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Abstract

One usually thinks of minimal surfaces as being used for fabric and cable net structures. However, they
can also be used as the geometry for a shell structure, in which case the stresses under load will depart
from a uniform tension, and may include both tensile and compressive stresses. Any minimal surface
with principal curvature coordinates can be constructed analytically using the fact that it can be expressed
by a single function of a complex variable. But the analytical approach is, in general, quite complicated.
We show a quick and easy numerical approach that automatically produces a minimal surface and the
principal curvature coordinates at the same time applicable to any minimal surface whose boundaries are
either principal curvature or asymptotic directions, or a combination of the two. Straight lines and cable
boundaries form asymptotic lines, which are oriented at 45° angle to the principal directions on a minimal
surface, and a surface that is normal to a sphere has a principal curvature direction as its boundary. If the
surface is materialised with members following asymptotic directions, any load acting over a small patch
of the surface is transferred as a force couple acting along with the asymptotic members that bound the
patch. The same happens in continuous surfaces, and if the small patch is taken to the limit, the point
load is transferred as a moment along with asymptotic directions.

Keywords: cable net, shell, minimal surface, principal curvature, differential geometry, form finding.

1 Introduction

Frei Otto believed that the ideal shape for a cable net is a minimal or soap film surface with a uniform
tension under prestress, and he often used an equal mesh for his cable nets. However, equal meshes can
only approximate a minimal surface. But if the net of cables follows the principal curvature directions
of the surface, it is possible to produce ‘true’ tensioned minimal surfaces, subject only to the limitation
of the fineness of the grid. The same applies if the forces are reversed, resulting in a grid of compressed
bars.

Minimal surfaces [7] have everywhere zero mean curvature or, in other words, the two principal curva-
tures at any point have equal magnitude but opposite signs. In this paper, we limit our attention to min-
imal surface with negative Gaussian curvature, meaning the principal curvatures must also be non-zero.
This excludes planar surfaces, which are minimal surfaces with no curvature and therefor no distinct
principal directions.

Copyright © 2021 by the author(s) as listed above. Published in the Proceedings of the IASS Annual Symposium 2020/21 and
the 7th International Conference on Spatial Structures, with permission.
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Finding principal curvature coordinates is also relevant for other surfaces which have negative Gaussian
curvature. Such surfaces are known as hyperbolic surfaces and if the mean curvature is small, they can
be considered approximately minimal, and include structures such as fan vaults and cooling towers.

Principal curvature directions [9] are orthogonal and conjugate directions, so tangents of constant co-
ordinate curves in a principal coordinate system must also. The orthogonal requirement mean that the
mixed component of the first fundamental form of the surface is zero and the conjugate requirement that
the mixed component of the second fundamental form of the surface is zero. If these requirements are
fulfilled, the coordinate system forms an isothermal grid, which is a grid of flat curvilinear squares on
the surface.

Any minimal surface with principal curvature can be constructed analytically using the fact that it can be
expressed by a single function of a complex variable. This is a special case of the Weierstrass–Enneper
parameterization, which uses two functions, but one of them effectively only controls the pattern of
coordinates on the surface. The details of the analytical construction are discussed in (Sehlström and
Williams [12]) and involves mappings of the coordinate system between real and complex spaces. Fig-
ure 1 illustrates the relations between the images obtained using the maps for a simple minimal cable net
structure. The mathematics of the analytical expressions is generally very complicated, but, as will be
shown later, it is easy to numerically form find minimal surfaces with principal curvature coordinates.

Besides principal curvature directions, we are also interested in asymptotic directions. These are direc-
tions on a surface which have zero normal curvature. By drawing Mohr’s circle of curvature (Nutbourne
[8]) through the principal curvatures marked on the horizontal axis representing the normal curvature,
the angle between the principal and asymptotic directions can be found by considering the intersection
of the circle and the vertical axis. Figure 2 illustrates Mohr’s circle of curvature for some families of
surfaces, and we see that for a minimal surface with negative Gaussian curvature, the angle between the
principal and asymptotic directions is always 45°.

