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Game theory and applications
connecting individual-level interactions to collective-level consequences

Carl-Joar Karlsson
Department of Mathematical Sciences

Division of Analysis and Probability Theory
Chalmers University of Technology and the University of Gothenburg

Abstract

Individual-level interactions and decisions spread though populations and
change the collective-level dynamics in an intricate way. Nevertheless,
game theory is well suited for the uni�cation of these viewpoints. This
thesis introduces the works The strength of diversity and Decisions and
disease: a mechanism for the evolution of cooperation, which show that
games have broad applications in population dynamics modeling.

In The strength of diversity we calculate the equilibrium strategies of the so-
called game of teams. The game of teams is an individual-level competition
between teams, and a team’s strategy in this context is a distribution of
strength over the teammembers. It turns out that the equilibrium strategies
are �at distributions or ‘alternating’ �at distributions whenever there exists
equilibrium strategies.

In Decisions and disease: a mechanism for the evolution of cooperation
we combine the classic SIR and SIS models from epidemiology with the
prisoner’s dilemma game. The transmission rate is computed as the aver-
age over defecting and cooperating individuals, and the individuals are
subjected to a replicator equation that takes into account the portion of in-
fectious members of the population. We compute the steady state solutions
and interpret the results.

Keywords: game theory, non-cooperative game theory, prisoner’s dilemma,
equilibrium strategy, disease, distribution, compartmental model, epidemi-
ological model,
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Notation, abbreviations and nomenclature
Z The integers ...,−2,−1, 0, 1, 2, ...
R The real numbers
a.e. Almost Everywhere
game A collection of players, payo� functions and strategies
equilibrium A state where no player has incentive to change strategy
𝐸 Expectation, see §2.2
𝑝 Expectation of normalized strategies, payo�
CA Competitive Ability
MCA Mean Competitive Ability
𝐶 The upper bound on MCAs; the cost in Donor-Recipient

games
SIR A compartment model with categories susceptible, infec-

tious and removed
SIS A compartment model with categories susceptible and in-

fectious. Typically, this models a disease without immunity.



Chapter 1

Games, members and
populations

Game theory is the appropriate tool whenever the success of
an individual depends on others.
—Martin A. Nowak and Karl Sigmund (Science, 2004)

Game theory is the study of decision-making under con�icting interests.
When the actions undertaken by a decision-maker a�ects the considera-
tions of other ‘players’ there is a mathematical procedure to �nd the overall
‘best choices’ and also the rational choices from each player’s perspective.
Oftentimes, they di�er; the overall best is never achieved because it it does
not seem rational from an individual perspective. These insights are high-
lighted by game theory thanks to its simple rules. Although simple, game
theory analyses are an essential part of modern decision-making. Today,
agreements such as the Kyoto protocol (on reducing the climate footprint
worldwide) undergo game theory analysis. Economy, negotiation, trade,
resource management, ecology and physics are just some examples of
applications of the modern game theory that was formalized during the
20th century. (Mazalov, 2014)

Although games were discussed systematically long before, certainly al-
ready in ancient times (Ross, 2021), the starting point of today’s rigorous
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2 Chapter 1. Games, members and populations

treatment of game theory and applications is widely considered the book
The Theory of Games and Economic Behaviour (1944) by J. von Neumann
and O. Morgenstern. Later pioneers such as J. Nash, L. Shapley, J. Maynard
Smith and others have re�ned the theory and expanded its applicability.

This thesis comprises the two articles The strength of diversity andDecisions
and disease: a mechanism for the evolution of cooperation, which are both
fundamentally oriented investigations that show how individual-level
interaction and collective-level dynamics are uni�ed by means of game
theory. These papers do also show the generality of applications. The
results are abstract and not restricted to a certain context or interpretation.

1.1 The early days of game theory

We begin this chapter with one of the most important results of game
theory, namely an explanation of the tragedy of the commons. In a group
of decision-makers, the tragedy of the commons is in general a situation
where no participant seeks to cooperate for the common good even though
such cooperation would bene�t every participant.

