
Autoencoder-Based Unequal Error Protection Codes

Downloaded from: https://research.chalmers.se, 2025-06-18 03:10 UTC

Citation for the original published paper (version of record):
Ninkovic, V., Vukobratovic, D., Häger, C. et al (2021). Autoencoder-Based Unequal Error Protection
Codes. IEEE Communications Letters, 25(11): 3575-3579.
http://dx.doi.org/10.1109/LCOMM.2021.3108845

N.B. When citing this work, cite the original published paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

1

Autoencoder-Based Unequal Error Protection Codes
Vukan Ninkovic, Student Member, IEEE, Dejan Vukobratovic, Senior Member, IEEE, Christian Häger,

Member, IEEE, Henk Wymeersch, Senior Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE

Abstract—We present a novel autoencoder-based approach for
designing codes that provide unequal error protection (UEP)
capabilities. The proposed approach, based on a generalization
of an autoencoder loss function, provides a versatile framework
for the design of message-wise and bit-wise UEP codes. Using
an associated weight vector, the generalized loss function can be
used to trade off error probabilities corresponding to different
importance classes and to explore the region of achievable error
probabilities. For message-wise UEP, we compare the proposed
autoencoder-based UEP codes with a union of random coset
codes. For bit-wise UEP, the proposed codes are compared with
UEP rateless spinal codes and the superposition of random
Gaussian codes. In all cases, the autoencoder-based codes show
superior performance while providing design simplicity and flex-
ibility in trading off error protection among different importance
classes.

Index Terms—Autoencoders, deep learning, unequal error
protection.

I. INTRODUCTION

Learning transmitters and receivers for a given channel
model using deep autoencoders (AE) optimized for a specific
loss function has recently been investigated in [1]–[3]. These
works consider AE-based encoders and decoders that provide
equal error protection across the set of transmitted messages.
However, in many communication scenarios, one is interested
in the design of unequal error protection (UEP) codes [4].

UEP codes are commonly investigated in two different
scenarios: message-wise UEP and bit-wise UEP [5], [6]. In
message-wise UEP, the set of source messages is divided
into disjoint subsets or importance classes, each of which
may be provided with a different level of error protection.
In bit-wise UEP, a message is encoded into a sequence of bits
and different subblocks of bits represent different importance
classes that are protected differently [6]. Practical applications
of bit-wise UEP codes, such as improved header protection
or scalable multimedia communications, led to bit-wise UEP
designs of popular coding schemes such as LDPC [7], fountain
[8], or spinal codes [9]. Message-wise UEP codes have been
investigated in applications such as alert message transmission
and in certain joint source-channel coding scenarios [5].

In this work, we propose a novel AE-based approach
to design UEP codes. We introduce a new AE compound
loss function that comprises a weighted contribution of each

V. Ninkovic and D. Vukobratovic are with the Department of Power,
Electronics and Communications Engineering, University of Novi Sad, 21000,
Novi Sad, Serbia (e-mail: {ninkovic, dejanv}@uns.ac.rs).

C. Häger, H. Wymeersch, and A. Graell i Amat are with the De-
partment of Electrical Engineering, Chalmers University of Technology,
SE–41296 Gothenburg, Sweden (e-mail: {christian.haeger, henkw, alexan-
dre.graell}@chalmers.se).

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement number 856967.

Fig. 1. Communication system represented as a deep autoencoder [1].

importance class. The proposed approach offers a single and
versatile framework to design both message-wise and bit-wise
UEP codes that, as we demonstrate, expand the achievable
error probability region compared to the UEP codes in the
literature. For the case of message-wise UEP, AE-based codes
significantly outperform the construction considered in [5]
based on the union of coset codes. For bit-wise UEP, the
proposed AE-based codes outperform UEP rateless spinal
codes [9] and UEP codes based on the superposition of ran-
dom Gaussian codes [10]. Moreover, the AE-based approach
provides a flexible procedure of tuning the weight parameters
to trade off error probabilities of different importance classes
and explore the region of achievable error probabilities.

