
Critical Galton-Watson Processes with Overlapping Generations

Downloaded from: https://research.chalmers.se, 2024-03-13 09:14 UTC

Citation for the original published paper (version of record):
Sagitov, S. (2021). Critical Galton-Watson Processes with Overlapping Generations. Stochastics and
Quality Control, 36(2): 87-110. http://dx.doi.org/10.1515/eqc-2021-0027

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Stochastics and Quality Control 2021; aop

Research Article

Serik Sagitov*

Critical Galton–Watson Processes with
Overlapping Generations
https://doi.org/10.1515/eqc-2021-0027
Received July 26, 2021; revised October 8, 2021; accepted October 22, 2021

Abstract:Aproperly scaled critical Galton–Watson process converges to a continuous state critical branching
process ξ ( ⋅ ) as the number of initial individuals tends to infinity. We extend this classical result by allowing
for overlapping generations and considering a wide class of population counts. The main result of the paper
establishes a convergence of the finite-dimensional distributions for a scaled vector of multiple population
counts. The set of the limiting distributions is conveniently represented in terms of integrals (∫y0 ξ (y − u) du

γ,
y ≥ 0) with a pertinent γ ≥ 0.
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1 Introduction
One of the basic stochastic population models of a self-reproducing system is built upon the following two
assumptions:
(A) different individuals live independently from each other according to the same individual life law

described in (B);
(B) an individual dies at age one and at the moment of death gives birth to a random number N of offspring.
Within this model, the numbers of individuals Z0, Z1, . . . , born at times t = 0, 1, . . . , form a Markov chain,
whose transition probabilities are fully described by the distribution of the offspring number N. The Markov
chain {Zt , t ≥ 0} is usually called aGalton–Watsonprocess, orGW-process for short. AGW-process is classified
as subcritical, critical, or supercritical, depending on whether the mean offspring number E(N) is less than,
equal to, or larger than the critical value 1.

It is known that, in the critical case, with

E(N) = 1, Var(N) = 2b, b < ∞, (1.1)

the finite-dimensional distributions (fdds) of a properly scaled GW-process converge,

{n−1Znu , u ≥ 0 | Z0 = n}
fdd
󳨀󳨀→ {ξ (u), u ≥ 0 | ξ (0) = 1}, n →∞, (1.2)

and the limiting fdds are represented by a continuous state branching process ξ ( ⋅ ), which is a continuous
time Markov process with a transition law determined by

E(e−λξ(v+u) | ξ (v) = x) = e−
λx

1+λbu , v, u, x, λ ≥ 0. (1.3)

Note how the parameter b acts as a time scale: the larger the variance of N, the faster the change of the
population size.
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In this paper, we study {Z(t), t ≥ 0}, a Galton–Watson process with overlapping generations, or GWO-
process for short, where Z(t) is the number of individuals alive at time t in a reproduction system satisfying
the following two assumptions:
(A*) different individuals live independently from each other according to the same individual life law

described in (B*);
(B*) an individual lives L units of time and gives N births at random ages τ1, . . . , τN , satisfying

1 ≤ τ1 ≤ ⋅ ⋅ ⋅ ≤ τN ≤ L. (1.4)

Assumption (B*) allows for overlapping generations, when mothers may coexist with their daughters. We
focus on the critical case (1.1) and aim at an extension of (1.2) to the GWO-processes.

The process {Z(t), t ≥ 0}, being non-Markov in general, is studied with help of an associated renewal
process, introduced in Section 2. The mean inter-arrival time

a := E(τ1 + ⋅ ⋅ ⋅ + τN) (1.5)

of this renewal process gives us the average generation length. It is important to distinguish between the
average generation length a, which in this paper will be assumed finite, and the average life length μ := E(L),
allowed to be infinite.

With a more sophisticated reproduction mechanism (1.4), there are many interesting population counts
to study, alongside the number of newborns Zt and the number of individuals alive Z(t) at the time t. Observe
that Zt is the total number of daughters produced at time t by Z(t − 1) individuals alive at time t − 1. In
particular, in the GW setting, a = 1 and Z(t) ≡ Zt since all alive individuals are newborn.

An interesting case of population counts is treated by Theorem 4 dealing with decomposable multitype
GW-processes. Theorem 4 is obtained as an application of the main results of the paper, Theorems 1, 2, 3,
stated and proven in Section 5. The following three statements are straightforward corollaries of Theorems 1,
2, and3 respectively. In these theorems, it is always assumed that theGWO-process stems froma largenumber
Z0 = n of progenitors born at time zero.

Corollary 1. Consider a GWO-process satisfying (1.1) and a < ∞. If μ < ∞, then

{n−1Z(nu), u > 0 | Z0 = n}
fdd
󳨀󳨀→ {μa−1ξ (ua−1), u > 0 | ξ (0) = 1}, n →∞.

Corollary 2. Consider a GWO-process satisfying (1.1) and a < ∞. If μ = ∞ and, for some slowly varying func-
tion at infinity L( ⋅ ),

t
∑
j=0

P(L > j) = tγL(t), 0 ≤ γ ≤ 1, t →∞, (1.6)

then, as n →∞,

{n−1−γL−1(n)Z(nu), u > 0 | Z0 = n}
fdd
󳨀󳨀→ {aγ−1ξγ(ua−1), u > 0 | ξ (0) = 1}.

Corollary 3. Consider a GWO-process satisfying (1.1), a < ∞, and (1.6). Then, as n →∞,

{(n−1−γL−1(n)Z(nu), n−1Znu), u > 0 | Z0 = n}
fdd
󳨀󳨀→ {(aγ−1ξγ(ua−1), a−1ξ (ua−1)), u > 0 | ξ (0) = 1}.

Notice that condition (1.6) holds even in the case μ < ∞, with γ = 0 and L(t) → μ as t →∞. The family of
processes {ξγ( ⋅ )}γ≥0 emerging in our limit theorems can be expressed in the integral form

ξ0(u) := ξ (u) for γ = 0 and ξγ(u) :=
u

∫
0

ξ (u − v) dvγ for γ > 0, u ≥ 0, (1.7)

which is treated as a convenient representation of the limiting fdds; see Section 4.
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The following remarks comment on relevant literature and mention an interesting open problem.
(1) The GW-process is a basic model of the biologically motivated theory of branching processes; see [1, 7,

17]. The critical GW-process can be viewed as a stochastic model of a sustainable reproduction, when
a mother produces on average one daughter; see [12]. On the convergence result (1.2) for the critical
GW-processes, see [1, 2, 10, 13].

(2) The GWO-process is a discrete time version of the so-called general branching process, often called the
Crump–Mode–Jagers process; see [7, 10, 11, 18]. An earlier mentioning of a discrete time branching
process with overlapping generations can be found in [21].

(3) The fruitful concept of population counts, allowing for a variety of individual scores (see Section 2) was
first introduced in [9]. The interested reader may find several demographical examples of population
counts in [9, 10].

(4) The above-mentioned Theorem 4 deals with the decomposable critical multitype GW-processes. In
a more general setting, such processes were studied in [5], addressing related issues by applying
a different approach.

(5) Compared to earlier attempts (see [19, 20] and especially [15]), the current treatment of critical age-
dependent branching processes is made more accessible by restricting the analysis to the case of finite
Var(N) and a, as well as focusing on the discrete time setting.

(6) Our proofs do not use (1.2) as a known fact (unlike for example [8], addressing a related problem).
Therefore, convergence (1.2) can be derived from the above-mentioned Corollary 1.

(7) The branching renewal approach, introduced in Section 3, takes its origin in [6].
(8) The idea of studying branching processes starting from a large number of individuals is quite old; see

[16] and especially [13]. For a most recent paper in the continuous time setting, see [14].
(9) The definitions and basic properties of slowly and regularly varying functions used in this paper can be

found in [4]. We apply some basic facts of the renewal theory from [3].
(10) Our limit theorems are stated in terms of the fdd-convergence. Finding simple conditions on the indi-

vidual scores, ensuring weak convergence in the Skorokhod sense, is an open problem.

Notational Agreements

(1) To avoid confusion, we set apart discrete and continuous variables:

i, j, k, l, n, p, q, s, t ∈ ℤ = {0, ±1, ±2, . . .}, u, v, x, y, z, λ ∈ [0,∞).

Mixed products are treated as integer numbers so that nu stands for ⌊nu⌋. The latter results in nu
n not

always being equal to u.
(2) We distinguish between a stronger and a weaker forms of the uniform convergence

f (n)(y)
y
󳨐⇒ f (y), f (n)(y)

y
󳨀→ f (y), n →∞,

which respectively require the relations

sup
0≤y≤y1
|f (n)(y) − f (y)| → 0, sup

y0≤y≤y1
|f (n)(y) − f (y)| → 0, n →∞,

to hold for any 0 < y0 < y1 < ∞.
(3) We will write

En( ⋅ ) := E( ⋅ | Z0 = n)

to say that the expected value is computed under the assumption that the GWO-process starts from n
individuals born at time 0. With a little risk of confusion, we will also write

Ex( ⋅ ) := E( ⋅ | ξ (0) = x)

when the expectation deals with the finite-dimensional distributions of the continuous state branching
process ξ ( ⋅ ).
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(4) We will often use the following two shortenings:

ex1 := 1 − e
−x , ex2 := x − e

x
1 = e
−x − 1 + x.