2 Equilibrium of the net

If a fine grid cable net is constructed following principal curvature directions on a minimal surface with
constant force density, the cable net will be in static equilibrium and we may use this fact to study the
equilibrium in more detail (Sehlström and Williams [12]).

Let the position vector describing all points on the surface be p = p(\1, \2) where \1 and \2 are used to
denote the curvilinear coordinates, which is the same as the perhaps more common notation using D and
E. The covariant base vectors p,1 = mp/m\1 and p,2 = mp/m\2 are tangential to the curves \2 = constant
and \1 = constant respectively. Since we required the grid to follow principal curvature directions, the
covariant base vectors are orthogonal, that is, p,1 ·p,2 = 0, and their length is equal to the corresponding
element length.

The force density g, which is equivalent to the uniform surface tension, is the element tension divided by
the element length (Schek [11]), and the vector representing the force in an element in the net is simply
the force density multiplied with the covariant base vector aligned with the element. Thus, the vector T8

representing the tension in the four members 8 = 1,2,3,4 meeting at a node in the grid are

T1 = −gp,1, T2 = g
(
p,1 +p,11X\

1
)
,

T3 = −gp,2, T4 = g
(
p,2 +p,22X\

2
)
,

(1)
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Figure 1: A minimal surface materialised as a cable net roof where the interior cables approximate the principal
curvature directions and the boundary cables the asymptotic directions (top left) and its images after consecutively
applying the Gauss map (top right), the stereographic projection (bottom right), and a conformal map 5 (Z) which
satisfy the Cauchy–Riemann equations (Spiegel [13, p. 63]) and Z = \1 + 8\2 a complex variable (bottom left).
The Weierstrass-Enneper parameterization enables mapping directly of a coordinate grid in complex space to
the minimal surface in real three-dimensional space, but additional constraints are needed to obtain a principal
curvature coordinate system. Mappings of three points are indicated using red, blue, and green dots in each of the
images.

where X\1 = X\2 are the constant coordinate increments.

By combining the covariant base vectors p,1 and p,2 appropriately, other isothermal grids in static equi-
librium on a minimal surface can be constructed. For example, the forces meeting at a node in a grid
following the asymptotic directions are given by

T1 = −g
(
p,1 +p,2

)
, T2 = g

(
p,1 +p,11X\

1 +p,2 +p,22X\
2
)
,

T3 = −g
(
p,2 +p,1 +p,11X\

1
)
, T4 = g

(
p,2 +p,22X\

2 +p,1

)
.

(2)

Regardless of the grid layout, the equilibrium of a ‘free’ cable boundary tells us that the geodesic curva-
ture of the boundary must be constant and lie in the local tangent plane to the surface (Williams [15]).
This means that the boundary must follow asymptotic directions. Furthermore, the force in each bound-
ary must be constant along its length and thus the boundary will have varying force density, which is an
exception from the requirement of a net with constant force density. Further more, a surface which is
normal and fixed to a sphere has a principal curvature direction as its boundary on the sphere.

Figure 3 depicts two cable nets with the same boundary conditions and both approximate the same
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(d) Minimal

Figure 2: Mohr’s circle of curvature. Elliptic surfaces have no asymptotic directions, parabolic surfaces have ex-
actly one asymptotic direction, and hyperbolic surfaces two asymptotic directions. Minimal surfaces with curvature
are a type of hyperbolic surfaces where the angle between the principal and asymptotic directions always is 45°.
A planar surface (not shown) has an infinite number of asymptotic directions, and any direction is an asymptotic
direction.

underlying minimal surface. The net in fig. 3a follow principal curvature directions and the net in fig. 3b
the asymptotic directions, and both have cable boundaries following the asymptotic directions. Their
images under the Gauss map and the stenographic Gauss map are similar except for the orientation of
the interior grid.

3 Continuous minimal surfaces with principal coordinates

If the minimal surface is materialised as a continuous surface, like Musmeci’s bridge (fig. 4a), it can be
analysed as a membrane shell with a capacity to carry membrane stress. Membrane stress is a combina-
tion of tensile, compressive, and shear stresses acting in a plane tangential to the surface, but of course,
if a fabric is used, the capacity to carry compressive stresses is virtually zero since it will buckle.