II. BACKGROUND

A. System Model

We consider the problem of communicating a message m
from a set of messages M = {1, 2, . . . ,M} over a noisy
channel. Each message is represented as a sequence of bits s =
(s1, s2, . . . , sk), where k = log2(M) is the message length.
We define the encoder mapping f :M→ Rn that encodes the
message m into a codeword x = (x1, x2, . . . , xn) of length
n. The transmitted codewords x ∈ X , where X = {x ∈
Rn : ‖x‖22 = n}, i.e., the codewords x obey a total energy
constraint. The code rate is R = k/n (in bits per channel
use). The channel W transforms the input codeword x ∈ Rn
into the output sequence y ∈ Rn following the probabilistic
channel law p(y|x). Finally, the decoder mapping g : Rn →
M produces an estimate m̂ of the transmitted message m.
Under the above setup, the goal is to design a pair (f, g) for the
channel W to minimize the average message error probability

Pe =
1

M

∑
m∈M

P{m̂ 6= m|m}. (1)

2

B. Autoencoder-Based Code Design

From a deep learning perspective, the above communication
system can be represented as an AE [1]. An AE consists of a
set of encoder layers representing the encoder mapping x =
f(m), the noise layer modeling the channelW that transforms
x into y, and a set of decoder layers representing the decoder
mapping m̂ = g(y), as shown in Fig. 1.

At the input of the encoder layers, the message m is encoded
as a one-hot vector u = (u1, u2, . . . , uM) ∈ {0, 1}M , i.e.,
it is represented as an M -dimensional vector with the m-th
element equal to one and the others equal to zero. The set of
encoder layers represents a feed-forward neural network with
H hidden layers, followed by a bottleneck layer of width n.
The goal of the encoder neural network is to find the most
suitable representation of the information so that it is robust
to the channel perturbations. At the output of the bottleneck
layer, normalization ensures that x ∈ X .

Next, the codewords x are passed through a noise layer
that represents the channel W . In this paper, we consider an
additive white Gaussian noise (AWGN) channel, thus at the
output of the noise layer we have y = x+z, where z contains
n independent and identically distributed (i.i.d.) samples of a
Gaussian random variable N (0, σ2) of variance σ2.

The output of the noise layer y is fed into the decoder layers
representing the receiver. The receiver is implemented in the
same way as the transmitter via a feed-forward neural network,
except that the last layer has a softmax activation function
with output b = (b1, b2, . . . , bM) ∈ (0, 1)M , where the `1
norm ‖b‖1 = 1. The decoded message is m̂ = argmaxi{bi}.
Except for the last layer at the transmitter and the receiver that
have a linear and a softmax activation function, respectively,
all others layers are activated by a rectified linear unit (ReLU).

The AE is trained in an end-to-end manner by using stochas-
tic gradient descent (SGD) with the Adam optimizer [11] on
the set of all possible messages m ∈M. The minimization of
the cross-entropy loss between u and b is used as a surrogate
for minimizing the error probability Pe, which cannot be used
directly as it is not differentiable. The AE is trained using
batches of training data by minimizing the cross-entropy loss

`(u, b) = −
M∑
i=1

ui log bi, (2)

averaged across a batch of training samples.

C. Unequal Error Protection Code Design

We consider both message-wise UEP and bit-wise UEP, as
detailed next.

1) Message-wise UEP: We assume that the message setM
containing M messages is partitioned into C ≤ M disjoint
subsets, referred to as message classes, having different error
protection requirements. Message class Mi contains |Mi| =
Mi messages, with M =

∑C
i=1Mi. For a given encoder-

decoder pair (f, g), we define the per-class probability of error

P (i)
e =

1

Mi

∑
m∈Mi

P{m̂ 6= m|m}. (3)

We collect the per-class error probabilities of a message-
wise UEP code in a vector P e = (P

(1)
e , P

(2)
e , . . . , P

(C)
e).