Note that both these functions are increasing, and for 0 ≤ x ≤ y,

0 ≤ ey1 − e
x
1 ≤ y − x, 0 ≤ ex2 ≤ min(x, 12 x

2), (1.8)

ex+y1 = e
x
1 + e

y
1 − e

x
1e
y
1, ex+y2 = e

x
2 + e

y
2 + e

x
1e
y
1. (1.9)

(5) In different formulas, the symbols C, C1, C2, c, c1, c2 represent different positive constants.

2 Population Counts
The number of individuals alive at time t can be counted as the sum of individual scores

Z(t) =
t
∑
j=0

Zj
∑
k=1

1{j≤t<j+Ljk} =
t
∑
j=0

Zj
∑
k=1

ζjk(t − j),

where Ljk is the life length of the k-th individual born at time j (according to an arbitrary labelling of the Zj
individuals born at time j) and ζjk(t) = 1{0≤t<Ljk} is its individual score. Here the individual score is 1 if the
individual is alive at time t, and 0 otherwise. This representation leads to the next definition of a population
count.

Definition 2.1. For a progenitor of the GWO-process, define its individual score as a vector (χ(t))t∈ℤ with non-
negative, possibly dependent components such that χ(t) = 0 for all t < 0. This random vector is allowed to
depend on the individual characteristics (1.4), but it is assumed to be independent from such characteristics
of other individuals.

Define a population count X(t) = X[χ](t) as the sum of time shifted individual scores

X(t) :=
t
∑
j=0

Zj
∑
k=1

χjk(t − j), t ∈ ℤ, (2.1)

assuming that the individual scores (χjk(t))t∈ℤ are independent copies of (χ(t))t∈ℤ.

2.1 The Litter Sizes

In terms of (1.4), the litter sizes of a generic individual are defined by ν(t) := ∑Nj=1 1{τj=t}, t ≥ 1, so that
ν(1) + ⋅ ⋅ ⋅ + ν(L) = N. On the other hand, given the random infinite-dimensional vector

(L, ν(1), ν(2), . . .), L ≥ 1, ν(t) ≥ 0, t ≥ 1,

where ν(t) is treated as the litter size at age t for an individual with the life length L, the consecutive ages at
childbearing can be found as

τj =
L
∑
t=1
t 1{N(t−1)<τj≤N(t)}, N(t) := (ν(1) + ⋅ ⋅ ⋅ + ν(t))1{L≥t},

where N(t) is the number of daughters produced by a mother of age t.
In the critical case, the probabilities

A(t) := E(ν(t)1{L≥t}), t ≥ 1,
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sumup to one since∑t≥1 A(t) = E(ν(1) + ⋅ ⋅ ⋅ + ν(L)) = E(N) = 1.A renewal processwith inter-arrival timeshav-
ing distribution A(1), (A(2), . . . plays a crucial role in the analysis of the critical GWO-processes. Observe that
the corresponding mean inter-arrival time is indeed given by (1.5),

∞

∑
t=1
tA(t) = E(

∞

∑
t=1
tν(t)1{L≥t}) = E(

∞

∑
t=1
t
N
∑
j=1

1{τj=t}) = E(
N
∑
j=1

∞

∑
t=1
t1{τj=t}) = E(τ1 + ⋅ ⋅ ⋅ + τN) = a.

In order to avoid a possible confusion, we emphasise at this point that ν(t) = 0 and A(t) = 0 if t ≤ 0.

2.2 Associated Renewal Process

In the GWO setting with Z0 = 1, the process Zt conditioned on {N(t) = k}, where N(t) is the birth count of the
founder, can be viewed as the sum of k independent daughter copies Zt = Z(1)t−τ1 + ⋅ ⋅ ⋅ + Z

(k)
t−τk . This branching

property implies that the expected number of newborns U(t) := E1(Zt) satisfies a recursive relation

U(t) = E(
N(t)
∑
j=1

U(t − τj)) = E(
t
∑
k=1

U(t − k)ν(k)1{L≥k}) = U ∗ A(t), t ≥ 1,

where the ∗ symbol stands for a discrete convolution

A1 ∗ A2(t) :=
∞

∑
j=−∞

A1(t − j)A2(j), t ∈ ℤ.

Resolving the obtained recursion U(t) = 1{t=0} + U ∗ A(t), we find a familiar expression for the renewal
function

U(t) = 1{t=0} +
t
∑
k=1

A∗k(t), A∗1(t) := A(t), A∗(k+1)(t) := A∗k ∗ A(t),

so that, by the elementary renewal theorem,

U(t) → 1
a
, t →∞. (2.2)

This says that, in the long run, the underlying reproduction process produces one birth per a units of time.
In this sense, a can be treated as the average generation length.

Later on, we will need the following facts concerning the distribution ofWt, the waiting time to the next
renewal event:

Rt(j) := P(Wt = j), j ≥ 1, t ≥ 0.

These probabilities satisfy the renewal equation Rt(j) = A(t + j) + Rt ∗ A(t), which yields

Rt(j) =
t
∑
k=0

A(t + j − k)U(k), j ≥ 1, t ≥ 0. (2.3)

By the key renewal theorem, there exists a stable distribution of the residual timeWt, in that

Rt(j) → R(j), t →∞, R(j) := a−1
∞

∑
k=j
A(k), j ≥ 1.

Lemma 2.2. Assume (1.1), a < ∞, and suppose a family of non-negative functions r(n)(t) is such that

sup
n≥1,t≥1

r(n)(t) < ∞, r(n)(ny)
y
󳨐⇒ r(y), n →∞.

If r(y) → r(0) as y → 0, then
∞

∑
t=1
r(n)(t)Rny(t)

y
󳨀→ r(0), n →∞.
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Proof. Observe that

∞

∑
t=1
r(n)(t)Rny(t) − r(0) =

t0
∑
t=1
(r(n)(t) − r(0))Rny(t) +

∞

∑
t=t0+1
(r(n)(t) − r(0))Rny(t)

for any t0 > 0. From

t0
∑
t=1
(r(n)(t) − r(0))Rny(t) =

t0
∑
t=1
(r(n)(t) − r(tn−1))Rny(t) +

t0
∑
t=1
(r(tn−1) − r(0))Rny(t),

we deduce
t0
∑
t=1
(r(n)(t) − r(0))Rny(t)

y
󳨀→ 0, n →∞,

using the assumptions on r(n)( ⋅ ) and r( ⋅ ). It remains to notice that
∞

∑
t=t0+1
|r(n)(t) − r(0)|Rny(t) ≤ C

∞

∑
t=t0+1

Rny(t),

and
∞

∑
t=t0+1

Rny(t)
y
󳨀→
∞

∑
t=t0+1

R(t) → 0

as first t →∞ and then t0 →∞.

2.3 Expected Population Counts

If Z0 = 1, then X(t), defined by (2.1), can be represented as

X(t) = χ(t) +
N(t)
∑
j=1

X(j)(t − τj) (2.4)

in terms of the independent daughter processes X(j)( ⋅ ), where N(t) is the birth count of the founder. Taking
expectations, we arrive at a recursion

M(t) = m(t) + E(
N(t)
∑
j=1

M(t − τj)) = m(t) +
t
∑
j=1
M(t − j)A(j),

where M(t) := E1(X(t)), m(t) := E(χ(t)). This renewal equation M(t) = m(t) +M ∗ A(t) yields

M(t) = m ∗ U(t) =
t
∑
j=0
m(t − j)U(j),

and applying the key renewal theorem, we conclude

E1(X(t)) → mχ , t →∞, mχ := a−1
∞

∑
t=0

E(χ(t)). (2.5)

The obtained parameter mχ can be viewed as the average χ-score for the population with overlapping gener-
ations. The next result goes further than (2.5) by giving a useful asymptotic relation in the case mχ = ∞.

Proposition 2.3. Consider a critical GWO-process with a < ∞. If, for some function L( ⋅ ) slowly varying at
infinity,

t
∑
j=0

E(χ(j)) = tγL(t), t →∞, 0 ≤ γ < ∞, (2.6)

then E1(X(t)) ∼ a−1tγL(t) as t →∞.
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Proof. We have to show that (2.6) implies M(t) − a−1Mt = o(Mt) as t →∞, where Mt := ∑tj=0 m(j). To this
end, observe that the difference

M(t) − a−1
t
∑
j=0
m(t − j) =

t
∑
j=0
m(t − j)(U(j) − a−1)

is estimated from above by

t
∑
j=0
m(t − j)|U(j) − a−1| ≤ C

tϵ−1
∑
j=0

m(t − j) + ϵ
t
∑
j=tϵ

m(t − j) ≤ C(Mt −Mt−tϵ ) + ϵMt , t ≥ tϵ ,

for an arbitrarily small ϵ > 0 and some finite constants C, tϵ. It remains to apply the property of the regularly
varying function Mt, saying that Mt −Mt−c = o(Mt) as t →∞ for any fixed c ≥ 0.

Turning to X(t) = Z(t), the number of individuals alive at time t, observe that, with χ(t) = 1{0≤t<L},

∑
t≥0

E(χ(t)) = ∑
t≥0

P(L > t) = μ.

Therefore, given E(N) = 1,
E1(Z(t)) → μa−1, t →∞.

In this case, the parametermχ = μa−1 can be treated as the degree of generation overlap. For example,mχ = 2
means that, on average, the life length L covers two generation lengths.

3 Branching Renewal Equations
A useful extension of Definition 2.1 broadens the range of individual scores by replacing (2.1) with

X(t) :=
∞

∑
j=0

Zj
∑
k=1

χjk(t − j), t ∈ ℤ. (3.1)

Relation (3.1) takes into account even those individuals who are born after time t, allowing χ(t) > 0 for t < 0.
In this paper,we refer to this extensiononly to dealwith thefinite-dimensional distributions of the population
counts defined by (2.1); see Lemma 3.2 below.

