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Abstract
Prestressing and shells provide means to create material-efficient and well-functioning
structures, as do their combination, offering opportunities for increased material efficiency
within the built environment. Prestressing introduces stresses in an object to enhance its
performance, and shells include concrete shells, masonry vaults, fabric structures, cable
nets, and timber or steel gridshells. Both prestressing and shell structures come with
technical and practical considerations that need attention during the design, or there
is a risk of wasted opportunity. However, successful attention to and combination of
these aspects, resulting in a material-efficient prestressed shell, is not enough to make a
high-quality architecture. There is a need for additional project-specific considerations,
requiring ways to study design choices’ impact on structural and architectural aspects.

This thesis aims for an increased understanding of prestressing and its application to
shell, fabric, and cable net structures and improved means for their design. It provides a
broad overview of prestressing, expanding beyond the common perception of prestress
being limited to concrete structures, and shell structures, focusing on applications within
architecture. The scope is the combination of prestressing and shells, and it addresses
three main research questions: (1) Can any shell be prestressed? For those that can,
what is the meaning and influence of prestressing?; (2) How can prestressed shells be
form-found using analytical and numerical approaches?; and (3) How can prestress in
shells be represented and chosen, aspiring for efficient structural performance?

Appended papers A–F help answer these questions, and the thesis contributes to
architectural and structural design and structural optimisation and applies differential
geometry. It provides approaches for the form-finding of gridshells containing both tension
and compression elements (Paper A) and of minimal surfaces (Paper C and D). Paper B
concludes that a sphere cannot be actively prestressed, but a torus can. Paper E extends
the Williams and McRobie (2016) discontinuous Airy stress function from flat structures
to curved shells, allowing moments and shear forces in edge beams of shell structures to
be quantified and appropriate prestressing chosen. Paper D uses a discrete Airy stress
function and discusses the structural behaviour of shells with negative Gaussian curvature
loaded with patch loads. Paper F studies Eduardo Torroja’s prestressed concrete Alloz
aqueduct, concluding that it acts as a beam rather than a shell, but also that longitudinal
prestressing may reduce the wall bending moments and that, at some limit, the channel act
as a cylindrical membrane-action shell rather than of an Euler-Bernoulli beam, enabling
thinner cross-sections.

Keywords: Prestress, Geometric stiffness, Stress pattern, Conceptual design, Structural
design, Form finding, Architecture, Engineering
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Sammanfattning

Naturen visar att förspänning och skalstrukturer möjliggör materialeffektiva och välfunger-
ande konstruktioner, så också deras kombination, och erbjuder möjligheter till ökad
materialeffektivitet i den byggda miljön. Förspänning introducerar spänningar i ett
objekt för att förbättra dess prestanda, och skal inkluderar betongskal, murade valv,
textila konstruktioner, kabelnät och gitterskal av stål eller trä. Båda är förknippade med
en uppsättning tekniska och praktiska utmaningar som kräver uppmärksamhet under
utformningen, annars riskerar effektiviseringsmöjligheterna gå förlorade. Men även om
ansträngningarna framgångsrikt resulterar i ett materialeffektivt förspänt skal är det inte
tillräckligt för att skapa högkvalitativ arkitektur. För det krävs ytterligare projektspecifika
överväganden under projekteringen, vilka är beroende av metoder för att studera designvals
påverkan på konstruktion och arkitektur.

Denna avhandling syftar till en ökad förståelse för förspänning och dess tillämpning på
skal-, textil- och kabelnätstrukturer och förbättrade tillvägagångssätt för deras utformning.
Den ger en bred överblick över, å ena sidan, användning av förspänning, bortom den
vanliga uppfattningen att förspänning endast är tillämplig på betongkonstruktioner, och,
å andra sidan, skalkonstruktioner med fokus på tillämpning inom arkitektur. Fokus är
kombinationen av förspänning och skal, och målet är att besvara följande huvudforsknings-
frågor: (1) Kan alla skal förspännas? Vad är innebörden och inflytandet av förspänning för
de som kan?; (2) Hur kan geometrin för förspända skal formsökas med hjälp av analytiska
och numeriska metoder?; och (3) Hur kan förspänning i skal representeras och väljas, i
strävan mot ett effektiv konstruktivt verkningssätt?

Sex bifogade artiklar bidrar till att svara på forskningsfrågorna. Avhandlingen bidrar
till arkitektonisk och konstruktiv utformning samt strukturoptimering, och tillämpar
differentialgeometri. Mer specifikt drar den slutsatsen att en sfär inte aktivt kan förspännas,
men en torus kan (Artikel B). Den tillhandahåller metoder för att formsöka gitterskal
med både tryckta och dragna element (Artikel A) och minimala ytor (Artikel C och
D). Williams och McRobie (2016) diskontinuerliga version av Airys spänningsfunktion
utvecklas från plana strukturer till krökta skal, så att moment och skjuvkrafter i skals
kantbalkar kan kvantifieras och en lämplig förspänning väljas (Artikel E). Med hjälp av en
diskontinuerliga Airys spänningsfunktion diskuteras verkningssättet hos skal med negativ
Gausskrökning belastade med små ytlaster (Artikel D). Artikel F är en fallstudie om
Eduardo Torrojas förspända betongakvedukt i Alloz, vilken konstaterar att akvedukten
bättre beskrivs som en balk än ett skal, men också att en koncentrerad förspänningskraft
i de längsgående kanterna är en förutsättning för jämvikt i böjspänningsfria cylindriska
skal. Vidare minimerar denna förspänning böjmomentet i tvärsnittsväggen hos balkar med
cylindriska tvärsnitt och, vid gränsen, är verkningssättet likt cylindriskt membranverkande
skal snarare än en Euler-Bernoullibalk, vilket möjliggör tunnare tvärsnitt.
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Devoting time and interest to deepened studies in a subject is a highly-
rewarding intellectual endeavour that defines us as humans and has a value
not despite but because of its practical uselessness.

— Hitz 2020
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1 Introduction
As evident in nature, for example, in spiderwebs and seashells, prestressing and shells
provide means to create material-efficient and well-functioning structures, as do their
combination. Prestressing introduces stresses in an object to enhance its performance,
and shells include concrete shells, masonry vaults, fabric structures, cable nets, and timber
or steel gridshells. Both prestressing and shells come with technical and practical consid-
erations that need attention during the design, or there is a risk of wasted opportunity.
This thesis combines the two, presenting research on prestressing and its application to
shell, fabric, and cable net structures.

This chapter discusses the potential usage of prestressing and shell structures to meet
global sustainability goals, accompanied by a discussion on the need for inter-disciplinary
collaboration during design and to balance technical and non-technical aspects to create a
piece of high-quality architecture. It defines the words prestress, shell, and prestressed shell
and presents the aim of the research and general questions before introducing the scope,
focusing the research on the application of prestressing on shell structures. The chapter
concludes with the research objectives and a brief outline of the thesis organisation.

1.1 Build more with less

The UN predicts a global need to double the already built floor area until the year
2050–2060 to meet needs related to, for example, increased population, wealth, health,
and urbanisation, meaning ‘adding the equivalent of Paris to the planet every single
week ... over the next 40 years’ (UN 2017, p. 2). Constructing that many buildings
and infrastructure requires a vast amount of construction materials, and if we are to
accomplish this sustainably, we need to rethink the current way we design and construct
our built environment. The rethinking has to occur on all levels, ranging from questioning,
in broad terms, requirements for a prosperous and healthy life to, at the fine-grained
level, developing and improving construction materials, and everything in between. For
this, research and development are core activities, including studying our predecessors’
approaches in a search for lost knowledge, leading to high-quality architecture and sound
engineering solutions.

One of many ways forward is to increase the material efficiency of our structures—to
build lightweight—so that the used materials work at a maximum at all points, allowing
to build more with less.

The idea of building lightweight guided Frei Otto (1925–2015), resulting in an im-
pressive range of work (Glaeser 1972) and research (Burkhardt 2016) that has inspired
many architects, engineers, and researchers (Dixon 2015a; Dixon 2015b) and continuous
to do so (Aldinger 2016). During the design of the 1972 Olympiastadion in Munich,
consisting of a collection of post-tensioned cable net roofs, Otto worked together with a
large team of experts (Tomlow 2016). One of them was Jörg Schlaich (1934–2021), whose
own work since then has been in line with the idea of building more with less, proposing
the application of five principles for the construction of material-efficient lightweight
structures (J. Schlaich and M. Schlaich 2008):
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1. Keep spans as short as possible

2. Use axial compression and tension—avoid bending

3. Use materials with a high ratio between tensile strength and density

4. Apply prestressing

5. Use curved geometry

The first three principles are straightforward to apply, although considering the envi-
ronmental impact of the materials, for example, comparing embodied carbon equivalents,
complicates the choice of material.

The fourth principle is about introducing stresses in an object to improve its per-
formance during service. It is a simple and effective concept ubiquitous in nature and
extensively used in everyday objects and load-bearing structures. However, its applica-
tion results in several technical issues that often require special knowledge to address
appropriately. Within the built environment, prestressing is primarily applied to concrete
structures to, for example, reduce the need for reinforcement steel and to control creep
(Menn 1990; Sanabra-Loewe and Capellà-Llovera 2014). Consequently, a common per-
ception is that prestressing is only applicable to concrete, limiting the understanding of
prestressing and the versatile possibilities that come with its application.

The fifth principle is to some extent an extension of the second; if the second principle
means a beam dissolves into a truss and a plate into a space frame, the fifth principle
transforms the truss into an arch or a cable, and the space frame into a shell, gridshell,
membrane, or cable net structure. Requiring the curved structures to work without
bending imposes additional geometrical constraints. Then Pucher’s equation (Pucher
1938; Timoshenko and Woinowsky-Krieger 1959, p. 461), discussed in sections 3.3
and 3.4, describes the interplay between form and forces in loaded membrane-action
curved structures, or membrane shells, for short. It involves three quantities defined on a
plane: the form, or geometry, specified as the height z and the forces described by the
internal membrane stress state φ and the loading q. Though Pucher’s equation is valid
only under certain circumstances, it helps us categorise the main structural challenges
with the design of shells as form-finding, stress-finding, or even load-finding, although the
latter is uncommon. Form-finding determines the geometry z given the desired stress
state φ and a known loading q, whereas stress-finding solves φ given z and q. In any case,
φ may represent a state of prestress. Pucher’s equation is elegant and may appear simple,
but the number of analytical solutions is limited and, in general, requires non-analytical,
purpose-specific approaches to solve.

1.2 Design of efficient structures and high-quality
architecture

Vitruvius proposed two thousand years ago that architecture should exhibit the three qual-
ities of utilitas, firmitas, venustas—that is, utility/functionality, stability/sustainability,
beauty (Vitruvius, Morgan, and Warren 1914). Characteristic for architecture that
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possesses these qualities is holistic solutions of which the structure is just one of many
contributing parts. While Schlaich’s five principles for efficient structures may result in
sound engineering solutions, it is necessary to balance these with other criteria to design
a piece of architecture.

During Vitruvius’s time, the design of buildings was a one-person-job done by a
master builder or architect (from Greek arkhi-, chief, and tekton, builder). Today several
professions share the design responsibility, with architects and engineers in the lead. The
separation has enabled needed specialisation but also led to a fragmented design process
(Sehlström, Ander, and Olsson 2021). Eugene-Emmanuel Viollet-le-Duc dwelled on the
matter already in the late 19th century, concluding that ‘the interest of the two professions
will be best saved by their union’ (Viollet-le-Duc 1881, p. 72). Improved collaboration may
lead to such a union, and conceptual design is often put forward as a key to developing
integrated qualitative architecture and sound engineering solutions (Gans 1991; Rice 1996;
Larsen and Tyas 2003; Corres-Peiretti 2013). But architects and engineers ‘tend to have
different perceptions of the same reality’ (Charleson and Pirie 2009), making successful
collaboration challenging.

This dissertation departs from the firm belief that tools for exploring possibilities and
representing phenomena enrich the design process and help improve collaboration. Then
form-finding becomes more than precisely determining z of a shell; it serves as a tool to
understand the implications of design choices and guide and inform new, leading to a
well-argued proposal balancing and prioritising, often, contradicting criteria. Similarly,
stress-finding extends beyond determining the forces the structure needs to resist and
is instrumental for improving structural efficiency; it makes the interplay between form
and forces tangible and allowing the understanding of the role of prestressing for the
structural behaviour of shell structures.