We use the term message-wise UEP code to refer to the
triple ({Mi}Ci=1, f, g) [5]. We denote as PW({Mi}Ci=1, n) ⊂
[0, 1]C the region of achievable P e-values for message-wise
UEP codes of length n and the message classes {Mi}Ci=1 over
the channel W .

2) Bit-wise UEP: In bit-wise UEP, we consider an equiv-
alent representation S of the message set M that consists
of the binary representation (s, see Section II-A) of the
messages m ∈ M. Further, we assume that s consists of C
submessages representing disjoint subsequences of bits, i.e.,
s = (s1, s2, . . . , sC), where the length of submessage si is
ki bits and k =

∑C
i=1 ki. We denote by S (respectively, Si)

the set of all possible binary messages s (submessages si),
with |S| = 2k (|Si| = 2ki). In the case of bit-wise UEP, the
different submessages represent the different message classes
and are assigned different error protection requirements.

We are interested in the probability of error associated with
a particular message class. For a submessage si ∈ Si, we
denote by Msi

the set of all messages m ∈ M whose i-th
submessage in the corresponding representation s equals si.
For a given encoder-decoder pair (f, g), we define the per-
class probability of error

P (i)
e =

1

|Si|
∑
si∈Si

P{m̂ /∈Msi
|m ∈Msi

}, (4)

and define P e = (P
(1)
e , P

(2)
e , . . . , P

(C)
e). We use the term bit-

wise UEP code to refer to the triple ({Si}Ci=1, f, g).
Example 1: For clarity, we consider an example for |M| =

16 messages corresponding to the set S of all binary sequences
s of length k = 4. Let s = (s1, s2) be divided into
C = 2 submessages, where both s1 and s2 are of length
k1 = k2 = 2 bits. Then, if s1 = (1, 0) is transmitted,
it is considered correctly decoded as long as the decoded
sequence is consistent with s1, i.e., it belongs toMs1=(1,0) =
{(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)}.

We now discuss an extension of the bit-wise UEP scenario
called progressive bit-wise UEP. For some practical appli-
cations that call for bit-wise UEP, the above definition of
per-class error probabilities does not capture the code design
requirements. For example, of great interest is the case where
the messages are encoded in such a way that the importance
of submessages progressively decreases from S1 to SC and
there exists an interdependence between importance classes.
More precisely, in such applications, the i-th message block
si is considered as correctly received if and only if this block
as well as all blocks sj for j < i are decoded correctly [12].
To accommodate for this scenario, we redefine the per-class
error probability as

P (i)
e =

1

|(S1, . . . ,Si)|
· (5)∑

s1,...,si∈(S1,...,Si)

P{m̂ /∈Ms1,...,si
|m ∈Ms1,...,si

},

where Ms1,...,si is the set of all messages m ∈M whose bi-
nary representation s is consistent with the first i submessages
s1, . . . , si. We refer to this case as progressive bit-wise UEP.

3

III. AUTOENCODER-BASED UEP CODES

A. UEP Autoencoders

In this section, we present a flexible and efficient method
to design encoders and decoders for both message-wise and
bit-wise UEP codes by training deep AEs. The key idea of
the proposed AE-based design is to define an appropriate
compound loss function that generalizes the cross-entropy loss
function defined in (2) to the UEP case.

1) Message-wise UEP: Let `Mj
(u, b) be the loss function

associated to the j-th message class defined as

`Mj
(u, b) = −

∑
i∈Mj

ui log bi. (6)

We redefine the loss function for the case of message-wise
UEP as the weighted sum of the loss functions `Mj

(u, b) as

`(u, b) =

C∑
j=1

λj`Mj (u, b), (7)

where λλλ = (λ1, λ2, . . . , λC) is a weight vector associated to
the message classes,

∑C
j=1 λj = 1, and λj ≥ 0. The rest of the

training procedure follows the same steps as for the standard
(equal error protection) AE-based codes.