Definition 3.1. For the population count X(t) = X[χ](t) given by (3.1), the log-Laplace transform Λ(t) = Λ[χ](t)
is given by

e−Λ(t) := E1(e−X(t)), t ∈ ℤ.

The purpose of this section is to introduce a branching renewal equation for Λ( ⋅ ) and establish Proposi-
tion 3.5, which will play a key role in the proofs of the main results of this paper.

Lemma 3.2. For a given vector (t1, . . . , tp) with non-negative integer components, consider the log-Laplace
transform

Λ(t) = − ln E1(exp{−
p
∑
i=1
λiX(ti + t)})

of the p-dimensional distribution of the population sum X( ⋅ ) defined by (2.1). Then, in accordance with Defini-
tion 3.1,

Λ(t) = Λ[ψ](t), ψ(t) :=
p
∑
i=1
λiχ(ti + t), t ∈ ℤ.

Proof. It suffices to observe that

p
∑
i=1
λiX(ti + t)

(2.1)
=

p
∑
i=1

t
∑
j=0

Zj
∑
k=1

λiχjk(ti + t − j) =
∞

∑
j=0

Zj
∑
k=1

ψjk(t − j)
(3.1)
= X[ψ](t).



8 | S. Sagitov, Critical Galton–Watson Processes with Overlapping Generations

3.1 Derivation of the Branching Renewal Equation

Here we show that Definition 3.1 leads to what we call a branching renewal equation,

Λ(t) = B(t) − Ψ[Λ] ∗ U(t), t ≥ 0, (3.2)

where the operator

Ψ[f ](t) := E(
L
∏
j=1
e−ν(j)f (t−j)) −

∞

∑
j=1
e−f (t−j)A(j), t ≥ 0, (3.3)

is defined on the set of non-negative sequences (f (t))t∈ℤ; see more on it in Section 3.2. The convolution
term Ψ[Λ] ∗ U(t) represents the non-linear part of the branching renewal equation. A seemingly free term
B( ⋅ ) of equation (3.2) is a non-negative function specified below by (3.4) and (3.5). It also depends on the
function Λ( ⋅ ) in a non-linear way; however, asymptotically it acts as a truly free term.

The derivation of (3.2) is based on the following extended version of decomposition (2.4):

X(t) = χ(t) +
N
∑
j=1
X(j)(t − τj), t ∈ ℤ,

where X(j)( ⋅ ) are independent daughter copies of (X( ⋅ ) | Z0 = 1). It entails eχ(t)−X(t) = ∏Nj=1 e−X
(j)(t−τj), and

taking expectations, we obtain

E1(eχ(t)−X(t)) = E(e−∑
N
j=1 Λ(t−τj)) = E(e−∑

L
j=1 ν(j)Λ(t−j)).

On the other hand (recall ex1 := 1 − e−x),

E1(eχ(t)−X(t)) − e−Λ(t) = E1(eχ(t)−X(t) − e−X(t)) = E1(e
χ(t)
1 eχ(t)−X(t)).

Denoting the last expectation D(t), we can write

D(t) = E(eχ(t)1 e−∑
L
j=1 ν(j)Λ(t−j)), (3.4)

due to independence between the progenitor score χ(t) and the GWO-processes stemming from progenitor’s
daughters. Combing the previous relations, we find

e−Λ(t) = E(e−∑
L
j=1 ν(j)Λ(t−j)) − D(t),

which, after introducing a term involving operator (3.3), brings

e−Λ(t) =
∞

∑
j=1
e−Λ(t−j)A(j) + Ψ[Λ](t) − D(t).

Subtracting both sides from 1 yields

e−Λ(t)1 =
∞

∑
j=1
e−Λ(t−j)1 A(j) − Ψ[Λ](t) + D(t),

which can be rewritten in the form of a renewal equation

e−Λ(t)1 = e−Λ1 ∗ A(t) +
∞

∑
j=t+1

e−Λ(t−j)1 A(j) − Ψ[Λ](t) + D(t).

Formally solving this renewal function, we get

e−Λ(t)1 =
∞

∑
j=1
eΛ(−j)1 Rt(j) − Ψ[Λ] ∗ U(t) + D ∗ U(t),

where Rt(j) is given by (2.3). Here we used
t
∑
k=0

∞

∑
j=t−k+1

e−Λ(t−k−j)1 A(j)U(k) =
t
∑
k=0

U(k)
∞

∑
j=1
e−Λ(−j)1 A(j + t − k) =

∞

∑
j=1
eΛ(−j)1 Rt(j).

Since e−Λ(t)1 = Λ(t) − e−Λ(t)2 , we conclude that relation (3.2) holds with

B(t) = eΛ(t)2 +
∞

∑
j=1
eΛ(−j)1 Rt(j) + D ∗ U(t). (3.5)
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3.2 Laplace Transform of the Reproduction Law

The Laplace transform of the reproduction law E(e−f (τ1)−⋅⋅⋅−f (τN )) is a positive functional defined on the set of
non-negative sequences (f (t))t≥1. The higher than first moments of the joint distribution of (τ1, . . . , τN) are
characterised by the non-linear functional

Ψ(f ) := E(
N
∏
j=1
e−f (τj) −

N
∑
j=1
e−f (τj)). (3.6)

This functional is monotone in view of the elementary equality

k
∑
j=1
(aj − bj) −

k
∏
j=1
aj +

k
∏
j=1
bj =

k
∑
j=1
(aj − bj)(1 − a1 . . . aj−1bj+1 . . . bk), (3.7)

in that if f (t) ≥ g(t) for all t ≥ 1, then Ψ(f ) ≥ Ψ(g). In particular, with g(t) ≡ 0, we get Ψ(g) = E(1 − N) = 0 due
to our standing assumption E(N) = 1, which implies that Ψ(f ) ≥ 0 for all eligible f ( ⋅ ).

The earlier introduced operator (3.3) is obtained from functional (3.6) through the connection

Ψ[f ](t) = Ψ(ft), ft(j) := f (t − j)1{1≤j≤t},

which is verified by

Ψ(ft)
(3.6)
= E(

N
∏
j=1
e−ft(τj) −

N
∑
j=1
e−ft(τj)) = E(

L
∏
k=1

e−ft(k)ν(k) −
L
∑
k=1

e−ft(k)ν(k))

= E(
L
∏
k=1

e−f (t−k)ν(k)) −
∞

∑
k=1

e−f (t−k)A(k) (3.3)= Ψ[f ](t).

Lemma 3.3. Consider a constant function f (t) = z, t ∈ ℤ. If (1.1), then

Ψ[f ](t) = Ψ(z) = E(e−zN) − e−z , t ≥ 0,

and z−2Ψ(z) → b as z → 0.

Proof. The first assertion follows from the relation connecting Ψ[f ](t) and Ψ(f ). The second assertion follows
from the L’Hospital rule.

Lemma 3.4. If (1.1) holds and
nrn(ny)

y
󳨐⇒ r(y), n →∞,

where r : [0,∞) → [0,∞) is a continuous function, then

n2Ψ[rn](ny)
y
󳨀→ br2(y), n →∞.

Proof. Observe that (3.7) implies

Ψ[f ](t) − Ψ[g](t) = E(
N
∑
j=1
(e−g(t−τj) − e−f (t−τj))(1 −

j−1
∏
i=1
e−f (t−τi)

N
∏
i=j+1

e−g(t−τi))),

which in turn gives, for arbitrary 1 ≤ t1 ≤ t,

|Ψ[f ](t) − Ψ[g](t)| ≤ E(
N(t1)
∑
j=1
|f (t − τj) − g(t − τj)|Ij + ‖f ∨ g‖

N
∑

j=N(t1)+1
Ij),

where ‖f ‖ := supt≥1|f (t)| and

Ij := (1 −
j−1
∏
i=1
e−f (t−τi)

N
∏
i=j+1

e−g(t−τi)) ≤
j−1
∑
i=1
f (t − τi) +

N
∑
i=j+1

g(t − τi) ≤ ‖f ∨ g‖(N − 1).
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Using E(N(N − 1)) = 2b, we therefore obtain

|Ψ[f ](t) − Ψ[g](t)| ≤ 2b‖f ∨ g‖ max
1≤j≤t1
|f (t − j) − g(t − j)| + ‖f ∨ g‖2 E((N(t) − N(t1))N).

This implies that

|Ψ[f ](t) − Ψ[g](t)| ≤ 2b‖f ∨ g‖ max
1≤j≤t1
|f (t − j) − g(t − j)| + ‖f ∨ g‖2δ(t1), (3.8)

where δ(t) := E((N − N(t))N) → 0 as t →∞.
Applying (3.8) with t1 = nϵ, t = ny, and

f (j) := rn(j), g(j) := zn , j ≥ 1, zn := n−1r(y),

we get
|n2Ψ[rn](ny) − n2Ψ[zn](ny)| ≤ C sup

0≤x≤ϵ
|nrn(n(y − x)) − r(y)| + C1δ(nϵ).

Thus, under the imposed conditions,

lim
ϵ→0

sup
0≤y≤y0
(n2Ψ[rn](ny) − n2Ψ[zn](ny)) → 0, n →∞,

for any y0 > 0. It remains to observe that n2Ψ[zn](ny)
y
󳨀→ br2(y) as n →∞, according to Lemma 3.3.