1.1.1 A motivating example in game theory

Climate change is a major issue that has led to much negotiation between
countries. Consider a meeting between two countries that can either defect
from an issued agreement or decide to cooperate within the agreement.
If both cooperate, they each get a climate bene�t of 6 (in some unit, e.g.
a monetary currency or natural resources), whereas if only one of them
cooperates they receive a lower climate bene�t of 3. Cooperating costs 4.
This leads to the following total payo�s: If both abate, both get 6 − 4 = 2.
If both defect, both get 0 − 0 = 0. If only one abates, the abater gets
3 − 4 = −1, and the defector gets 3 − 0 = 3. Now each country has the
following options to consider: If the other country decides to cooperate,
then defecting guarantees a bene�t of 3 while cooperating gives 2. If the
other country decides to defect, then defecting comes with a bene�t of
0 and cooperating gives −1. That is, if the other’s strategy is not known



§1.1. The early days of game theory 3

it is always better to defect. The same goes for the other country. The
rational choice is therefore to defect, not abate. This situation – both
players defect as they do not trust the other player to cooperate even
tough the common good would bene�t most if both would cooperate – is
the essential mechanism of the tragedy of the commons.

It is standard procedure to write these possible outcomes in a matrix as in
the �gure below. Here, 𝐶 denotes the option ‘cooperate’ and 𝐷 denotes
‘defect.’ Each box contains the gain to each player such that the top-right
number belongs to the player 𝐵. The above example is symmetric since
both players have the same set of actions and are paid the same payo�s.

2 3

2 -1

-1 0

3 0

C D

C

D

player 𝐵

pl
ay
er
𝐴

The concept of rational decision from an individual’s point of view is
capturedmathematically by the notion of equilibrium. In an equilibrium, no
player has incentive to change strategy. Borel formulated and studied game
equilibria in the early 20th century for two-player games and same did von
Neumann during the 20’s though the 40’s. The equilibrium concept was
extended to include𝑛 players by J. Nash in the 50’s. (Hammond, 2003) Nash
proved that any game with 𝑛 players has a symmetric equilibrium (Nash,
1951) and a game’s equilibrium is therefore often called Nash equilibrium.
In the above example, there is an equilibrium when both players defect.

A. Tucker named the above game the prisoners’ dilemma as a way to
popularize Nash’s ideas to the psychology community. M. Flood and
M. Dresher discussed games with the structure of prisoner’s dilemma in
1950, but neither they nor Nash published their ideas immediately. (Kuhn,
2019)
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In this thesis we consider repeated games with the possibility to change
action when a new turn is played as long as there is a �xed probability
distribution of choices. Such a distribution was named a mixed strategy
by Nash. In the example above there were two options (𝐶 and 𝐷) for
each player, so if a player plays 𝐶 with probability 𝑥 then the same player
chooses 𝐷 with probability 1 − 𝑥 . In this case we can compute what
payo� is expected, statistically. The equilibrium of a game is then de�ned
as above with the assumption that each player wants to maximize its
expected payo�. A pure strategy assigns probability 1 to only one option.

In non-cooperative game theory, players do not reveal their intentions to
other players and they therefore act to maximize the individual payo� that
they receive. In contrast to this, cooperative games follow a di�erent set
of rules. There are no individual payo�s but the game has an overall value
which is determined by the values of the ‘coalitions’ that form in the game.
This thesis will only concern non-cooperative games, but the interested
reader is encouraged to consult the founding work by Shapley (1953) for
an introduction to cooperative games.

Chapter 2 of this thesis investigates the Nash equilibria of a game of
competing teams. In Chapter 3, the above symmetric matrix plays a
particularly important role in the context of changing behaviors during a
disease outbreak.

1.1.2 A motivating example in population dynamics

‘How can one explain such oddities as snakes that wrestle with each other,
deer that refuse to strike “foul blows,” and antelope that kneel down to
�ght?’ asked biologists Maynard Smith and Price (1973). They used game
theory and their newly developed notion of evolutionary stable strategies
to explain why �ghting between members of the same species usually
do not escalate unless the opponent aim to cause severe injury. In this
context, the strategies ‘cooperate’ and ‘defect’ are termed ‘conventional
con�ict’ and ‘dangerous con�ict’ making the matrix-game formulation
seen in the prisoner’s dilemma suitable.
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In population dynamics games there is an evolution of strategies which
are designs of a selection process during repeated games rather than the
‘rational choices’ in Nash equilibria. This selection process can result in
strategies that are di�erent from the classical game from the previous
section. Maynard Smith and Price (1973) performed computer simulations
of repeated matrix-games and realized that the selection process leads to
a classic equilibrium if in addition to Nash’s equilibrium condition there
is a stability condition (Riechert and Hammerstein, 1983). A year later,
Maynard Smith (1974) designed a mechanism that in some games displays
the development from non-optimal strategies to the stable ones by means
of an evolutionary process. We will encounter a version of these ideas in
Chapter 3 when we consider games in combination with epidemiological
models and identify the stable steady state solutions.
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Chapter 2