The equilibrium of the surface is invariant, meaning the equilibrium equations are satisfied for any choice
of coordinate system. But if the asymptotic directions are chosen, then the tensile or compressive stresses
in the coordinate directions do not influence equilibrium in the normal direction. This means that we can
establish the shear stress from equilibrium in the normal direction and then use that to study equilibrium

4
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(a) Principal net. (b) Asymptotic net.

Figure 3: Cable nets in static equilibrium (bottom, black) with their Gauss map (top, blue) and the south pole
stereographic projections of the Gauss maps (middle, red).

(a) Image by unknown author, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?
curid=38867507.
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(b) Possible cutting pattern for a mesh that can be used for form finding
of a minimal surface with principal curvature cables and similar boundary
conditions as Musmeci’s bridge.

Figure 4: The geometry of the substructure of the Musmeci’s bridge across the Basento River was initially form
found using a soap film model (Magrone et al. [6]).

tangential to the surface. This results in a hyperbolic system of equations in which we expect one end of
each asymptotic line to reach a boundary, and the structure is statically determinate. If it does not reach
any boundary, we have a mechanism, whereas if it does reach one boundary at each end, the structure is
statically indeterminate.

We may solve the forces in the asymptotic members that bounds a small patch of the surface that is
loaded with a force @ by using an Airy stress function q (Airy [1]) that is discontinuous (Williams and
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McRobie [14]). The regions of q corresponding to unloaded areas of the surface must be flat, but may
slope, whereas the region corresponding to the loaded patch must be curved and the curvature is found
solving Putcher’s equation

I,11q,22−2I,12q,12 + I,22q,11, (3)

where I = I(\1, \2) is the shape of the surface, q = q(\1, \2) the scalar valued stress function, and a
comma denote partial differentiation such that, for example, I,11 = m

2I/
(
m\1m\1) . For the discontinuous
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Figure 5: A patch load @ acting on a hyperbolic
paraboloid I and the corresponding discontinuous Airy
stress function I. The patch load is transferred through
the surface along asymptotic directions to the support as
two force couples.

Airy stress function to satisfy equilibrium without
any bending in the surface, neighbouring regions
of q must have the same value where they meet,
resulting in ‘folds’ in the surface that should be
understood as concentrated forces.

Figure 5 depicts a cantilevering hyperbolic
paraboloid with asymptotic coordinates that is
supported along the curved edge and loaded with
a vertical force @ acting over the small red patch
which is a curvilinear square. Its projection onto
the horizontal plane is an isosceles right triangle.
The figure also depicts the discontinuous stress
function q from which we see that the force in
the asymptotic members start at zero and linearly
increases over the length that bounds the patch
where after it is constant all the way to the sup-
port. Since the ‘folds’ along each pair of members
have opposite direction, but equal angle, the force
in the members are equal but of opposite sign.

If the size of the patch is taken smaller and
smaller, the sloping regions between the asymp-
totic members tend to a vertical ‘cliff,’ which
we at the limit may understand as a ‘cut’ in the
surface corresponding to a bending moment act-
ing about the surface normal whose magnitude is
given by the difference in q on either side of the
cut (Williams and McRobie [14]).

4 Numerical form finding

It is easy to numerically form find minimal surfaces with principal curvature coordinates using dynamic
relaxation (Day [2]) and by representing the surfaces as a cable net following principal curvature direc-
tions. In dynamic relaxation, the nodal positions are consecutively updated until equilibrium is obtained.
The updated position x0,8+1 of node 0 at time step 8 is given by

v0,8+1 = `v0,8 + aΔCa0,8 , (4)

x0,8+1 = x0,8 +ΔCv0,8+1, (5)

where a0,8 is the current acceleration of the node, v0,8 the current velocity, ` and a numerical damping
constants, and ΔC the numerical time step.
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In our case, we let Δx01,8 = x1,8 − x0,8 be a vector along an element between nodes with position x0,8
and x1,8 respectively. Then the element length ℓ = |Δx01,8 | and the force in the element is gℓ. Thus, in
analogy with eq. (1), the vector representing the tension the element 01 subjects node 0 with become
gΔx01,8 . From Newton’s second law assuming a fictitious nodal mass < = 1 and setting the arbitrary but
constant force density g = 1, the acceleration of node 0 at time step 8 become a0,8 =

∑
1Δx01,8 where the

summation is done over all nodes 1 connected to node 0.

