]. The PSF is a Gaussian of width σpsf. Noise adds local

fluctuations around the intensity values of the barcode, controlled by the parameter noiseLevel (which is equal to 1 −
dist value between noisified barcode and barcode without noise) and described in Sec. 2.1 in S1 Text. The five SV

types—insertion, deletion, inversion, repetition or translocation are described in Sec. 2.2 in S1 Text.

https://doi.org/10.1371/journal.pone.0259670.t001
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most likely path maps sub-barcodes of the query barcode Q to sub-barcodes of reference

barcode D.

(3) (After repeating (2) for all length re-scaled query barcodes, we choose the SV result for

the length re-scaling factor which had the maximum value of a similarity measure, dist
(in this study we use Pearson Cross Correlation as the similarity measure) for the longest

extracted sub-barcode weighted by its length.

(4) Using the result from step (3), we then close gaps in the alignment. To that end, we merge

sub-barcodes which are found by the HMM if their edges are within g pixels on both the

query and the reference barcodes. Since the resolution of the barcode is set by σpsf (see

Introduction) gaps of this size are not “physical”; the Viterbi algorithm does not involve

the correlations over a length of the order σpsf, so this is a way of compensating for this

effect.

(5) Finally, we set a p-value threshold pthresh = 0.01 for describing which detected merged

sub-barcode pairs are significant. For each pair of merged sub-barcodes of length L
detected by the HMM alignment, a dist score is computed. This score is converted to a p-

value based on the distribution of dist-scores for random barcodes of the same length.

The p-value is then compared to pthresh and the sub-barcode pair is discarded if the

threshold is not passed.

As an output of alignment of the query barcode to the reference barcode, we get pairs of

matching merged sub-barcodes, which are then output in an alignment table, together with a

dist score for each pair of merged sub-barcode pair, see bottom of Fig 2 for an example. The

details of each of the 5 steps in our method, and parameter values, are found in the Sec. 3 in S1

Text

Our software is publicly available as a MATLAB package “hmmsv”, see Data availability

statement at the end of this article.

True positive rate

The true positive rate (TPR) is a rate that an actual pixel match between the query and refer-

ence barcodes will show up as a match also in our HMM output. When estimating the true

positive rate for the HMM output of a comparison of the query barcodeQ against the reference

barcode D in the case of random SV barcodes, we use the known ground truth alignment table

(which contains the alignment of matching sub-barcode pairs). Given the HMM output, for

each pixel of the query (1, 2, . . ., q), we create a binary matrix which has a non-zero value in

ith row and jth column only if pixel i from the query is matched to pixel j from the reference in

the HMM alignment table. Formally, the elements of the binary matrix are:

mi;j ¼

(
1 if ½i; j� 2 fp1; p2g

0 otherwise
; i ¼ 1; 2 . . . ; d; j ¼ 1; 2; . . . ; q; ð1Þ

where {p1, p2} represents the set of all pixel pairs matched in the output of HMM procedure

and d is the length of reference, as before. Similarly, the ground truth alignment table is repre-

sented by a binary matrix with elements

ti;j ¼

(
1 if ½i; j� 2 ft1; t2g

0 otherwise
; i ¼ 1; 2 . . . ; d; j ¼ 1; 2; . . . ; q; ð2Þ

where {t1, t2} represents the set of all pixel pairs in the ground truth alignment table.
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Once the two match tables above have been generated, we iterate through the set of non-

zero elements in each row of the ground truth matrix ti,j. When considering the element in col-

umn k in row i, i.e. ti,k, if there is a non-zero elementmi,u with u = k −1, k, k + 1, we consider

that (i, k) is a true pixel match. We then setmi,u = 0 (so that we would not match the same

pixel twice), and continue iterating through the non-zero elements of the alignment table.

From this iterative procedure, we obtain the number of true positives (TP), i.e., the number of

true pixel pair matches, and the number of false negatives (FN), i.e., the number of pixels pairs

that are not considered true pixel matches. The true positive rate is then estimated as

truePositiveRate ¼
TP

FN þ TP
:

In the Sec. 2.9 in S1 Text, we also describe how to calculate false positive rates (FPR). In

brief, we use random barcodes, see Table 1, to compute the number of false positives and true

negatives. The FPR is used, together with the TPR, when we tune the parameters in the HMM

method.

Results

In this section we apply our HMM-based SV-detection pipeline to noisified random SV bar-

codes and experimental barcodes to find significantly similar sub-barcodes. Realistically look-

ing noisified random SV barcodes were generated as described in the Methods section.

We first determined the parameters for the HMM model. To that end, we ran our HMM

model with gridded parameter values for noisified random SV barcodes in order to generate

true positive and true negative rates. Averaging the rates for 100 barcode pairs, we create heat-

maps of true positive and true negative rates. TPR and FPR heat maps before and after p-value

thresholding are found in S5 and S6 Figs in S1 Text. We use these to make a final choice for

the constants pMM and pGG. A good choice for parameters pMM and pGG would be where we

maximize the true positive rate, while keeping the true negative rate non-zero. However, since

our method is complemented by p-value thresholding, most false positives are discarded using

post-processing, and therefore we make the parameter selection based on the true positive

rate. We selected pMM = 0.51 and pGG = 0.31. The details are found in Sec. 3.11 in S1 Text. The

full list of parameters is found in Table 4 in S1 Text.

