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Abstract: Venice is known for its urban heritage fragility. The city is experiencing an increase in
yearly average temperatures affecting outdoor–indoor comfort and average energy expenditure.
Owing to existing literature demonstrating how local microclimate depends on urban density, form,
and materials, this investigation studies the influence of the changing local climate on Venetian
vernacular open spaces, known as Campi. Based on the comparison of contemporary weather and
the Intergovernmental Panel on Climate Change’s (IPCC) future predictions for the 2050 scenario,
this investigation highlights how Campi’s open spaces and the surrounding buildings, canals, and
green public areas contribute to building climate resilience. By employing advanced modelling, the
study analyses microclimate and outdoor comfort with respect to users’ perception of Physiological
Equivalent Temperature (PET). The ENVI-met tool is used to simulate the thermal behaviour of two
representative Campi: SS. Giovanni e Paolo and S. Polo. Despite significant temperature growths,
Venetian urban fabric characteristics seem to play a crucial role in strengthening the climate resilience
of open spaces, thus preserving outdoor comfort quality in a warmer future. The analysis shows how
the historical matrix of open spaces and buildings cooperate. Thus, this study offers a contribution to
how built heritage should be considered in light of climate change.

Keywords: climate change; climate resilience; outdoor comfort; urban form; Venice

1. Introduction

Global warming is likely to reach 1.5 ◦C in 2030 [1,2]. These phenomena interplay
with the Urban Heat Island (UHI) such that urban dwellers experience discomfort due
to low-speed wind and thermal radiative exchange [3]. Urban overheating has been
documented for more than 400 major cities in the world. According to Santamouris,
“numerous studies have shown that global climatic change generating serious heatwave
events may act synergistically relative to urban heat islands and further increase the
magnitude of urban overheating during extreme climatic events” [4]. Experimental data
show that the magnitude of the average temperature increase may exceed 4–5 ◦C, while at
the peak, it may exceed 10 ◦C [5]. Increased ambient temperatures cause serious impacts
on urban environmental quality, local vulnerability, and outdoor comfort conditions such
as heat-related mortality and morbidity.

In this context, the city of Venice (IT) experienced a 1.2 ◦C increase in temperature
between 2000 and 2018 related to the 20th-century average [6]. Venice is built on islands
and canals, and its close water connection has caused around 3550 floods between 1966
and 2019. The most evident effect of climate change in Venice is the tidal flow: On average,
Venice flooded 67 times a year [7,8]. These events have a strong seasonal trend, and they
are exacerbated by global warming. In addition to these recurrent phenomena, the number
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of hot days in the Venice area (above 27 ◦C over a 24 h average) went from 0.3 days per year
in the 20th century to 9.5 per year in the years since 2000 [6]. Despite this evidence, only a
few scientific studies focus on climate change issues that affect the Venice mainland with
regards to heatwaves only [9]. Prolonged and intense heat waves affect the city’s liveability
and energy demand. One of the opportunities for reversing cities’ climate change is to
develop thermal resilient design measures. These measures can minimize the localized
changes of local microclimates. According to Naboni, “A space is thermally resilient
if it is able to achieve desirable thermal levels despite the overarching event of climate
change . . . The desirable thermal level would be those that are comfortable to people and
that is positively allowing the ecosystem to positively evolve...As such universal thermal
thresholds cannot be defined universally but should be locally studied” [10].

In this context, urban form considers the configurations of cities that directly affect
both outdoor and indoor climates and that have a direct consequence on embodied energy
and energy use [11]. Several morphological studies assessed the sustainability of urban
form and criteria for urban energy resilience [12]. On the other hand, some studies are
investigating the parameterized ideal urban forms resilience [13]. However, no studies are
investigating how historical neighbourhoods in dense cities, such as Venice, can respond to
climate change issues, especially during heatwaves.

Urban morphology deals primarily with urban form or urban textures, with the shape
and dimensions of the built environment, and with the aggregations and configurations of
building types. One of the main opportunities for fostering thermal resilience to climate
change is predicting the influence of urban form on the local microclimate. In the field
of the built environment, several frameworks have been developed for assessing urban
energy resilience [14]. Previous studies have shown the increasing importance of taking
microclimatic conditions into account when analysing the outdoor spaces’ liveability and
building energy performance [15,16]. Urban form [17], building density [18] and urban
compactness [19], construction materials, and anthropogenic heat are proven to drastically
influence local thermal distribution and wind patterns. Recent European projects have
taken the innovative approach of correlating high-resolution climate change scenarios
with building simulation tools to investigate the potential impacts of climate change on
Europe’s cultural heritage assets, particularly focusing on historic buildings and their
indoor environment [20].

