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Abstract: Severe accidents and high costs associated with weather-related events already occur in today’s
climate. Unless preventive measures are taken, the costs are expected to increase in future due to ongoing
climate change. However, the risk reduction measures are costly as well and may result in unwanted
impacts. Therefore, it is important to identify, assess and prioritize which measures are necessary to
undertake, as well as where and when these are to be undertaken. To be able to make such evaluations,
robust (scientifically based), transparent and systematic assessments and valuations are required. This
article describes a framework to assess the cause-and-effect relationships and how to estimate the costs
and benefits as a basis to assess and prioritize measures for climate adaptation of roads and railways.
The framework includes hazard identification, risk analysis and risk assessment, identification, monetary
and non-monetary evaluation of possible risk reduction measures and a step regarding distribution-,
goal- and sensitivity analyses. The results from applying the framework shall be used to prioritize among
potential risk reduction measures as well as when to undertake them.

Keywords: adaptation measure sustainability assessment; stepwise methodology; cause-effect-relationship

1. Introduction

Roads and railways are sensitive to climate-related events such as intense rainfall
and flooding causing landslides, damaged bridge foundations, overloaded track drainage,
flooded tracks and derailment risks, already resulting in high costs [1–4]. The costs are
expected to increase as extreme weather events will become more frequent and severe
due to climate change [5]. Moreover, solar radiation, precipitation, and winds constantly
wear the road surfaces, railway rails and banks [6]. Climate change might cause such
deterioration to increase. In addition, heat waves will affect both roads and railways.
While solar curves can be disastrous for the railways, heat waves might cause changes
in the interior of the road causing migration of liquid asphalt or bleeding, and ravelling
(loss of stones) on the road surface [7,8]. Further, changes in water content, repeated
freezing and thawing, moisture content and more severe cloudbursts, high winds, and
increased subsurface water will result in increased progressive shear failure, excessive
plastic deformation, attrition with mud pumping, frost action, swelling and shrinkage,
washout, and slope erosion [5,9]. Enriquez-de-Salamanca [10] showed that an increase in
summer temperatures in some regions might increase pavement damage, while higher
winter temperatures instead might reduce damages. However, in cold climate regions, an
increase in temperature might cause an increase in freeze and thaw cycles, hence, causing
more damage to the roads.

To maintain resilient roads and railways it is important to start planning for climate
change adaptation measures. Accordingly, several European countries have set up national
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strategies or roadmaps, e.g., PreventionWeb [11]. However, in the transport sector there is
still a need for further investigations, assessments, and methodologies for prioritization [12].
Though, there are some studies that have developed methods for climate risk assessments
and analysis of the road and railway system. For example, Chinowsky et al. [13] estimated
adaptation costs for the US road network with regard to rutting caused by precipitation,
freezing and thawing cycles, high temperature induced pavement cracking, and erosion
caused by precipitation on unpaved roads. In the UK, the Rail Safety and Standards
Board developed a government vision and policy on adapting infrastructure to climate
change [14]. It includes some climate impacts that might affect road and rail as well as
suggestions on measures, but not on how to assess risks or prioritize measures. Other
studies focus on parts of the problem, either by only investigating the turnouts of the
railways system as in Dindar et al. [9], or only focusing on one climate parameter, such
as flooding [15]. Bubeck et al. [15] presented flood risk assessments for European railway
tracks based on publicly available data about the rails. Their study described flood risks
based on several models, but, as it aimed at providing an overview of future flood risks
in Europe, it is still very general. In addition to climate hazard assessments, there are
studies on risks, costs, and socioeconomic costs related to the road or rail infrastructure
(e.g., [2,16,17]). There are also studies that have investigated and suggested methods on
how to detect and manage risks and prioritize adaptation measures. Such methods usually
follow the same procedure: first a review of which regional climate change factors that are
expected, how this might impact the infrastructure, and what kind of adaption measures
that should be prioritized—often based on risk or vulnerability assessments [2,12,18].

To understand local risks, vulnerabilities, and potential solutions associated with roads
or railways, some studies have collected information from experts via surveys, interviews,
or workshops (e.g., [12,19,20]). For example, Bles et al. [20] developed a method, focusing
on the TEN-T road network in Europe, that partly builds on workshops. A common
understanding of the risks, investment and running costs, as well as socioeconomic costs
are beneficial for a smooth, effective, and well-informed decision process. For complex
infrastructure projects, with high degrees of uncertainty, such a process shall be based on
collaboration, explorative learning, and adaptation [21]. However, as illustrated by a case
study in Norway, it may be difficult to encourage public authorities to work together in
understanding the socioeconomic effects of, for instance, a road closure in an avalanche
risk area [22]. It is therefore important, and challenging, to develop methods for climate
adaptation that are easily comprehended and at the same time include a well investigated
background regarding local risks and vulnerabilities, as this makes it easier for nonexperts
in municipalities to understand and accept the risks, as well as act on them [23]. In addi-
tion to socioeconomic impacts, adaption measures may result in positive environmental
synergies as well as unwanted environmental impacts. Accordingly, various studies have
investigated the environmental gain of planning for adaptation measures that could also
mitigate climate change [10,13,19,24–26]. Despite the existence of several methods to either
assess risks, or the costs related to adaption measures, there is a lack of methods facilitat-
ing well-informed decisions among authorities or operators on risk and prioritization of
adaption measures.

There are, to our knowledge, currently no methods which include all of the necessary
steps, from hazard identification to the final steps of assessing the risk reduction, and
the related costs and benefits, from a sustainability perspective, including which measure
to undertake when (e.g., [27]). There is also a need for decisions to be taken based on
current knowledge and available data, as well as development towards better and more
covering data, and a better understanding of the full cause-effect-relationship. This article
presents a framework to assess the full cause-effect-chain from the identification of hazards
to risk assessment and valuation of risk reduction measures on road and railway systems.
It also presents identified knowledge gaps. The results of applying the framework shall
be used to prioritize among risk reduction measures and when to undertake them. The
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framework is generic, but originally developed for the Swedish rail and road system. To
test its applicability, it is used on a flood event in Lödöse, Sweden.

Climate Adaption in the Swedish Road and Rail Infrastructure

In the Swedish road and rail infrastructure, climate change is expected to cause an
increase in annual precipitation (snow and rainfall), average temperature, sea level, and
more frequent and extensive extreme weather events. This will result in a significant
increase in disruptions and socioeconomic costs that are already expensive. Therefore,
in 2017 the Swedish Transport Administration (STA) initiated strategic work on how to
adapt the roads and rails to climate change [28]. However, measures can be costly and may
result in unwanted consequences. For example, how the infrastructure is dimensioned and
designed may impact both the constructions’ technical solutions and functionality, and the
landscape. Accordingly, the STA aims to undertake measures that are cost-effective and
optimizes the benefits over the costs, i.e., that minimizes the total expected socioeconomic
costs of damage and adaptation measures [28–30].

To be able to assess the costs and benefits for relevant climate scenarios and various
lifetimes of the constructions, reliable impact-relationships are needed in both the planning
of new constructions and in adapting the existing ones [28,30]. However, the STA [30]
identified that there are several knowledge gaps, a lack of methods covering the full
cause-effect-chain, and a great need for more knowledge to be able to undertake the
most relevant measures. In response to this, we present a scientifically based conceptual
framework that aims to follow the cause-effect-chain, from identifying climate-related risks
and measures, to how to assess the costs and benefits of the potential measures to reduce
climate-related road and railway risks, in both a short and long-term perspective. The
framework aims to be used for assessing climate-related consequences that are important
in regards to the STA’s facilities and in assessing the costs and benefits of risk reduction
measures, considering where and when to undertake which measure. To investigate its
relevance and applicability it was also tested on a case study. The following research
questions were addressed: which methods should be applied to be able to assess climate
related risks and to prioritize among risk reduction measures; can they be applied in one
common framework; is such a framework of relevance for real case applications; and are
the available methods and data adequate?