1.3 Definitions

The word prestress compounds the prefix pre- and the stem stress, literary meaning ‘before
stress,’ and is both a verb and a noun, therefore also an adjective. Some definitions of
prestressing imply it is exclusive to concrete structures, while others limit the purpose of
applying prestressing to counteract loads applied during service. However, such definitions
are too limiting; prestressing may be applied independently on material and for many
different reasons. This thesis uses the word prestress as follows.

prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb)prestress (verb): to introduce internal stress into an object (during manufac-
ture or before some other treatment or action) to improve its performance; in
this sense, prestress is synonymous with prestressing.

prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun)prestress (noun) 1: the stresses introduced in prestressing
2: the process of prestressing
3: the condition of being prestressed

Adriaenssens et al. (2014, p. 20) exclude tension-only structures from the definition of
shells and require the structure to be ‘relatively rigid,’ leaving out structures such as sails,
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balloons, and car tyres. But in this thesis, no such exclusion is made, and shells include
less rigid tension structures such as fabric and cable net structures. The thesis uses the
word shell and its synonym shell structure as follows.

shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun)shell (noun): any curved thin structure that primarily resist loading through
membrane action, the combination of compressive, tensile and shear stresses
acting in the tangential plane of the surface.

Combining the above two definitions then give a definition for a prestressed shell.

prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun)prestressed shell (noun): a shell with stresses introduced (during manufacture
or before some other treatment or action) to improve its performance.

1.4 Aim and general questions

The application of prestressing and use of shell structures within the built environment
provides opportunities for increased material efficiency, and so do their combination. Both
come with a set of technical and practical considerations that need attention during
design, or there is a risk of wasted opportunity. However, successful attention to and
combination of these aspects, resulting in a material-efficient prestressed shell, fabric, or
cable net, is not enough to make a qualitative piece of architecture. There is a need for
additional project-specific considerations during design which requires ways to study the
implication on structural and architectural aspects of design choices.

This thesis aims to provide an increased understanding of prestressing and its ap-
plication to shell, fabric, and cable net structures and improved means for their design.
With this backdrop, several general questions arise. When and how to apply to prestress?
What possibilities to make structures more efficient does it offer? What approaches for
the form-finding and stress-finding of shells are there? How to develop new ones? How
shall tools work and representations look like to support increased understanding for the
individual designer and improved collaboration between architects and engineers?

1.5 Scope

The scope of the presented studies focuses on the intersection of the fields of prestressing
and shell structures. The scope effectively excludes studies, on the one hand, on some
objectives with and applications of prestressing and, on the other, on shell structures that
are not prestressed, as fig. 1.1 illustrates.

1.6 Research objectives

The understanding and application of prestressing are challenging endeavours on their
own, and so is the design of shell structures. With the fields combined, further questions
arise, and the objective of this research is to answer the following:
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Prestress

Shells

Thesis focus

Figure 1.1: Thesis focus: prestress as applied to shell structures, including concrete shells,
masonry vaults, fabric structures, cable nets, and timber or steel gridshells

1. Can any shell be prestressed? For those that can, what is the meaning and influence
of prestressing?

2. How can prestressed shells be form-found using analytical and numerical approaches?

3. How can prestress in shells be represented and chosen, aspiring for efficient structural
performance?

1.7 Thesis organisation

Part I begins with chapter 1 introducing the topic, aim, scope, and objectives. Chapters 2
and 3 contextualises prestressing and shell structures, respectively, before chapter 4
presents the chosen research methodology. Chapter 5 summarises the appended papers
and chapter 6 conclude and present ideas for future works. Part II contain the six
appended papers.
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2 Prestress
Prestressing introduces internal stress into an object with the intention to improve its
performance. Some immediate questions follow, such as when can prestressing be applied,
how to prestress, and what performance improvements can it give? This chapter provides
an overview of prestress as a concept, hopefully bringing some clarity to these questions.

2.1 Preliminaries

This section briefly discusses some fundamental physical concepts which are keys to
understanding prestress and builds a framework of concepts enabling further discussions.
Prestressing influences the geometric stiffness of a material object and, under certain
conditions, the complete structure, affecting the response to loading. A statically determi-
nate model of a structure cannot be prestressed, whereas a statically indeterminate can,
and, under certain conditions, prestressing may render a mechanism rigid.

2.1.1 Stress

Stress is a physical quantity that arises within materials due to externally applied forces,
uneven temperature, or permanent deformation. The measure for stress is force per
unit area, although, when discussing thin shells, it is often more convenient to use stress
resultants defined as the integrals of stress over the shell thickness, measured as force per
unit width.

Six independent parameters arranged in a 3× 3 matrix can, for any chosen Cartesian
coordinate system, describe the state of stress at a material point. In case of a regular
coordinate system where the coordinates are named x, y, z, the matrix may be written as



σx τxy τxz
τxy σy τyz
τxz τyz σz


 , (2.1)

where the components σx, σy, σz are the orthogonal normal stresses (for the considered
coordinate system), and τxy, τxz, τyz the orthogonal shear stresses. Through a transforma-
tion of coordinates, it is always possible to find a Cartesian coordinate system such that
all of the shear stress components are zero. Then the normal stresses are called principal
stresses and the base vectors of the coordinate system point in principal stress directions.
Normal and principal stresses are either tensile (positive) or compressive (negative).

For convenience, the description of the stress state is often simplified, ignoring the
components that have an insignificant influence on the structural behaviour. For example,
for a cable under tension, the stress state is usually sufficiently described by the normal
stress acting along with the length direction.

All materials respond differently to stress. Except in the rare cases when Poisson’s
ratio is negative, tensile stress is related to a material extension in the associated direction,
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whereas compressive stress is related to a shortening. Hence, tensile prestress, or pre-
tension, is introduced by extending the material, whereas compressive prestress, or
pre-compression, by compressing the material.

Stress cannot be measured directly and is, instead, determined by recalculating
deformation measures into strains, after which, for example, Hook’s law via experimentally
determined material properties provide the stress.

2.1.2 Strength
The strength of a material is the limit under which the level of stress is safe, not causing
(local) failure or plastic deformation. Brittle materials fail without plastic deformation,
whereas ductile materials do (fig. 2.1); the latter failure is considered safer than the former
in buildings since it gives some warnings in terms of large deformations before the collapse.

ε

σ
ft

εt

(a) Brittle tension

ε

σ

fc

εc

(b) Brittle compression

ε

σ
ft

εt

(c) Ductile tension

ε

σ

fc

εc

(d) Ductile compression

Figure 2.1: Idealised characteristic constitutive material models relating strain ε to stress σ
where ft and fc are the tensile and compressive strength, respectively, with corresponding
strains εt and εc at failure

2.1.3 Stiffness
Stiffness is the extent to which a material or structural object resists deformation in
response to an applied force. Stiffness quantifies how much force has to be applied to
cause a deformation.

For structural objects, stiffness may be understand as the sum of elastic and geometric
stiffness. Elastic stiffness depends on material properties, geometry (shape, topology, cross-
section), and boundary conditions, whereas geometric stiffness depends on the internal
stress state. Compressive stresses result in a negative geometric stiffness contribution
(weakening), while tensile stresses result in a positive geometric stiffness contribution
(stiffening) (Olsson and Dahlblom 2016). If the geometric stiffness weakens the elastic
stiffness to such an extent that stiffness is lost, instability phenomenons may occur, leading
to a partial or a full collapse.

Since prestressing influences the stress state of the object, it may, in general, also
influence its geometric stiffness, providing means to control the structural behaviour by
fine-tuning its stiffness.

For example, a violin string is a prestressed object with much larger geometric stiffness
than elastic hence its performance is primarily determined by the prestress. With violin
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string cross-section area A, density ρ, length L, and constant tension T , the pitch or first
natural frequency is, under the assumption of small displacements, determined as

fn =
1

2L

√
T

ρA
, (2.2)

and influenced by the musician in two ways. First, during tuning, the tension T is adjusted
to obtain the desired pitch of the string; this introduces the correct level of prestress.
Then, during the performance, the length L is adjusted by pressing fingertips against the
string at different locations; pressing, for example, the fingertip halfway along result in a
doubled pitch. As with the string, there is in more complex spatial structures a relation
between prestressing and natural frequency which can be used to determine the state of
stress in existing structures (Ashwear and Eriksson 2014).

Equation (2.2) originates from the partial differential equation describing the vibration
mode at time t of the string

T
∂2y

∂x2
− EI ∂

4y

∂x4
= ρA

∂2y

∂t2
, (2.3)

where y is the lateral displacement of the string at longitudinal position x and EI the
elastic bending stiffness, which for a thin string is negligible compared to T .

Figure 2.2 depicts two cable-braced pin-jointed frames which could act as horizontal
restraints in a building. The verticals and the horizontal are assumed sufficiently stiff not
to buckle, whereas the diagonal cables buckle under compressive load. Structure (a) is
not prestressed, so one cable buckles as P loads the structure, and the deflection δ1 is
determined primarily by the stiffness in the remaining tensioned cable; for small P , the
elastic stiffness dominate, and with increasing P , the geometric stiffness increases casing
a stiffening shown as a non-linear relation between P and δ1. Structure (b) is prestressed
using turnbuckles on the cables to such a degree that no cable buckles under load P ,
effectively doubling the elastic stiffness compared to (a) for the same amount of material;
for small P , δ2 ≈ 0.5δ1.

However, there are situations when the prestressing do not influence the stiffness at
all. For example, the stiffness of a Bowden cable (see fig. 2.3), used to transmit force
from the handle to the brakes on a bike, in surgery, robotics, et cetera, is determined
only by the elastic stiffness of the sheeting and the cable. The reason is that the negative
geometric stiffness in the compressed sheeting counteracts the positive geometric stiffness
in the tensioned cable. While the geometric stiffness for the individual members may be
substantial, the net effect on the entire system is zero.

2.1.4 Mechanics of bar frameworks, statically indeterminacy, and
prestressing

A bar framework is a theoretical model of inextensible bars connected with friction-less
joints that can model several structures such as trusses, tensegrities, cable nets, and
approximate membrane-action dominated gridshells and, with a fine-enough resolution,
continuous shells.
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(a) Not prestressed

More tension

Less tension

�
�2 < �1

(b) Prestressed

Figure 2.2: Two cable-braced pin-jointed frames loaded with a horizontal load P causing
the top node deflection δ. Both are equal except that structure (a) is not prestressed,
whereas (b) is.

�out

�out
�in�in

Cable Sheeting

Figure 2.3: Working principles of the Bowden cable. The forces applied on the cable
corresponds to those applied on the sheeting. Due to friction between cable and sheeting,
the input forces are slightly higher than the output forces.

Initially presented by Möbius (1837) in an abstract format (Pellegrino 1986), there
exists a simple condition for the rigidity of such bar frameworks, widely known asMaxwell’s
rule for the construction of rigid frameworks,

b− nj + c = 0, (2.4)

where j is the number of joints, n the dimension of the space (n = 2 in two dimensions,
n = 3 in three dimensions), b the number of bars, and c the number of kinematic
constraints (c ≥ 3 in two dimensions, c ≥ 6 in three dimensions). If eq. (2.4) holds, the
framework is statically determinate, whereas if the left-hand side is positive, it is statically
indeterminate, and if negative, a mechanism.

However, just as Möbius, Maxwell (1864b) anticipated exceptions which the rule could
not explain on its own. For example, one of Buckminster Fuller’s tensegrity structures
with 12 joints and 24 bars should, according to the rule, be loose with 6 degrees of freedom,
yet it is stiff (Tibert 2002). More than a century later, Calladine (1978) presented an
extended rule capable of dealing with all possible cases

b− nj + c = s−m, (2.5)

where m is the number of internal mechanisms and s the number of states of self-stresses,
or states of prestress. Equation (2.5) does not by itself solve m and s, numbers that
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depend not only on the number of bars and joints and the topology but on the complete
specification of the framework (Pellegrino and Calladine 1986). However, it introduces a
clear explanation of the fundamental mechanics of bar frameworks.

The extended rule tells that, to prestress a bar framework (s > 0), it must be statically
indeterminate (b − 3j + c > 0). Furthermore, there may be bar frameworks, such as
Fuller’s tensegrity structure (m = 6, s = 6), in which the induced prestress counteracts
the mechanism, rendering the framework rigid. Figure 2.4 illustrates additional examples.

b = 2, j = 3, c = 6

m = 1, s = 0

(a)

b = 3, j = 4, c = 9

m = 0, s = 0

(b)

b = 4, j = 5, c = 12

m = 0, s = 1

(c)

b = 3, j = 4, c = 9

m = 1, s = 1

(d)

Figure 2.4: Three-dimensional (n = 3) bar framework (a) is a mechanism that can freely
rotate around the axis through the supports, (b) is a rigid statically determinate structure,
(c) is a rigid statically indeterminate structure, and (d) a mechanism that, when activated,
introduces a state of self-stress that counteracts the mechanism, rendering the structure
rigid. In reality, none of the frameworks is rigid; the stiffness determines the resistance
against deflection.