3.3 Basic Convergence Result

If Λ(t) is given by Definition 3.1, then
En(e−X(t)) = e−nΛ(t). (3.9)

This observation explains the importance of the next result.

Proposition 3.5. Assume (1.1), a < ∞, and consider a sequence of positive functions Λn( ⋅ ) satisfying

Λn(t) = Bn(t) − Ψ(Λn) ∗ U(t), t ≥ 0, n ≥ 1. (3.10)

If the non-negative functions Bn(t) are such that

nBn(ny)
y
󳨀→ B(y), n →∞, (3.11)

where B(y) is a continuous function, then

nΛn(ny)
y
󳨀→ r(y), n →∞,

where r(y) is a continuous function uniquely defined by

r(y) = B(y) − ba−1
y

∫
0

r2(u) du. (3.12)

Proof. We will prove this statement in three steps. Firstly, we will show

r(y) = nBn(ny) − n
ny
∑
t=0

Ψ[n−1rn](ny − t)U(t) + δn(y), (3.13)

where δn(y) stands for a function (different in different formulas) such that δn(y)
y
󳨀→ 0 as n →∞. Secondly,

putting ∆n(y) := nΛn(ny) − r(y), we will find a y∗ > 0 such that

sup
y0≤u≤y1
|∆n(u)| → 0, n →∞, 0 < y0 ≤ y1 ≤ y∗. (3.14)

Thirdly, we will demonstrate that
∆n(y)

y
󳨀→ 0, n →∞. (3.15)
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Proof of (3.13). Rewriting (3.12) as

r(y) = B(y) − b
y

∫
0

r2(y − u)a−1 du

and using (2.2), (3.11), we obtain

r(y) = nBn(ny) − bn−1
ny
∑
t=0
r2(y − tn−1)U(t) + δn(y).

This and Lemma 3.4 imply (3.13).

Proof of (3.14). Relations (3.10) and (3.13) yield

∆n(y) = n
ny
∑
t=0
(Ψ[Λn](t) − Ψ[n−1rn](t))U(ny − t) + δn(y). (3.16)

Under the current assumptions, the inequality nΛn(ny) ≤ nBn(ny) implies that the sequence of functions
nΛn(ny) is uniformly bounded over any finite interval 0 ≤ y ≤ y1. Therefore, putting t1 := tϵ into (3.8) gives

n2|Ψ[Λn](t) − Ψ[n−1rn](t)| ≤ C1 sup
(1−ϵ)t≤j≤t

|∆n(jn−1)| + C2δ(tϵ)

for any fixed 0 < ϵ < 1. Combining this with (3.16) entails

|∆n(y)| ≤ Cn−1
ny
∑
t=nϵ

U(ny − t) sup
(1−ϵ)t≤j≤t

|∆n(jn−1)| + C1n−1
nϵ
∑
t=0
U(ny − t) + δn(y) (3.17)

so that, for some positive constant c∗ independent of (n, ϵ, y),

|∆n(y)| ≤ c∗y sup
ϵ(1−ϵ)≤u≤y

|∆n(u)| + Cϵ + δn(y).

It follows that
sup

ϵ(1−ϵ)≤y≤v
|∆n(y)| ≤ c∗v sup

ϵ(1−ϵ)≤u≤v
|∆n(u)| + Cϵ + sup

ϵ(1−ϵ)≤y≤v
δn(y).

Replacing here v by y∗ := (2c∗)−1, we derive

lim sup
n→∞

sup
ϵ(1−ϵ)≤u≤y∗

|∆n(u)| ≤ Cϵ,

which, after letting ϵ → 0, results in (3.14).

Proof of (3.15). It suffices to demonstrate that the convergence interval in (3.14) can be consecutively
expanded from (0, y∗] to (0, 2y∗], from (0, 2y∗] to (0, 3y∗], and so forth. Suppose we have established that,
for some k ≥ 1,

sup
y0≤u≤y1
|∆n(u)| → 0, n →∞, 0 < y0 ≤ y1 ≤ ky∗.

Then, for ky∗ < y ≤ (k + 1)y∗, by (3.17),

|∆n(y)| ≤ Cn−1
ny
∑

t=nky∗
U(ny − t) sup

(1−ϵ)t≤j≤t
|∆n(jn−1)| + Cϵ + δn(y),

yielding
sup

ky∗≤y≤(k+1)y∗
|∆n(y)| ≤ c∗y∗ sup

ky∗≤u≤(k+1)y∗
|∆n(u)| + Cϵ + sup

ky∗≤u≤(k+1)y∗
δn(y).

Since c∗y∗ < 1, we may conclude that

sup
ky∗≤u≤(k+1)y∗

|∆n(u)| → 0, n →∞,

thereby completing the proof of (3.15).
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4 Continuous State Critical Branching Process
In this section, among other things, we clarify themeaning of ξγ( ⋅ ) given by (1.7), in terms of the log-Laplace
transforms of the fdds of the process ξ ( ⋅ ). From now on, we consistently use the following shortenings:

Gp( ̄u, ̄λ) := Gp(u1, . . . , up; λ1, . . . , λp),
Gp(c1 ̄u + y, c2 ̄λ) := Gp(c1u1 + y, . . . , c1up + y; c2λ1, . . . , c2λp),

Hp,q( ̄u, ̄λ) := Hp,q(u1, . . . , up; λ11, . . . , λp1; . . . ; λ1q , . . . , λpq).

4.1 Laplace Transforms for ξ( ⋅ )
The set of functions

Gp( ̄u, ̄λ) := − ln E1(e−λ1ξ(u1)−⋅⋅⋅−λpξ(up)), p ≥ 1, (4.1)

with ui , λi ≥ 0, determines the fdds for the process ξ ( ⋅ ).

Lemma 4.1. For non-negative x, y, u1, u2, . . . , λ1, λ2, . . . ,

E(e−λ1ξ(u1+y)−⋅⋅⋅−λpξ(up+y) | ξ (y) = x) = e−xGp( ̄u, ̄λ).

Proof. This result is obtained by induction, using (1.3) and the Markov property of ξ ( ⋅ ). To illustrate the
argument, take p = 2 and non-negative y, y1, y2. We have

E(e−λ1ξ(y+y1+y2)−λ2ξ(y+y2) | ξ (y) = x) = E(e−λ2ξ(y+y2) E(e−λ1ξ(y+y1+y2) | ξ (y + y2)) | ξ (y) = x)
(1.3)
= E(exp{−(λ2 +

λ1
1 + bλ1y1

)ξ (y + y2)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ξ (y) = x)

(1.3)
= exp{− (λ1 + λ2 + bλ1λ2y1)x

1 + bλ1(y1 + y2) + bλ2y2 + b2λ1λ2y1y2
}.

With u2 = y2 and u1 = y1 + y2, this gives an explicit expression

G2( ̄u, ̄λ) =
λ1 + λ2 + bλ1λ2(u1 − u2)

1 + bλ1u1 + bλ2u2 + b2λ1λ2(u1 − u2)u2
for the asserted relation E(e−λ1ξ(u1+y)−λ2ξ(u2+y) | ξ (y) = x) = e−xG2( ̄u, ̄λ) in the case p = 2.

Lemma 4.2. If
u1 > ⋅ ⋅ ⋅ > up = 0, λ1 ≥ 0, . . . , λp ≥ 0, (4.2)

then for all y ≥ 0, assuming G0( ̄u, ̄λ) := 0, the following two relations hold:

Gp( ̄u + y, ̄λ) = (by + (Gp−1( ̄u, ̄λ) + λp)−1)−1,

Gp( ̄u + y, ̄λ) = Gp−1( ̄u, ̄λ) + λp − b
y

∫
0

G2p( ̄u + v, ̄λ) dv. (4.3)

Proof. With up = 0, relation (4.1) gives

Gp( ̄u + y, ̄λ) = − ln E1(e−λpξ(y) E(e−λ1ξ(u1+y)−⋅⋅⋅−λp−1ξ(up−1+y) | ξ (y))).

Applying Lemma 4.1 and (1.3), we get the first statement

Gp( ̄u + y, ̄λ) = − ln E1(e−λpξ(y)e−Gp−1( ̄u,
̄λ)ξ(y)) = (by + (Gp−1( ̄u, ̄λ) + λp)−1)−1.

This implies the second statement since a function of the form H(y) = (by + H−10 )−1 satisfies the integral
equation

H(y) = H0 − b
y

∫
0

H2(v) dv. (4.4)
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4.2 Riccati Integral Equations

Equation (4.3) has a form of the Riccati integral equation (4.4), associated with a simple Riccati differential
equation H󸀠(y) = −H2(y), H(0) = H0. Our limit theorems require a more general equation of this type,

H(y) = F(y) − b
y

∫
0

H2(v) dv. (4.5)

Lemma 4.3. Let function F : [0,∞) → [0,∞) be non-decreasing, with F(0) ≥ 0. For a given n ≥ 1, consider the
step function

F(n)(y) :=
∞

∑
k=0

F( kn)
1{ kn ≤y< k+1n }, y ≥ 0,

and put
e−H(n)(y) := E1(exp{−ξ ∘ F(n)(

ny
n )})

, y ≥ 0,

where

ξ ∘ F(n)( kn)
:= ξ( kn)F(0) +

k
∑
i=1
ξ( k − in )(

F( in)
− F( i − 1n )).

Then the function H(n)( ⋅ ) satisfies a recursion

H(n)( kn)
= F( kn)

− F( k − 1n ) + H
(n)(

k − 1
n )(

1 + b
n
H(n)( k − 1n ))

−1
, k ≥ 1,

with H(n)(0) = F(0).