2. Materials and Methods

The conceptual framework was developed based on white (academic) literature and
reports on, and experiences of, weather-related events such as fires, flooding, landslides
etc. at the STA and in Sweden. This information was combined with previously devel-
oped methods for cost-effectiveness applied within the STA [31], classic risk management
methodology (ISO 31000, [32]), and multi-criteria methodology (e.g., [19,33]). Moreover,
the available methods for risk assessments of the individual climate-related risks have been
used, e.g., methods for assessing risks related to heatwaves and methods for assessing
flood-risk, and the dewatering capacity, erosion, and landslides. The methods have been
found in academic literature as well as webpages (e.g., the STA, PreventionWeb). In addi-
tion, interviews were conducted to achieve knowledge on the experiences of climate-related
risks, their trends, and the current management strategies for those within the STA. For
this, interviews were conducted with experts as well as personnel working with operation
and maintenance daily. The interviewees were selected by identifying experts via Swedish
webpages and by using the snow-ball principle. The respondents were initially contacted
via email. The aim was to identify their interest, ensure that they were willing to take part
in the interviews voluntarily, and to allow their responses public but neutralised (i.e., freely
and actively given consent). If so, they were also asked to suggest time for an interview.
The interviews were conducted using Skype. Further, all interviewees were asked if they
preferred being anonymous (which no one wanted) and if so, how to be referred to in text.
They also had the opportunity to read, correct and take part of the results of the work.
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The aim with the interviews was to cover current and previous experience and exper-
tise in relevant fields, e.g., one of the interviewees was the specialists on rail and road and
was responsible for climate change related aspects in the Swedish Commission on Climate
and Vulnerability [34]. The other interviewees were national experts at the STA on water
management or responsible for planning, operation, and maintenance at different levels
within the STA (national planners and managers, regional managers, and those in daily
contact with contractors). Additionally, experts on climate risk and adaption experiences
in other organisations (SGI, VTI, Chalmers University of Technology, Gothenburg, Sweden)
were included among the interviewees. The identification of new interviewees ended when
the same names as already interviewed were provided, and when the replies among the
interviewees were similar to previous interviews. In total, 14 interviews were conducted,
and the resulting interviewees are presented in Table S1 in the Supporting material. The
interviews were qualitative and not aimed at achieving quantitative information.

The interviews were conducted in order to identify the needs and current strategies
within the STA. The results of the interviews were used as the starting point of the devel-
opment of the conceptual framework. Furthermore, the development of the conceptual
model was conducted in cooperation with the funder of the project, who at that time was
responsible for climate adaption at the STA, and an economist involved in the climate
adaption strategy developments at the STA. They also contributed with experiences from
the internal discussions and ongoing work on climate adaptation within the STA.

A cause-effect-relationship for climate adaptation measures implies that a defined
measure is expected to provide a certain effect, i.e., a certain reduced risk. The risk is a
combination of consequence and the likelihood (probability) of this consequence to occur.
The consequence is the impact of the climate-related event on, for example, accessibility,
injuries and fatalities, and damages on vehicles and installations. The consequence can
be valued monetarily by calculating an expected cost of damage. The probability of each
consequence needs to be assessed through several steps since climate-related events, such
as a heavy rainfall, may cause several impacts, e.g., flooding, erosion, and landslides, as
illustrated in the example with a cloudburst in Figure 1. Each of these consequences may
in turn lead to further consequences such as damage to a road or rail, which in turn may
result in accidents, fatalities, or vehicle damages. If the road damage is severe, it may
require the road to be closed for a rather long-time during reparation. When closing a road,
traffic needs to be diverted, which in turn can lead to an increased probability of a road
accident. Therefore, in this paper risk is used to describe the combination of the probability
of a specific climate-related event, such as the likelihood of heavy rainfall with a certain
return time, as well as the consequences that may arise from this climate-related event. To
assess the probability of climate-related events, return times based on statistics on past
weather events, e.g., heavy rainfall, are used. When available, site specific or local scale
data shall be applied (e.g., [35]). To provide probabilities for future events, the statistically
based return times are combined with projections of future expected climate change. As a
basis for assessing the short- and long-term climate related consequences for the Swedish
Road and Rail infrastructure, regional climate scenarios [36] and previous national and
international assessments of potential climate change impacts in the transport sector can
be used.
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Figure 1. Potential impacts of a cloudburst, and examples of preventive (long-term, brown and green text boxes) and more
acute (short term, blue text boxes) measures and where they will impact the cause-effect chain.

A risk reduction measure can be reactive or proactive. A proactive risk mitigation
measure can be preventive in reducing the likelihood of an event, e.g., the likelihood of a
certain flood depth, the consequences of the event, or both simultaneously. Measures may
vary depending on the risk it aims to reduce. As illustrated in Figure 1, a measure such as
larger road drums will reduce the likelihood of flooding and any further impacts, while a
measure such as stabilizing rail embankment and road banks can reduce the likelihood
of erosion and landslides (and its further effects), but not the likelihood of flooding. A
measure, such as a well-designed vegetative solution, may provide risk reduction at more
than one stage of the impact-chain (Figure 1). Often, a preventive measure taken earlier in
the chain of impact is more cost-effective than a measure taken later in the chain [37–39]. To
assess the costs and benefits of a risk reduction measure, the effect should be verified, i.e.,
based on science or proven experience. Further, the effect estimates need to be site-specific.
The estimated effects can be valued and assessed in monetary terms or by other quantities,
or in relation to other effects. In addition to the damage costs, the total cost includes the
sum of delay and road closure costs and may include, e.g., diversion and interchange
costs. Injuries, fatalities, and environmental damages, as well as material damage beyond
transport infrastructure, are also included. There may, for example, be an increased risk
of accidents during traffic diversion. The cost in terms of transport and accessibility is
affected by many factors, including: suspension time, traffic intensity based on AADT
(annual average daily traffic), type of passenger and freight modes, changes in travel times,
opportunities for diversion, and access to alternative modes of transport. The transport
related costs can be calculated with existing models, such as the traffic and transport
models available at the STA [40], and the travel time values available in e.g., ASEK 7.0
(ASEK is a Swedish abbreviation meaning the principles and values that are recommended
to be used in social cost-benefit analyses (CBA) in the Swedish transport sector) [41]. To
assess the applicability of the resulting framework, it was applied on a case study, Lödöse,
in Southwest Sweden.

3. Results
3.1. The Framework

The conceptual framework consists of four steps with major questions to be answered.
The answers shall be used to assess whether it is socioeconomically relevant to implement
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a measure, when it should be implemented, and to assess which measure is most relevant
to implement. The process includes the following steps:

• Hazard/risk identification for climate related events;
• Risk analysis, i.e., assessment of probability, consequences, and valuation of the risk
• Identification and evaluation of possible measures, including cost benefit analysis and

ranking of measures;
• Distribution analysis, goal analysis, and sensitivity analysis.

The major steps and questions to be answered through the process are based on
classic risk management [32] (steps 1–3) and a method developed at STA for impact
evaluation [31,42,43] (steps 3 and 4). Even if the steps are consecutive, the process of
applying the framework should be iterative.

3.1.1. Step 1. Hazard Identification

In the hazard identification there are two basic questions to be answered:

• What climate-related changes can be expected in the short (current climate), medium,
up to year 2040, and long, up to year 2100 (or longer depending on the construction
lifetime), term perspectives?

• What consequences can these changes be expected to cause within the STA’s areas
of responsibility and activity, and which of these consequences are important to take
further into account?

The climate change-related weather events and climatic changes that are relevant
to consider can be identified based on literature, webpages and interviews, and climate
scenarios [36,44]. The aspects to consider include temperature; (temperature) zero crossings
(when the highest temperature of the day two meters above the ground has been above 0 ◦C
and the lowest temperature in the same day has been below 0 ◦C) and frost; precipitation,
type of precipitation (rain, snow) and precipitation patterns; sea level; and winds (speed
and directions). The hazard and consequence identification can, as here, be based on
previous experience (interviews), reported events and experiences, databases, previous
investigations, field investigations and expert judgements [18,32,45]. Table 1 shows a
summary of climate change related weather events and their consequences that have been
identified as important to consider in the transport infrastructure sector.
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Table 1. Climate-change related weather events and potential consequences considered, potential risk reduction measures and methods, data and investigations identified to be applied for
the risk and effect assessments.

Climate-
Related
Events

Example of
Data to Be Used

Potential
Consequences

Subsequent Potential
Consequences

(Figure 1)

Methods and Data Required for Ex-Ante Assessment of
Potential Consequences 3 Potential Risk Reduction Measures Improvements Needed for

More Robust Effect Estimates

Temperature
and radiation
related events

Statistical data
and climate
change
projections 1 on:

• Mean
tempera-
tures (air
and
radiation)
(including
locations
with
shade/high
radiance)

• Extreme
tempera-
tures

•
Temperature
zero-
crossings

Bitumen bound
layers e.g.:

• Ruts
• Bleeding

asphalt

• Reduced speeds
• Increase in traffic

accidents
(injures/fatalities,
vehicle damages,
queues, and
reduced speed,
increased costs
due increased
maintenance)

Experience and statistics on previous events and performed
maintenance, reported needs, measures and forecasts as
described in guiding material (e.g., [46]) complemented
with inventories, solar radiant temperature simulations
with e.g., Solveig [47] and classification of maintenance
needs for different types of roads. The latter is used for
prioritization of maintenance.