2.2 Prestressing usage

Prestressing is applied virtually everywhere, to structures and everyday objects, by nature
and humans, starting in prehistoric times. Although humans are arguably part of nature,
it is convenient to discuss prestressing applied in nature and technics (technology; lending
from Otto’s Pneus in Nature and Technics (Bach 1977)) separately to highlight how
humans have understood and used the concept. The following sections describe the
application of prestressing and summarise the more extensive collection presented in the
preceding licentiate thesis (Sehlström 2019).

2.2.1 In nature

Proteins are among the tiniest things prestressed in nature yet vital for life. The prestressed
spectrin protein inside neurons enables the sensation of mechanical forces (Krieg, Dunn,
and Goodman 2014), and studies on ‘tensegrity-like pattern of prestress’ in the protein
ubiquitin may result in the creation of tailor-made proteins with mechanical properties
for applications in medicine, material design, and nanotechnology (Edwards, Wagner, and
Gräter 2012, p. 4).
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Still small-sized, there is the turgor pressure in living cells which, similarly to a balloon
filled with air, provides structural rigidity when the pressurised fluid contained by the
cell stretches its wall. The turgor pressure can be as small as 0.1-0.4 MPa yet also exceed
2-3 MPa (a bike tire is around 0.2-0.6 MPa) and plays an essential role in processes such
as growth, development, mechanical support, signaling, organ movement, flowering, and
responses to stress (Beauzamy, Nakayama, and Boudaoud 2014; Luchsinger, Pedretti, and
Reinhard 2004).

In trees, the turgor pressure is referred to as growth stresses and can be large enough
to cause significant problems in the conversion of felled trees to timber (Wilkins 1986).
The growth stresses are orthotropically distributed (Mattheck and Tesari 2004), its origin
discussed by, for example, Münch (1938), Jacobs (1938), Kubler (1987), and Cassens and
Serrano (2004), and explains why sawn timber deform (bow, crock, cup, twist). Due to
the high risk of fibre buckling in wood (Boyd 1950), wood has a longitudinal compressive
strength of only about half of its tensile strength. The growth stresses (fig. 2.5a) resist
external forces, primarily from the wind (fig. 2.5b), and more even utilisation of the wood
strength is obtained (fig. 2.5c), resulting in a much higher overall load-bearing capacity
than if there were no prestresses present (Mattheck and Kubler 1995).

σ

(a) Growth stresses

σt = σc

σc

σ

(b) Bending stresses

σt ≈ 2σc

σc

σ

(c) Resulting stresses

Figure 2.5: Longitudinal stresses σ in a tree trunk. The growth stresses originate when
wood cells in the outer part of the trunk contract in the longitudinal direction and expand
in the transverse direction (Münch 1938), causing compression of the adjacent interior
layers that reduce the tension of older cells (Jacobs 1938) leading to severe compression
near the pith (Cassens and Serrano 2004).

The longitudinal contraction is restrained by older cells, putting the new cells in tension
(Kubler 1987), causing a compression of the adjacent interior layers that reduces the
tension of older cells (Jacobs 1938) leading to severe compression near the pith (fig. 2.5a)
(Cassens and Serrano 2004).

Some animals also prestress their structures. For instance, birds bend grass and
branches as they build their nests, effectively inducing prestresses in the members that,
with the help of friction, are restrained against one another and thus kept in place.
Spiders prestress their webs to make them stiff enough to support the weight of themselves
and their prey without substantial deflection using a minimum of material (Kullmann,
Nachtigall, and Schurig 1975). The induced prestress also affects the sonic properties of
the web, which transmits vibratory information to the spider; by alternating the tension,
the spider can tune its web (Mortimer et al. 2016).

13



2.2.2 In technics

The following examples of prestressing applied within techncis are presented thematically
in somewhat chronological order.

Early usage

Though impossible to date due to their simplicity, tents are likely the oldest example
of prestressing applied by humans. Hide supported by slender branches bent into place,
like in a bird’s nest, is the assumed way of construction. With the invention of ropes
and textiles, also requiring prestressing for their making, the tents developed further into
portable, lightweight structures such as the yurt and tipi. In parallel, vessels for fishing
and transportation were advanced with the help of prestressing, for example, skin boats,
dating back at least 10 000 years, with a skin membrane wrapped and stretched around a
timber frame (Evguenia 2016).

Reliefs depicting prestressed boats and barges in ancient Egypt are among the earliest
records of advanced usage or prestressing, dating back to c. 2700 BCE (Leonhardt
1964). A system of entwined ropes from stern to bow, prestressed by additional twisting,
prevented the vessels from hogging, keeping the deck in level (Torr 1895; Casson 1971).
The mightiest is perhaps the barge depicted on the wall of Queen Hatshepsut’s temple in
Dar el-Bahri (fig. 2.6).

A stretched string loses its prestress as soon it is released from its anvil, minimising its
stored strain energy. Bows, developed for hunting and warfare, leading to the medieval
English longbow with a range of up to 315 m (Oakeshott 1960), utilise this phenomenon,
and later also catapults (Gordon 1978). The tensioning of the bowstring stores strain
energy in the bow, further increased by the archer pulling the string backward, which,
upon release, rapidly accelerate the arrow forward. Similar things happen in sports rackets
(Kullmann, Nachtigall, and Schurig 1975) where kinetic energy in the ball and racket at
impact converts to strain energy, deforming the ball and the net. But the deformed state
is not minimal, so the ball and net try to get back to a lower energy state, converting
strain energy back into kinetic energy, forcing the ball to spring off the net, which returns
to its initial flat configuration. Of course, some energy dissipates during these processes as
thermal energy and air movements. For the bow and racket, the dissipation is unwanted,
reducing the kinetic energy in the arrow or ball, whereas desired in string instruments,
which are prestressed so that the strain energy dissipates as sound waves as it oscillates
with decreasing amplitude in a precise manner until reaching its initial configuration,
giving rise to tones while playing.

Stone and masonry

The Romans controlled the stress trajectories within masonry by prestressing (Todisco
2016), effectively fine-tuning the structure’s weight. For example, the attic of the Colos-
seum (70–80 CE) in Rome adds extra weight in the upper part that compresses the lower,
counteracting tensile stresses at the base caused by wind. In the Pantheon (118–128 CE)
in Rome, the varying density of the concrete help steers the thrust towards the foundation.
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Figure 2.6: Hatshepsut’s barge c. 1470 BCE. Loaded with two obelisks, each weighing
around 375 t, it was towed on the river Nile from the quarry in Aswan 213 km to the
temple in Karnak.

Figure 2.7: Elevation of parts of the façade of Pavilion of the Future (1992) in Seville,
Spain

(a) Before installation of wedges (b) After installation of wedges

Figure 2.8: Laminated timber beams using wedges and metal wraps

Figure 2.9: Wettingen brücke (1765) by brothers Johannes and Hans Ulrich Grubenmann.
The timber bridge, which crossed the Limmat River in Switzerland, was burned by French
troops only a few decades after its completion during the French Revolutionary Wars.
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During the medieval period, refinements of the technique enabled the construction of
Gothic cathedrals, where pinnacles add weight to steer thrusts in the flying buttresses
down into the buttresses (Addis 2007).

Heyman (1966) provides a rigorous framework of limit state analysis applied to masonry
structures, stating that the masonry is safe if the thrust line representing the path of the
compressive resultants of the stresses lies within the cross-section for all possible load
cases. The measures undertaken by the Romans and medieval master builders effectively
controlled the path of the thrust line.

More recently, Peter Rice controlled the thrust line in the Pavilion of the Future (1992)
in Seville, Spain (fig. 2.7) using a series of tie-rods to lift the weight of an adjacent roof
and apply it radially to the stone arches of the façade (Addis 1994; Lenczner 1994; Rice
1996).

Timber

Traditional timber structures contain several examples of prestressing, enabling short
members to be assembled effectively, allowing longer and taller constructions (James
1982). The development of the joints follow closely with the development of suitable tools
(Zwerger 2000).

Several traditional timber joints rely on wedges (Krauth and Meyer 1893, fig. 59),
which, when driven in between the members, pushes them apart and locks the connection
through friction and a normal force. Wedges in combination with iron straps (fig. 2.8)
enabled the Swiss Grubenmann family (Brunner 1921; Brunner 1924; James 1982; Killer
1942; Weinand 2016) to construct the first curved laminated timber arches, leading to the
construction of the Wettingen bridge in 1765 (fig. 2.9; S. Samuelsson 2015). The bridge
aroused the admiration of their contemporaries almost immediately and was, partly due
to the explosion of architectural research, travel, and publication starting in the 1750s
(Bergdoll 2000), already widely known in 1770 (Angelo and Maggi 2003). Recent studies
provide insights on the design and analysis of laminated arches (Miller 2009).

The rapid expansion of the U.S. railway led to the further development of prestressed
timber bridges during the 19th century. It began with a patent by Long (1830) for a
timber truss bridge in which ‘counterbraces’ were put in compression using wedges, see
fig. 2.10, hence avoiding tension connections (Gasparini and Provost 1989; Gasparini
and Simmons 1997; Gasparini and Porto 2003). The patent introduced mathematical
principles of engineering (Christianson and Marston 2015). Long filed for further patents
(Long 1839) and was recognised by contemporary Carl Culmann (1851), but his inventions
were soon made obsolete (Sutherland 1997) as new patents by Howe (1840), see fig. 2.11,
and T. W. Pratt and C. Pratt (1844), see fig. 2.12, introduced pre-tensioned iron rods
into trusses.

Today, the development and usage of prestressed timber focus primarily on on post-
tensioned engineered timber members and structures, for example, beams with internal
steel tendons (D’Aveni and D’Agata 2017) and external steel plates (McConnell, McPolin,
and Taylor 2014), stress-laminated decks (Oliva et al. 1990; Ekholm 2013), and frames
with tendons passing through members and joints, creating moment stiff connections
(Palermo et al. 2005; Granello et al. 2018; Buchanan, Deam, et al. 2008; Newcombe
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Figure 2.10: Longs’s 1830 patent (Long 1830)

Figure 2.11: Howe’s 1840 patent (Howe 1840)

Figure 2.12: Thomas and Caleb Pratt’s 1844 patent (T. W. Pratt and C. Pratt 1844)
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2011; Buchanan, Palermo, et al. 2011; Curtain et al. 2012; Wanninger and Frangi 2016;
Wanninger 2015) with favourable seismic behaviour (Wanninger and Frangi 2014).

Concrete

Reinforced concrete is the most widely used construction material today. It is a mouldable
material with high compressive strength. But it has a brittle failure even at very low
tensile stresses, hence the added reinforcement, ensuring a ductile behaviour with plastic
failure at much higher stress levels. In addition, concrete shrinks and creeps over time,
altering its material properties. These issues triggered investigations that led to the
development of prestressed concrete during the late 19th and early 20th centuries.

The general idea of prestressed concrete is to compress the concrete section to partially
or fully avoid tensile stresses (e.g. due to self weight and external loading) within
the concrete, resulting in uncracked concrete with higher flexural capacity, increased
corrosion resistance, and better liquid-containing properties than cracked reinforced
concrete. Furthermore, prestressing improves the shear resistance and allows reduced
cross-sections, resulting in material and cost savings (Kaylor 1961).

Leonhardt (1964), Menn (1990), and Sanabra-Loewe and Capellà-Llovera (2014) covers
the history of prestressed concrete in broad terms, Hellström, Granholm, and Wästerlund
(1958), Haegermann, Huberti, and Möll (1964), and Engström (2011) provide additional
details. A brief summary follows. Preceded by at least three patents applying prestressing
to building construction, Jackson (1886) received the first patent on prestressed concrete
using tie-rods to compress the concrete. It was followed by several patents by others
over the next coming four decades, for example, one by the Norwegian Jens Lund (1912),
however few of these systems had any practical application. Only when the French
engineer Eugène Freyssinet (1879–1962) recognised the full potential, the concept became
applicable at a large scale. His work and observations on how to control creep, then a
little-known phenomenon, led to several patents in 1928, stressing the importance of full
prestressing, a design philosophy prevailing until the late 1960s when partial prestressing
took over.

In parallel with Freyssinet, Spanish engineer and researcher Eduardo Torroja (1899–
1961) took an interest in prestressed concrete (Sutherland 2001; Ochsendorf and Antuña
2003), resulting in the 1925 Tempul (Torroja 1962; Lozano-Galant and Paya-Zaforteza
2017) and the 1939 Alloz (Torroja 1948) aqueducts, the latter discussed in detail in
Paper F. Torroja co-founded in 1949 the Spanish Prestressed Concrete Association, in
1952 the Féderation Internationale de la Précontrainte (FIP), and in 1953 the Comité
Européen du Béton (CEB) (Corres and Leon 2012); later, in 1998, FIP and CEB merged
into the International Federation for Structural Concrete fib.