2) Bit-wise UEP: We use the same approach of modifying
the loss function using a weighting vector. In this case,
however, some updates in the message representation are
needed beforehand. We extend the definition of one-hot vector
u so that it indicates a subset of messages inM whose binary
symbol representation s is consistent with a given submessage
sj ∈ Sj . More precisely, for every submessage sj ∈ Sj , we
define the corresponding vector usj

= (u1, u2, . . . , uM), with
the m-th position set to one if the message m is such that the j-
th submessage of its binary sequence representation is sj . Note
that usj is now a binary vector with 2k−kj ones. Let `(usj , b)
be the loss function associated to the j-th submessage,

`(usj , b) = −
M∑
i=1

ui log bi. (8)

Given the binary sequence representation s = (s1, s2, . . . , sC)
of a message m ∈ M, we define a set of C vectors U =
{us1

,us2
, . . . ,usC

}. With the above definition, the compound
loss function for bit-wise UEP is defined as

`(U , b) =
C∑
j=1

λj`(usj
, b), (9)

where λλλ = (λ1, λ2, . . . , λC) is a weight vector associated to
message classes, λj > 0, and

∑C
j=1 λj = 1. The rest of the

training procedure follows the same steps as for the standard
(equal error protection) AE-based codes.

The case of progressive bit-wise UEP can be treated in a
similar way. For every submessage si ∈ Si, we define the bi-
nary vector us1,...,si

= (u1, u2, . . . , uM), with a 1 in the m-th
entry if the message m ∈Ms1,...,si

. Given a binary sequence
representation s = (s1, s2, . . . , sC) of a message m ∈M, we
define a set of C vectors U = {us1 ,us1,s2 , . . . ,us1,s2,...,sC

}.
Finally, we can reuse (8) and (9) by inserting the appropriate
U and us1,...,sj

.

10−610−510−410−310−210−1100

10−6

10−5

10−4

10−3

10−2

10−1

100

λ = 0.1

λ = 0.5

λ = 0.9

P
(1)
e

P
(2

)
e

Eb/N0 = 1 dB

Eb/N0 = 3 dB

Eb/N0 = 5 dB

Eb/N0 = 7 dB

Fig. 2. (P
(1)
e , P

(2)
e) performance of AE-based message-wise (solid curves)

and bit-wise UEP codes (dashed curves) with C = 2, |M1| = 8 and |M2| =
8 for message-wise and k1 = 2 and k2 = 2 for bit-wise codes, n = 7,
Eb/N0 = {1, 3, 5, 7} dB and λ = {0.1, 0.2, . . . , 0.9}.

B. Flexible AE-Based UEP Code Design

We exemplify the AE-based UEP code design for M = 16
messages transmitted using n = 7 channel uses over the
AWGN channel for C = 2 error-protection classes. For
both message-wise and bit-wise UEP, we design pairs (f, g)
that explore the trade-off between per-class error probabilities
(P

(1)
e , P

(2)
e). In the proposed AE-based design, varying the

weight vector λ is a flexible mechanism to trade off the values
within P e and thus explore the region of achievable P e-values
(for C = 2, λ = (λ1, λ2) = (λ, 1− λ), where λ ∈ [0, 1]).

1) Message-wise UEP: For message-wise UEP, we parti-
tion the set of M = 16 messages into two classes, each
containing half of the messages, i.e., |M1| = 8 and |M2| = 8.
In Fig. 2 (solid lines), we plot the error-probability profile
P e = (P

(1)
e , P

(2)
e) of the trained AE-based encoder-decoder

pair (f, g) for Eb/N0 = 1, 3, 5, and 7 dB, where Eb denotes
the energy per bit, N0 is the noise power spectral density, and
σ2 = (2REb/N0)

−1. Each curve is obtained by evaluating
(P

(1)
e , P

(2)
e) for the weight parameter λ = {0.1, 0.2, . . . , 0.9}.