Maintenance:

• Add aggregate of different grain size on
bleeding asphalt will reduce slipperiness

• Cool the asphalt with water to prevent bleeding
(not to be used once bleeding has occurred) [8]

• Substitute bleeding asphalt with new [8]

Development and criteria for
classifying and prioritizing
maintenance needs taking
climate change into account

Solar curves on
rail

Method and criteria for classifying and prioritizing
maintenance needs.
Inventory and classification of current maintenance needs
with respect to buckling.
The inventory is based on existing inventories, new general
and site-specific inventories.
Reporting complemented by ex-ante solar radiant
temperature simulations with e.g., Solveig [47].

To minimize solar cures, continuous maintenance is
required including verifying that there is sufficient and
well packed ballast, maintaining and (when necessary)
replacing rail fortifications and sleepers.

Temperature-
related impacts
on functionalities
of switches,
bridges, and
tunnels

Compilation of information on previous events, inventories
of current functionality

Continuous inventory and maintenance. E.g., install a
digital monitoring system that:

• Warns when joints become too dense or replace
materials to more heat resistant ones.

Increased inspections, both in
frequency during high
temperature events as well as in
content, e.g., to include
expansion of bride joints.
Procedures and methods for this
need to be developed and
included in contracts and/or
development of automatic
monitoring systems. Examples
of corrosion warning systems
can be found in McCarter and
Vennesland [48] and a variety of
monitoring sensors and systems
tested for bridges are provided
in [49].
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Table 1. Cont.

Climate-
Related
Events

Example of
Data to Be Used

Potential
Consequences

Subsequent Potential
Consequences

(Figure 1)

Methods and Data Required for Ex-Ante Assessment of
Potential Consequences 3 Potential Risk Reduction Measures Improvements Needed for

More Robust Effect Estimates

Fire risks
(increase in
temperature
causes
evaporation,
and the drier
the
environment
the faster the
fire spreads)

Projections on
local/county
level fire risk
[50]

Initiation of a fire
due to sparking
caused by road
accidents,
working
machines and
vehicle fleets
used by road
contractors or
parts of the
facility

• Potential road
damage requiring
restoration, such
as planing of the
road surface,
restoration of the
bearing capacity
of the sub-base
and base layers of
the road,
trenching and
drum
replacements

• Stop in traffic
• Redirecting traffic

(which will cause
reduced speeds
and increased
risks for
accidents)

• Reduced
fire-fighting
capacity

Reduce the risk of sparking, spreading, and improve the ability to extinguish and control a fire:

• Ensure a fireproof machine and vehicle fleet among contractors
• Regular review and maintenance of vehicles (road and rail) and machinery
• Limit admissibility when road and rail work may be carried out
• Ensure that the minimum necessary access and functionality of airports and roads all over the country
• Ensure the presence of a sufficiently good redirecting capacity in connection with fire.
• Ensure good preparedness and interaction with other authorities, organizations, and actors
• Measures that may need to be taken to restore the road are the planing of road surface, restoration of the bearing

capacity of the sub-base and base layers of the road, trenching and drum replacements

There is a need to better
understand and identify
measures to reduce emergence
and risk of fire spreading and
how to increase efficiency in the
event of a fire. Such a project
should involve several actors
(the Swedish Transport Agency,
Civil contingencies authorities,
the Swedish Meteorological and
Hydrological Institute (SMHI)
and the STA), other stakeholders
and researchers.

Other causes of
fire than the
transport
infrastructure

Strong winds

Statistical data
and climate
change
projections 1 on:

• Mean
wind

•
Maximum
wind
gusts

• Damages
on con-
structions
or
damages
caused by
blown off
parts of
construc-
tions

• Vehicles
blown off
road

• Blown off
debris
from
vehicles or
road/nearby
road
equipment

• Preventive
closings of
bridges,
rail, and
road

• Accidents
• Stop in traffic
• Reduced speeds
•

Redirection/change
of transport mode

To estimate the expected impact of strong winds and the measures that are relevant, taking the expected change in climate into account, requires awareness
of the necessity for action today. An inventory of the requirement to strengthen or protect the material used in the bridge construction to withstand future
stresses from strong winds, increased moisture and violent storm surges therefore need to be made for the current situation, to get an idea of the need for
action, the cost of action and the expected impact, taking the current situation into account.
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Table 1. Cont.

Climate-
Related
Events

Example of
Data to Be Used

Potential
Consequences

Subsequent Potential
Consequences

(Figure 1)

Methods and Data Required for Ex-Ante Assessment of
Potential Consequences 3 Potential Risk Reduction Measures Improvements Needed for

More Robust Effect Estimates

Snowstorm

Statistical data
and climate
change
projections 1 on:

•
Temperature

•
Precipitation
as snow

• Mean
wind

•
Maximum
wind
gusts

• Reduced
visibility

• Drifting
snow

• Increased
sliding
risk,

• Preventive
closings of
bridges,
rail, and
road

• Accidents
• Stop in traffic
• Reduced speeds
•

Redirection/change
of transport mode

To estimate the expected impacts and the measures that are relevant, taking the expected change in climate into account, requires awareness of the necessity
for action today and improved knowledge on expected projections.

Changed
ground
conditions in
temperature
and humidity

Statistical data
and climate
change
projections 1

relevant to
estimate ground
temperature
and humidity
patterns
including
number of
temperature
zero-crossings.
Current and
expected
changes in
water table and
groundwater
formation. [51]

• Buoyancy
• Subsidence

and
horizontal
deforma-
tion

• Reduced speeds
• Preventive redi-

rection/change of
transport mode

Information regarding the status of roads and rails as well
as the functionality of drums and current flow capacity in
trenches, culverts, drums and pipes.

Improve maintenance and bearing capacity, combined
with inventories of asphalt damage to identify
weaknesses.

Current variations in
groundwater levels need to be
studied in more detail to be able
to estimate the potential impacts
of projected changes. This is
needed to understand and assess
potential effects of the changes.
Further research is needed to be
able to quantify and describe the
processes and properties that
will be affected.
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Table 1. Cont.

Climate-
Related
Events

Example of
Data to Be Used

Potential
Consequences

Subsequent Potential
Consequences

(Figure 1)

Methods and Data Required for Ex-Ante Assessment of
Potential Consequences 3 Potential Risk Reduction Measures Improvements Needed for

More Robust Effect Estimates

Sea level rise

Statistical data,
including air
pressure, wind
velocity and
wind direction,
and climate
change
projections 1 on
sea water levels

• Flooding
• Erosion
• Landslides

• Accidents
• Stop in traffic
• Reduced speeds
•

Redirection/change
of transport mode

Flooding

• Models and modules as included in MikeShe® Using
(GIS) information:

• Topographical information, incl. high road banks and
bluespots

• Detailed soil maps
• Proportion of hard surface
• Vegetation incl. green coverage and crown coverage

(e.g., [24]), root depth and plant coefficient [52] taking
seasonality into account)

• Surface rawness coefficient [53,54] in [52]
• Information on ditches, streams and their flows and

capacity (may require inventorying)
• Knowledge and capacity of culverts (location,

dimensions), drums and wires (inventory may be
required)

Erosion and landslides

• When available, field data for single sections can be
used to assess current bottom and bank erosion and
to validate, and assess the plausibility of, values and
methods used for ex-ante calculations [55].

• Data needed for estimates of erosion, currently and
projected: Hydrological statistics: surface water
levels, annual average and medium water flow, water
flow with 100-year return time and maximum flow.

• Expected hydrological changes based on simulations
(altered precipitation, temperature and run-off e.g.,
MikeShe, HBV et al. models).

• Soil/sediment information (potential share of silt and
clay fraction).

• Geotechnical field measurements.
• Calculation of bottom erosion e.g., as described in

[55]
• For calculations of bank erosion, models such as

BSTEM 2 can be used. This requires geometry, flow
characteristic, soil layer thickness and soil layer
characteristics.

• Erosion affects the landslide probability and depend
on several additional factors (e.g., slope height and
inclination, soil layers strength characteristics,
groundwater level, pore water pressure, and the load
[18].