What is still underestimated is how historic, dense cities with consolidated urban
configuration/structure can respond to climate change impacts.

Given that the typical trait of Venice is the irregularity of the urban fabric, the focus
of this research is to assess to what extent typical irregular patterns determine Urban
Heat Island phenomenon and how open areas such as Venetian Campi are thermally
resilient to heatwaves in the current and 2050 projected scenarios. This paper is based
on software-based microclimatic analysis and the Physiological Equivalent Temperature
(PET) [21] index evaluation of two specific urban archetypes of Campi (240 m × 240 m)
in contemporary and 2050 climatic scenarios. The analysis focuses on the role of typical
Venetian open space in strengthening the thermal resilience of built heritage relative to
climate change and in preserving outdoor comfort in a warmer future.

2. Background
2.1. Urban Form and Urban Resilience in Historical Cities

Urban resilience to heatwaves has been debated over the past decades, originating
from its origins in ecology, including modern city and urban planning. Most of the studies
on urban resilience are focused on the following: (i) densely populated cities that have
suffered severe damages from climate change (i.e., Cape Town and New Orleans) [22];
(ii) UHI mitigation and buildings’ materials [23]; (iii) urban heat resilience thanks to the
presence of large urban parks [24]; and (iv) urban texture on building energy consump-
tion [25]. A resilience thinking approach in the historical city is mainly focused on the
preservation of cultural heritage; nevertheless, few studies are available for Italian cities
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such as Bologna, Milan, Florence, and Rome [26], with only a few references to historical
urban fabrics and their resilience potential in facing local warming. Recent studies have ex-
plored the interrelations between urban form and annual energy performance, expanding
urban environmental analysis from energy performance to new environmental quality-
based considerations [27,28]. Nonetheless, historical cities’ resilience must be investigated
thoroughly, as the link among microclimatic issues with urban form, surface-to-volume
ratios, use patterns, and building materials needs to be studied.

Urban fabric’s effects on building energy consumption and daylight availability [29]
are significant: The pattern of streets, building heights, open spaces, green masses, water
bodies, and soil sealing degree influence environmental quality both outside and inside
the buildings. As Givoni states: “The outdoor temperature, wind speed and solar radiation
to which an individual building is exposed is not the regional synoptic climate, but the
local microclimate as modified by the “structure” of the city, mainly of the neighbourhoods
where the building is located” [30].

The European Commission in the last decades has renewed its interest in the compact
city as a sustainable and resilient urban form, indicating the dense and compact city as the
solution to pursue urban efficiency and urban quality: “We must conceive of our towns and
cities in terms of the dense, compact urban form requiring as few resources as possible for
their maintenance and allowing their inhabitants to have access to various urban functions
and services in the immediate vicinity, as well as to leisure areas and preserved natural
areas . . . Our towns and cities must be coherent and compact if urban areas are to be made
easier, more accessible and livelier for all their inhabitants...” [31].

However, highly dense urban environments increase urban overheating due to heat-
trapping mechanisms. Urban compactness significantly modifies energy balance in cities,
influencing the intensity of the UHI effect, the solar radiation availability on buildings’
façade, and wind and breezes distribution. In the Mediterranean climate, the relationship
between compactness, solar access in urban textures, and energy demand has been deeply
studied, highlighting the possibility of enhancing thermal comfort through the optimization
of urban form. According to the literature, although increasing urban compactness implies
a decrease in solar energy availability within the urban texture during the daytime, at night
it substantially contributes to increasing UHI intensity in urban areas [17,32]. Consequently,
urban overheating can potentially reduce human comfort in outdoor and indoor spaces
and harm space liveability and human health. The case of Venice is, therefore, peculiar
because of the presence of large open areas such as Campi surrounded by highly compact
fabrics and a large presence of canals.

2.2. Urban Form in Venice Campi

The urban form of Venice derives from historical sedimentations dated back several
centuries [33]. Three urban configurations (Figure 1) can be found in Venice [34]: (i) the
quadrangular Campo (Byzantine period), located in the heart of self-sufficient islands;
(ii) the “bone structure” (Gothic age), with primary water and land routes, on parallel axes
spaced from secondary structures such as calli, communal courtyards, and large individual
houses; and iii) the Fondamenta type (the comb structure) (modern age), a street parallel to a
canal. They serve as a base/foundation, with houses aligned to foundations or transversal
to courtyards and streets.