As in [1], we consider both encoder and decoder layers
consisting of a single hidden layer with M = 16 neurons,
while the bottleneck layer has n = 7 neurons. The value of
Eb/N0 applied during the training can be understood as a
hyperparameter. We set Eb/N0 = 3 dB, as for Eb/N0 > 3

dB, P (1)
e significantly deteriorates, while the same holds for

P
(2)
e when Eb/N0 < 3. The AE is optimized using SGD

with Adam optimizer, applying the learning rate α = 0.001,
β1 = 0.9 and β2 = 0.999.

First, note that for λ = 0.5, the values of (P
(1)
e , P

(2)
e)

coincide, as our AE code boils down to the equal error
protection AE code presented in [1]. Secondly, note that the
curves (P

(1)
e , P

(2)
e) are symmetric with respect to λ = 0.5.

Finally, as we increase λ from 0.5 toward 1, for any fixed

4

0 0.2 0.4 0.6 0.8 1
10−6

10−5

10−4

10−3

10−2

10−1

100

λ

P
e

Eb/N0 = 1 dB Eb/N0 = 3 dB

Eb/N0 = 5 dB Eb/N0 = 7 dB

Fig. 3. (P
(1)
e , P

(2)
e) performance (P (1)

e solid curves, P (2)
e dashed curves)

of AE-based progressive bit-wise UEP codes (C = 2, k1 = 2, k2 = 2,
n = 7) for different values of λ and Eb/N0 = {1, 3, 5, 7} dB.

Eb/N0, the AE-based UEP code error-probability profile
P e = (P

(1)
e , P

(2)
e) sweeps through a sequence of pairs where

P
(1)
e gradually improves, while P

(2)
e gradually deteriorates.

Thus, the parameter λ offers a flexible “fine-tuning knob” that
allows for the selection of the desired trade-off within the
region PW(M, n).

2) Bit-wise UEP: In this scenario, M = 16 messages are
represented as k = 4-bit sequences s ∈ (S1,S2), where
submessage s1 ∈ S1 contains the first two bits (k1 = 2),
while submessage s2 ∈ S2 contains the remaining two bits
(k2 = 2). Fig. 2 (dashed lines) plots the error-probability
profile P e = (P

(1)
e , P

(2)
e) of a trained AE-based encoder-

decoder pair (f, g) for the same values of Eb/N0 and for
the same sequence of λ values as in the message-wise UEP
example. The encoder and decoder pairs (f, g) are obtained
using the same architecture and training methodology as for
the message-wise UEP. Notably, the error-probability profile
P e shows a similar behavior as for the case of message-
wise UEP, despite fundamental difference between the two
scenarios.

For the progressive bit-wise UEP, where the success in
decoding the second message subblock is conditioned on
successful decoding of the first subblock, the error-probability
profile P e changes as illustrated in Fig. 3. Informally, as
λ → 0, the codewords corresponding to Ms1 (for any
s1) converge to each other, while as λ → 1 they diverge
from each other, approaching equal error protection. Note
that the resulting code design is related to the problems of
superposition coding for degraded broadcast channels [13] and
designing UEP modulation constellations [14].

IV. PERFORMANCE OF AE-BASED UEP CODES

In this section, we compare the AE-based UEP codes against
selected classes of UEP codes.

1) Message-wise UEP: In [5], the authors consider a
message-wise UEP construction based on a union of coset
codes. For each message class Mi, we generate a random

10−510−410−310−210−1100

10−5

10−4

10−3

10−2

10−1

100

λ = 0.1

λ = 0.9

P
(1)
e

P
(2

)
e

AE message-wise UEP Codes
Random Coset UEP Codes

Fig. 4. Comparison of (P (1)
e , P

(2)
e) performance of AE-based message-wise

UEP codes vs random coset UEP codes (C = 2, |M1| = 8, |M2| = 8,
n = 7) for Eb/N0 = 7 dB.