Flooding

• Increase preparedness and management to
manage and maintain traffic and electrical
installations during flooding and temporary
measures such as:

• Planned and prepared redirecting of traffic or
alternative transport modes.

• Preparedness for use of temporary bridge,
additional pumps, temporary protection

• Increase dewatering capacity
• Install stationary pumps. This requires

accessible and functioning external reservoirs,
wells and ditches.

• Increased maintenance of drums, wells and
pipes at low points (this requires inventories).

• Water retardation and flood-allowing surfaces
through Increased vegetation, stormwater
ponds, overland flow surfaces

• Stationary solutions, such as increased lowest
height, protection walls and dikes

Erosion and landslides

• Increased maintenance of existing erosion
protection

• Installation of hard erosion protection (gravel
and stone, concrete blocks, gabions and steel or
wood piles)

• Installation of soft erosion protection (grass,
grass and shrubs, trees and shrubs, coconut mats
or geotextile with vegetation, dead plant
material)

• Combined erosion prevention (revetments with
vegetation, gabions and vegetation, concrete
blocks with vegetation, wooden piles with
vegetation, logs, log walls, or dead wood,
vegetation and stones to reduce water speed and
control ice and different types of flow change
and assault erosion protection

• Flattening of the geometry of the slope.
De-excavation of the ground in the upper part of
the slope

• Counter fill lower part of the slope
• Lowering or restricting pore pressure
• Lime/cement pillars

Erosion and landslides
Bathymetric measurements are
used for reliable assessments of
ongoing erosion and to validate
methods and parameters and
values used in calculations.
Unfortunately, such
measurement data is usually
lacking, which is why only
calculations must be used
To assess the landslide
probability per unit of time (e.g.,
per year) there are promising
methods available but they need
to be developed and validated
(lab. field) [56]. To estimate the
landslide probability in a
changing climate, the processes
need to be better understood:
How does the change in average
temperature affect the physical
and chemical properties at
different depths and what does
this mean for the hydrological,
geological and geotechnical
characteristics? How quick are
changes expected to occur and
how will this impact erosion and
landslide probability?
There is a lack on how to
describe the soil processes in
unsaturated zones and how the
properties will change in a
changing climate. E.g., how will
changing drought precipitation
cycles affect dry crust
and cracking? How will changes
in frost/thaw cycles and other
climatic changes impact rock
cracking?

Increase in
precipitation
and higher
amplitude in
water table
variations

Statistical data
and climate
change
projections 1 on:

• Mean pre-
cipitation

• Extreme
precipita-
tion

• Snow
depth

• Current
and
expected
changes
in water
table and
ground-
water
formation
[51]

1 Statistical data for Swedish local/county and national level can be achieved from https://www.smhi.se/klimatet-da-och nu/klimatindikatorer/ (accessed on 28 September 2021) and climate change projections on
local/county level can be obtained from https://www.smhi.se/klimat/framtidens-klimat/klimatscenarier (accessed on 28 September 2021) unless other data source provided. 2 Local information on previous sea water
levels under events with temporary increased sea water level (air pressure and wind speed and direction). 3 The magnitude of the impact as well as its cost also depends on the traffic flow (number of vehicles, type of
vehicle) and the time for a closure or redirection and repair costs as illustrated by the equations in Supplementary Materials.

https://www.smhi.se/klimatet-da-och
https://www.smhi.se/klimat/framtidens-klimat/klimatscenarier
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3.1.2. Step 2. Risk Analysis and Risk Assessment

In this step the following two questions shall be answered:

• How likely is the event (e.g., a torrential rain causing a flood of a certain depth) and
what would the cost of damage be?

• Is the risk and cost acceptable?

Risk is a function of probability and consequence. To assess the risk the probability,
P, of a particular climate-related event occurring during a given period, the type and
magnitude of consequence must be estimated. The consequence can be valued monetarily
by calculating the expected cost of damage for a certain period, or estimated on a relative
scale (no, low, medium, high, catastrophic etc.). Often, the risk is illustrated by a risk matrix
(see example in Figure S1).

The probability is described by the return time. The return time of an event means
that the event, on average, occurs or is surpassed once during this time. Today’s return
times are based on local/county level statistical data on mean and extremes temperature,
precipitation, wind, water tables, sea level, and water flow (e.g., for Sweden, such data can
be achieved from SMHI [57] complemented with data achieved from other national and
local authorities). To assess the probability in a medium- and long-term perspective, the
expected changes (frequencies and amplitudes) due to climate change and future return
times are based on results from simulations with climate models and, when not available,
observed trends. For example, since the 1950s, heat extremes (including heatwaves)
have become more frequent and more intense, and the frequency and intensity of heavy
precipitation has increased over most land areas for which observational data are sufficient
for trend analysis [5]. In the US, over the period from 1910 to 2020, the portion of the
country experiencing extreme single-day precipitation events increased at a rate of about
half a percentage point per decade [46]. The prevalence of extreme single-day precipitation
events has increased substantially since the 1980s, in comparison to the period 1910 to 1980
when it remained fairly steady, and 9 of the top 10 years for extreme one-day precipitation
events have occurred since 1996 [58]. Unless local or regional projections are available, the
estimated probability in a medium- and long-term perspective is achieved by adding the
expected annual average change to the current return times. The consequence assessment
shall be based on observed consequences from previous events (e.g., from databases and
event reports), as well as ex-ante modelling, field investigations, and stakeholder and
expert judgements [19,33,45]. Table 1 provides examples of methods and data (including
relevant references) that can be applied to make ex-ante risk estimates of climate change
related weather events.

The damage cost is the sum of repair costs, delay, and closure costs, and may also
include diversion costs, interchange costs, and recovery costs. In addition, injuries and
direct damage to vehicles may also occur as a direct consequence of the event, for example a
landslide, or indirectly, for example by increasing the accidental risk during traffic diversion.
The damage cost in terms of travel time and accessibility depends on road closure time,
traffic intensity (based on AADT), the type of traffic impacted (passenger/goods), traffic
diversion, and access to alternative modes of transport. This can be calculated with traffic
and transport models, such as those available at the STA [40], and the travel time values,
such as those in ASEK 7.0 [41]. At the STA, there are also standardized values for delays
caused by a speed reduction [59]. Due to, for example, subsequential effects on other
trains or vehicles, cracked timetables, etc., the delays can be much greater than the initial
speed reduction. The extent of the subsequential effects depend on how much of a road is
affected, the capacity utilization by rail, the diversion capacity, and if it is single/double
track, alternative routes, etc. There is therefore a great need for research and investigation to
better predict the extent and duration of the subsequential effects of delays and the cost that
can be related to the access to socially important activities affected by delays and cancelled
traffic. Closure time, and need for diversion and alternative transport, depend on the type
of climate-related event and its impact on the road/rail construction. The risk assessment
shall be based on current climate and expected climate change over 20 years, and for
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longer-life constructions, expected changes up to the construction’s economic lifetime. The
risk assessment shall include planned changes, such as investments in infrastructure, and
other expected changes, such as changes in traffic flows, land use change, etc.

In classical risk management processes, to answer the question of whether the risk
can be regarded as acceptable, criteria are needed for what can be considered as acceptable
risk, i.e., the balanced function of probability and consistency. Tentatively, for an initial
assessment, a risk matrix divided into five probability classes (from extremely low to a
tangible probability of an event occurring) and five consequence classes (from very little
unwanted consequence to catastrophic consequence) can be used [18,60], as illustrated
in Supplementary Materials Figure S1. If the risk is deemed acceptable, no additional
measures need to be taken regarding the specific events, nor is further analysis regarding
the mitigation measures for climate-related events. However, it may be appropriate to carry
out continued analysis if a measure is justified for other reasons. In some cases, an action
that has several positive effects in other areas as well could be justified to implement, even
if the measure management of climate-related effects cannot justify its implementation. For
those risks that are not deemed acceptable, a further analysis as set out below is needed.
In the further analysis, even if the risk initially was deemed as not being acceptable, the
measures may be considered too expensive in relation to the benefits they bring. In these
cases, the option of not carrying out an action may be the most socioeconomically relevant.

Risk management is often connected with knowledge sharing and lessons learned.
The latter is one disaster risk management path for building a resilient society. Knowledge
sharing and learning in a collective context (organizations) may be successful ways of
addressing some of the problems posed by natural hazards [45], as in the management of
complex infrastructure projects in general [21]. The process of using previous experience
is of great importance. For example, the flood events in Central and Eastern Europe
in the beginning of the twenty-first century led to preventive actions [61–63]. The EU
Flood Directive [64] was implemented after severe floods in Europe. The flood directive
emphasizes that European countries must incorporate proactive measures in their ongoing
efforts to become more resilient [62,63]. Further, the downsides of measures taken for
protection should also be highlighted, such as protective plans that have led to level effects
of false safety from flooding [65].