Proof. Putting fk := F( kn ) and f−1 := 0, we get

H(n)( kn)
= − ln E1(exp{−

k
∑
i=0
ξ( k − in )

(fi − fi−1)}) = fk − fk−1 − ln E1(exp{−
k−1
∑
i=0
ξ( k − in )

(fi − fi−1)}),

and by Lemma 4.1,
H(n)( kn)

= fk − fk−1 + Gk( ̄u +
1
n
, ̄λ),

with ui := k−in and λi = fi−1 − fi−2 for i ≥ 1. Since, by Lemma 4.2,

Gk( ̄u +
1
n
, ̄λ) = (bn + (Gk−1(

̄u, ̄λ) + λk)−1)
−1
,

we conclude

H(n)( kn)
= fk − fk−1 + (

b
n
+ (H(n)n (

k − 1
n ))

−1
)
−1
= fk − fk−1 + H(n)(

k − 1
n )(

1 + b
n
H(n)( k − 1n ))

−1
.

Proposition 4.4. Let function F( ⋅ ) have a continuous derivative F󸀠 : [0,∞) → [0,∞), and let F(0) ≥ 0. The
functions H(n)( ⋅ ), defined by Lemma 4.3, converge,

H(n)(y) → H(y), y ≥ 0, n →∞,

to the solution of the Riccati equation (4.5).

Proof. Applying a Taylor expansion to the recursion stated by Lemma 4.3, we obtain

H(n)( kn)
= fk − fk−1 + H(n)(

k − 1
n )
−
b
n(
H(n)( k − 1n ))

2
+ ϵn(k),

ϵn(k) = H(n)(
k − 1
n )((

1 + b
n
H(n)( k − 1n ))

−1
− 1 + b

n
H(n)( k − 1n )) =

( bn )
2(H(n)( k−1n ))

3

1 + bnH(n)(
k−1
n )

.
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By summing this recursion, we get

H(n)( kn)
= fk −

b
n

k−1
∑
i=0
(H(n)( in))

2
+

k
∑
i=1
ϵn(i). (4.6)

To prove the lemma, it suffices to verify that

∆n(k) := H(n)(
k
n)
− H( kn)

y
󳨐⇒ 0, n →∞, (4.7)

where H(n)( ⋅ ) satisfies (4.6), with fi = F( in ). To this end, note that

k
∑
i=0
ξ( k − in )

(fi − fi−1) = fkξ (0) +
k−1
∑
i=0
(ξ( k − in )

− ξ( k − i − 1n ))
fi ≤ fkξ(

k
n)

implies an upper bound
H(n)( kn)

≤ − ln E1(e−fkξ(
k
n ))

(1.3)
=

fk
1 + bfk kn

,

that ensures H(n)( kn ) ≤ C(y), provided fk ≤ C1(y) for all k ≤ ny, so that∑
ny
i=1 ϵn(i)

y
󳨐⇒ 0 as n →∞.

This and (4.6) entail

∆n(
k
n)
= −

b
n

k−1
∑
i=0

∆n(
i
n)(

H(n)( in)
+ H( in))

+ δn(k),

where δn(ny)
y
󳨐⇒ 0 as n →∞. In view of this relation, we can find a sufficiently small y∗ > 0 such that

sup
0≤y≤y∗
|∆n(ny)| → 0, n →∞.

It follows that

∆n(
k
n)
= −

b
n

k−1
∑
i=ny∗

∆n(
i
n)(

H(n)( in)
+ H( in))

+ δ󸀠n(k),

where δ󸀠n(ny)
y
󳨐⇒ 0 as n →∞. This, in turn, gives

sup
0≤y≤2y∗
|∆n(ny)| → 0, n →∞,

and proceeding in the same manner, we arrive at (4.7).

4.3 Laplace Transforms for ξ ∘ F( ⋅ )
Notice that the Riemann–Stieltjes integrals appearing in this paper are understood as

t

∫
0

f (u) dF(u) := F(0)f (0) + ∫
(0,t]

f (u) dF(u).

Referring to Proposition 4.4, we treat the Riemann–Stieltjes integral

ξ ∘ F(y) =
y

∫
0

ξ (y − v) dF(v)

as a randomvariable satisfyingE1(e−ξ∘F(y)) = e−H(y). This interpretationwill be extended to the fdds of ξ ∘ F( ⋅ )
in terms of the log-Laplace transforms

Hp( ̄u, ̄λ) := − ln E1(e−λ1ξ∘F(u1)−⋅⋅⋅−λpξ∘F(up)). (4.8)
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Lemma 4.5. Under the assumptions of Proposition 4.4, given (4.2), the function (4.8) satisfies

Hp( ̄u + y, ̄λ) = Hp−1( ̄u, ̄λ) + F∘p(y) − b
y

∫
0

H2
p( ̄u + v, ̄λ) dv, (4.9)

where F∘p(y) := ∑
p
i=1 λi(F(ui + y) − F(ui)) for y > 0, and F

∘
p(0) := λpF(0).

Proof. The proof of Lemma 4.5 uses an argument similar to Lemma 4.3 and Proposition 4.4, with the main
idea being to demonstrate that the step function version of (4.8), defined by

e−H
(n)
p ( ̄u+y, ̄λ) := E1(exp{−

p
∑
j=1
λiξ ∘ F(n)(

nui
n
+
ny
n )})

,

converges, as n →∞, to the solution of (4.9), i.e., H(n)p ( ̄u + y, ̄λ) → Hp( ̄u + y, ̄λ). Instead of giving tedious
details in terms of the discrete version of (4.8), we indicate below the key new argument in terms of the
continuous version of the integral ξ ∘ F( ⋅ ).

Due to (4.8), we have

e−Hp( ̄u, ̄λ) = E1(exp{−
p
∑
i=1
λiξ ∘ dF(ui)}),

which, in view of (1.3) and (4.8), yields

e−Hp( ̄u+y, ̄λ) = E1(exp{−
p
∑
i=1
λi

ui+y

∫
0

ξ (ui + y − v) dF(v)}).

Splitting each of the integrals in two parts ∫ui+y0 = ∫
ui
0 +∫

ui+y
ui

, we find

p
∑
i=1

ui+y

∫
0

ξ (ui + y − v) dF(v) =
p−1
∑
i=1

ui

∫
0

ξ (ui + y − v) dF(v) +
y

∫
0

ξ (y − v) dF∘p(v),

and then, using the Markov property of the process ξ ( ⋅ ),

E(exp{−
p−1
∑
i=1
λi

ui

∫
0

ξ (ui + y − v) dF(v)}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ξ (u), 0 ≤ u ≤ y) = e−ξ(y)Hp−1( ̄u, ̄λ),

we obtain
e−Hp( ̄u+y, ̄λ) = E1(exp{−ξ (y)Hp−1( ̄u, ̄λ) − ξ ∘ F∘p(y)}) = E1(e−ξ∘Fp(y)),

where Fp(y) := Hp−1( ̄u, ̄λ) + F∘p(y). After this, it remains to apply Proposition 4.4.

5 Main Results
The aim of this chapter is to establish an fdd-convergence result for the vector (X1( ⋅ ), . . . , Xq( ⋅ )) composed
of the population counts corresponding to different individual scores χ1( ⋅ ), . . . , χq( ⋅ ), which may depend
on each other.

5.1 Limit Theorems

Theorem 1. Consider a population count defined by (2.1). If (1.1), a < ∞, mχ < ∞, see (2.5), then

{n−1X(nu), u > 0 | Z0 = n}
fdd
󳨀󳨀→ {mχξ (ua−1), u > 0 | ξ (0) = 1}, n →∞, (5.1)

where ξ ( ⋅ ) is the continuous state branching process satisfying (1.3).
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There are three new features in the limiting process of (5.1) compared to that of (1.2):
∙ the continuous time parameter u does not include zero, reflecting the fact that it may take some time for

the distribution of ages of coexisting individuals to stabilise;
∙ the time scale a−1 corresponds to the scaling by the average length of overlapping generations;
∙ the factor mχ accounts for the average χ-score in a population with overlapping generations.

Theorem 2. Consider a population count defined by (2.1). Assume (1.1), a < ∞, (2.6), and in the case mχ = ∞,
assume additionally

E(χ2(t)) = o(t2γL2(t)), t →∞. (5.2)

Then
{n−1−γL−1(n)X(nu), u > 0 | Z0 = n}

fdd
󳨀󳨀→ {aγ−1ξγ(ua−1), u > 0 | ξ (0) = 1}, n →∞,

where ξγ( ⋅ ) is given by (1.7), which is understood according to the previous chapter.

The next result extends Theorems 1 and 2 to the case of several population counts.

Theorem 3. Consider q ≥ 1 population counts X1(t), . . . , Xq(t), each defined by Definition 2.1 in terms of dif-
ferent individual scores χ1(t), . . . , χq(t). Assume (1.1), a < ∞, and (2.6), with γ = γj andL = Lj for the χj-score,
j = 1, . . . , q. If mχj = ∞, assume additionally condition (5.2) for the χj-score.

Then, as n →∞,

(
X1(nu)

n1+γ1L1(n)
, . . . ,

Xq(nu)
n1+γqLq(n)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Z0 = n)

u>0

fdd
󳨀󳨀→ (aγ1−1ξγ1 (ua−1), . . . , aγq−1ξγq (ua−1) | ξ (0) = 1)u>0.