Next we make a comparison of the output of the HMM method for noisified random SV

barcodes (as defined in Table 1). In Fig 3 (top) we show a barcode with a single insertion of

size 25 kb matched against the query barcode. Note that our analysis pipeline correctly identi-

fies the insertion (for the noise level used). Fig 3 (bottom) shows an example with a more com-

plicated type of SV. Here, a 250 kb random query barcode was matched against a noisified

random SV barcode containing both an inversion and a translocation. Again, our analysis

pipeline gives a correct output when compared to the ground truth.

We then investigated how the accuracy of the method relates to the amount of noise present

in the query and reference barcodes. Noise was added to the reference barcode as described in

Table 1, and quantified by the noise level, 1 − dist. We evaluated the accuracy of the model by

calculating a true positive rate before and after applying a p-value threshold to the output of

the noisified random SV barcodes comparison. We used five different types of SVs with a sin-

gle SV (Fig 4). We found that the performance rate (here measured by a true positive rate) was

close to 0 after the p-value threshold for small values of dist, but got closer to 1 as we increased

dist (decreased the noise levels). In the best case, truePositiveRate = 1, meaning that there were

no false negatives, but it will not be 1 as soon as there are random components. Typical values

for the dist score when comparing plasmids of length 200–250 kb to theory was dist = 0.9
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− 0.95 [20]. For noisified random SV barcodes having such dist scores, the

truePositiveRate> 0.85 even after removal of some of the sub-barcodes by the p-value

threshold.

We next demonstrate the usefulness of the of the HMM pipeline to automatically, and with-

out assuming a particular SV type, detect SVs for two clinically important scenarios using

experimental data on bacterial plasmids. We recently demonstrated how ODM can be used to

trace bacterial plasmids in an outbreak of multi-resistant bacteria at two neonatal wards at

Karolinska university hospital [15]. 16 neonates were colonized by multi-resistant Klebsiella

Fig 3. SV-detection for noisified random SV barcodes. (Top) HMM output for comparison of two noisified random SV barcodes with a

single 50 pixel (25 kb) insertion. (Bottom) HMM output for comparison of two noisified random SV barcodes with a 50 pixel (25 kb)

inversion and a 50 pixel (25 kb) translocation. Sub-barcode pairs that did not pass the p-value threshold are visualized in dashed boxes. In

the tables next to each figure, dist scores for sub-barcodes Ci, p-values pi, and sub-barcode lengths li are reported. The noise level, 1 − dist,
was here set to 0.1.

https://doi.org/10.1371/journal.pone.0259670.g003
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pneumoniae bacteria and using ODM we demonstrated that all of them carried the same two

plasmids (80 kb and 215 kb) and that the plasmids remained similar for up to two years. By

visual inspection of the ODM data we could observe several SVs in the plasmids. One example

is the smaller plasmid in two samples collected from the same patient 25 months apart. Visual

inspection suggests that a large inversion has occurred and indeed the HMM pipeline auto-

matically identifies this inversion and shows that it is 33 kb in size (See Fig 5 (Top)). If the

inversion is smaller, it is still possible to detect that there is an SV, but not to automatically

identify it as significant, as seen in another example in S9 Fig in S1 Text. For the larger plasmid

we found deletions in several cases and we successfully identified deletions of sizes 30 kb (See

Fig 5 (Middle, Bottom)), 5 kb (S8 Fig in S1 Text (Top)) and 68 kb (S8 Fig in S1 Text (Bottom)).

The second example deals with the fact that plasmids are very dynamic with respect to their

genomic arrangements and that plasmids found in clinical samples often are chimeras of

already sequenced plasmids. Fig 6 (Bottom) shows a plasmid, referred to as pUUH239.2, that

was isolated at an outbreak at Uppsala University hospital that we have previously studied with

ODM [13]. The pUUH239.2 plasmid is a very good example of the dynamics of resistance

plasmids [11]. The majority of the plasmid backbone is highly similar to the pKPN3 plasmid

(NC_009649) while there are three regions of different origin, a region with homology to Ral-

stonia chromosomal DNA, a region with homologi to E. coli chromosomal DNA and a 41 kb

Fig 4. Dependence of true positive rate on noise in noisified random SV barcodes of different SVs. We evaluate the five

different SVs (insertion, deletion, inversion, repeat, and translocation) with random query and reference barcodes to test how

true positive rate depends on the presence of different levels of noise. The associated figure showing the TPR as a function of

the lengths of the SVs is found in S7 Fig in S1 Text. We find that the success rate (here measured by a true positive rate) is

close to 0 after the p-value threshold for smaller values of dist (the noise is quantified by the dist value between noisified

random SV barcode and random SV bacode without noise), but gets closer to 1 for larger values of dist. We used 100 pairs of

random query (250 kb) and noisified random SV data barcodes with SVs of length 25 kb for dist ranging from 0.75 to 0.95.