3.1.3. Step 3. Identification and Evaluation of Possible Measures

This step includes four questions to be answered:

• What potential risk reduction measures are possible to undertake at all?
• How effective is the potential measures, i.e., how does the measure affect the risk

(probability and consequence) of a particular event occurring with a specifically
expected return time?

• What is the cost-effectiveness of the measures?
• What are the costs and benefits of the measures?

To assess the feasibility and prioritize the measures, an identification of potential risk
reduction measures is required. This can be conducted by identifying what measures have been
implemented in previous similar events, as demonstration projects or pilots (e.g., [66–68]), or
ex-ante through interviews with experts and those working in the areas and with activities that
may be impacted by the risk and the potential measures. Measures can range from increased
preparedness to increased maintenance, temporary solutions, and measures such as increased
dewatering capacity through vegetation or stationary protection to reduce the risk of flooding.
Some examples of potential measures are provided in Table 1.

The economic relevance of implementing potential measures can be based on the
expected reduced risk i.e., the expected effect of the measure over a certain time, and the
net present value, NPV, related to the risk reduction. The NPV includes estimates of the
investment costs, changes in operational expenses, as well as the expected changes in risk
related costs, in short, medium, and long term. The cost related to an accident depends
on several aspects in addition to the damage and repair costs. A large amount of the cost
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is related to the time of road/rail closure and redirection, in which the cost depends on
the AADT and the impacts on the traffic speed and flow. The speed can be reduced due
to increase risk related to wheel-tracks and accidents caused by, for example, bleeding
asphalt or flooding. The change in speed or the need of closure caused by a flood depends
on the water depth and the water flow [69]. The traffic speed needs to be reduced, but the
mobility is still possible at 0.2 m depth if the water flow is less than 1.5 m2/s. At higher
water flows, the mobility is also impacted. Deeper flood depths may also result in reducing
the mobility of heavier vehicles, which may challenge the rescue abilities under a flood
event [69]. In addition to depth and water flow, the consequence depends on how much
traffic is affected (AADT on the current route), how long the flood lasts, and the recovery
time required after the event. For example, the duration of a severe flooding linked to
temporary sea level rise has so far lasted a few hours in western Sweden. It can therefore
be expected to last a few hours up to 24 h also in the future. The time for torrential rain
and other heavy rains is also limited. However, the time during which the road and rail
traffic is impacted may be significantly longer since measures, such as restoration after
damage or the pumping time to get rid of the water, can be much longer. Furthermore,
prolonged rainfall, or snowmelt, can cause long lasting flooding. Damage to road or rail,
e.g., because of erosion or landslides, can imply that access to the route is completely
reduced. The closure time can be assessed based on past events and expert judgements.
The consequence, and therefore the cost, as well as any additional consequences, also
depend on the diversion and/or alternative transport possibilities and the availability of
early warning systems and preparedness.

As risk-mitigating measures can lead to both more positive and more adverse conse-
quences than those related to the risk-reduction itself, a better understanding of what other
benefits and costs that may arise from various measures is essential. For example, different
types of greenery can be used both to reduce the risks of flooding, erosion, and landslides
at the same time as it may contribute to reduce the spread of pollution and increase peoples’
well-being by making a place more attractive. However, greenery can also increase the
fire risk or affect other soil infrastructure issues that should be considered accordingly.
Various measures also affect greenhouse gas emissions and other pollutants and resource
use to different extents. Such impacts should also be considered when prioritizing among
measures. However, there is a lack of quantifiable and monetary values for many of the
aspects that should be considered in the socioeconomic analysis, which therefore needs to
be developed.

To prioritize possible measures, a cost-benefit analysis (CBA) can be used. In CBA,
the net present value is the estimated monetary difference between the benefits and the
costs over a certain time horizon. Data for the valuation will be relevant international
internalizations, or national such as the Swedish ASEK 7.0 [41], that are currently applied
for travel time, accidents and fatalities, climate effects, air pollutants, and noise; knowledge
and results from previously available estimates on changes in mode of travel, changes in
congestion, and parking fees; values of relevant ecosystem services and available meta
studies in the literature. Accordingly, NPV can be calculated by Equation (1).

NPV = ∑k
t=1P ∗ D ∗ (1 + r)−t − CI −∑k

t=1CM ∗ (1 + r)−t = P ∗ D ∗
(

1−(1+r)−k

r

)
− CI − CM ∗

(
1−(1+r)−k

r

)
(1)

where
P is the probability of accident,
D is the damage cost of accident,
r is the discount rate,
k is the economic life span of preventive measure,
CI is the investment cost (including the marginal cost of public funds, MCPF), and
CM is the maintaining cost (including the marginal cost of public funds, MCPF).
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Incorporating that the probabilities of climate related risks are likely to increase over time
in the CBA could be acquired by letting the probability increase exponentially over time:

Pt = Pinitial ∗ e
ln (

Pf inal
Pinitial

)

y t (2)

where:
Pinitial is the initial probability,
Pf inal is the final probability, and
y is the number of years the increase in probability is occurring during.
The NPV can thereby be estimated by Equation (3).

NPV =
k

∑
t=1

Pt ∗ D ∗ (1 + r)−t − CI −
k

∑
t=1

CM ∗ (1 + r)−t

= Pinitial ∗ D ∗ ( e
ln (

Pf inal
Pinitial

)

y

(1 + r)
)(

1− ( e
ln (

Pf inal
Pinitial

)

y

(1+r) )k

1− e
ln (

Pf inal
Pinitial

)

y

(1+r)

)− CI − CM ∗ (
1− (1 + r)−k

r
)

= Pinitial ∗ D ∗ δ(
1− δk

1− δ
)− CI − CM ∗ (

1− (1 + r)−k

r
)

(3)

where:

δ =
e

ln (
Pf inal
Pinitial

)

y

(1 + r)

Building on this, it is possible to calculate the NPV where inaction occurs for a period
of time.

NPVi = D ∗ (−∑i
t=1Pinitial ∗ e

ln (
Pf inal
Pinitial

)

y ∗ (1 + r)−t + ∑i+k
t=i+1Pinitial ∗ e

ln (
Pf inal
Pinitial

)

y ∗ (1 + r)−t)− CI∗

(1 + r)−i − CM ∗∑i+k
t=i+1(1 + r)−t = Pinitial ∗ D ∗ δ[δi(

1− δk

1− δ
)− (

1− δi

1− δ
)]− (1 + r)−i[CI + CM ∗ (

1− (1 + r)−k

r
)]

(4)

where:
i is the time of action, i ∈ [0, y− k].
Not all costs and benefits are possible to value in monetary terms. Thus, an inte-

grated CBA and multicriteria analysis (MCA) is recommended. Multicriteria methods
for prioritizing between potential climate related risk reduction measures are available
(e.g., [19,33]).

A more holistic assessment is a combination with a mixed approach where the CBA
and non-monetary MCA are integrated. In such an integrated evaluation of costs related to
the measure and reduced risk including changes in travel time and accident-related costs
and values are combined with evaluation of aspects not monetary valued [69]. Additionally,
many of the externalities that are valued in monetary terms (the costs are internalized) can
usually not be conducted in an undisputable way. Both the monetary valued effects and
other effects of the potential risk reduction measure option should be assessed in relation
to a reference (zero) option to be consistent. An overall index (final grade) can be calculated
for studied action options i (Equation (5)) [70]:

Hi = 100[WE
HE,i

max[Max(HE,1...N); | Min(HE,1...N ]
+ WS

HS,i

max[Max(HS,1...N); | Min(HS,1...N ]

+WNPV
HNPV,i

max[Max(HNPV,1...N); | Min(HNPV,1...N ]
]

(5)
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where:
Hi is the weighted rating of the alternative risk reduction measure option i, where i∈[1,N],
HE is the unweighted environmental rating,
HS is the unweighted social rating,
NPV is the net present value, and,
W is the weight of each dimension.
Depending on who participates in the weighting procedure, the importance of the

dimensions may vary. Those who carry out the analysis may thus affect the relative
importance between the dimensions. From a sustainability perspective, the environmental
impacts must set the frame; the (wanted) social impacts are what to strive for; while the
aspects included in the economic dimension are the means to achieve a sustainable social
and environmental development (e.g., [71]). The basis for those analyses can be literature,
questionnaires, in depth interviews and expert assessments by group interviews, and
Delphi study approaches. As stated by Eriksson et al. [21], for complex projects there
is a need of more flexible project management, including collaboration and explorative
learning to smoothen and improve the process. Not least in the weighting process, conflicts
of interest must be considered. The process will benefit by including the majority of
stakeholders as well as experts on the aspects included in the weighing [19,33].