In all three urban patterns, Campi represent the cores of Venice’s urban life. Campi can
vary in size: from small Campielli to larger squares. According to Crowhurst Lennard’s
essay [35], “The Campo is an open, irregularly shaped paved space surrounded by build-
ings. These buildings, which vary in height up to five stories, and in importance and
purpose, often contain small businesses and services on the ground floor and private
dwellings above”.
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In this study, the Venetian vernacular open areas of Campi are used as samples to 
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Figure 2. Venice and two selected Campi (a); San Polo in de’ Barbari illustration (1500) (b); SS. Gio-
vanni e Paolo in de’ Barbari (1500) illustration (c). 

The first, Campo San Polo, is one of the typical “parish islands’’ built in Venice in the 
10th–11th centuries, and it is the largest in Venice. It connects the Canale di Cannaregio and 
San Marco districts. Campo S. Polo developed nearby one of the main Venetian waterways, 
just behind the Palizzada del Canal Grande (Figure 3b,c). The main communication route 
is the canal, San Polo Rio, as streets act similarly as secondary paths. Buildings in this 
Campo feature a double internal courtyard that forms homogeneous fronts, known as 
Palizzada di S. Polo. 

Figure 1. Venice’s urban configurations: quadrangular (a); bone (b); Fondamenta—comb (c).

In this study, the Venetian vernacular open areas of Campi are used as samples to
investigate urban fabric typical configurations and resilience to heat waves due to climate
change. Two different Venetian Campi are selected as in Figure 2.
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Figure 2. Venice and two selected Campi (a); San Polo in de’ Barbari illustration (1500) (b); SS. Giovanni e Paolo in de’
Barbari (1500) illustration (c).

The first, Campo San Polo, is one of the typical “parish islands” built in Venice in the
10th–11th centuries, and it is the largest in Venice. It connects the Canale di Cannaregio and
San Marco districts. Campo S. Polo developed nearby one of the main Venetian waterways,
just behind the Palizzada del Canal Grande (Figure 3b,c). The main communication route is
the canal, San Polo Rio, as streets act similarly as secondary paths. Buildings in this Campo
feature a double internal courtyard that forms homogeneous fronts, known as Palizzada di
S. Polo.
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Buildings are quite irregular in their heights (10–20 m), with a maximum height of
26,6 m and a mean height of 12.62 m (Figure 3c), as they were built in different periods and
following canals’ obstruction. The open space of the Campo is also shaped by the Church
of S. Paolo Apostolo. According to Spacematrix indexes [36], San Polo has a Floor Space
Index (FSI) of 2,29, Ground Space Index (GSI) of 0.57, and Open Space Ratio (OSR) of 0.18.

The second key-selected area is Campo SS. Giovanni e Paolo (Figure 4), located between
the Cannaregio and Castello neighbourhoods. It is located at the intersection between
the Canale della Misericordia and an east-west axis, built behind Rio de S. Giovanni Laterano.
This Campo developed along with one of the most important fringe belts of the Gothic city
(dated back to the XIV-XV century) when a great urban space availability resulted in the
construction of monastic and hospital buildings. Great Scola di San Marco is the most
relevant building in the Campo. Along with Canale della Misericordia and numerous Gothic
buildings with limited heights, they form a homogeneous building front. On the other
side, the Campo is completely open along the Misericordia Canal. The latter is obstructed
by the monastery walls as, near Rio de Santa Marina, a more regular and less dense fabric
can be found. The focus of the square is Santi Giovanni e Paolo Church [37], for which
its maximum height is 50.70 m (Figure 4c) with a Floor Space Index (FSI) of 2.73, Ground
Space Index (GSI) of 0.67, and Open Space Ratio (OSR) of 0.12.
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Figure 4. Aerial view of Campo SS. Giovanni e Paolo (a) and morphological map (b); axonometric view of the selected 240 m
× 240 m area (c).

These two Campi were selected due to their different orientation, building density,
spatial configurations, and relation to the waterways. They represent an excerpt of the
typical Venetian open spaces with limited extension if compared to other vernacular Italian
squares, and the neighbourhood’s social activities take place in these locations.

3. Materials and Methods

The proposed research aims to investigate the thermal resilience of Venice Campi today
and in future climates.