To illustrate the utility of Theorem 3, we consider a multitype GW-process

{(Z1t , Z2t , . . . , Z
q
t ), t ≥ 0 | Z

1
0 = n},

where Z it is the number of type i individuals born at time t, for i = 1, . . . , q. Each individual of type i is
assumed to live one unit of time and then be replaced by Nij individuals of type j. Denoting mij := E(Nij),
assume that the multitype GW- process is decomposable in that

mij = 0, 1 ≤ j < i ≤ q. (5.3)

The next result deals with a decomposable critical GW-process, satisfying

mjj = 1, 1 ≤ j ≤ q, mj−1,j ∈ (0,∞), 2 ≤ j ≤ q, mij < ∞, 1 ≤ i ≤ j ≤ q. (5.4)

To put this process into the GWO-framework, we treat as GWO-individuals only the type 1 individu-
als, while the other types will be addressed by respective population counts. Clearly, the numbers of GWO-
individuals form a single type GW-process, and (1.2), derived from Corollary 1, describes the limit behaviour
of the scaled process (Z1t , t ≥ 0 | Z10 = n). Since the process {Z

1
0 , . . . , Z

1
n−1 | Z

1
0 = n} during n units of time pro-

duces type 2 individuals, of order n new individuals per unit of time, onewould expect, in view of Theorem3,
a typical number of type 2 individuals at time n to be of order n2. An extrapolation of this reasoning suggests
scaling by nj for the number of type j individuals, j = 1, . . . , q.

Theorem 4. Consider a decomposable multitype GW-process (Z1t , Z2t , . . . , Z
q
t ) starting with n individuals of

type 1. Assume (5.3) and (5.4). If, furthermore, Var(Njj) < ∞ for all 1 ≤ j ≤ q, and Var(N11) = 2b, then

{(n−1Z1ny , n−2Z2ny , . . . , n−qZ
q
ny), y ≥ 0 | Z10 = n}

fdd
󳨀󳨀→ {(ξ (y), α1ξ1(y), . . . , αq−1ξq−1(y)) y ≥ 0 | ξ (0) = 1}

as n →∞, with αj := 1
j!m1,2 ⋅ ⋅ ⋅mj,j+1, j = 1, . . . , q − 1.

Here the limiting process ξ ( ⋅ ) is the same as in (1.2) and ξj(y) = ∫
y
0 ξ (y − u) du

j; see (1.7). Notice that the only
source of randomness in the q-dimensional limit process is the randomly fluctuating number of the first type
of individuals. Observe also that only the means mj,j+1 appear in the limit, but not the other means like for
example m1,3. This fact reflects the following phenomenon of the reproduction system under consideration:
in a large population, the number of type 3 individuals stemming directly from type 1 individuals is negligible
compared to the number of type 3 individuals stemming from type 2 individuals.
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5.2 Proof of Theorem 1

Assuming (4.2), put

Λn,p(t) := ln E1(exp{−n−1
p
∑
i=1
λiX(nui + t)}), t ∈ ℤ.

Due to (3.9), the Laplace transform of the p-dimensional distributions of the scaled X( ⋅ ) are given by

En(exp{−n−1
p
∑
i=1
λiX(n(ui + y))}) = e−nΛn,p(ny), y ≥ 0.

We prove Theorem 1 by showing that

nΛn,p(ny)
y
󳨀→ rp(y), n →∞, (5.5)

where the function rp(y) := Gp(a−1( ̄u + y),mχ ̄λ) determines the limiting fdds of Theorem 1 by Lemma 4.1.
Our proof of (5.5) consists of several steps summarised in the next flow chart:

(5.5)← (5.9)←
(5.14)← (5.17)
(5.15)
(5.16)← (5.18), (5.19), (5.20).

(5.6)

Due to Lemma 3.2, we have
Λn,p(t) = (Λ(t))[ψn,p], (5.7)

with

ψn,p(t) = n−1
p
∑
i=1
λiχ(nui + t). (5.8)

On the other hand, according to (4.3), the limit function rp( ⋅ ) satisfies

rp(y) = rp−1(0) + λpmχ − ba−1
y

∫
0

r2p(v) dv.

Thus, we can prove relation (5.5) using Proposition 3.5 and induction over p by verifying that

nBn(ny)
y
󳨀→ rp−1(0) + λpmχ , (5.9)

where, in accordance with (3.4) and (3.5),

Bn(t) = e
Λn,p(t)
2 +

∞

∑
t=1
eΛn,p(−t)1 Rny(t) + Dn ∗ U(t), (5.10)

Dn(t) = E1(eψn,p(t)1 e−∑
∞
j=1 Λn,p(t−j)ν(j)). (5.11)

The initial induction step, with p = 0, becomes trivial if we set r0(y) := 0 for all y. To state a relevant
induction assumption, denote

Λ󸀠n,p−1(t) := ln E1(exp{−n
−1

p−1
∑
i=1
λiX(nu󸀠i + t)}), t ∈ ℤ, (5.12)

where u󸀠1 > u
󸀠
2 > ⋅ ⋅ ⋅ > u

󸀠
p−1 and λ1 ≥ 0, . . . , λp−1 ≥ 0. Then the inductive hypothesis claims

nΛ󸀠n,p−1(ny)
y
󳨀→ Gp−1(a−1( ̄u󸀠 + y),mχ ̄λ), n →∞. (5.13)

We establish the uniform convergence (5.9), under assumption (5.13), in three steps

neΛn,p(ny)2
y
󳨐⇒ 0, n →∞, (5.14)

n
∞

∑
t=1
eΛn,p(−t)1 Rny(t)

y
󳨀→ rp−1(0), n →∞, (5.15)

n
ny
∑
t=1
Dn(ny − t)U(t)

y
󳨀→ λpmχ , n →∞. (5.16)
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Proof of (5.14). The upper bound

enΛn,p(t)1 ≤ n E1(X[ψn,p](t)) =
p
∑
i=1
λi E1(X(nui + t)),

under the assumption mχ < ∞, implies

sup
n≥1

sup
−∞<t≤ny

nΛn,p(t) < ∞ for any y > 0. (5.17)

This and a corollary of (1.8), neΛn,p(ny)2 ≤ n2Λ
2
n,p(ny), entail (5.14).

Proof of (5.15). Setting u󸀠i := ui − up−1, recall (5.12). Notice that, since, by (4.2), up = 0, we get, for t > 0,

Λn,p(−t) = ln E1(exp{−n−1
p−1
∑
i=1
λiX(nui − t)})

= ln E1(exp{−n−1
p−1
∑
i=1
λiX(n(u󸀠i + up−1) − t)}) = Λ

󸀠
n,p−1(nup−1 − t).

By the induction assumption (5.13), the function

r(n)(t) := neΛ
󸀠
n,p−1(nup−1−t)1 1{1≤t≤nup−1/2}

satisfies
r(n)(ny)

y
󳨐⇒ r(y), n →∞, r(y) := Gp−1(a−1( ̄u − y),mχ ̄λ)1{0≤y≤up−1/2}.

Moreover, due to (5.17), we have 0 ≤ r(n)(t) ≤ C for all n, t ≥ 1. Since r(0) = rp−1(0), relation (5.15) now fol-
lows from Lemma 2.2.

Proof of (5.16). In view of

Dn(t) = E(ψn,p(t)) − E(eψn,p(t)2 ) − E(eψn,p(t)1 e∑
∞
j=1 Λn,p(t−j)ν(j)

1 ),

relation (5.16) follows from (2.2) and the next three relations:

n
ny
∑
t=1

E(ψn,p(ny − t))U(t)
y
󳨀→ λpmχ , n →∞, (5.18)

n
ny
∑
t=1

E(eψn,p(t)2 )
y
󳨐⇒ 0, n →∞, (5.19)

n
ny
∑
t=1

E(eψn,p(t)1 e∑
∞
j=1 Λn,p(t−j)ν(j)

1 )
y
󳨐⇒ 0, n →∞. (5.20)

To prove (5.18), notice that (5.8) gives nψn,p(t) = λpχ(t) + nψn,p−1(t). Since

ny
∑
t=1

E(χ(ny − t))U(t)
y
󳨀→ mχ , n →∞,

it suffices to check that

n
ny
∑
t=1

E(ψn,p−1(t))
y
󳨐⇒ 0, n →∞. (5.21)

This follows from the fact that, for any positive u,

ny
∑
t=1

E(χ(nu + t)) ≤ ∑
t>nu

E(χ(t)),

with the right-hand side going to 0 as n →∞ under the assumption mχ < ∞.
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Turning to (5.19), we split its left-hand side in three parts using (1.9), and then produce an upper bound
as a sum of three terms involving an arbitrary k ≥ 1:

neψn,p(t)2 = nen
−1λpχ(t)

2 + neψn,p−1(t)2 + nen
−1λpχ(t)

1 eψn,p−1(t)1

≤ n−1λ2pχ2(t)1{χ(t)≤k} + λpχ(t)1{χ(t)>k} + 2nψn,p−1(t).

The third term is handled by (5.21). The first term is further estimated from above by

n−1
ny
∑
t=1

E(χ2(t)1{χ(t)≤k}) ≤ n−1k
∞

∑
t=1

E(χ(t)),

where the right-hand side converges to zero for any fixed k. Finally, in view of
ny
∑
t=1

E(χ(t)1{χ(t)>k}) ≤
∞

∑
t=1

E(χ(t)1{χ(t)>k}),

the proof of (5.19) is finished by applying Fatou’s lemma as k →∞.
To prove convergence (5.20), we use the bound

eψn,p(t)1 ≤ n−1λpχ(t) + ψn,p−1(t),

and referring to (5.21), reduce the task to
ny
∑
t=1

E(χ(t)e∑
∞
j=1 Λn,p(t−j)ν(j)

1 )
y
󳨐⇒ 0, n →∞.