https://doi.org/10.1371/journal.pone.0259670.g004
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Fig 5. HMM output for real data from a neonatal outbreak. (Top) Output of the HMM method for comparison of

two experimental ESBL-KP 80 kb consensus barcodes. Detected sub-barcode pairs suggest that there was a roughly 33

kb inversion in the middle. (Middle) Output of the HMM method for comparison of two experimental 215 kb

consensus barcodes from different patients taken at approximately the same time. We find that all smaller sub-

barcodes have been merged together, and there is a deletion (30 kb) on the reference barcode. (Bottom) Output of the

HMM method for comparison of two experimental 215 kb consensus barcodes which shows a change that occurred

within a patient over a 2 years period. Same color boxes contain significantly matching sub-barcodes. The detected

sub-barcode has a dist score Ci, p-value pi, and is of length li.

https://doi.org/10.1371/journal.pone.0259670.g005
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resistance cassette with homology to E coli plasmid pEK499 (EU935739) [11]. Fig 6 (Top)

shows an experimental consensus barcode of pUUH239.2 matched against the theoretical bar-

code for pKPN3 using our HMM pipeline. We note that our pipeline identifies regions of high

similarity between the two. Comparing the sequences at a base-pair level, we visualize the true

alignment table of the 12 longest matching pairs (Fig 6 (Bottom)) obtained using BLAST

(Nucleotide-Nucleotide BLAST 2.6.0+). We note that the HMM pipline finds most of the

matching region on the theoretical barcode. However, sub-barcode pairs seem to be extended

outside the true match. This is to be expected, as the sub-barcodes can be over-extended if the

intensity differences of neighbouring pixel values to the edges of the sub-barcodes are small.

Finally, we investigated computational times of the HMM pipeline. We found that for a typ-

ical case of 200kb length plasmids, the main calculation step prior to the p-value calculation

takes only around 4 seconds on a standard laptop. In S10 Fig in S1 Text we show further

computational times for the length range 100 to 500 kbps.

Discussion and outlook

The goal of this study was to develop a method to directly detect SVs in barcodes from

densely-labelled ODM without having access to DNA sequencing information. To that end,

we introduced a Hidden Markov Model (HMM) based approach and showed that it is suffi-

cient to use only two different types of states, gap and match states. We determined the natural

values of HMM hyper-parameters using random SV barcodes, thus foregoing the need to run

Fig 6. HMM output for plasmid experiment against an ancestor plasmid DNA sequence of the bacterial resistance

plasmid. (Top) HMM output of an experimental consensus barcode for the pUUH239.2 plasmid compared to the

theoretical DNA barcode for the ancestor (the pKPN3 plasmid). Note that we successfully identified the matching

barcode-pair regions predicted by the BLAST alignment. (Bottom) BLAST output of 12 longest sub-sequence pairs

with matching similarity of at least 90%.

https://doi.org/10.1371/journal.pone.0259670.g006
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expensive parameter fitting procedures. We demonstrated that it is possible, using densely-

labelled competitive binding DNA barcodes as scaffolds, to locally align DNA barcoding

experiments in the presence of SVs. However, our procedure is applicable to any other

densely-labelled ODM techniques, such as DNA melt-mapping and dense enzymatic labelling

[2, 3].

We also applied a matrix profile method from time series analysis, for determining the

length re-scaling factors of experimental barcodes (step 1. in our method, see Sec. 3.7 in S1

Text and S3 Fig in S1 Text) and for calculating the significance of discovered sub-barcode

pairs (step 5. in our method). This shows the potential for other time series methods to be

applied in the analysis of optical mapping data, thus bridging the gap between time series anal-

ysis and ODM. In particular, previous methods have shown how to find variable length motifs

on a single time series [25]. Similarly, statistical significance for discords has been recently ana-

lyzed [26].

In some experimental samples, we could not estimate the initial length re-scaling factor

(See Sec 3.3 and S4 Fig in S1 Text). One of the possible reasons for this was that the initial

length re-scaling factor was chosen too small, as the barcodes needed to be re-scaled well

beyond that factor. This shows that while our method can be successful at detecting initial

length re-scaling constant, it is still a good practice to use a reference molecule of known length

in the experimental assay in order to correctly estimate the nanometer-to-basepair conversion

factor.

In our probabilistic post-processing approach we used a p-value threshold (step 5. in our

method, see Sec. 3.5 in S1 Text) which was set to 1% here as in our previous study [20]. In

applications where a different error rate is preferable, one can simply tune the p-value thresh-

old accordingly.

A fundamental limitation in the ODM is the width of the optical point spread function (of

the order 1 kb). This resolution limit sets a sharp lower bound for the lengths of sub-barcodes

that we are able to detect using the present method. However, in the future combining com-

petitive binding with sparsely-labelled ODM could potentially increase efficiency of the

method.

We hope that the methodology developed herein, together with our publicly available soft-

ware, will open up for routine use of densely-labelled ODM in application where detection of

SVs in DNA are of importance.

Supporting information

S1 Text. Supplementary methods. Contains definitions and mathematical details of the

HMM model, a description of our method for choosing the HMM parameters and of our

post-processing procedure.

(PDF)
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