In order to fulfil the aim, present and future weather scenarios (2050) are analyzed,
firstly via a qualitative solar shading analysis and then via ENVI-met. The paper responds
to three main objectives: (i) assess today’s thermal stress of selected Campi (San Polo
e SS. Giovanni e Paolo); (ii) assess the climate change thermal stresses in the projected
2050 climatic scenario; and (iii) discuss resilience potentialities and constraints.

To analyse the thermal performance of the two Campi, this study employs a climate
modelling approach. Microclimate simulations are widely used to compute air and surface
temperatures, turbulence, radiation fluxes, humidity, and evaporation fluxes.

ENVI-met 4.4, a three-dimensional prognostic software, has been used for this purpose.
Previous studies have employed ENVI-met to simulate the interaction between air, plants,
and surfaces within an urban environment [38,39]. This tool supports the analysis of
the impact of the UHI phenomenon on the outdoor thermal comforts of different form
patterns [40,41] and the evaluation of heat mitigation strategies’ efficacy [42,43]. Validation
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studies have also confirmed its good level of accuracy in modelling microclimate processes
in urban conditions [44] and the high sensitivity of the tool to morphological characteristics
of the built environment [45].

3.1. Climate Datasets and Microclimatic Simulations

The modelling of the two climate scenarios in 2020 and 2050 is based on two climate
datasets. The standard EPW file of Venice [46] is used as a contemporary climatic reference.
The nineteenth of August is selected as simulation day. It is a typical summer day with
clear skies, according to the STAT file analysis.

The Meteonorm Climate Generator [47] is then employed to project the 2050 climate
scenario based on the Intergovernmental Panel on Climate Change (IPCC) scenario A1B.
The selected A1B scenario is characterised by a balanced development of energy technolo-
gies on all energy sources. A1B scenario considers a predictive future scenario in between a
fossil fuel-intensive future development (A1FI) and a predominantly non-fossil fuel future
(A1T). 2050 projected EPW file is developed according to the A1B scenario, as described in
the Special Report on Emissions Scenarios (SRES) [48].

With the combination of Meteonorm’s current database 1961–90, the interpolation
algorithms and the stochastic generation typical years can be calculated for any site, for
different scenarios, and any period between 2010 and 2200. Meteonorm can, therefore, be
used as a relatively simple method for enhancing spatial and temporal resolutions instead
of using downscaling methods based on regional climate models.

The simulation day in the current data marks an average temperature across the 24 h
of 23.7 ◦C, whereas the 2050 forecast, generated by Metenorm Software by historical time
series of irradiation and temperatures, marks a significant difference of 30.5 ◦C (Figure 5a,b).
The variation calculated by Meteonorm assumes that the amplitude of the temperature
variation during daytime is approximately proportional to the amplitude of the daily global
radiation profile. Therefore, the temperature profiles are calculated by transforming the
radiation profile for the current and the projected scenarios. The average wind rises from
206 degrees.

Heritage 2021, 4 FOR PEER REVIEW  7 
 

 

 
Figure 5. Air temperature profiles in 2020 and 2050 scenario (a); relative humidity profile in 2020 
and 2050 scenario (b) according to A1B scenario, made with Meteonorm. 

Shading analyses were also conducted to characterize Campi’s thermal performance. 
Online-tool Shadowmap [49] is used to perform the shadow’s path for the 19th August at 
h. 10 am, at h. 1 pm, and h. 4 pm for both Campi. 

To perform an ENVI-met simulation, three groups of inputs are required: i) geometry 
and material information to build a digital spatial model (Area Input File); ii) characteris-
tics of the selected materials to define a material database (Database); and iii) simulation 
settings and meteorological input data (Configuration File). 

In the Area Input Files, two domains are shaped by using a grid cell unit of 2.0 m × 
2.0 m × 3.0 m. Here, the 3D models are built based on the data collected by survey and on 
spatial data retrieved by the open dataset Atlante della Laguna [50]. For the Database, ma-
terials and thermophysical properties have been modelled by mostly using the ENVI-met 
database, since it provides a large variety of materials for buildings, surfaces, and vegeta-
tion. In the case of specific materials, such as Trachite Euganea, the standard pavement 
value has been modified according to the literature source [51]. Thus, the material default 
Database was enriched by including the material thermal properties of the Trachite Euga-
nea (a locally quarried stone) for street pavements, exposed brick wall and plastered brick 
wall for building envelopes, and, finally, shallow water for the canals (1.0 m deep). Tables 
1–3 summarises the material information used to run the simulations for the Venice case 
studies. It is worth noting that the material’s properties have been deliberately simplified 
and kept invariant in the simulation. 