Prestressed concrete is either post-tensioned, commonly used for in situ concrete, or
pre-tensioned, commonly used for prefabricated members; in the former case, steel tendon
tensioning takes place after (post) concrete curing, whereas in the latter, before (pre).
In either case, strain compatibility between the concrete and the steel and substantial
differences in cross-section area and modulus of elasticity necessitate the need to use high-
strength steel tendons when prestressing concrete. Two major systems for post-tensioning
concrete dominate the market: the Freyssinet system, with steel strands locked using
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wedges, and the Macalloy system, with threaded bars and bolts to lock the system, see
fig. 2.13. Both use hydraulic jacks to tension the steel tendon, which runs in ducts, either
filled with cement grout after anchorage to get a continuous bond between steel and
concrete or with grease for an unbonded design. When pre-tensioning, steel strands are
tensioned between two anvils so that the strands run through the casting mould. Then
the concrete is cast, encapsulating the strands, and cured for some time before releasing
the strands from their anvils, effectively relaxing some of the tension in the strands and
compressing the concrete.

Concrete

Cement grout (bonded)
Grease/Wax/Gel (unbonded)

Tendon duct

Concrete

Tendon duct

Bar with threaded end

Washer

HelixHelix

Nut

End plate

Square link
Square link

Strand
Wedge
Anchor head
Anchor plate

Figure 2.13: Typical design of concrete post-tensioning anchors. The Freyssinet system to
the left and the Macalloy system to the right. The longitudinal compressive stresses in the
concrete give rise to transverse tensile stresses, taken care of by the mild reinforcement
steel helix and square links surrounding the duct.

Currently, there is an interest in using other tensioned materials than steel, such as
carbon-fibre-reinforced polymers, to compress the concrete, both in new construction
and for strengthening existing ageing concrete structures. The application can lead to
increased elastic bending stiffness, smaller crack openings, and increased ultimate capacity
(Yang 2019).

Wheels and restrained arches

Prestressing has been used for a long time to construct lightweight wheels. Early con-
struction relied on wet rawhide placed on the exterior of the rim that dried and shrunk,
binding the hub, spokes, and rim segments together. Later, when iron became readily
available, the wheels were fitted with an iron hoop or streaked with iron, compressing the
woodwork and protecting against wear (fig. 2.14). The methods have similarities with
those used to make wooden barrels bound by metal hoops.

The first prestressed iron Ferris wheel was built by George Washington Gale Ferris Jr.
for the World Columbian Exposition in Chicago 1893. The 76 m wheel carried 36 cars and
had an outer layer of bars prestressed by an inner layer of post-tensioned cable spokes,
see fig. 2.15a. The wheel no longer exists, but the similar 1897 Wiener Riesenrad in
Vienna, Austria still operates (Kullmann, Nachtigall, and Schurig 1975). Until this point,
designers understood the prestressing concept sufficiently and applied it ‘effectively and
safely, albeit without analyses based on structural mechanics’ (Gasparini, Bruckner, and
Porto 2006, p. 418). Ferris’ wheel changed this, and J. B. Johnson, Turneaure, and Bryan
(1894) provides an early and realistic mathematical model for the analysis of the effects
of prestressing, live load, and their sum in the context of a Ferris wheel, see fig. 2.15.

19



Figure 2.14: Two methods of shoeing a wheel. In the centre the labourers are using
hammers and ‘devils’ to fit a hoop onto the rim, and on the right they’re hammering
strakes into place.
Originally published by Diderot and Rond d’Alembert (1769)

Today, many Ferris wheels, such as the High Roller and London Eye (Engström et al.
2004), have pretensioned spokes aligned along a narrow compressed rim and a wide hub,
just as modern bicycle wheels. Then the inclined spokes provide some elastic stiffness and
substantial geometric stiffness so that the wheel better withstands lateral forces in addition
to the radial (Brandt 1993). Similar cable-restrained circles formed the substructure for
the hull of Zeppelins (Kullmann, Nachtigall, and Schurig 1975, p. 143).

Pre-stressed cables are also used to restrain arches. The glass roof of the Moscow
GUM department store (1890–1893) and the Pushkin Museum (1898–1912), both by
lightweight-shell pioneer Vladimir Shukhov (1853–1939) (Wells 2010), are stiffened by
cables springing from the ends connecting once to the arch (Graefe and Tomlow 1990).
Eugene Freyssinet used the same topology for the formwork for the 1923 Orly airship
hangar (Frampton and Futagawa 1983; Frampton 2007), see fig. 2.16a. More recently,
Peter Rice let, for the glass roof of the bus terminal in Chur, Switzerland (1988), all cables
radiate towards the roof arch from a central nave located just above the focal point of the
arch (Rice 1996; Addis 1994). Jörg Schlaich used the same principle in 1989 for the glass
roof at the Museum of Hamburg History (Barkhofen and Bögle 2010) and again in 1998
for the glass roof at the DZ-Bank in Berlin (J. Schlaich, Schober, and Helbig 2001). Other
examples include the Japan Pavilion at Expo 2000, where Shigeru Ban, who collaborated
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Figure 2.15: Illustration of Ferris’ wheel (1893) and load analysis according to J. B.
Johnson, Turneaure, and Bryan (1894). Under linear relations and by superposition of
load cases and a symmetry argument, the prestressing force P in each cable (b) has to be
twice the weight of each car Q (c), i.e. P = 2Q. Then there will be 0 force in cable a and
the maximum tensile force 4Q in cable t (d), compared to the case without prestressing,
where non-buckling bars replace the cables, resulting in a maximum compression force of
5.68Q in bar a and maximum tensile of 11.48Q in bar t.

(a) Orly Hangar (b) Japan Pavilion (c) Berlin Hauptbahnhof

Figure 2.16: Cable-retrained arches (not to scale)
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with Frei Otto on the project, let the cables spring from the ends and connect multiple
times to the arches (Ban 2000), see fig. 2.16b. There is also the shallow glass roof of
Berlin Hauptbahnof (2006), where Schlaich has let the cables trace the tension side of
the moment diagram of the arches, leaving the space below clear (Detail 2005; Falk and
Buelow 2009), see fig. 2.16c. The degree of prestress in these systems is low, with enough
tensile stress to make sure that the cables never run slack which would cause them to lose
their stiffness completely. Such a loss would lead to an increase in the buckling length of
the arch, making it more susceptible to instability phenomenons.

Swiss engineer Jürg Conzett illustrates another way to restrain an arch in his Was-
serfallbrücke (2003) in Flims, Switzerland (Dechau 2013). The bridge consists of a thin
masonry arch compressed and stiffened by post-tensioned steel plates placed on top,
leading, just as for the Pavilion of the Future (fig. 2.7), to a radially uniformly distributed
force, effectively ensuring the thrust line lies within the stone section, see fig. 2.17a.
Similar solutions, but with internal tendons running through the masonry, are found
in the stone arches supporting the roof of Padre Pio Pilgrimage Church (2004) in San
Giovanni Rotondo, Italy (Rice 1996), and in the prototype bridge made of re-used concrete
blocks (2021) by the Structural Exploration Lab at EPFL (Fivet 2021), see fig. 2.17b.

(a) Wasserfallbrücke (2003) (b) Bridge made of re-used concrete (2021)

Figure 2.17: Post-tensioned masonry bridges
Image (b) courtesy of Corentin Fivet at Structural Xploration Lab

Pneumatic structures

Beginning in the 1960s, Frei Otto explored the potential of pneumatic structures, leading
to several IL publications (Bubner 1975; Bach 1977; Drüsedau 1983; Otto and Rasch 1995).
Expo ’70 in Osaka exhibited various pioneering pneumatic buildings, but since then, no
substantial development has been made other than the use of the airhouse to cover tennis
courts and large sports arenas (Luchsinger, Pedretti, and Reinhard 2004). Pneumatic
structures are, however, often used as components of building envelopes, such as the ETFE
foil cushions used at the Eden Project (2001) in the UK, the Beijing Olympic Aquatics
Centre (2007), and Roof Annex Lutherhaus (2010) in Germany (Liu, Zwingmann, and
M. Schlaich 2015). In the latter, air-filled cushions suspend between cable-supported
circular steel beams, see fig. 2.18.

Pneumatic structures, or pneus as Otto called them (Fabricius 2016, p. 1264), can also
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be used as lightweight load-bearing components (Otto 1995) such as beams or bridges as
exemplified by Luchsinger, Pedretti, and Reinhard (2004), Pedretti and Luscher (2007),
and Zieta, Dohmen, and Teutsch (2008).

Figure 2.18: Lutherhaus, Germany (2010). Pressurised transparent foil cushions suspended
between cable-supported steel beams.
Copyright Schlaich Bergermann Partner. Reproduced with permission.

Cable nets

Cable nets efficiently carry loads by tension and are often prestressed to limit their
deflection under loading, and have been used for a long time to cover large areas. For
instance, evidence suggests (Krizmanić 2020) the Colosseum (70–80 CE) in Rome and other
contemporary amphitheatres had a velarium consisting of ropes supporting retractable
textiles covering the stands.

However, substantial advancements of cable net roof structures took until the 1950s
(Krishna and Godbole 2013), beginning with the Dorton arena (1953) in Raleigh, U.S.
(Otto 1954), see fig. 2.19. Several roofs followed in the coming decades (Kullmann, Nachti-
gall, and Schurig 1975), such as Scandinavium (1971) in Göteborg, Sweden (Kärrholm
and A. Samuelsson 1972). Frei Otto’s work led to the design of Olympiastadion (1972)
in Munich, Germany (Tomlow 2016), see fig. 2.20. On the design team, among others
such as Fritz Leonhardt, John Hadji Argyris, and Klaus Linkwitz, was Jörg Schlaich, who
since then through his practice has contributed to the development of prestressed cable
net structures (M. Schlaich 2018).
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Most cable nets are anticlastic (curved in two opposite ways; saddle-shaped), being,
in general, stiffer than flat nets. As a consequence, flat nets require higher levels of
prestress to compensate, resulting in large support structures, which is the case for the
cable-net-supported glass façade of the Hilton Hotel (1993) at Munich Airport (Schober
and Schneider 2004; Barkhofen and Bögle 2010).

Figure 2.19: Dorton arena (1953). Drawing (left) and view of the cable net roof from the
inside (right).
Images courtesy of the N.C. State Fairgrounds

Figure 2.20: Olympiastadion (1972) in Munich by Frei Otto, Jörg Schlaich, Rudolf
Bergermann, et al
Image by Taxiarchos228, Munich: Olympic Stadium, 2016-08-01. de.wikipedia.org. Copyleft:
This is a free work, you can copy, distribute, and modify it under the terms of the Free Art
License artlibre.org/licence/lal/en

Tensegrity

Tensegrity structures offer perhaps the most sophisticated use of prestressing, which
through a clear distinction between pin-jointed compression and tension members (Wrold-
sen 2007) gain a high mechanical efficiency (Ashwear 2016). While the word tensegrity,
which is a contraction of tensile and integrity, was coined by Buckminster Fuller (1895–
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1983) in a patent (Fuller 1962), there is a dispute regarding the true inventor and the
origins of the idea (Snelson 2012), but the sculpture X-Piece (1948) by artist Kenneth
Snelson (1927–2016) is generally regarded as the birth of the tensegrity concept (Tibert
2002). For a more extensive exploration of the origins of the concept, see the series of
articles and responses in the special issue of International Journal of Space Structures
(Lalvani 1996).

There exists several variations of the definition of the concept, see, for example, Fuller
(1962), Pugh (1976), Hanaor (1994), Skelton et al. (2001), and Motro and Raducanu
(2003). Miura and Pellegrino interpret a tensegrity structure as ‘any structure realised
from cables and struts, to which a state of prestress is imposed that imparts tension to
all cables’ and adds that ‘as well as imparting tension to all cables, the state of prestress
serves the purpose of stabilising the structure, thus providing first-order stiffness to its
infinitesimal mechanisms’ (Tibert 2002; Tibert and Pellegrino 2003). Many definitions
limit the allowable element types to struts and ties. However, relying on Fuller’s more
poetic definition of tensegrity as ‘islands of compression in a sea of tension’ (Safaei 2012),
one could argue that other kinds of element are possible to use in a tensegrity structure
(Motro and Raducanu 2003), such as continuous fabric stretched against discontinuous
struts.