Usually, the kinetic energy of the system or the norm of the nodal residual force is used as a convergence
criterion for dynamic relaxation form finding. However, for minimal surfaces with principal curvature
coordinates we know that the final grid should be isothermal. Therefor, as a convergence criteria, we
may instead study the principal curvature curve lengths ratio and the asymptotic curve lengths ratio, both
obtained by dividing the sum of the lengths in one direction divided by the sum of the lengths in the
other direction. When both these ratios are 1, or close to 1, the solution has converged and we have an
isothermal grid following principal curvature directions that is in static equilibrium and approximates a
minimal surface.

4.1 Cutting pattern

The grid setup influences the form-finding result, and we may understand this setup by thinking of the
initial grid as the image of the form-found grid as seen in complex space. Since the form-found grid will
be isothermal, the image in the complex space is a regular grid. For a principal cable net, the regular grid
in complex space align the horizontal and vertical axes in complex space (c.f. top left with the bottom left
in fig. 1), whereas for an asymptotic net, the regular grid in complex space orients at 45° to the horizontal
and vertical axes. Furthermore, since free edges must follow asymptotic directions, their image must be
oriented at 45° to the horizontal and vertical axes in complex space. Thus, the initial grids used to form
find the roofs in fig. 3 had the same boundary but different orientation of the interior elements; to get
fig. 3a, the interior was aligned with the axes, whereas to get fig. 3b, the interior was aligned at 45° angle
to the axes.

Figure 4b illustrates a cutting pattern and boundary conditions that can be used to form find a portion of
a bridge similar to Musmeci’s bridge connected to the rest via symmetry. The positions of the ‘valleys’
and ‘ridges’ on the free edge and their ‘amplitudes’ will affect the form finding and will most certainly
require alterations to find a satisfying result. In addition to changing the grid setup, we may control
the form-finding result by choosing different constant tensions for each of the four boundary segments
(bound by lines of symmetry and/or black dots).

4.2 Kernel for parallel computation

Most dynamic relaxation implementations loops over a list of elements and computes the element con-
tribution to the acceleration of the two nodes which the element spans between. The element axis and
lengths are only computed once per element and time step, which is preferable since square roots are
expensive to compute. Contributions to each node will be added to each node as many times as the node
has connected elements; for a principal curvature cable net, the number of connected elements is four.
Such a implementation works well if all element contributions are computed consecutively in a single
thread, but not if they are computed in parallel threads since it would require costly thread concurrence
locks to make sure only one thread updates each nodal acceleration at a time.

To make the implementation suitable for parallel computation, one can loop over the list of nodes instead
and for each node sum up all the element contributions to that node in one single computation. Then

7
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each nodal acceleration is only updated once, resolving the concurrency lock issue. This means that each
element axis and length will be computed twice, but this drawback is ousted by the significant speed
gains of computing in parallel.

The kernel outlined in algorithm 1 is suitable for parallel computing. It draws upon the concepts de-
scribed in (Iványi [5]) with one list of current positions all thread can read from without interference and
another list of updated positions that only the thread that computes the kernel for the node can write to.

We have implemented a solver in Java/Processing 3.5.4 where we can choose to execute the kernel in
algorithm 1 consecutively in a single thread on the central processing unit (CPU) or in parallel using
multiple threads on the graphics processing unit (GPU). The GPU computation relies on JavaCL which
is a Java implementation of OpenCL. As can be seen in table 1, there is a significant speed improvement
running the code in parallel. All ready with a simple integrated GPU, the code executes 15.8 times faster
than on the CPU, and with a dedicated more powerful GPU, the code executes 60 times faster. The speed
gain is of course dependent on the computer hardware, but similar improvements should be possible to
see on most computers.