Configuration files are created to simulate the average hot day and the projected 
same day in 2050. The employed simple forcing method made use of the climate boundary 
conditions described before. Finally, the four simulations are performed, and the results 
are studied for a selected number of hours. 

Table 1. Venice material profiles used for the microclimatic simulation. 

Building Materials Plaster Masonry—Heavy-
weight Brick-Burned 

Absorption (-) 0.50 0.65 0.60 
Transmission (-) 0.00 0.00 0.00 
Reflection (-) 0.50 0.35 0.40 
Emissivity (-) 0.90 0.90 0.90 
Specific Heat (J/kg⋅K) 850 840 650 
Thermal Conductivity (W/m⋅K) 0.60 0.90 0.44 
Density (kg/m3) 1500 1850 1500 

  

Figure 5. Air temperature profiles in 2020 and 2050 scenario (a); relative humidity profile in 2020 and 2050 scenario
(b) according to A1B scenario, made with Meteonorm.

Shading analyses were also conducted to characterize Campi’s thermal performance.
Online-tool Shadowmap [49] is used to perform the shadow’s path for the 19th August at
h. 10 am, at h. 1 pm, and h. 4 pm for both Campi.

To perform an ENVI-met simulation, three groups of inputs are required: (i) geometry
and material information to build a digital spatial model (Area Input File); (ii) characteristics
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of the selected materials to define a material database (Database); and (iii) simulation
settings and meteorological input data (Configuration File).

In the Area Input Files, two domains are shaped by using a grid cell unit of
2.0 m × 2.0 m × 3.0 m. Here, the 3D models are built based on the data collected by
survey and on spatial data retrieved by the open dataset Atlante della Laguna [50]. For
the Database, materials and thermophysical properties have been modelled by mostly
using the ENVI-met database, since it provides a large variety of materials for buildings,
surfaces, and vegetation. In the case of specific materials, such as Trachite Euganea, the
standard pavement value has been modified according to the literature source [51]. Thus,
the material default Database was enriched by including the material thermal properties of
the Trachite Euganea (a locally quarried stone) for street pavements, exposed brick wall and
plastered brick wall for building envelopes, and, finally, shallow water for the canals (1.0 m
deep). Tables 1–3 summarises the material information used to run the simulations for the
Venice case studies. It is worth noting that the material’s properties have been deliberately
simplified and kept invariant in the simulation.

Table 1. Venice material profiles used for the microclimatic simulation.

Building Materials Plaster Masonry—Heavyweight Brick-Burned

Absorption (-) 0.50 0.65 0.60
Transmission (-) 0.00 0.00 0.00
Reflection (-) 0.50 0.35 0.40
Emissivity (-) 0.90 0.90 0.90
Specific Heat (J/kg·K) 850 840 650
Thermal Conductivity (W/m·K) 0.60 0.90 0.44
Density (kg/m3) 1500 1850 1500

Table 2. Venice urban finishing material profiles used for the microclimatic simulation.

Urban Finishing Materials Trachite Euganea Canal Water

Roughness (-) 0.01 0.01

Albedo (-) 0.5 0.04

Emissivity (-) 0.9 0.96

Table 3. Venice urban profiles used for the microclimatic simulation.

Building Profiles Brick-Burned Plaster Masonry Heavyweight Plaster

Exposed Brick Wall 10 cm 0 25 cm 2 cm

Plastered Brick Wall 0 2 cm 40 cm 2 cm

Urban Profiles Trachite Euganea Sand Sandy Loam

Pavement 6 cm 20 cm 200 cm

Water Loamy soil Sand

Canal 100 cm 50 cm 50 cm

Configuration files are created to simulate the average hot day and the projected same
day in 2050. The employed simple forcing method made use of the climate boundary
conditions described before. Finally, the four simulations are performed, and the results
are studied for a selected number of hours.

3.2. Physiological Equivalent Temperature Index Microclimatic Studies

In the next phase, the two areas’ thermal comfort was assessed for the current and
projected scenario. ENVI-met results are processed in the sub-module BIO-met 2.0 to
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calculate the Physiological Equivalent Temperature (PET) comfort index. This index
is based on a prognostic model of the human energy balance that computes the skin
temperature and the body core temperature. PET is the universal index used to bio-
meteorologically assess the thermal environment, and it shows how changes in the thermal
environment can affect human thermal comfort [52].