Snelson exhibited many tensegrity artworks, several depicted in his book (Snelson 2013),
and Robert Le Ricolais (1894–1977) applied principles of tensegrity in his explorations
of spatial structures (Nsugbe and Williams 1999; Motro 2007). Cecil Balmond used the
concept in 2006 for his H_Edge structure (Balmond 2007). In 2003, Snelson’s record
of highest tensegrity structure was ousted by the 62.3 m tensegrity tower in Rostock,
Germany, relying on pre-tension forces up to 1100 kN for its rigidity (M. Schlaich 2004).
But the tensegrity concept has proven difficult to implement in its pure form within
architecture and civil engineering (M. Schlaich 2004). However, some structures have
tensegrity-like features, such as large domes, temporary structures, tents (Safaei 2012), and
stadium roofs but also glass façades and roofs (cf. section 2.2.2). Both Olympiastadion
in Munich (fig. 2.20) and the Millennium Dome from 1999 (fig. 2.21) by Richard Rogers
and Buro Happold (Liddell and Westbury 1999), with their tensile membranes, cables,
and so-called flying masts (Wroldsen 2007), are examples. The concept has also inspired
bridge designs, such as the Royal Victoria Dock Bridge (1998) in London by Techniker
and Lifschutz Davidson and the Kurilpa Bridge (2009) in Brisbane, Australia by Ove
Arup & Partners.

Rice Francis Ritchie (RFR) (Rice 1996), during the 1980s considered the best en-
gineering firm in glassed tensed structures worldwide (S. Samuelsson 2015), designed
façades with tensegrity features. With the Glass Walls (Les Serres) at the Parc de la
Villette, Paris (1982–1986) in their portfolio (Patterson 2011), RFR were consulted for
the design of the Grand Pyramid (1989) and the Inverted Pyramid (1993) at the Louvre
in Paris (fig. 2.22). Architect Ieoh Ming Pei (1917–2019) asked the engineers to create a
‘structure as transparent as technology could reach’ (Knoll 1989; NCK n.d.). The Grand
Pyramid consists of steel beams stiffened by post-tensioned steel cables and compression
struts. These are placed in two directions parallel to the pyramid edges to support the
glass panels and handle the wind pressure. Several horizontal cable rings redistribute
suction forces due to wind from one side of the pyramid to the opposite (Engström et al.
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2004). The Inverted Pyramid takes advantage of structural glass and post-tensioned rods,
rendering the need for a supporting frame unnecessary.

Figure 2.21: Millennium Dome, London, UK (1999) by Richard Rogers and Buro Happold
Image by James Jin (2004); CC BY-SA 2.0 license; cropped;
flickr.com/photos/44768990@N00/58712717

Figure 2.22: Grand Pyramid (1989; left) and Inverted Pyramid (1993; right) at the Louvre,
Paris
Left image by Babyaimeesmom (2018); CC BY-SA 4.0 licence; cropped, made black & white;
commons.wikimedia.org/wiki/File:Louvre_Palace.jpg. Right image by Lucas Lima (2017); CC
BY-SA 2.0 licence; cropped; flickr.com/photos/lucasnave/34167423466
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2.3 Active and inactive prestress

Among the presented examples in section 2.2, two types of prestress are distinguishable:
active prestress and inactive prestress.

Active prestress affects the global state of stress and links to Maxwell’s rule requiring
a bar framework to be statically indeterminate to prestress it.

Inactive prestress only affects the local state of stress. Think, for example, of a simple
column (fig. 2.23b). It is statically determinate, and, by the logic of Maxwell’s rule, it
cannot be prestressed. However, if replaced by a cable-stiffened post (fig. 2.23c), it can
indeed be prestressed by tensioning the cables. Yet, the overall state of stress is still
statically determinate, and the net effect of the prestress is virtually zero, no matter how
much the cable is tensioned (until the cable snaps or the post buckles). The same applies
to the cable-restrained arches in fig. 2.16. Wu and Sasaki (2007) discusses the structural
behaviours of an arch stiffened by cables, concluding that the ‘natural frequencies and
the damping ratios ... change little when two kinds of pre-tension (49 N and 147 N) are
introduced.’ Thus, the level of pretension does not affect the behaviour in any significant
way, as long as it is enough to keep the cables tensioned.

�

?

�

(a) Arbitrary structure

�0, �0, �0, �0

�

�

(b) Column, C0 = P

�

�

�1, �1, �1, �1

�c, �c, �c, �c

�b, �b, �b, �b

(c) Cable-stiffened post, C1 6= P

Figure 2.23: Simply supported globally statically determinate structures. Regardless of
the structure placed between the supports, the applied load and the reaction are statically
determinate and equal, and none can be actively prestressed, only inactively. Although
the cable-stiffened post is compressed as the cables are pretensioned, it requires in general
less material than the column (A1 < A0) to withstand the same load P since the buckling
length of the post is reduced by the stiffening cable system.

However, inactive prestress may still result in improvements in terms of increased
material efficiency compared to using ordinary columns or beams, such as the cable-
supported beams in the Louvre Grand Pyramid (fig. 2.22) and at Lutherhaus (fig. 2.18)
and the cable braced lattice of The Symbolic Globe (1995) by Erik Reitzel (1941–2012).
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2.4 Prestressing objectives and strategies

The presented examples in section 2.2 represent only a selection of all possible applications
of prestressing, but the collection is large enough to classify and identify generalities. The
licentiate thesis (Sehlström 2019) preceding this dissertation describes the details of the
classification, including history, behaviour (material, member action, structural action),
analysis and design approaches, the reason for prestressing, and its realisation. Although
‘arbitrary and rough,’ the classification may ’be useful as a help for understanding and
discussions, if its imperfections and incompleteness are borne in mind’ (Arup 1985, p.
34). The work resulted in the proposition of general prestressing objectives and strategies.
These have been further developed and the result is summarised in table 2.1 and table 2.2
respectively.

The suggested objectives in table 2.1 help clarify what it means to improve the
performance of the prestressed object. Several objectives can apply to the same structure,
and there are unequivocally additional objectives than those suggested. Still, the suggested
objectives have value, where the incompleteness and inconstancy of the list facilitate
further discussion, perhaps provoking the formation of new perspectives offering means
for deepened understanding.

The strategies in table 2.2 depart from how the prestressing is balanced, either as
an externally equilibrated or auto-equilibrated system. Which of the two is, to a large
extent, defined by the system boundaries. Consider, for example, a spiderweb and the
roof of the Scandinavium arena. The structures are very similar, with multiple tensioned
threads or cables. Despite this, the spiderweb is externally equilibrated, whereas the roof
is auto-equilibrated. The argument for this is that the spiderweb gives rise to tensile
reaction forces at the points where it is attached to surrounding objects proportional to the
prestress in the web, whereas the tension in the roof cables are balanced by compression
and bending in the surrounding edge beam, and the level of prestressing do not affect the
reaction forces at all. But if the edge beam is considered external to the roof structure, it
would no longer be auto-equilibrated but externally equilibrated, just as the spiderweb.
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Table 2.1: Objectives with prestressing

1 StiffnessMaterial efficiency

1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency1a Obtain material efficiency
Prestressing to avoid compression/buckling:
Ferries wheel, cable roofs, growth stresses

Ensure stability

1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability1b Ensure stability
Prestressing to provide positive geometric stiffness and remove internal mecha-
nisms:
Tensegrities

Form stability

1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability1c Provide form stability
Prestressing to maintain geometry:
Tensile membranes, pneumatic structures, Ferris Wheel & bicycle wheel, spi-
derweb, Egyptian barges, cables for formwork for Orly hangar, cable roofs

Frequency

1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency1d Obtain frequency
Prestressing to tune (often slender) members to a specific frequency:
String instruments, bicycle spokes (during truing of wheel)

2 StrengthJoinery

2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery2a Construct efficient joinery
Prestressing to secure connections (avoid tension in joints):
Masonry structures, traditional timber joints, modern bolted joints, birds nest

Ductility

2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour2b Achieve ductile behaviour
Prestressing to use material ductile stress-strain behaviour:
Masonry, concrete

Prestressing to achieve global ductility:
Pres-lam/Flexframe, Padre Pio Pilgrimage ChurchStore energy

2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy2c Store energy
Prestressing to store strain energy:
Bow, racket & sports equipment
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Table 2.2: Strategies for prestressing

1 Externally-equilibrated system
Inner forces balanced by reaction forces at boundary; prestressing in-
creases reaction forces

1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces1a Tensile reaction forces
Inner stresses balanced by tensile reactions:
Spiderweb, Hilton hotel at Munich Airport

1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores1b Compressive reaction fores
Inner stresses balanced by compressive reactions:
Gothic Cathedrals & timber buildings with heavy roofs

1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores1c Mixed reaction fores
Inner stresses balanced by both tensile and compressive reactions:
Suspension bridges, cable-stayed radio masts

2 Auto-equilibrated system
Tension and compression internally in balance; prestressing do not affect
reaction forces

2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation2a Inflation
Membrane in tension enclosing compressed fluid:
Pneu & turgor pressure, airhouse & ETFE cushions

2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending2b Active bending
Prestressing by active bending, usually restrained by string or membrane
in tension:
Birds nest, bow, tents & skin on frame boat, hull of Egyptian barges

2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression2c Aligned tension/compression
Tension and compression member along a mutual line of action:
Prestressed concrete beam, Pres-lam/Flexframe, Wasserfallbrücke &
Padre Pio Pilgrimage Church

2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression2d Distributed tension/compression
Tension and compression members along individual lines of actions:
Egyptian barges, string instruments & racket, cable roofs & nets, re-
strained arches & wheels, tensegrities

2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing2e Local prestressing
Pushing parts away/together:
Timber joinery with wedges
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3 Shell structures
This chapter begins with a brief discussion on different types of shells in section 3.1. Then
it introduces differential geometry in section 3.2 used to describe the curved geometry
of shells and points out some curvature-related properties. Eventually, this enables the
formulation of basic equilibrium equations in section 3.3. Following the maths-intensive
sections 3.2 and 3.3, the Airy stress function is discussed in section 3.4 along with means
to help deal with the interplay between geometry and stresses in membrane-action shells.

3.1 Types of shell structures

Continuous shells in concrete or steel primarily carry compression and occasionally also
tension. Commonly, bending stiffness is provided to avoid buckling by, for example, adding
stiffening ribs to a concrete shell as exemplified by Nervi (1956) or using corrugation as
discussed by Thompson (1942). If the shell have unsupported edges and have too little
bending capacity, it may be necessary to reinforce the edges, for example, with stiffening
lips, as in the Wyss garden concrete shell by Heinz Isler (1926–2009), see fig. 3.1a, or edge
beams, possibly prestressed as in Smithfield Poultry Market (Trout 2020, p. 523), see
fig. 3.1b.

(a) Wyss garden concrete shell in Zuchwil
(1962) by Heinz Isler

(b) Smithfield Poultry Market in London (1963)
by Ove Arup & Partners and Ronald Jenkins

Figure 3.1: Concrete shells with reinforced edges
Image (a) by Chriusha – Own work; CC BY-SA 3.0 licence;
commons.wikimedia.org/w/index.php?curid=7673963 and (b) by Phillip Perry; CC BY-SA 2.0
licence; cropped; commons.wikimedia.org/w/index.php?curid=5068208

Masonry shells—or vaults—can contain only compressive stresses since the bed joints
of masonry have virtually no tensile strength. For vaults to stand with negligible tensile
capacity, they must have ‘a good structural shape’ (Block 2009). Masonry has a high
ratio between compressive strength and weight, and with a funicular shape, they can, in
theory, be made very thin before crushing of the masonry occurs. However, the strength
of masonry is generally not decisive for the design. Instead, it is the stability of the

31

https://commons.wikimedia.org/w/index.php?curid=7673963
https://commons.wikimedia.org/w/index.php?curid=5068208


structure, and so the vault must be proportioned based on stability (Heyman 1966). The
instabilities may be caused by differential foundation settlements, earthquakes, long-term
deformations (Block 2009), imperfections, and, for thin or long-span masonry, varying
live-loads. The instabilities cause a bending action, making the vault behave more like
an arch, and the movement of the line of thrust provides means to carry the bending.
Heyman (1966) applies plasticity theory to masonry vaults and assumes the masonry is
safe as long as it can contain all possible lines of thrust. Block and Ochsendorf (2007)
extends the concept of the two-dimensional thrust line to a three-dimensional network
of thrust lines which the structure must contain within itself. Thus, taking into account
stability during design necessitate a certain thickness of the vault, which may not have to
be constant (Rippmann, Van Mele, et al. 2016).

Gridshells consists of a grid of load-bearing laths made of, for example, timber, steel,
or carbon fiber reinforced polymers. All shells must have bending stiffness to resist
buckling and inextensional deformation (Adriaenssens et al. 2014, p. 26) due to point
loads and uneven loading. This is particularly important for gridshells, and Adriaenssens
et al. (2014, p. 243) conclude that ‘a gridshell with pinned connections should never be
built.’ The bending stiffness provides the capacity to transfer bending moments out of
the plane. It can be added to gridshells using, for instance, several connected layers of
continuous laths as in Multihalle Mannheim (Happold and Liddell 1975; Vrachliotis 2017)
or sufficient member height and bending stiff joints as in the British Museum Great Court
Roof (Williams 2001).