binary generator matrix Gi of dimension ki×n and a random
binary shift vector vi of length n. For each message m ∈Mi,
the corresponding codeword x is obtained as the binary phase
shift keying (BPSK) modulated version of sGi + vi, where
s is the binary sequence representation of m. For C = 2 and
n = 7, in order to generate M1 = M2 = 8 codewords, we
set k1 = 2 and k2 = 2. We compare the AE-based design
with a randomly generated set of 200 random coset-based
message-wise UEP codes. Note that, unlike the AE-based
design where we use λ to control the trade-off between per-
class error probabilities in P e, for random coset-based codes
such a control of P e is not trivial, thus we compare against a
sample of 200 randomly generated codes. Although the coset-
based design is asymptotically good for the BSC and the BEC
[5], for the AWGN and short code lengths, the performance of
the best selected candidates does not match that of AE-based
designed codes (note that the encoding function of coset-based
codes is restricted to f : M → {+1,−1}n ⊂ X). Fig. 4
demonstrates that, for λ = {0.1, 0.2, . . . , 0.8, 0.9}, the error-
probability pairs (P (1)

e , P
(2)
e) for AE-based codes consistently

outperform randomly-sampled set containing 200 coset-based
codes (at Eb/N0 = 7 dB). In other words, AE-based codes
perform consistently closer to the boundary of the region
PW({Mi}Ci=1, n).

2) Bit-wise UEP: In Fig. 5, we compare the AE-based bit-
wise UEP codes with the bit-wise UEP spinal codes [9]. The
code parameters are C = 2, k1 = 4, k2 = 10, and n = 32. For
the AE-based code, we apply the AE architecture with a single
hidden layer with 500 neurons for both the transmitter and the
receiver and n = 32 neurons for the bottleneck layer. The size
of the hidden layer is selected experimentally as a compromise
between error-correction performance and AE computation
complexity. Furthermore, we consider λ = {0.7, 0.8, 0.9}. The
training procedure is the same as described in Section III-B
except that the training is done at Eb/N0 = 1 dB. The AE-
based codes perform comparably to spinal codes in terms of
P

(1)
e , while significantly outperforming them for P (2)

e .

5

3 4 5 6 7
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

P
e

UEP Spinal P (1)
e

UEP Spinal P (2)
e

AE P (1)
e (λ = 0.7)

AE P (2)
e (λ = 0.7)

AE P (1)
e (λ = 0.8)

AE P (2)
e (λ = 0.8)

AE P (1)
e (λ = 0.9)

AE P (2)
e (λ = 0.9)

Fig. 5. Comparison of (P
(1)
e , P

(2)
e) vs Eb/N0 performance of AE-based

and spinal bit-wise UEP codes (C = 2, k1 = 4, k2 = 10, n = 32).

Next, we compare the AE-based design with the bit-wise
UEP codes based on the superposition of random Gaussian
codes [10].1 For C = 2, each codeword from a set of 2k1

random Gaussian codewords whose symbols are drawn from
N (0, σ2

1) is superimposed by a set of 2k2 random Gaussian
codewords whose symbols are sampled fromN (0, σ2

2). The re-
sulting set of M = 2k codewords is normalized to obey the to-
tal energy constraint. We consider three equal-rate (k, n)-pairs,
(4, 7), (8, 14), and (12, 21), where k1 = 1

4k and k2 = 3
4k. We

use a single parameter µ to design the superposition of random
Gaussian codes by varying (σ2

1 , σ
2
2) = (µ, 1 − µ), providing

a similar control of the trade-off between error probabilities
(P

(1)
e , P

(2)
e) as λ provides for the AE-based codes. Fig. 6

demonstrates superior performance of the AE-based codes for
λ = {0.1, 0.3, 0.5, 0.7, 0.9} at Eb/N0 = 5 dB compared to
the best performing UEP codes based on the superposition of
random Gaussian codes for µ = {0.3, 0.4, 0.5, 0.6, 0.7} (from
a set of 200 randomly generated codes). Finally, although
the results presented are restricted to R = 4/7 and 7/16,
our experiments show that the proposed AE-based UEP codes
perform well across a wide range of code rates.