The assessment relies on obtained microclimatic values of Means Radiant Temperature
(MRT), Potential Air Temperature (Pot), Wind Speed (WS), and Relative Humidity (RH)
and the target person characteristics. For this study, the target person is 35 years old
and 1.75m tall, characterized by a metabolism of 80 W (light activity) in addition to basic
metabolism, and by 0.9 clo of heat resistance because of clothing.

In the last phase, the PET values, calculated for the two scenarios, are mapped in the
two areas.

Finally, the predominant form and microclimate components that affect the thermal
performance of the Campi are identified by using a detailed comparative analysis of thermal
comfort variations.

4. Results

The comparison is concerned with the thermal comfort patterns for selected hours of
the day, with special regard to h. 4 pm, when the worst thermal condition occurs, at the
pedestrian level (1.5 m) for 2020 and 2050.

4.1. Campo San Polo Results
4.1.1. Shading Performance

The shading performance of Campo San Polo is assessed (Figure 6) at h.10 am, h.1 pm,
and h.4 pm. The shadows’ path is valuable in providing a global understanding of the solar
trajectory inside of the Campo. In San Polo, the shaded areas extend for about one-third of
the paved open Campo. In San Polo, the central part of the Campo remains globally unshaded
in the three selected hours mainly because of the larger open area and the distance between
buildings’ façades. The almost total absence of greenery and other obstacles ensures great
solar incomes both on vertical and horizontal surfaces.
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Figure 6. Shadow map visualizes light and shadow on 19 August, considering buildings and terrain, for San Polo.

4.1.2. Thermal Stress Values

In scenario 2020, PET temperatures (Figure 7a) have a homogeneous distribution,
moving from a prevalent temperature of 38–41 ◦C at h.10 am to 41–45 ◦C at h.4 pm.
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scenario (c,d).

During the three hours, despite the diurnal increase in PET values, vegetation and
shadow decrease thermal discomfort in a range of 12–18 ◦C. In scenario 2050 (Figure 7c,d),
PET values maintained the same pattern distribution observed in scenario 2020. Perceived
temperatures reach 50 ◦C already at h.10 am (Figure 7c), while ∆PET is around 3 ◦C.

Potential Air Temperature (PoT) (Figure 8c) and Wind speed (Figure 8e), calculated at
h. 4 pm (hottest hour), are homogeneous due to the similar buildings’ height. In 2050, PET
(Figure 8f) values slightly increased compared to 2020 conditions (Figure 8a) due to Mean
Radiant Temperature (MRT) (Figure 8b) and lower Relative Humidity (RH) (Figure 8d).
However, shadow and vegetation’s impact tend to increase, mitigating thermal distress in
a range of 21–24 ◦C. Nonetheless, Campo San Polo seems to assure extreme heat stress since
PET over 41 ◦C means extreme hot conditions for European cities.

In the compact urban fabric around Campo San Polo, the PET difference (Figure 9) is
generally lower than 5 ◦C. This behaviour suggests that high shadow density contributes
to mitigating urban heat also in future warmer conditions.

However, in the open space of San Polo, the main variation between the two scenarios
is determined by the heat released through convection from the building and pavement
surfaces. Higher MRT in the 2050 scenario drastically reduces the beneficial effect of
shadow in the open space (Figure 10). These areas, thus, report the highest PET difference
of 7 to 6.5 ◦C (Figure 9), while the areas exposed to sun radiation stay around 6 ◦C.

4.2. Campo SS. Giovanni e Paolo Results
4.2.1. Shading Performance

A shadow path analysis in SS. Giovanni e Paolo shows that the most effective shadows
are cast by the buildings along the canal and by those alongside the church, assuring a
larger shaded area in the southern part of the Campo (Figure 11). The presence of the church
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geometrically divides the Campo into two portions. The first portion, the churchyard of the
church, remains unshed during the hottest hours; the southern part of the Campo benefits
only half of its depth from the shadows cast by the buildings’ front.
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e Paolo..

4.2.2. Thermal Stress Values

Compared to San Polo, Campo SS. Giovanni e Paolo shows a more heterogeneous
PET value distribution (Figure 12). Scenario 2020 (Figure 12a,b) shows that perceived
temperatures tend to be lower in the northwest part of the square and gradually increases
towards the southeast side. In the latter, temperatures reach 50 ◦C in the early morning
(Figure 12a) and persist until h. 4 pm (Figure 12b).