If the shell contains only tensile stresses, it is possible to construct it using a fabric or
a cable net carrying the cladding. Fabric and cable net structures are usually prestressed
to limit deflection under loading and control the internal stress distribution.

There are several examples of cladding systems for gridshells and cable nets, for example,
membranes including fabric (Multihalle Mannheim; Millennium Dome in London), acrylic
panels (Olympiastadion in Munich), glass (Diplomatic Club Heart Tent in Riyadh; the
façade of the Kempinsky hotel in Munich), and timber panels (London Olympic Velodrome;
Savill Building in Surrey; Volvohallen in Gothenburg).

Shell structures may be classified depending on their curvature. Most are doubly
curved, meaning the surface curves in all directions or, more formally, the Gaussian
curvature is non-zero everywhere, a concept discussed in more detail in section 3.2. A
mathematical surface such as a dome, hyperbolic paraboloid, or hyperboloid may define
the shell geometry. Shells may also be based on developable surfaces and can then be
flattened onto a plane without distortion, for example, cylinders including ‘generalised’
cylinders and cones including conical surfaces.

However, boundary conditions are often such that no simple mathematical expression
describes the complete geometry. Then form-finding techniques come into play, which, in
early-stage design, usually solves the membrane equilibrium producing efficient bending-
free surfaces. Of course, ‘free-form surfaces’ can also be used for shells but often with
reduced efficiency. A recent example of the latter is the Google Mountain View complex.
It was initially designed as a vast lightweight, transparent cable net roof covering the
campus (S. Johnson 2015) but ended up as an array of heavy hanging opaque steel
gridshells (Galiano 2020, pp. 30–35).
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3.2 Geometry of surfaces

Due to the curved geometry of shells, considerable difficulties are encountered in finding
basic equations describing their response to loading. Differential geometry provide
necessary expressions to describe the shell geometry, and tensor notation is indispensable
when, later, considering both geometry and structural concepts such as stress. The used
notation follows closely that of Green and Zerna (1968). Kil’chevskĭı (1965) and Domokos
(1990) provide alternative notations for the same theory.

3.2.1 Position vector, base vectors, and the first and second fun-
damental form

Assuming the considered surface to be smooth and using a system of curvilinear coordinates
denoted θ1 and θ2 defined on the surface, then the position vector

r(θ1, θ2) = x(θ1, θ2)i + y(θ1, θ2)j + z(θ1, θ2)k, (3.1)

describes the relation between a point on the surface and its Cartesian coordinates x, y,
z. i, j, k are orthogonal unit base vectors in the direction of Cartesian coordinate axes x,
y, z, respectively. By convention, Greek indices range over the values 1, 2, so θα refers to
both the θ1 and the θ2 coordinate, replacing the perhaps more commonly used notation
u and v.

The covariant base vectors are given by

aα = r,α =
∂r

∂θα
, (3.2)

which are such that a1 and a2 are tangential to curves θ2 = constant and θ1 = constant,
respectively, see fig. 3.2a, and the comma denotes partial differentiation. In general, aα
are neither unit vectors nor perpendicular to each other. There are also contravariant base
vectors aα such that a1 and a2 are normal to surfaces θ1 = constant and θ2 = constant,
respectively, see fig. 3.2b.

The covariant components of the metric tensor, also known as the first fundamental
form, allows the computation of distances on the surface, and are given by

aαβ = aβα = aα · aβ . (3.3)

The notation differs from Eisenhart (1947), who uses gαβ , and from Struik (1961) and
Rogers and Schief (2002), who uses E, F , and G.

The unit surface normal is given by

n =
a1 × a2
|a1 × a2|

=
a1 × a2√

a
, (3.4)

a = |aαβ | = |a1 × a2|2 = a11a22 − (a12)2. (3.5)

Here the notation differs from Green and Zerna (1968) who uses a3 instead of n. Its
variation on the surface is described by the components of the normal curvature tensor,
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Figure 3.2: Surface with general curvilinear coordinates θ1, θ2 representing the middle
surface of a shell (θ3 = 0). The position vector r(θ1, θ2) describes all points on the surface
and n = n(θ1, θ2) is the unit surface normal.

or coefficients of the second fundamental form, given by

bαβ = bβα = aα,β · n. (3.6)

Eisenhart (1947) uses dαβ and Struik (1961) and Rogers and Schief (2002) uses e, f , and
g.

Occasionally, εαβ and εαβ are needed defined by

ε12 = −ε12 =
√
a, ε12 = −ε12 = 1/

√
a

ε11 = ε22 = ε11 = ε22 = 0

}
. (3.7)

3.2.2 Curvature and principal curvature directions
aαβ and bαβ are called surface tensors and are tensors under a surface transformation
of coordinates (Green and Zerna 1968, p. 32) specific to the chosen coordinate system.
Together they contain all the information about the normal curvature κn and twist of
the surface, including the principal curvatures, denoted κI and κII, and their directions,
the so-called principal curvature directions or, simply, principal directions. The principal
curvatures are the maximum and minimum values of the normal curvature of the surface
at each point. If κI = κII = 0 (a flat point) or κn = constant (an umbilical point), then
any direction is a principal directions, or else the surface has two principal directions. In
the latter case, the principal directions are orthogonal and conjugate.

The invariant

K = κIκII =
|bαβ |
a

=
b11b22 − (b12)2

a
, (3.8)
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is the Gaussian curvature of the surface, which can be used to define families of surfaces
(see fig. 3.3), and

H =
κI + κII

2
=
bαα
2

=
aαβbαβ

2
, (3.9)

the mean curvature of the surface. To determine aαβ requires the contravariant base
vectors aα. For further details, see Adiels et al. (2018) containing a summary of the more
important geometrical concepts presented in Green and Zerna (1968).

3.2.3 Asymptotic directions

Besides principal curvature directions on the surface, asymptotic directions are also of
interest. These are directions on a surface with zero normal curvature. The angle ϕ
between the principal and asymptotic directions on a surface can be determined using
Mohr’s circle of curvature (Nutbourne 1986). With the normal curvature on the horizontal
axis, it is the circle through the points representing the principal curvatures, and so its
radius is given by

R =
κI − κII

2
=
√
H2 −K. (3.10)

The angle between the horizontal axis and a line through the centre of the circle and
the intersection of the circle and the vertical axis is equal to 2ϕ. The vertical axis
represents the geodesic torsion τg, and so the principal directions have zero geodesic
torsion. Figure 3.4 illustrates Mohr’s circle of curvature for the same families of surfaces
as shown in fig. 3.3, and for a minimal surface with negative Gaussian curvature (not a
plane), the angle between the principal and asymptotic directions is always 45°.

3.2.4 Maps and coordinate alignment

So far, the discussion has concerned surfaces in real three-dimensional space that maps
to the physical structure by translation, rotation, and uniform scaling. However, other
mappings may be applied, offering alternative views of the geometry. These include the
Gauss map and its stereographic projection. Both are conformal, meaning they preserve
angles between lines. So is the Weierstrass-Enneper parametrization, which maps a
complex number ζ = θ1 + iθ2 to a real point r(θ1, θ2) on a minimal surface, albeit without
any control of the direction of the coordinate system on the minimal surface.

Although not necessary, it is often convenient to align the coordinate system with
something that makes sense physically, such as the cables in a cable net, the laths of a
gridshell, the panelling of the formwork of a concrete shell, or the seams of a fabric. Such
alignments may be obtained considering the equilibrium of the membrane shell.

3.3 Membrane theory of shells

In shell theory, the complicated three-dimensional equations for a continuum are reduced
to two-dimensional form so that equations for stress resultants and stress couples are
obtained instead of actual stress. The stress resultants, stress couples, and loads are
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Figure 3.3: Gaussian curvature for families of surfaces
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Figure 3.4: Mohr’s circle of curvature. Elliptic surfaces have no asymptotic directions,
parabolic surfaces have exactly one, and hyperbolic surfaces two. Minimal surfaces with
curvature are a type of hyperbolic surfaces where the angle between the principal and
asymptotic directions always is 45°. A planar surface (not shown) has an infinite number
of asymptotic directions, and any direction is an asymptotic direction.

assumed to act on a surface position in the middle of the shell thickness, known as the
shell middle surface, defined by the position vector r. Neglecting bending action further
simplifies the equations, and the theory is then known as the membrane theory of shells
or the theory of membrane shells (Green and Zerna 1968, § 11).

This section provides a brief introduction to membrane theory of shells expressed in
terms of stress resultant components denoted n with appropriate suffixes. The stress
resultant components have measure force per cross-section width, and to obtain stress
components measured as force per cross-section area, usually denoted using σ and τ with
appropriate suffixes, division of the stress resultants with the shell thickness, t, is needed,
for example,

σx =
nx
t
, τxy =

nxy
t
, σy =

ny
t
. (3.11)

Note that while Paper F applies this notation, Paper E does not; Paper E expresses stress
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resultants using σx, σy, and τxy instead of nx, ny, and nxy, respectively.
Section 3.3.1 expresses the equilibrium equations in terms of general curvilinear

coordinates referred to the tangent plane of the middle surface, section 3.3.2 in regular
curvilinear coordinates referred to a base plane, and section 3.3.3 in regular coordinates,
making expressions in tensor notation reduce to ‘engineering’ notation used by, for example,
Timoshenko and Woinowsky-Krieger (1959). Neither way of expressing the equilibrium
is superior to the others. Which to choose is influenced by the problem at hand and
personal preference.

Section 3.3.2 also introduces the Airy stress function, enabling the expression of the
stress state using a single scalar invariant function rather than several stress resultants,
leading to the formulation of Pucher’s equation in section 3.3.3.

3.3.1 General curvilinear coordinates

The static equilibrium of a membrane shell is given by

nαβ |α + pβ = 0

nαβbαβ + p = 0

}
. (3.12)

p is the component of the load acting normal to the surface and pα the components
acting in the direction of θα, all measure per unit surface area. The components of the
contravariant surface tensor nαβ = nβα are called stress resultants (Green and Zerna
1968, §§ 10.2, 11.1). The vertical bar means covariant differentiation (Green and Zerna
1968, § 1.12) with respect to the middle surface, so nαβ |α = nαβ,α + Γβαρn

αρ + Γααρn
ρβ

where Γβαρ are the Christoffel symbols of the second kind. The physical stress resultants
(per unit length) are given by

n(αβ) = nαβ
√
aββ
aαα

, (3.13)

but n(αβ) is not a tensor.

3.3.2 Plane curvilinear coordinates

The formulae of section 3.3.1 are related to the middle surface of the shell, but it is
sometimes more convenient to refer the equations to a base plane so that the stresses are
studied as seen when projected to the plane. Then the static equilibrium is given by

n̄αβ |α + p̄β = 0

z|αβn̄αβ + p̄− p̄αz|α = 0

}
, (3.14)

where the covariant differentiation refers to the plane. The considered stress resultants and
load components are those projected onto the plane, which the horizontal bar highlights.
Here the notation differs from Green and Zerna (1968, § 11.2), who uses kαβ , s, and sβ
instead of n̄αβ , p̄, and p̄β , respectively.
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The first expression in eq. (3.14) is equivalent to the equilibrium of a plate when
moment stresses are zero, and may alternatively be expressed in terms of φ, an invariant
stress function of θ1, θ2 known as the Airy stress function (Airy 1863). Defining

n̄αβ = εαγεβρφ|γρ −Aαβ
φ|αβ = εαγεβρ (n̄γρ +Aγρ)

}
, (3.15)

where Aαβ is symmetric and a particular integral of the equation

Aαβ |α = p̄β . (3.16)

Then the evaluation of stresses in the membrane theory of shells is reduced to the solution
of the linear differential equation for φ given by

εαγεβρz|αβφ|γρ = q, (3.17)

where
q = z|αβAαβ − p̄+ p̄αz|α, (3.18)

and q contain all the load acting on the shell.
It follows that φ has the units of force times length, which is the same as bending

moment, and the gradient of φ has the units of force.