3.1.4. Step 4. Distribution Analysis, Goal Analysis and Sensitivity Analysis

In accordance with the global Sustainability Development Goals, SDG (Agenda 2030),
not only the average costs and benefits are to be considered but also which groups of
people that are impacted and to what extent the measures are good for all, or even fa-
voring vulnerable groups. Therefore, a distribution analysis is also needed both to be
performed and considered in the evaluation of potential measures. When available and
applicable, local, regional, or national methods for distribution analyses are suggested to
be applied. For example, the STA has a set of aspects that always shall be considered in
traffic projects [72], including how different groups, companies, and regional markets are
impacted by the project. To ensure that the measures contribute to the global sustainability
goals, those must be included and evaluated in the MCA. Since the SDG are general for a
global context, they must be translated to local and county level contexts for the analysis.
Currently, there are no standard methods applied for such translation, but it can be based
on national and local/county level policies including the same or similar aspects such as
the Swedish National Transport goals [73], recommendations and regulations, as well as
stakeholder participation methods through interviews and workshops. In both the CBA
and MCA assessments, as the final distribution and goal analysis, sensitivity analysis is
crucial both to identify which parameters and variables that have most impact on the result
and to identify if any of those are as uncertain that additional or deeper assessments are
needed for the assessment to be regarded as robust enough. Sensitivity analysis can be
conducted by, for example, analysing the impact of applying median, mean, minimum, and
maximum values of uncertainties, using Monte Carlo simulations. The sensitivity analysis
thereby also contributes to allow a higher degree of uncertainties in the assessments.

3.2. Case Study Application of the Framework

The framework was applied to a case study based on a previous flooding that occurred
on highway 45 (currently E45) in Lödöse, an urban area located by the Göta River about 40 km
northeast of central Gothenburg, Sweden, on 3 December 2011. The road was flooded and the
traffic in both directions was stopped for roughly 11 h (13.05–23.59), resulting in socioeconomic
consequences due to traffic being stopped, queuing, and rerouting that increased travel distance
and time [74]. There is no official information available regarding the cause. In the media,
various reasons were provided by different journals (e.g., the flooding was caused by heavy
precipitation, flooding in a nearby stream or a further away dam-break).



Int. J. Environ. Res. Public Health 2021, 18, 12314 16 of 26

3.2.1. Step 1. Hazard Identification

Here, the hazard was identified based on the previous flood event at the case study
site, and from previous risk estimates on erosion and landslides [75,76], combined with the
projected increase in precipitation due to climate change, in the area [36].

The site is in a region classified as an area of vigilance according to Geological Survey
of Sweden (SGU) [75]. This implies that the natural conditions are such that a landslide may
occur, i.e., the soil consists of clay and/or silt and the ground slope is large enough. These
natural conditions allow landslides to occur more or less spontaneously, but not necessarily.
The site is in a region with quick clay [76], which is a soil that changes from normal firm
ground to a liquid mass when it is disturbed. The liquification is caused by a collapse of
the mineral skeleton by shock or other strain and is accompanied by a sudden, temporary
increase in the interstitial water pressure and a sudden, large decrease in the shearing
resistance. Therefore, consequences in case of erosion and a rather small initial landslide
may be large and severe. From previous assessments, erosion and landslide risks in the area
are expected to increase with climate change due to increased annual precipitation, more
intense precipitation, and increased flows combined with drier summers [37]. Accordingly,
landslides with severe consequences may also occur and are therefore considered in the
subsequent analysis.

3.2.2. Step 2. Risk Analysis

To estimate the probability of a similar or more severe event under current climatic
conditions, previous data from nearby SMHI weather stations [35] was applied. However,
the available data from the nearby weather stations did not cover precipitation data
applicable to estimate the return time of such precipitation event. Instead, less nearby
stations, combined with statistics based on previous larger scale analyses by SMHI [77],
were applied to estimate that the event corresponds to a 100-year event.

According to the IPCC, at the global scale, extreme daily precipitation events are
projected to intensify by about 7% for each 1 ◦C of global warming [5]. In Sweden, the
annual temperature is projected to increase by more than 4 ◦C from year 2000 to 2100 [77].
The annual precipitation in the area is projected to increase by up to 40% and the daily
precipitation at the day with the most precipitation per year is projected to increase by
up to 50% during the period 2000 to 2100. Moreover, the number of days per year with
heavy precipitation is projected to increase by up to 20 days in 2020 compared to 3 in
2000. However, the uncertainties are high and there are large variations depending on
several factors, such as which climate scenario and regional model that has been used in
the simulations [77]. Both the lack of statistical information from nearby weather stations,
and the uncertainties in projected frequency and magnitude of heavy rain events in the
future, need to be reduced for more certain risk estimates. There are ongoing developments,
for example as seen in the latest IPCC report [5], which will provide better estimates for
assessing both the current risk and the changed risks by the end of the century due to
climate change. Here, based on the compilation of available information, we apply that
the probability of a heavy rain event such as the one in Lödöse on 3 December 2011, or
heavier precipitation, will increase from a current frequency of 100 years to become a every
tenth-year event by 2100.

There is no available information on the annual probability of landslides neither under
climate change nor until 2100 beyond the fact that the probability will increase due to the
changed precipitation, hydrological patterns, and possibly also due to other changes in
the soil such as temperature, fauna, flora, and other biological changes [27]. To be able
to predict the impact of those complex ground system changes in quantitative terms as a
function of current, as well as a changing, climate, there is an urgent need to achieve an
increased knowledge based on field and laboratory studies as well as model development
and model simulations. As a sensitivity analysis, calculations were performed changing
the probability of flooding, from corresponding to a 1000-year event to a 100-year event
(Supplementary Table S6).
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Information regarding the current traffic situation of the E45 road, the observed
number of hours of road closure and assumptions regarding diversion through the nearest
possible redirection routes were used to estimate the socioeconomic costs of the flood event.
For this, the STA’s system on current diversion routes, road section lengths, AADT, and
speed limits [78] was applied, for details see Table S2 in the Supplementary Materials. The
additional distance and travel time of traffic was estimated, per vehicle and in aggregate,
and was used to estimate the socioeconomic costs related to the event. Coupled with
marginal costs for additional vehicle kilometre and vehicle hour compiled by ASEK 7.0 [41],
a socioeconomic cost was estimated for the closure. Since the shadow prices in ASEK 7.0
are mostly divided into four categories; passenger car (PC), passenger car in commercial
traffic (PCC), lorry without trailer (L), and lorry with trailer (LT), the same categorisation
has also been used here. The shares of PC/(PC+PCC) and L/(L+LT), 90 and 57 percent, are
from ASEK 7.0 and the Swedish Road Administration [79], respectively. We assumed that
all traffic for the first 5 h was affected by queuing, yielding an average queuing time of 2.5 h
for the first 5 h of traffic. While this might be seen as a strong assumption, we also assume
that traffic will flow as usual after this time, both on the diversion route and the original
road after clearing the road. The resulting marginal costs for additional vehicle kilometre
and vehicle hour are summarised in Table S3. Based on the assumed return times, the
AADT and the increase in queue time, the socioeconomic cost of a similar event is estimated
to 11.2 million SEK in 2017-year prices. A summary of the estimated socioeconomic cost
per item is displayed in Table S4.

The closure time related to a landslide affecting the road will be much longer than the
closure related to the flood event. From a previous study, based on previous landslide events,
transport modelling, and interviews, a landslide at the same location as the flood event was
expected to last 33 days and require reconstruction of 100 m of the road [80]. The cost was then
estimated to vary between 35–70 MSEK (in 2017-year prices), including restoration of the road
(13 MSEK in 2017-year prices) and costs related to the traffic redirection. The cost-variation
depends on redirection options including travel time and aspects such as increases in car
accidents and impacts on the stability of the redirection roads.