Algorithm 1: Kernel solving the updated nodal position x0,8+1 of node 0 in time-step 8. The elements
are part of a principal curvature net with constant force density g in internal cables and with constant
tension ) in boundary cables. The algorithm assumes time-step ΔC = 1. The numerical damping
coefficients are typically set to ` = 0.995 and a = 0.2.
Data: Current position x0,8 and current velocity v0
Result: Updated position x0,8+1 and updated velocity v0
for each node 1 connected to node 0 do // may be done in parallel

a0← 0 ; // reset acceleration
Δx01← x1,8 −x0,8 ; // element axis
if element 01 is part of boundary cable then // add element contribution to acceleration

a0← a0 +)/|Δx01 | ·Δx01 ; // boundary cable
else

a0← a0 + gΔx01 ; // interior cable
end

end
if Node is constrained then

; // Apply boundary conditions, i.e. set components of the position vector x0,8 to
prescribed values and set the corresponding components of the velocity vector v0
and acceleration vector a0 to zero.

end
v0← ` ·v0 + a ·a0 ; // update velocity
x0,8+1← x0,8 +v0 ; // update position

4.3 Example

Figure 6a shows a ‘bridge’ in the shape of a minimal surface with principal curvature coordinates form
found using the presented kernel. Using a cutting pattern and boundary conditions indicated in fig. 6b,
the form finding was done for a portion of the surface connected to the rest via symmetry. All nodes
along the edge marked ‘sphere constraint’ are constrained to lay on the surface of a sphere normal to the
surface and the outline of the sphere is shown in fig. 6c.

In addition to moving the nodes during the form finding, two boundaries are moved. Firstly, the bottom
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Computation Processing unit Processing specification Time (ms) Speed improvement

Serial CPU Intel Xeon E3 1505M v5 543,852.06 1
Parallel GPU (integrated) Intel(R) HD Graphics P530 34,326.28 15.8
Parallel GPU (dedicated) NVIDIA Quadro M2000M 9,075.68 60.0
Serial CPU Intel Core i7 4790K 430,122.38 1.2
Parallel GPU (dedicated) GeForce RTX 2060 SUPER 4,414.45 123.2

Table 1: Computation time needed for different processing units to perform 100,000 dynamic-relaxation time-steps
for a system consisting of 12,561 nodes.

of the sphere moves upwards a small distance linearly decreasing as the principal curve ratio approaches
1, and, secondly, the line boundary moves a small distance outwards in the H-direction linearly decreasing
as the asymptotic length ratio approaches 1. Thus, the form finding is in this case a variation of Plateau’s
problem [3, 10, 4] where not only the minimal surface through a given boundary is found, but also the
boundary itself.

As indicated in fig. 6c, some of the asymptotic members span between two funnels and are thus statically
determinate and the rest span between a free edge and a funnel and are therefor statically determinate.

5 Conclusion

Minimal surfaces with principal curvature coordinates have been discussed, which can be used as ge-
ometry for tensioned cable nets and fabrics, as well as shell structures that may include both tensile and
compressive stresses. Such surfaces can be found analytically, but it is, in general, quicker and easier to
do the form-finding numerically. Principal coordinates on a minimal surface form a grid of curvilinear
squares, and the asymptotic directions are simply the diagonals of the grid. If asymptotic members are
used to materialise the surface, patch loads are transferred as a force couple acting along with the princi-
pal members that bound the patch, which at the limit becomes a moment. The same applies to continuous
surfaces.
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(a) Rendered bridge with red curves following principal curvature directions and blue asymptotic directions.
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(b) Principle for the cutting pattern and the applied boundary conditions
where ! is the distance between the centre of the funnels.

(c) Plan view and two elevations of form found surface with the boundary sphere is outlined. Green members follow prin-
cipal curvature directions whereas black and red members follow asymptotic directions with black members being statically
indeterminate and red statically determinate.

Figure 6: A ‘bridge’ in the shape of a minimal surface form found using coordinate curves following the principal
directions.
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