3.3.3 Plane regular coordinates
Choosing a regular Cartesian coordinate system in the plane, the base vectors of the
coordinate system are orthogonal constant unit vectors. Then, from eq. (3.5), a = 1, and
the Christoffel symbols Γβαρ vanish when performing covariant differentiation. Therefore,
eq. (3.17) simplifies to

z,11φ,22 − 2z,12φ,12 + z,22φ,11 = q. (3.19)

If θ1 = x and θ2 = y and writing the partial derivatives explicitly, then the equation
become

∂2z

∂x2
∂2φ

∂y2
− 2

∂2z

∂x∂y

∂2φ

∂x∂y
+
∂2z

∂y2
∂2φ

∂x2
= q, (3.20)

which is equivalent to eq. (f), article 113 in Timoshenko and Woinowsky-Krieger (1959),
who attribute the first use of a stress function in this way to Pucher (1938). Furthermore,
considering only vertical loading, following from equation eq. (3.18)

q = −p̄, (3.21)

and from eqs. (3.7) and (3.15)

n̄αβ = εαγεβρφ,αβ . (3.22)

Finally, with a = 1, from eq. (3.13) follows that the stress resultants and the physical
stress resultants are the same, and the above expression expands to

nx = n̄(11) = n̄11 = φ,22

nxy = n̄(12) = n̄12 = −φ,12
ny = n̄(22) = n̄22 = φ,11




. (3.23)
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3.4 Airy stress function

The Airy stress function φ is an invariant function of two coordinates on a reference plane
and describes the stress state in an associated continuous membrane-action structure,
see fig. 3.5. Solving for φ in Pucher’s eq. (3.20) is referred to as stress finding, whereas
treating φ as the known and solving for the geometry z as form finding. The discreet
version of φ, with planar patches joined via folds and cuts representing concentrated forces
and moments respectively, can model the equilibrium in planar pin-jointed bar structures,
see fig. 3.6, providing a link to graphic statics.

σ

φ

(a) Uniform tension

σ

2σ

2σ

σ

φ

(b) Non-uniform tension

σ

σ

φ

(c) Mono-axial tension

Figure 3.5: Airy stress function for skin on drum (a and b) and skin stretched between
parallel supports (c)
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(b) Hinged frame and tensioned
tie.

φ
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d
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b

e

(c) Stiff frame and differently
tensioned ties

Figure 3.6: Airy stress function for exterior bars and frames with interior diagonal ties

3.4.1 Stress finding

Pucher’s eq. (3.20) is a differential equation that solves the unknown internal stress state
φ given the shape of the membrane shell, z, and the applied loading, q. The equation is
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elliptic if the Gaussian curvature of z is positive (K > 0), hyperbolic if negative (K < 0),
and parabolic if zero (K = 0). In general, it is not possible to say whether or not there
exists a solution that satisfies the boundary conditions, particularly at a free edge where
the stresses are zero. If it is not possible to find a solution, then the structure cannot stand
by membrane action alone and some bending will be required. However, it is possible to
show that a hyperboloid of revolution attached to the ground, such as a cooling tower,
can work by membrane action, as can any closed convex surface (Cohn-Vossen 1927).

3.4.2 Form finding

The considerations of section 3.4.1 apply in the same way if z is the unknown instead of
φ in eq. (3.20), and solving z is the essence of the form-finding of membrane-action shells.
For example, if the structure is all in tension or all in compression, then φ is a bowl-
shaped surface, and the differential equation is elliptic, and a paraboloid of revolution
have constant curvature in the radial direction and therefore represent a uniform stress
state (fig. 3.5a). If there is both tension and compression, the equation can be a mixture
of elliptic, hyperbolic, and parabolic, making it much more challenging to solve.

When the membrane equilibrium equations are too complex to solve analytically, which
is generally the case, physical or numerical models come into play. During the form-
finding process, the geometry is adjusted from an initial state to the form-found state,
and so the model has to be a mechanism. As the built structure cannot be a mechanism,
the form-found one must be ‘frozen’ when constructed either by adding bending stiffness
or bracing.

Physical models might involve hanging chains which will be inverted to form a com-
pression structure (Graefe 2020) as explained by Hooke (1675), a technique pioneered by
Antoni Gaudí (Huerta 2006) and refined by Frei Otto (Burkhardt et al. 1978; Happold
and Liddell 1975), see fig. 3.7. Heinz Isler (1926–2009) used damp hanging fabric, which
he froze and inverted to form-find his compressive concrete shells (Chilton 2020), and
Almegaard (2014) discusses the relation between Isler’s method and the Airy stress
function. The model may also involve a combination of soap film, which approximates a
minimal surface, and cotton threads in tension and masts in compression, also used by
Otto and Rasch (1995).

Most numerical form-finding methods simulate a physical model. Veenendaal and
Block (2012) provides an overview and comparison of structural form-finding methods
for general networks, and a condensed version is included in the book Shell structures
for architecture: form finding and optimization (Adriaenssens et al. 2014) which provides
a comprehensive introduction to the topic. Two of the more commonly used methods
are the force density method and the dynamic relaxation method. In the force density
method (Linkwitz and Schek 1971; Schek 1974), force densities, also known as tension
coefficients (Southwell 1920), specifies the desired ratio between member force and length,
and a single system of linear equations is solved. In the dynamic relaxation method (Day
1965; Barnes 1977), the equilibrium equations are solved explicitly by iteration. Implicit
methods, such as the Newton–Raphson method, may also be used for form-finding. The
thrust network analysis (Block and Ochsendorf 2007; Block 2009; Block and Lachauer
2014) adopts a graphical approach and targets the design of compression shells such as
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(a) Poleni’s drawing of Hooke’s analogy between
an arch and a hanging chain
From plate D in G. Poelini (1748) Memorie
istoriche della gran cupola del Tempio Vaticano

(b) Standing tension arch loaded with balloons
Courtesy of Sanne Sehlström

(c) A ‘Frei Otto eye’ form-found using soap film
and cotton threads
Courtesy of Emil Adiels

(d) Chain models by Frei Otto
Published in Casabella 301 1966, p. 40

Figure 3.7: Form-finding techniques
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dry stone masonry (Rippmann, Van Mele, et al. 2016).
Based on a geometrical finite elements, Arcaro, Klinka, and Gasparini (2013) form-

finds minimal surfaces formulating the problem as an equality constrained minimisation
problem. Miki et al. (2020) solves the geometry given the desired stress state defined by
a piece-wise smooth hyperbolic Airy stress function using isogeometric NURBS elements,
allowing the form-finding of shells containing both compression and tension.

3.4.3 Graphic statics

Regardless of whether using the Airy stress function to study planar or shell structures,
eq. (3.23) tells that the stress in the direction of one coordinate axis, say the x-axis, is the
rate of change of slope of φ in the perpendicular direction, so nx = φ,22 = φ,yy, leading to
quantities such as φ,xx and φ,xy discussed as the ‘curvature’ or ‘twist’ of the φ-surface.
If there is no curvature in one direction, then there is no stress in the perpendicular
direction, and a planar region in φ represents a stress-free area in z (fig. 3.5c). Similarly,
if φ has twice the curvature in one direction than in the perpendicular, there is twice
the stress in the corresponding direction than in the perpendicular (fig. 3.5b). Computer
graphics makes the visualisation of the shape of φ and its curvature easy, and the same
applies to z, altogether offering a tangible way to understand their interplay, similarly as
in graphic statics.

Graphic statics establishes a reciprocal relation between the form and force diagram
(fig. 3.8). It originates from the 18th and 19th centuries through the work of Varignon
(1725), Culmann (1866), Cremona (1872), Maxwell (1864a), Maxwell (1870), and Rankine
(1858), its chronology is laid out by Kurrer (2008), and Allen and Zalewski (2009) is
often used to introduce the method. Computer implementations make the drawing of the
diagrams faster (Greenwold and Allen 2003; Van Mele, Brunier-Ernst, and Block 2009;
Rippmann, Lachauer, and Block 2012). Van Mele and Block (2014) presents a general
algebraic implementation which, given a form diagram, allows the direct generation of
a force diagram. Todisco et al. (2015) and Todisco (2016) applies graphic statics on
post-tensioned funiculars and Beghini et al. (2014) combines graphic statics with structural
optimisation. Alic and Åkesson (2017) extends algebraic statics to be bi-directional so
that changes in the force diagram generate the form diagram, and provides an example of
a prestressed funicular, much similar to Conzett’s Wasserfallbrücke (Dechau 2013), where
alterations of the prestressing force generate changes in the form diagrams.

Nielsen (1964) showed how to design space frame structures using the Airy stress
function as a numerical ‘moment field method.’ Perhaps because Nielsen wrote in Danish,
his work is little known. But he effectively extended extended graphic statics to three
dimensions, a topic which has received much attention during the last couple of decades
(Block and Ochsendorf 2007; Akbarzadeh, Van Mele, and Block 2013; Akbarzadeh, Van
Mele, and Block 2015) and applied to the design of structural masonry (Fraternali 2010;
Rippmann, Van Mele, et al. 2016) and post-tensioned funiculars (Perez-Sala et al. 2018).

The three-dimensional applications draws upon the fact that an Airy stress function
discretized into a polyhedral represents the force equilibrium of a planar bar framework.
After resolving the horizontal forces in the planar network, it is ‘lifted’ into space to
complete also the vertical equilibrium. Such structures are sometimes called ‘2.5D-
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Figure 3.8: Graphic statics using Bow’s notation applied on equal span and rise roof trusses
resisting the same load. The force in a member in the form diagram (left) between, say,
fields A, D in the first three trusses is given by the length of the parallel line between points
a, d in the corresponding force diagram (right). In the form diagram, compressed bars are
drawn thick, tensioned bars thin, and those that carry no load dashed; in case of uneven
loading on the last truss, dashed bars must be included, else activating a mechanism.
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structures.’ In the Airy polyhedral, all curvature concentrate into ‘folds’ in between planar
faces, and the planar projection of the polyhedral is the form diagram of the framework,
establishing a direct relation to graphic statics. Furthermore, the slopes of the polyhedral
faces map to the vertices of the force diagram laying in the xy-plane such that a face with
(non-unit) normal N = (−φ,x,−φ,y, 1) maps to the vertex with coordinates given by

k× (N− (N · k)k) = (−φ,y, φ,x, 0) , (3.24)

where k is the unit base vector in the direction of the z-axis.
Recently, Williams and McRobie (2016) introduced discontinuous Airy stress functions

for planar structures providing means to interpret ‘cuts’ in the stress function as in-plane
moments about the vertical axis and associated shear forces.

Drawing upon the idea of the folds, graphic statics and polyhedral Airy stress functions
have been explored during this research, resulting in a computational tool called Fold
Your Forces. The tool enables interactive folding of the stress function with automatic
computation of the forces in the folds and the corresponding force diagram. Figure 3.9
illustrates an example of its application.
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Figure 3.9: A prestressed pin-jointed wind brace withstanding an applied load at the top
right corner analysed using Fold Your Forces. The projection of the polyhedral stress
function onto the plane gives the form diagram and the normal of the polyhedral stress faces
map to the vertices in the force diagram. Bars are coloured according to the magnitude of
the force they contain where red is tension and blue compression.
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4 Methodology
Figure 4.1 conceptually visualise the methodology applied to meet the objectives presented
in section 1.6.

Part I: Extended summary

Contextual overview Knowledge development

Part II: Appended papers

Scope & objectives

Theory application

Form-finding
approaches

Graphical
representations

Case studies

Compiling examples

Categorising examples

Litterature studies
Shells

Prestress

Shells

Prestress

A–F

Figure 4.1: Thesis methodology

4.1 Contextual overview

The contextual overview, summarised in chapters 2 and 3, aims to answer the general
questions proposed in section 1.4 and helps introduce and establish the fields of prestressing
and shell structures on their own.

Chapter 2 concerns prestressing, drawing upon literature studies and a collection of
prestressed objects. The chapter outlines the conditions for prestressing and its influence
on structural behaviour. It concludes with a distinction between active and inactive
prestress. Furthermore, it proposes general objectives and strategies for prestressing
derived by applying various categorisations of the objects in the compiled collection.

Chapter 3 discusses shell structures based on literature studies, providing an overview
of different shell structures, a brief introduction to classical differential geometry, and
membrane shell theory, leading to Pucher’s equation. The chapter includes an overview of
stress-finding and form-finding approaches. Moreover, it presents graphical and numerical
representations of the Airy stress function and its relation to graphic statics, an area of
recent research interest, making the interplay between form and force tangible, helping to
inform design decisions.

4.2 Knowledge development

Section 1.5 introduces a scope focusing the research on the application of prestressing
on shell structures, and section 1.6 lists the research objectives. The following describes
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the general methodology applied to meet the objectives. The appended papers contain
further details on the methodology relevant for the respective study.

Theory application:
Literature studies followed by the combination and application of several theories provides
means to understand the conditions for the prestressing of shells and what influence
the prestressing has on the structural behaviour. Considered theories are, for example,
classical differential geometry, the rigidity of pin-jointed bar networks, and elasticity.
These studies have a direct influence on all other activities undertaken during this research.

Form-finding approaches:
Studies on equilibrium for specific types of prestressed membrane-action shells facilitate
analytical and numerical form-finding approach development, where the numerical pri-
marily draw upon the dynamic relaxation method.