3.2.3. Step 3. Identification and Evaluation of Possible Measures

Three preventive measures to reduce the consequences of similar (or heavier) precipita-
tion event, as well as the probability of a landslide, have been included in the investigation,
i.e., (1) a new concrete culvert with bigger dimensions for a better run-off capacity, (2) a
dry water pond for increased water capacity, and (3) a macadam basin with permeable
asphalt. All three measures are expected to provide full protection regarding impacts on
the traffic and the transport infrastructure at the site, and therefore reducing the expected
socioeconomic cost to zero. The dry pond is a vegetative solution with either submerged
grass or other ground surface, with little need for maintenance. In addition, one more
reactionary measure is included, i.e., (4) increased pumping capacity combined with in-
creased preparedness. This is, for example, achieved through investment in more pumps
or improved distribution capacity of pumps to reduce the magnitude, and thereby the
consequences, of a similar or more severe heavy precipitation event. In this study, those
additional pumps are expected to reduce the time of the stop by half in case of flooding,
therefore reducing the expected socioeconomic cost of the flood event to roughly half of
the estimated costs without a measure. All of the measures will also contribute to reduce
the probability of a landslide to occur. In the cost-benefit analysis below, we assume that
the current return time of a potential landslide is 100 years, the socioeconomic cost of the
landslide is 55 MSEK (based on the valuation in the previous section), and the preventive
measures are set to reduce the risk to zero, while additional pumping does not reduce the
risk at all.

To calculate the NPV of measures and find the most socioeconomic efficient preventive
measure, parameters such as initial cost of construction, annual cost of maintenance,
economic life span of measure, discount rate, and marginal cost of public funds (MCPF)
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are needed. Here, based on ASEK 7.0 [41], the discount rate was set to 3.5 percent and the
MCPF to 1.3. In Table 2, the estimated costs for the four measures are summarised both for
construction and annual maintenance during an economic life span of 40 years for each
of the measures, the present value of costs, and finally the NPV. According to Table 2, the
most socioeconomically efficient measure, under these conditions, is a new culvert, while
improved pumping capacity is estimated to be least socioeconomically efficient. However,
these results are not meant to establish the best solution for the local context, but rather to
highlight the methodology, since both the effectiveness of the measures, the return times,
and the cost parameters are based on rough estimations.

Table 2. Cost benefit inputs, present value of benefits and costs, and net present value of four measures, with increasing
probability of flooding over time (100-year event to 10-year event), SEK in 2017-year prices.

New Culvert Dry Water Pond Macadam Basin
w/Permeable Asphalt

Additional Pump
Capacity

Investigated economic
timespan 40 years 40 years 40 years 40 years

Lifetime of intervention ≥40 years ≥40 years ≥40 years <10 years (but
investment estimated

as annual cost
corresponding to 20,000

per year

Investment cost (excl.
MCPF) 200,000 500,000 1,000,000

Maintenance cost (excl.
MCPF) 10,000 5000 0

Expected damage
reduction 100% 100% 100% 50%

Present value benefits
(flooding) 4,003,000 4,003,000 4,003,000 2,001,000

Present value benefits
(flooding and

landslide)
15,748,000 15,748,000 15,748,000 2,001,000

Present value costs 538,000 789,000 1,300,000 555,000

Net present value
(flooding) 3,465,000 3,214,000 2,703,000 1,446,000

Net present value
(flooding and

landslide)
15,211,000 14,959,000 14,448,000 1,446,000

Using NPV-estimates that include the increased probability of the flooding event due
to a changing climate over time (Equation (3)) results in increased NPV, in comparison to
NPV-estimates based on a fixed 100-year return time (Table S5). Despite taking this change
into account, the relative ranking among the preventive measures do not change since the
relative benefits of the measures changed equally for all of the preventive measures. The
improved pumping capacity contributed less to the relative benefit, not altering the relative
ranking. The NPV of the preventive measures increases around five times by also taking
into account the benefits related to reduced risks of landslides (Table 2). The probability of
a flooding (due to similar or more intense precipitation event), and the probability of other
events such as a landslide, is likely to increase over time, which may alter when in time
an investment is beneficial. As seen in Table S6, applying Equation (4) and a return time
change from 1000 to 100 years for flooding results in negative NPV:s for the four measures,
when including only the flooding, i.e., the NPV is only positive for the three preventive
measures when also including a landslide. Further, some of the measures where NPV
are currently net negative might become net positive at a later investment time, as can be
seen in Tables S7 and S8. However, if only considering flood events, given the parameters
applied here, the investigated preventive measures are shown to either be net positive from
the start or not at all (Table S7). Though, an investment not relevant for a flood event may
become beneficial at a later occasion when also considering other risks such as a landslide.
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In addition to uncertainties in return time, several factors such as the discount factor may
alter the results and are therefore included in the sensitivity assessment step.

Multi-Criteria Analysis

As not all costs are able to estimate in monetary terms, in addition to the cost-benefit
analysis, a multi-criteria analysis (MCA) was performed for the three preventive measures and
the one reactive ditto (Table S9). Additionally, more complex measures that are not included in
the CBA above, such as bridges over low points, embankments, and land elevation changes,
are collectively included to give a perspective of larger potential measures.

This MCA is based on Andersson-Sköld and Nyberg [33] and designed for the prac-
tices and needs of the Swedish Transport Administration. Based on the assessment con-
ducted here, the ranking between the measures differs in the MCA compared to the
monetary (NPV) estimated ranking. In the MCA, the dry water pond is the most beneficial
alternative, twice as beneficial as the new culvert, the macadam solution, and the improved
pumping capacity (Table S9). The more expensive solutions even provide a negative impact
in total (Table S9). As the three preventive measures (culvert, dry water pond, and the
macadam) scored rather similar in the monetary evaluation, the dry water pond solution
seems to be the most relevant measure to undertake based on the MCA assessment. Here,
the authors have conducted the assessment and set the weights of the different aspects
considered in the assessment equal in relation to each other. In a real case assessment,
it is important that several experts and relevant stakeholders should be involved in the
assessment and the weighing of the importance of the different aspects considered. Such
a broader expert and stakeholder involvement may contribute to alter the result of the
combined monetary and non-monetary valuation, for example, aspects not considered in
the MCA method applied may arise, such as responsibilities among different stakehold-
ers. The results of incorporating the MCA in the assessment do, however, indicate the
importance to have a holistic perspective in the assessment, both including monetary and
non-monetary evaluations.

3.2.4. Step 4. Sensitivity Analysis

The estimates in steps 1–3 are based on literature, available budget and procurement
costs, expert experiences, and judgements as well as the authors own assumptions resulting
in large uncertainties. However, we want to stress that the main reason for the case study
is not to find the best preventive measure for that specific context, but rather to illustrate
the method and exemplify how it can be applied. Here, the impacts of uncertainties
are exemplified by assessing the estimated NPV of the flood related impact changes in
investment and maintenance costs, changes in the measures lifetime, and changes in AADT,
queueing time and discount rate.

The estimated damage cost related to the flooding is heavily influenced by AADT
and the assumption of queueing time, ranging from 1.4 million SEK (75% AADT, 0 h of
queueing) to 36.3 million SEK (125% AADT, 10 h of queueing) (Table S10). Moreover, the
discount rate has a large impact on the estimated NPV, for example, changing it from 3.5
percent to zero results in increased NPV for all measures (e.g., from 3.5 to 7.8 MSEK for a
new culvert). In addition, the estimate of when in time the measure is beneficial to conduct
is changed (Tables S7 and S8), but not the internal ranking among the measures. It is worth
remembering both present value of cost and benefits increase with zero discounting.

We also investigate the impact of other annual scaling factors, by applying a scaling
factor to e.g., AADT or the evaluation of benefits related to aspects such as travel time,
pollution, and traffic accidents, since the importance of the measures thereby may increase
in the future for example due to growth in the economy and disposable income [41]. As
those uncertainty factors interact with the expected present value of benefits, PVB, we can
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incorporate them into a total change factor together with the discount rate of the present
values of benefits:

PVB =
k

∑
t=1

P ∗ D ∗ (1 + α)t ∗ (1 + β)t ∗ (1 + r)−t =
k

∑
t=1

P ∗ D ∗ γt (6)

where:
α is the annual change in e.g., AADT,
β is the annual change in e.g., valuations, and
γ is the change factor:

γ =
(1 + α)(1 + β)

1 + r
Both the change factor and the life span of the measure impacts the NPV (Table S11).

The longer the economic life spans the higher the NPV. As seen in Table S12, the tested
changes may either work by counteracting the discount rate, thereby almost cancelling
each other out, or in the same direction and thereby alter the NPV. Again, however, not
altering the internal ranking among the measures.