V. CONCLUSION

We presented a novel learning-based approach to the de-
sign of UEP codes using deep AEs. The design is based
on a generalized AE loss function that accommodates both
message-wise and bit-wise UEP code design. The proposed
AE-based codes show superior performance to known UEP
approaches, such as random coset codes or superposition of
random Gaussian codes. They also outperform state-of-the-
art UEP rateless spinal codes. Besides excellent performance,
AE-based UEP codes provide a built-in flexible mechanism for
weighting loss function components that results in a graceful
trade-off between per-class error probabilities. The limitation
of the proposed scheme—as that of other AE-based codes with

1We consider a special case of [10], where decoding of both message classes
is attempted after all n codeword symbols are received.

10−410−310−210−1100

10−3

10−2

10−1

100

λ = 0.1

λ = 0.9

P
(1)
e

P
(2

)
e

AE-based code (4,7)
Superposition code (4,7)
AE-based code (8,14)
Superposition code (8,14)
AE-based code (12,21)
Superposition code (12,21)

Fig. 6. Comparison of (P (1)
e , P

(2)
e) performance of AE-based and superpo-

sition of random Gaussian codes for (k, n)-pairs: (4, 7), (8, 14) and (12, 21),
where k1 = 1

4
k and k2 = 3

4
k at Eb/N0 = 5 dB.

one-hot encoding—is that the codeword dimension and length
are severely limited. A binary representation of the messages
may alleviate this problem at the expense of some performance
penalty, but more efficient approaches are in general needed.

REFERENCES

[1] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp.
563-575, Dec. 2017.

[2] T. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based MIMO
communications,” Jul. 2017., arXiv:1707.07980v1 [cs.IT] . [Online].
Available: https://arxiv.org/abs/1707.07980

[3] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning
based communication over the air,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 132-143, Feb. 2018.

[4] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE
Trans. Inf. Theory, vol. 13, no. 4, pp. 600-607, Oct. 1967.

[5] Y. Y. Shkel, V. Y. Tan, and S. C. Draper, “Unequal message protection:
Asymptotic and non-asymptotic tradeoffs,” IEEE Trans. Inf. Theory, vol.
61, no. 10, pp. 5396-5416, Oct. 2015.

[6] S. Borade, B. Nakiboglu, and L. Zheng, “Unequal error protection: An
information-theoretic perspective,” IEEE Trans. Inf. Theory, vol. 55, no.
12, pp. 5511-5539, Dec. 2009.

[7] H. Pishro-Nik, N. Rahnavard, and F. Fekri, “Nonuniform error correction
using low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 51,
no. 7, pp. 2702-2714, July 2005.

[8] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. J. Piechocki,
“Expanding window fountain codes for unequal error protection,” IEEE
Trans. Commun., vol. 57, no. 9, pp. 2510-2516, Sep. 2009.

[9] X. Yu, Y. Li, W. Yang, and Y. Sun, “Design and analysis of unequal error
protection rateless spinal codes,” IEEE Trans. Commun., vol. 64, no. 11,
pp. 4461-4473, Nov. 2016.

[10] M. Karimzadeh and M. Vu, “Short Blocklength Priority-Based Coding
for Unequal Error Protection in the AWGN Channel,” in Proc. 2019 IEEE
Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 9-13,
2019, pp. 1-6.

[11] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. on Learn. Representation, San Diego, CA, USA,
May 7-9, pp. 1-41, 2015.

[12] V. Chande and N. Farvardin, “Progressive transmission of images over
memoryless noisy channels,” IEEE J. Sel. Areas Commun. , vol. 18, no.
6, pp. 850–860, June 2000.

[13] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2524-2530, Oct. 1998.

[14] L. F. Wei, “Coded modulation with unequal error protection,” IEEE
Trans. Commun., vol. 41, no. 10, pp. 1439-1449, Oct. 1993.