Graphical representations:
Graphic statics and recent extensions are scrutinised and inform the development of
representations suitable for prestressed shells, making the interplay between form and
forces tangible, supporting the design of material efficient prestressed shell structures.

Case studies:
The influence of prestressing and how to choose the prestress level is explored by studying
existing prestressed shell structures applying shell theory and differential geometry and, in
the case of cylindrical shells, comparing results with those obtained using Euler-Bernoulli
beam theory.
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5 Summary of appended papers

5.1 Paper A

Prestressed gridshell structures

Most form-finding methods for grid-shells produce a grid of tensioned members, and by
flipping the geometry upside down, the members become compressed. However, auto-
equilibrated prestressed gridshell must contain both compression and tension members.
Paper A extends dynamic relaxation by introducing virtual negative masses, effectively
moving unstable geometrical configurations towards stable configurations. The method
enables the form-finding of shells containing a combination of compression and tension
members, which may lie in one or several layers. The desired stress state in each member
is specified using force densities representing a state of prestress and possibly the stresses
arising due to external loading. The method allows member length constraints met by
updating the force densities during the form-finding.

5.2 Paper B

Unloaded prestressed shell formed from a closed surface unattached to any
supports

Not all surfaces can be actively prestressed, and Paper B begins to answer the question
‘under what conditions can an unloaded shell formed of a closed surface unattached to
any support contain a state of membrane stress which can be induced by prestressing?’ A
network of pin-jointed bars approximating a sphere cannot be prestressed since it forms
a rigid structure without any mechanisms; only statically indeterminate models can be
prestressed according to Maxwell’s rules for bar frameworks (Maxwell 1864b; Calladine
1978). Both the Cohn-Vossen theorem (Cohn-Vossen 1927; Hsu 1960) and Cauchy’s
rigidity theorem (Cauchy 1813) confirms this conclusion. The Cohn-Vossen theorem state
that any closed surface with everywhere positive Gaussian curvature is rigid and that,
if unloaded, cannot contain membrane stresses. Cauchy’s rigidity theorem state that a
convex polyhedron is rigid. However, a torus has both negative and positive Gaussian
curvature. If approximated by pin-jointed bars, it forms a mechanism under certain
topological situations and can, therefore, by the logic of Maxwell’s rule, be prestressed by
shortening six different bars or any linear combination thereof.

5.3 Paper C

Tensioned principal curvature cable nets on minimal surfaces

A fine net of cables forming a pattern of curvilinear squares approximates a minimal
surface, subjected only to the limitation of the fineness of the grid. Such nets may follow
principal curvature directions or asymptomatic directions. Paper C describes both an
analytical and a numerical approach for the form-finding of minimal surfaces with a
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principal curvature net, and 45° rotation of the grid gives the asymptotic directions. Both
approaches apply to any minimal surface whose boundaries are either principal curvature
or asymptotic directions or a combination. Straight lines and cable boundaries form
asymptotic lines (Williams 2011), and a minimal surface that is normal to a sphere has a
principal curvature direction as its boundary.

5.4 Paper D

The analytic and numerical form-finding of minimal surfaces and their appli-
cation as shell structures

Paper D complements Paper C by providing a quick and easy numerical algorithm that
automatically produces a minimal surface and the principal curvature coordinates simul-
taneously. The algorithm applies to any minimal surface whose boundaries are either
principal curvature or asymptotic directions, or a combination of the two. Benchmarks
show that the algorithm executes up to 60 times faster computed in parallel threads on
the graphics card (GPU) than serial computation on the central processing unit (CPU).
In addition, a discontinuous Airy stress function illustrates the load-bearing behaviour
of a surface materialised with members following asymptotic directions loaded over a
small patch. The patch load gives rise to a force couple acting along with the asymptotic
members that bound the patch. The same happens in continuous surfaces, and by taking
the small patch to the limit, the resulting point load gives rise to a moment along with
the asymptotic directions.

5.5 Paper E

Design of tension structures and shells using the Airy stress function

Discontinuities in the Airy stress function for in-plane stress analysis represent forces and
moments in connected one-dimensional elements (Williams and McRobie 2016). Paper E
extends this representation to curved membrane-action structures, such as shells and cable
nets, and graphically visualise the internal stresses and section forces at the boundary
necessary for equilibrium. Hyperbolic paraboloid structures are studied using the approach,
serving as demonstrations of its application. Firstly, the membrane stresses and edge forces
of two of Félix Candela’s concrete shells are determined and visualised (Candela 1960).
Secondly, the prestressing needed for three existing cable nets is determined, allowing the
exploration of its influence on the edge-beam bending moment. The considered structures
are the Scandinavium arena from 1971 by architect Poul Hultberg and engineer Gunnar
Kärrholm (Kärrholm and A. Samuelsson 1972), the London Olympic Velodrome from
2011 by Hopkins Architects and Expedition Engineering (Arnold et al. 2011; Wise et al.
2012), and the Wolfsburg Autostadt Roof from 2013 by Graft Architects and Schlaich
Bergermann Partner (M. Schlaich and Behnke 2014).
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5.6 Paper F

Does Torroja’s prestressed concrete Alloz aqueduct act as a beam or a shell?

The study of existing structures may provide new insights. Paper F presents a study
on Eduardo Torroja’s prestressed concrete Alloz aqueduct from 1939. The aqueduct is
a graceful and elegant structure, and the paper examines its structural behavior to see
whether it acts as a beam or a shell. This is of interest regarding the Alloz aqueduct itself
and for the design of similar structures in the future. The paper applies two alternative
approaches available at that time. Firstly, the membrane theory of shells, effectively
assuming the aqueduct walls are infinitely flexible in bending, and secondly, the Euler-
Bernoulli ‘plane sections remain plane’ elementary beam theory. It reviews Torroja’s
calculations based on an elaboration of the Euler-Bernoulli beam theory known as the
Griffith-Taylor theory for the bending of cantilevers.

Both the membrane shell and Euler-Bernoulli beam theory require a prestress to be
applied along the longitudinal edges of the channel. However, the level of prestress in the
Alloz aqueduct is consistent with the beam theory, which seems the most appropriate
approach. In general, increased prestressing may reduce the wall bending moments,
allowing for reduced cross-section thickness, although with increased deformations.

Whether or not a structure of this type act as a shell depends upon the thickness of
the wall. The thinner the wall, the more it acts as a shell. The wall thickness of the Alloz
aqueduct is sufficient for it to act mainly as a beam.
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6 Conclusions and future works
This dissertation aims to provide an increased understanding of prestressing and its
application to shell, fabric, and cable net structures and improved means for their design.
It seeks answers to three main research questions and, in doing so, contributes to the fields
of architectural and structural design and structural optimisation and applies differential
geometry.

The extended summary discusses the general phenomena and structural behaviour
of prestressing and shells on their own, whereas the presented studies focus on their
combination. Understanding phenomenons and behaviour are necessary for the early-stage
conceptual design to guide design choices resulting in sound engineering and high-quality
architecture. This thesis contributes with several tools and representations that may
be used in a collaborative conceptual design situation, offering multiple ways to explore
design possibilities.

6.1 Summary of contributions

6.1.1 Question 1

Question 1 is twofold.
The first part is: Can any shell be prestressed? The short answer is: no, not all

shells can be prestressed. To better answer the question, the thesis proposes the concept
of active and inactive prestress. Then the answer is: no, not all shells can be actively
prestressed. The membrane stress must be statically indeterminate to actively prestress a
shell, a condition influenced by the shell geometry and the boundary conditions. However,
even if a shell is statically determinate and therefore cannot be actively prestressed, it may
still be inactively prestressed, for example, by making small changes in the configuration,
producing local areas which are statically indeterminate possible to prestress.

The second part is: For those that can, what is the meaning and influence of pre-
stressing? This question is broad, and the general answer is: it depends. Prestressing is
introduced to improve the performance of a structure, and as discussed in section 2.4,
there are several objectives with prestressing in general. These objectives do also apply
to prestressed shells.

The main contributions connected to question 1 are:

• An unloaded sphere unattached to any support cannot be actively prestressed by
membrane stresses alone, but a torus can (Paper B).

• A concentrated prestress force in the longitudinal edges is a condition for the
equilibrium of cylindrical membrane shells (Paper F).

• Prestressing minimises the wall bending moments of beams with cylindrical cross-
sections enabling thinner cross-sections, and at the limit, the structural behaviour
is that of a cylindrical membrane shell rather than of an Euler-Bernoulli beam
(Paper F).
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6.1.2 Question 2

The second question is: How can prestressed shells be form-found using analytical and
numerical approaches? The thesis provide an overview of several form-finding approaches
resulting in geometries which work predominately by membrane action. By modifying
the methods, they can include a state of prestress. The presented papers contain some
suggestions of such modifications, concentrating on shells that are minimal surfaces or
gridshells.

Minimal surfaces

Surfaces with uniform surface tension are minimal. Materialised using a grid of cables
following principal curvature directions, it is possible to produce ‘true’ tensioned minimal
surfaces, limited only by the fineness of the grid.

The main contributions to the form-finding of prestressed minimal surfaces are:

• An analytical and a numerical approach for the form-finding of minimal surfaces
with principal curvature coordinates.

• A minimal surface that is normal to a sphere has a principal curvature direction as
its boundary.

The analytic approach uses a single function of a complex variable valid for every min-
imal surface with principal curvature coordinates (Paper C). The numerical approach
automatically produces a minimal surface and the principal curvature coordinates at
the same time and can be applied to any minimal surface whose boundaries are either
principal curvature or asymptotic directions or a combination of the two (Paper C). An
implementation using dynamic relaxation executed in multiple parallel threads on the
GPU shows significant speed gain compared to serial execution on the CPU, offering
near-instant results even for large systems (Paper D).

Gridshells

Most numerical form-finding methods for gridshells simulate a physical model which has
to be stable to achieve equilibrium, and they result in a structure with members only in
either tension or compression.

The main contributions to the form-finding of gridshells are:

• A numerical method for the form-finding of gridshells containing both tension and
compression elements (Paper A).

6.1.3 Question 3

The third question is: How can prestress in shells be represented and chosen, aspiring for
efficient structural performance? The question is explored using the Airy stress function.
The stress function can be understood as a surface providing a graphical representation
of the internal stress state of a shell, which may or may not be prestressed.
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Representations

The use of proper representations can ease the often challenging understanding of the
interplay between form and forces in shell structures. The main contributions are:

• The Williams and McRobie (2016) discontinuous Airy stress function is extended
from flat structures to curved shells, allowing moments and shear forces in edge
beams of shell structures to be quantified and thus designed (Paper E).

Stress finding

To find the stress state in a structure is central to understanding its behaviour, and such
understanding is itself a key to apply prestressing correctly. The main contributions are:

• A method based on a discrete Airy stress function to explore the prestress level and
section forces and moments in shell structures (Paper E).

• A patch load on a minimal surface result in a pair of concentrated compression and
tension forces acting along with the asymptotic lines that bound the patch, which
at the limit become a moment (Paper D). The same applies to any surface with
negative Gaussian curvature.

The concentrated section forces and moments are, however, only indicating an idealised
behaviour guiding design choices; in a continuous surface, strain compatibility will dissipate
such forces and moments, spreading them over a larger area.

6.2 Future works

With additional literature studies and further examples, the proposed prestressing objec-
tives and strategies may be developed into a publication on its own, either as a review
article intended for the research community or a popular science publication targeting
practitioners. Such work could also elaborate further on the concept of active and inactive
prestress. Furthermore, present and discuss types of prestressed shells.

The form-finding process associates with the early design stages. The application and
usefulness of the suggested form-finding approaches are yet to be studied, for example, in
case studies of design projects. Such studies would provide valuable knowledge regarding
their usefulness and possible improvements. Furthermore, case studies would enable
the study of the interaction and collaboration between architects and engineers during
their mutual effort of designing a prestressed shell, leading to sound engineering and
high-quality architecture. To what extent do the suggested form-finding approaches and
representations enhance the understanding of the underlying phenomenons?

The Fold Your Forces computer tool (see fig. 3.9) implements the concepts of folds in
a polyhedral Airy stress function allowing interactive modelling of the stress function with
direct response on forces in the associated pin-jointed planar bar framework. Future works
should finalise the tool and enable means to model ‘cuts’ in the stress function, allowing
additional interactive modelling of moments and shear forces in trusses. Furthermore,
the ability to interactively model piece-wise smooth Airy stress functions should be
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investigated, extending the functionality from discrete networks to continuous structures
and possibly shells, similarly as in Paper E.

Paper B only begins exploring the conditions to prestress an unloaded shell formed
from a closed surface unattached to any supports. It concludes that a torus can be
prestressed in such a way and that there is certainly more to discover. Further studies
may reveal these unknown surfaces and conditions or prove the hypothesis wrong.
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