Another uncertainty is related to the costs of preventive measures. In Table 3, NPV-
estimates of the four measures are shown when the present value of costs, PVC, of both
investment and maintenance are changed by ±25 percent relative to the applied costs in
step 4 (Table 2). The resulting NPV-based ranking between the measures becomes less
obvious due to some overlap in the resulting spans (Table 3).

Table 3. Present value of benefits, costs, and net present value when applying ±25% investment and maintenance costs, in
relation to costs in Table 2, SEK in 2017-year prices.

New Culvert Dry Water Pond Macadam Basin
w/Permeable Asphalt

Additional Pump
Capacity

Present value benefits
(flooding) 4,003,000 4,003,000 4,003,000 2,001,000

Present value costs 403,000–672,000 592,000–986,000 975,000–1,625,000 416,000–694,000

Net present value
(flooding) 3,331,000–3,600,000 3,017,000–3,411,000 2,378,000–3,028,000 1,307,000–1,585,000

In this case study, we have investigated the factors impacting the NPV of preventive
measures. To assess the uncertainties and sensitivity of all aspects included, Monte Carlo
simulations could be performed and is recommended for real case assessments. The
goal analysis was here captured in the multicriteria analysis, but the aspects considered
could be expanded to related to local, regional, and national goals and objectives. Finally,
distribution analysis is assumed to have no net differences between measures.

4. Discussion

This article presents a framework that shall be applied to support how to prioritize
among climate risk reduction measures for the road and railroad systems. It includes
the full effect-chain, from the identification of hazards to risk analysis and identification
and valuation of potential measures. It also includes which methods can be applied for
assessing the probability, consequence, and effect of potential risk reduction measures, as
well as when measures are cost-effective to undertake. The framework thereby contributes
to a more systematic and effective risk management process. Such a systematic and
supporting process may also contribute to increase the common knowledge, and promote
co-operation among various stakeholders, which currently needs to be improved, as stated
by Leiren et al. [22]. To develop and apply the framework, several methods needed to
be applied. That includes previous frameworks and methods already presented in the
literature, expert experiences, and their expressed needs regarding climate risks today and
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in a changing climate. As climate risks, and adaption of the infrastructure, is complex,
there is a need of several methods and data (summarised in Table 1) to be applied through
different steps as in the framework. Here, we illustrate this by applying the framework on
a case study.

The aim of the framework is for it to be used as a basis for identifying the need for
introducing risk reduction measures. If so, the framework shall also be further applied for
prioritization of potential risk reduction measures, and where and when to undertake it.
The framework is generic and scientifically based. However, some values and methods
that are suggested (Table 1) are based on expert knowledge and experiences from the
Swedish context, and the Swedish rail and road system. Therefore, instead of applying
Swedish internalization values, ASEK 7.0 [41], country/site specific values and methods
should be used in the framework. Further, even if the framework consists of steps that are
consecutive, the process of applying the framework should be iterative.

Based on minor interviews with the STA, they regard it applicable, systematic, and use-
ful to assess the complicated climate risks and potential effects of risk reduction measures.
The generality of the framework is also applicable for evaluating climate change adaptation
measures in other sectors. However, this may require contextual adaption. When applied in
the case study, the method worked well, but we also identified some important knowledge
gaps that needs to be closed to be able to make more robust assessments and analyses.
Further, there is a need of development towards better and more covering data as well as a
better understanding of the full effect-relationship-chain, as also stated by Stamos et al. [3].
This is especially important regarding availability of statistical information on return times
and down-scaled projections. There is also a need to make annual probability estimates in
a changing climate. For the latter, there is a need to be able to make better estimates of the
landslide probability due to projected changes in precipitation, hydrological patterns, and
other changes in the soil such as the soil temperature and soil biology in soft and sensitive
soils [27]. Further, the NPV-assessment strongly depends on whether consequential effects
are included or not. The occurrence of landslides, as a subsequent effect, depends on the
type of weather-related event causing the delay, as well as other factors.

A data-driven approach to assess the impacts of extreme weather events on passenger
flows was recently developed and applied on passenger flow-shifts in a European small-
scale network [3]. Such a method is highly relevant to apply in step 2 of the framework
presented in this paper. Such a data driven approach would require data-compilations of
passenger flows on local, county, and national level, which would require access to such
databases. The investment and maintenance costs, as well as other costs and benefits of
a measure, shall be estimated for current climate as well as projected climatic changes.
Mostly, the estimated probability of a medium- and long-term perspective is achieved
by adding the expected change to the current return times. This is a rather simple way,
which could be further developed, for example by local climate projection scenarios. Such
scenarios are applied by, for example, the Gothenburg city, Sweden, for planning based
on projected flood risk [81]. The framework described here includes how to identify cost-
effective measures taking projected climate change into account. The framework would,
however, benefit from evolving into a GIS-based system, based on available local and
county level statistical weather data, and climate change projections. A GIS-based system
would also allow coupling to existing databases and systems, such as soil and land-use
information and topography.

Even though there are methods available for assessing costs related to the passenger
flow changes, there is also a need to better predict the costs of climate related risks. An
example could be to include impacts that alter the access to socially important activities due
to delays and cancelled traffic, or environmental impacts with and without risk mitigation
measures. This was also included in the framework presented here, otherwise often omitted.
To assess the costs and benefits of potential measures, the effectivity of the measure needs
to be known. Further, the environmental, social, and socioeconomic impacts need to be
evaluated to achieve the most sustainable solutions. Here, we applied both monetary
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(NPV) and non-monetary (MCA) assessments for such an evaluation, where the case study
illuminates the impact of including such a more holistic perspective rather than a pure
monetary evaluation.

The analysis in the final step of the framework shall ensure that the measures con-
tribute to a sustainable development. Here, we therefore suggest that the analysis includes
a goal-analysis related to the SDG, translated to the actual context. This assessment can
be included in an integrated CBA and MCA, preferably involving relevant stakeholders,
planners, and decision makers. The weighting procedure also benefits from including the
same representatives. The results from those processes depend on who participates and
who carries out the analysis. A flexible project management [21], including collaboration
and explorative learning, will improve the results and smoothen the planning and decision
process in which the outcomes from the framework application will be used. Flexible
project management is important in any complex projects (technically or organizationally),
as stated by Eriksson et al. [21]. Though, as forwarded by Daly [71], the environmental
aspects must be considered, as the frame must be set from a sustainable development
perspective. As the social impacts depend on who is affected, this framework also assesses
how the potential risk reduction measures impact various groups of members in the so-
ciety through a distribution analysis. For a holistic and sustainable adaptation, the need
of impacts and solutions on different spatial scales also need to be incorporated [82], as
considered in the MCA applied here. The results of the MCA and the weighing procedure
depend on who is involved and uncertainties in available data and methods. Sensitivity
analysis is therefore crucial. Here, we included variations in AADT, discount rate and a
more unclear uncertainty factor. Especially the absolute NPV was altered, also the time for
when an investment was found beneficial varied, while the internal ranking of measures
was not. For real cases, we recommend even more thorough analysis, for example using
Monte Carlo simulations.

In summary, the framework presented here includes all the steps in the cause-effect-
relationship chain from hazard identification to prioritization including not only a sensi-
tivity analysis but also a goal and distribution analysis, and when in time a measure is
relevant to undertake. The framework is systematic and generic, but the assessments and
valuations need to be conducted, taking site specific considerations into account.

5. Conclusions

This article has presented a framework that shall be applied to prioritize among
climate risk reduction measures for the road and railroad systems. It includes the full
effect-chain, from the identification of hazards to risk analysis and identification, valuation
of potential measures, and when in time to undertake a measure. It includes information
on potential risk reduction measures related to impacts that may be caused by weather
related events expected to increase due to climate change (temperature, sea level rise,
changes in precipitation). It considers potential consequences such as road surface impacts,
solar curves on rail, flooding, erosion, and the related social and socioeconomic costs. The
framework also includes how to assess the probability and the consequences of specific
weather-related events in a changing climate, how to assess the effect of risk reduction
measures, both in monetary and non-monetary terms, and a final step with a sensitivity
analysis as well as a goal and distribution analysis.

The framework is relevant, generic, and applicable for climate adaptation of road and
rail infrastructure. Furthermore, it could easily be adapted and applied in other sectors.
Regardless of the sector, the assessments and valuations need to be conducted, accounting
for considerations. The framework can be used based on currently available data and
methods for assessing risks and effects of risk reduction measures, as well as being applied
and further adapted as more data and methods are being developed. It is systematic and
useful to assess the complicated risks and effects of risk reduction measures which need to
be taken in a changing climate.
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