Due to vegetation’s scarce presence, only building shadow contributes to increasing
the comfort level by lowering the perceived temperature. The variations between max PET
temperature and minimum temperature in shadow areas are equivalent to around 27 ◦C at
h.10 am (Figure 12a) and 32 ◦C at h.4 pm (Figure 12b).

Similarly, in scenario 2050, a variation of comfort level was found between the north-
west and southeast parts of the Campo (Figure 12c,d).

PET temperatures reached a maximum of 60 ◦C at h.4 pm (Figure 13b), while shadow
patterns maintained their beneficial role in reducing thermal stress. A more detailed
observation of the microclimate factors affecting PET values in the hottest hours (h.4 pm)
shows that shadow patterns play a crucial role. The canal canyon allows wind flow
infiltration at a relatively high velocity of 1.8m/s (Figure 13e).

As in San Polo, the same pattern in PET distribution (Figure 14) can be observed in
Campo SS. Giovanni e Paolo. Here, the variation in the shadowed area can reach 8.5 ◦C in
the early afternoon, while exposed areas retain a variation of 6.5 ◦C (Figure 14).
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As in San Polo, higher MRT values in the 2050 scenarios reduced the effect of shadows
in the open space (Figure 15). Geometrical and thermal performances for both Campi in
2020 and 2050 are compared in Table 4 and in Figure 16.
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Table 4. Geometrical and overall thermal performances for Campi in 2020 and 2050.

Data Campo San Polo Campo SS. Giovanni e Paolo

Orientation E-W N-S

Open paved area (m2) 5728 3510

Average Buildings Height (m) 0.50 0.35

Maximum Buildings Height (m) 26.6 50.7

Mean Buildings Height (m) 11.55 12.53

Canal orientation parallel to the Campo parallel to the Campo

Canal influence 2 canals-not facing the Campo 1 canal-facing the Campo

Green Mass 4 trees 1 tree

Green Mass average diameter (m) 16 10

Shaded open area (including the canal) %
at h.10 am, h.1 pm, and h. 16 pm 33%; 16%; 30% 23%; 21%; 42%

∆ MRT (2020–2050) at h.10 am,
h.1 pm, and h. 4 pm

5 ◦C (h.10 am); 6 ◦C (h.1 pm); 6.5 ◦C
(h.4 pm)

7 ◦C (h.10 am); 6 ◦C (h.1 pm); 5 ◦C
(h.4 pm)

∆ PET (2020–2050) at h.10; h.13; h.4 pm 2.2 ◦C (h.10 am); 2.5 ◦C (h.1 pm); 2.6 ◦C
(h.4 pm)

2 ◦C (h.10 am); 2.5 ◦C (h.1 pm); 2.6 ◦C
(h.4 pm)
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5. Discussion

Concerning the research questions, MRT and PET values, as well as considerations for
building density and building height, are conducted for 2020 and 2050 projected scenarios.

5.1. MRT–PET in 2020

As reported in Table 4, orientation and the extension of the open and paved areas are
the factors affecting microclimate.

In SS. Giovanni e Paolo, the shaded areas cast by the east side buildings and by the
Church offer a greater reduction in the MRT of the Campo, especially during late afternoons
and evenings (42% at h. 4 pm, almost 70% at h. 8 pm). In San Polo, shaded areas are less
prolonged due to Campo’s wide width (70 m) (at hottest hours, the percentage of the shed
area is negligible (16% at h.1 pm).

In SS. Giovanni e Paolo, higher compactness and a homogenous building height (mean
height 11.57 m) decrease MRT by the canal.

In San Polo, the tight distance of the canals makes the infiltration of cool breezes
difficult. MRT and PET values in 2020 are greatly affected by the shadow’s distribution: in
SS. Giovanni e Paolo, the shaded areas are more effective in lowering thermal discomfort
while, in San Polo, the shaded areas are less extensive due to Campo’s large width, and
thermal stress is more harmful.

5.2. MRT–PET in 2050

Similar results can be foreseen in the 2050 projection, but the urban form responds
effectively to higher MRT and Pot values via high compactness.

In San Polo, where building heights are homogeneous (max height 26.6 m and mean
height 12.62 m), the total built area compared to the total floor area of the fabric (FSI 2.29)
is lower than SS. Giovanni e Paolo. Along with lower building coverage, the shaded areas
are less effective in reducing thermal discomfort, as they are more successful in reducing
Pot values near the eastern front. As in Table 4 and Figure 16, the orientation and Campi
widths are the most effective elements in reducing thermal behaviour, as the presence of
the canals is to be considered as a critical element due to heat storage, as well as given the
scarce presence of still water.