The last relation follows from the upper bound

∞

∑
t=1

E(χ(t)e∑
∞
j=1 Λn,p(t−j)ν(j)

1 ) ≤
∞

∑
t=k

E(χ(t)) +
k
∑
t=1

E(χ(t)1{χ(t)>k1}) + k1
k
∑
t=1

∞

∑
j=1

Λn,p(t − j)A(j)

because the third term tends to 0 as n →∞, thanks to (5.17), and the first two terms in the right-hand side
vanish as k →∞ and k1 →∞ due to the assumption mχ < ∞.

5.3 Proof of Theorem 2

The main idea of the proof of Theorem 2 is the same as of Theorem 1, and here we mainly focus on the new
argument addressing the case mχ = ∞. We want to prove (5.5) with the modified notation

Λn,p(t) := ln E1(exp{−n−1−γL−1(n)
p
∑
i=1
λiX(nui + t)}),

rp(y) := Hp(a−1( ̄u + y), aγ−1 ̄λ),

where Hp( ̄u, ̄λ) is defined by (4.8), with F(y) := yγ. In this case, relation (5.7) holds with

ψn,p(t) :=
p
∑
i=1
λn,iχ(nui + t), λn,i := λin−1−γL−1(n),

and according to (4.9), the right-hand side of (5.5) satisfies

rp(y) = rp−1(0) + a−1
p
∑
i=1
λi((ui + y)γ − u

γ
i ) − ba

−1
y

∫
0

r2p(v) dv.

Thus, under the conditions of Theorem 2, relation (5.5) will follow from Proposition 3.5 after we show

nBn(ny)
y
󳨀→ rp−1(0) + a−1

p
∑
i=1
λi((ui + y)γ + u

γ
i ), n →∞,
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where Bn(t) is defined by (5.10) and (5.11). Its counterpart (5.9) was proven in the case mχ < ∞ according
to flow chart (5.6). In the rest of the proof, we follow the same flow chart and comment on necessary changes
in the case mχ = ∞.

The counterparts of (5.14), (5.17), and (5.15) in the casemχ = ∞ are verified in a way similar to the case
mχ < ∞, now using Proposition 2.3. The counterpart of (5.16) takes the form

n
ny
∑
t=1
Dn(ny − t)U(t)

y
󳨀→ a−1

p
∑
i=1
λi((ui + y)γ − u

γ
i ), n →∞,

as Proposition 2.3 yields the following counterpart of (5.18):

n
ny
∑
t=1

E(ψn,p(ny − t))U(t)
y
󳨀→ a−1

p
∑
i=1
λi((ui + y)γ − u

γ
i ), n →∞.

To verify (5.19) in the case mχ = ∞, we check that

n
ny
∑
t=1

E(ψ2
n,p(t))

y
󳨐⇒ 0, n →∞, (5.22)

by putting to use condition (5.2) to handle the terms

n
p
∑
i=1

ny
∑
t=1
λ2n,i E(χ

2(nui + t)) + 2n
p
∑
i=1

p
∑
j=i+1

ny
∑
t=1
λn,iλn,j E(χ(nui + t)χ(nuj + t)),

after applying the Cauchy–Schwarz inequality for expectations

E(χ(nui + t)χ(nuj + t)) ≤ √E(χ2(nui + t))√E(χ2(nui + t)).

To prove the counterpart of (5.20) in the case mχ = ∞, we use a sequence of upper bounds

n
ny
∑
t=1

E(eψn,p(t)1 e∑
∞
j=1 Λn,p(t−j)ν(j)

1 )

≤ n
ny
∑
t=1

E(ψn,p(t)1{N>nϵ}) + n
ny
∑
t=1

E(ψn,p(t)
∞

∑
j=1

Λn,p(t − j)ν(j)1{N≤nϵ})

≤ n
ny
∑
t=1
√E(ψ2

n,p(t))√P(N > nϵ) + sup
t≤ny
(nΛn,p(t))

ny
∑
t=1

E(ψn,p(t)N1{N≤nϵ})

≤ C1ϵ−1
ny
∑
t=1
√E(ψ2

n,p(t)) + C2nϵ
ny
∑
t=1

E(ψn,p(t)),

wherewe applied the Cauchy–Schwarz andMarkov inequalities togetherwith (5.17). By the Cauchy–Schwarz
inequality for the dot product,

(
ny
∑
t=1

1 ⋅ √E(ψ2
n,p(t)))

2
≤ ny

ny
∑
t=1

E(ψ2
n,p(t)),

which together with (5.22) yield ∑nyt=1√E(ψ
2
n,p(t))

y
󳨐⇒ 0 as n →∞. On the other hand, in view of Proposi-

tion 2.3, the upper bound

nϵ
ny
∑
t=1

E(ψn,p(t)) < ϵC(y1), n ≥ 1, 0 ≤ y ≤ y1

holds for an arbitrary ϵ > 0. Sending ϵ → 0 ends the proof of (5.20) and thereby of Theorem 2.
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5.4 Proof of Theorem 3

Lemma 5.1. Put

Hp,q( ̄u, ̄λ) := − ln E1(exp{−
p
∑
i=1

q
∑
j=1
λijξγj (ui)}),

assuming
0 = γ1 = ⋅ ⋅ ⋅ = γs < γs+1 ≤ ⋅ ⋅ ⋅ ≤ γq , 0 ≤ s ≤ q. (5.23)

Then, for u1 > ⋅ ⋅ ⋅ > up = 0, the following integral equation holds:

Hp,q( ̄u + y, ̄λ) = Hp−1,q( ̄u, ̄λ) + Fp,q(y) − b
y

∫
0

H2
p,q( ̄u + v, ̄λ) dv, (5.24)

Fp,q(y) := λp1 + ⋅ ⋅ ⋅ + λps +
p
∑
i=1

q
∑
j=s+1

λij((ui + y)γj − u
γj
i ).

Proof. The lemma is proven similarly to Lemma 4.5.

Theorem 3 is obtained by combining the proofs of Theorems 1 and 2. The aim is to prove (5.5) with

ψn,p(t) :=
p
∑
i=1

q
∑
j=1
λn,ijχj(nui + t), λn,ij := λijn−1−γjL−1j (n),

rp(y) := Hp,q(a−1( ̄u + y), aγ1−1 ̄λ1, . . . , aγq−1 ̄λq),

assuming u1 > ⋅ ⋅ ⋅ > up−1 > up = 0and λij ≥ 0.Without loss of generality,we assume (5.23) and that, for some
0 ≤ s󸀠 ≤ s,

mχj < ∞, j = 1, . . . , s󸀠, mχj = ∞, j = s󸀠 + 1, . . . , q.

According to (5.24), the limit function in (5.5) satisfies the integral equation

rp(y) = rp−1(0) + a−1Fp,q(y) − ba−1
y

∫
0

r2p(v) dv.

Therefore, to apply Proposition 3.5, we have to prove for the updated version of (5.10) that

nBn(ny)
y
󳨀→ rp−1(0) + a−1Fp,q(y), n →∞,

which, once again, is done according to flow chart (5.6). Even in this more general setting, the counterparts
of (5.14) and (5.15) are valid, and the task boils down to verifying the counterpart of (5.16),

n
ny
∑
t=1
Dn(ny − t)U(t)

y
󳨀→ a−1Fp,q(y), n →∞,

where the limit is obtained using Proposition 2.3 for the counterpart of (5.18),

n
ny
∑
t=1

E(ψn,p(ny − t))U(t)
y
󳨀→ a−1Fp,q(y), n →∞.

It remains to verify the counterparts of (5.19), (5.20).

Proof of (5.19). Observe that ψn,p(t) = ψ󸀠n,p(t) + ψ󸀠󸀠n,p(t), where

ψ󸀠n,p(t) :=
s󸀠

∑
j=1

p
∑
i=1
λn,ijχj(nui + t), ψ󸀠󸀠n,p(t) :=

q
∑

j=s󸀠+1

p
∑
i=1
λn,ijχj(nui + t).
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Using (1.9), we can split the left-hand side of (5.19) into the sum of three terms

n
ny
∑
t=1

E(eψn,p(t)2 ) = n
ny
∑
t=1

E(eψ
󸀠
n,p(t)

2 ) + n
ny
∑
t=1

E(eψ
󸀠󸀠
n,p(t)

2 ) + n
ny
∑
t=1

E(eψ
󸀠
n,p(t)

1 eψ
󸀠󸀠
n,p(t)

1 ).

The first and the second terms are handled using the argument of the proofs of Theorems 1 and 2 respectively.
The third term requires a special attention. It is estimated from above by

n
ny
∑
t=1

E(eψ
󸀠
n,p(t)

1 eψ
󸀠󸀠
n,p(t)

1 ) ≤ n
ny
∑
t=1

E((e∑
s󸀠
j=1 λn,pjχj(t)

1 + eψ
󸀠
n,p−1(t)

1 )eψ
󸀠󸀠
n,p(t)

1 )

≤ C
s󸀠

∑
j=1

ny
∑
t=1

E(χj(t)eψ
󸀠󸀠
n,p(t)

1 ) + n
ny
∑
t=1

E(ψ󸀠n,p−1(t)).