MRT and PET values in 2050 are greatly affected by the shadow’s distribution: in
SS. Giovanni e Paolo, the shaded areas are more effective in lowering thermal discomfort,
while, in San Polo, the shaded areas are less extensive due to Campo’s large width, and
thermal stress is more harmful.

5.3. Thermal Resilience Potentialities

Generally, shaded areas allow for major thermal comfort both in 2020 and 2050. The
highest thermal stress occurs in the middle of the Campi’s unshaded paved surfaces. At
large, the nearby canals provide thermal storage due to a limited depth. Heat stress
increases in the 2050 scenario.

It is worth highlighting that the influence of the impact of urban form on the micro-
climate processes of ventilation and shadow patterns mitigates thermal stress. Due to the
high compactness of the urban fabric, Campi are the only open spaces that benefit from
wind flows. This is clear when canals cross or are tangent to open spaces, such as in Campo
SS. Giovanni e Paolo. Land cover and canal canyons facilitate cool breezes contributing to
a lower PET.

The absolute difference in PET and MRT values (Figure 16) shows that San Polo is more
resilient to climate change: the average absolute difference of PET is more homogeneous
(5 ◦C at h.10 am to 6.5 ◦C at h. 4 pm).

In Campo SS. Giovanni e Paolo, the average absolute difference PET values vary from
7 ◦C at h.10 am to 5 ◦C at h. 4 pm.

In Campo San Polo, ∆ PET is greater in 2020 than in 2050. Thermal discomfort in SS
Giovanni e Paolo is less evident in 2020, while the 2050 scenario shows a noticeable ∆ PET.
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Generally, greenery scarceness is negligible in mitigating thermal stress in both Campi.
In San Polo, the limited presence of trees can be observed in MRT value distribution, as in
SS. Giovanni e Paolo, where the green mass is relegated inside a private cloister and does
not influence thermal stress.

Similar considerations about thermal resilience potentialities can be partially extended
to other dense urban archetypes. Among different parameters that affect outdoor thermal
comfort, MRT and wind velocity have been proved to be influenced significantly by urban
geometry, as assessed in previous studies on Dutch squares [41].

The analysis presented here suggests that the increased density of shadow areas can
mitigate outdoor temperature values and reduce direct radiation on façades, reducing PET
values, as already highlighted in previous studies, where urban form variables explain
more than half of the variation in PET [53].

5.4. Limitation of the Study

Some limitations to the research should be noted since the results are based on a
predictive study considering future conditions that may or may not occur.

First, a limited selection of building materials was used in the simulation. Three
different building profiles for every building type in the selected Campi have been assessed
as a homogenous building envelope’s solution. Second, the number of Venice Campi case
studies is small, if compared to many different Campi and their irregularity in size and
shape. Third, the simulation period is 20 h during the hottest day. A 24/48 h computation
should be preferred. Fourth, in the modelling, only public green was considered. The
presence of green mass inside private courtyards has been neglected.

Fifth, as some studies have recently highlighted, ENVI-met underestimates MRT and
consequently PET values, reporting lower values if compared to the values measured
experimentally [54].

Lastly, the presence of the canals is simulated, but the cooling effect of water bodies
due to evaporation is small on short timescales simulation; moreover, the influence of the
Venice lagoon is neglected.

In addition, some real monitoring on-site is expected, as the UHI effect varies from
simulation software’s data to on-site temperature and relative humidity data.

6. Conclusions

To respond to the research aims, the thermal resilience of Venice’s Campi today and
in a future climate scenario was assessed. Appraisal of the strengthening resilience of
built heritage relative to climate change-related heat waves in Venice was evaluated by
comparing 2020 and 2050 scenarios in two typical Venetian open spaces, called Campi:

(i) Assessing today’s thermal stress suggests that compact urban fabric decreases PET
values due to the extensive project of shadows;

(ii) Assessing the thermal stresses in the projected 2050 climatic scenario shows how high
density the factor resulting in mitigation is;

(iii) Venetian Campi were thought for functional and social purposes; this research study
offers the perspective that they, in addition, grant some effective outdoor mitigations
to face future heat waves. Campi may be an entity helping future climate change issues.
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