The last term is tackled in a way similar to (5.21), and it remains to show that, for each j ≤ s󸀠,
ny
∑
t=1

E(χj(t)eψ
󸀠󸀠
n,p(t)

1 )
y
󳨐⇒ 0, n →∞.

To this end, observe that, for an arbitrary k ≥ 1,
ny
∑
t=1

E(χj(t)eψ
󸀠󸀠
n,p(t)

1 ) ≤ k
ny
∑
t=1

E(ψ󸀠󸀠n,p(t)) +
∞

∑
t=1

E(χj(t)1{χj(t)>k}).

The first term is taken care of by (5.21), while the second term vanishes as k →∞ since mχj < ∞.

Proof of (5.20). Using ψn,p(t) = ψ󸀠n,p(t) + ψ󸀠󸀠n,p(t), we get e
ψn,p(t)
1 ≤ eψ

󸀠
n,p(t)

1 + eψ
󸀠󸀠
n,p(t)

1 , which allows us to replace
(5.20) by the following two relations:

n
ny
∑
t=1

E(eψ
󸀠
n,p(t)

1 e∑
∞
j=1 Λn,p(t−j)ν(j)

1 )
y
󳨐⇒ 0, n →∞,

n
ny
∑
t=1

E(eψ
󸀠󸀠
n,p(t)

1 e∑
∞
j=1 Λn,p(t−j)ν(j)

1 )
y
󳨐⇒ 0, n →∞.

The first relation is proven in the same way as (5.20) was proven for Theorem 1, and the second relation is
proven in the same way as (5.20) was proven for Theorem 2.

5.5 Proof of Theorem 4

Adapting the setting of Theorem 4 to Theorem 3, we treat the process (Z1t , . . . , Z
q
t ) as a vector of population

counts for a single type GW-process. This is achieved by focusing on the type 1 individuals and introducing
q individual scores for a generic individual of type 1 born at time 0 by setting
∙ χ1(t) := 1{t=0},
∙ χj(t) := the number of descendants of the generic individual, which (a) have no other intermediate ances-

tors of type 1, (b) are born at time t, and (c) have type j,
for j = 2, . . . , q. Having this, our task is to check that conditions (2.6) and (5.2) hold with γ := j − 1 and
L(t) := 1

(j−1)!m1,2 ⋅ ⋅ ⋅mj−1,j for all t ≥ 1 and j = 2, . . . , q.
To check condition (2.6) with χ( ⋅ ) := χj( ⋅ ) for a given j = 2, . . . , q, we use representation

χj(t + 1) =
j
∑
i=2

N1i

∑
k=1

Z it(j, k), (5.25)

where Z it(j, k)
d= Z it(j) stands for the number of type j individuals born at time t + 1 and descending from

a type i individual born at time 1. This gives

E(χj(t + 1)) =
j
∑
i=2
m1jMij(t), Mij(t) := E(Z it(j) | Z i0 = 1).
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Furthermore, due to the decomposable branching property, we have

Z it+1(j) =
j
∑
l=i

Nil
∑
k=1

Z lt(j, k), (5.26)

implying the recursion

Mij(t + 1) =
j
∑
l=i
milMlj(t) = Mij(t) +

j−1
∑
l=i+1

milMlj(t) + mij .

Putting here j = i + 1, we get Mi,i+1(t) = tmi,i+1. From

Mi,i+2(t + 1) = Mi,i+2(t) + mi,i+1Mi+1,i+2(t) + mi,i+2

= Mi,i+2(t) + tmi,i+1mi+1,i+2 + mi,i+2,

we find Mi,i+2(t) ∼ 1
2 t

2mi,i+1mi+1,i+2 as t →∞. Thus, by iteration, we derive

Mij(t) ∼
1
(i − j)! t

j−imi,i+1 ⋅ ⋅ ⋅mj−1,j , t →∞,

which allows us to conclude that condition (2.6) holds in the desired form, because

E(χj(t)) ∼
1
(j − 2)! t

j−2m1,2 ⋅ ⋅ ⋅mj−1,j , t →∞.

Finally, to verify condition (5.2) with γ = j − 1, it suffices to show that

E(χ2j (t)) ≤ Ct
2j−3, j = 2, . . . , q, (5.27)

using the following corollary of (5.25):

E(χ2j (t + 1)) = E((
j
∑
i=2

N1i

∑
k=1

Z it(j, k))
2
)

=
j
∑
i=2
m1iVij(t) + 2

j
∑
i=2

E(N1i(N1i − 1))M2
ij(t) + 2 ∑

2≤i<l≤j
E(N1iN1l)Mij(t)Mlj(t),

where Vij(t) := E((Z it(j))2 | Z i0 = 1). From here, relation (5.27) is obtained from

j
∑
i=2

E(N1i(N1i − 1))M2
ij(t) + ∑

2≤i<l≤j
E(N1iN1l)Mij(t)Mlj(t) ≤ C1 ∑

2≤i≤l≤j
tj−i tj−l ≤ C2t2j−4

and the upper bound Vij(t) ≤ Ct2j−2i+1, derived next. Using (5.26) and applying similar estimates, we find

Vij(t + 1) = E((
j
∑
l=i

Nil
∑
k=1

Z lt(j, k))
2
) ≤

j
∑
l=i
milVlj(t) + Ct2j−2i .

In particular, Vjj(t + 1) ≤ Vjj(t) + C implies Vjj(t) ≤ Ct. This, in turn, gives

Vj−1,j(t + 1) ≤ Vj−1,j(t) + C1t + C2t2

and Vj−1,j(t) ≤ Ct3. Reiterating this argument, we find Vij(t) ≤ Ct2j−2i+1, which ends the proof of (5.27) and
Theorem 4 as a whole.

Acknowledgment: The author is grateful to an anonymous reviewer for a close reading of the manuscript
and valuable comments.



24 | S. Sagitov, Critical Galton–Watson Processes with Overlapping Generations

References
[1] K. B. Athreya and P. E. Ney, Branching Processes, Grundlehren Math. Wiss. 196, Springer, New York, 1972.
[2] S. N. Ethier and T. G. Kurtz,Markov Processes: Characterization and Convergence, John Wiley & Sons, New York, 1986.
[3] W. Feller, An Introduction to Probability Theory and its Applications. Vol. I, John Wiley & Sons, New York, 1968.
[4] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, John Wiley & Sons, New York, 1971.
[5] J. Foster and P. Ney, Limit laws for decomposable critical branching processes, Z. Wahrsch. Verw. Gebiete 46 (1978/79),

no. 1, 13–43.
[6] P. J. Green, Conditional limit theorems for general branching processes, J. Appl. Probab. 14 (1977), no. 3, 451–463.
[7] P. Haccou, P. Jagers and V. A. Vatutin, Branching Processes: Variation, Growth, and Extinction of Populations, Cambridge

University, Cambridge, 2005.
[8] J. M. Holte, A generalization of Goldstein’s comparison lemma and the exponential limit law in critical

Crump–Mode–Jagers branching processes, Adv. in Appl. Probab. 8 (1976), no. 1, 88–104.
[9] P. Jagers, Convergence of general branching processes and functionals thereof, J. Appl. Probab. 11 (1974), 471–478.
[10] P. Jagers, Branching Processes with Biological Applications, John Wiley & Sons, London, 1975.
[11] P. Jagers and S. Sagitov, General branching processes in discrete time as random trees, Bernoulli 14 (2008), no. 4,

949–962.
[12] M. Kimmel and D. E. Axelrod, Branching Processes in Biology, Springer, New York, 2002.
[13] J. Lamperti, The limit of a sequence of branching processes, Z. Wahrsch. Verw. Gebiete 7 (1967), 271–288.
[14] M. Möhle and B. Vetter, Asymptotics of continuous-time discrete state space branching processes for large initial state,

Markov Process. Related Fields 27 (2021), no. 1, 1–42.
[15] S. M. Sagitov, A multidimensional critical branching process generated by a large number of particles of a single type,

Theory Probab. Appl. 35 (1991), 118–130.
[16] B. A. Sevast’janov, Transient phenomena in branching stochastic processes, Theory Probab. Appl. 4 (1959), 113–128.
[17] B. A. Sevast’janov, Verzweigungsprozesse, Akademie, Berlin, 1974.
[18] Z. Taïb, Branching Processes and Neutral Evolution, Lecture Notes Biomath. 93, Springer, Berlin, 1992.
[19] V. A. Vatutin, Critical Bellman–Harris branching processes starting with a large number of particles,Math. Notes 40

(1986), 803–811.
[20] V. A. Vatutin, Asymptotic properties of Bellman–Harris critical branching processes starting with a large number of

particles, J. Soviet Math. 47 (1989), 2673–2681.
[21] P. Whittle, A branching process in which individuals have variable lifetimes, Biometrika 51 (1964), 262–264.


	Critical Galton�Watson Processes with Overlapping Generations
	1 Introduction
	2 Population Counts
	2.1 The Litter Sizes
	2.2 Associated Renewal Process
	2.3 Expected Population Counts

	3 Branching Renewal Equations
	3.1 Derivation of the Branching Renewal Equation
	3.2 Laplace Transform of the Reproduction Law
	3.3 Basic Convergence Result

	4 Continuous State Critical Branching Process
	4.1 Laplace Transforms for $\xi(\cdot)$
	4.2 Riccati Integral Equations
	4.3 Laplace Transforms for $\xi \circ F(\cdot)$

	5 Main Results
	5.1 Limit Theorems
	5.2 Proof of Theorem 1
	5.3 Proof of Theorem 2
	5.4 Proof of Theorem 3
	5.5 Proof of Theorem 4