The Game of Teams

Talent wins games, but teamwork and intelligence win cham-
pionships.
—Michael Jordan (in I Can’t Accept Not Trying. 1994, Harper)

The Game of Teams has been developed during the last couple of years as
a model to explain why certain compositions of team members are more
advantageous than others. Central to this game is the assumption that
competition occurs on an individual level whereas strategies are de�ned on
a team-level. This applies in a wide range of situations such as economy
(portfolio theory, management etc.), research, sports, behaviorological
sciences and ecology. It has been demonstrated that diversity is bene�cial
in all these contexts. Results from ecology shows that diversity is healthy
for a biological system, for instance as protection against extinction of
species. Similarly, a diverse portfolio of investments protects the investor
from �nancial backlash in case individual investments are unstable. Teams
of scientists perform better if they are diverse in all senses they can be.

The game of teams do not treat teams as individuals and herein lies its
importance. We construct a simple game in this chapter and we show that
the teams that the success of a team depends heavily on the distribution
of resources among its members. This provides an explanation to the
strength of diversity without restricting the results to a speci�c context

7



8 Chapter 2. The Game of Teams

(e.g. ecology.)

2.1 Foundations of non-cooperative games

The purpose of game theory was originally to explain conscious and
rational decision making mathematically. Therefore it is assumed that all
players in a game act to maximize their payo�s, with no other intentions
than that. In a zero-sum game the gain to one player exactly equals the
loss of the rest of the players. If all gains are added up (counting loss as
negative gain), the sum is zero.

Strategies and equilibrium.

There are two formulations for two-person zero-sum games with a �nite
number of alternatives for each player: the normal form and the extensive
tree form (Hammond, 2003). The normal form is also called the matrix form
and we encountered this in §1.1.1 in the discussion on climate agreements.
Only the normal form games are considered in this thesis. These games
are determined by a static set of options and a payo� function for each
player. A payo� is a mapping to the real numbers that depends on the
other players’ decisions.

A strategy is a rule for decision-making such that the payo�s in the game
are determined once the strategies of all players are known. Let 𝐺 denote
the set of strategies. It may possess any structure (a �nite set of values, a
subset of R𝑛 , a set of measurable functions, etc.)

An equilibrium is de�ned as a set of strategies such that no player has
incentive to change strategy, assuming the other players’ strategies are
unchanged. If we let {𝑓𝑖}𝑛𝑖=1 denote a set of strategies and 𝑝𝑖 denotes the
payo� to player 𝑖 , then {𝑓𝑖}𝑛𝑖=1 is an equilibrium if for every 𝑖

𝑝𝑖 (𝑓1, ..., 𝑓𝑛) = max
𝑔𝑖∈𝐺

𝑝𝑖 (𝑓1, ..., 𝑓𝑖−1, 𝑔𝑖, 𝑓𝑖+1, ..., 𝑓𝑛). (2.1)

As an example, an equilibrium in a 2-player game is a pair of strategies
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(𝑓1, 𝑓2) meeting the conditions

𝑝1(𝑓1, 𝑓2) ≥ 𝑝1(𝑔1, 𝑓2)
𝑝2(𝑓1, 𝑓2) ≥ 𝑝2(𝑓1, 𝑔2)

for arbitrary strategies 𝑔1 and 𝑔2. If the game is zero-sum, then 𝑝1(𝑓1, 𝑓2) +
𝑝2(𝑓1, 𝑓2) = 0.

2.2 The Game of Teams

This section introduces the Game of Teams, which was �rst de�ned by
Menden-Deuer and Rowlett (2019) and later revised and re�ned in the
publication by Menden-Deuer et al. (2021). It was originally designed to
explain the vast diversity among asexually reproducing (cloning) microbes
and microbial subspecies, which gives it a terminology reminiscent of
biology. We call the ‘players’ individuals and we refer to the groups of
players that constitute a team as ‘species.’ We may also use terms such as
population size.

In a well-mixed population, every member has a constant, positive prob-
ability of meeting every other member. There are no closed groups but
everyone has the same chance of meeting everyone. In a well-mixed pop-
ulation we may consider ‘teams’ or ‘species’ as labels and assign di�erent
characteristics to these teams. Imagine that two such teams constitute a
population and that for each timestep the members of the population meet
with a member from the other species and compare ‘strength,’ meaning
that

• if one member is stronger than the other, the stronger one defeats
the weaker and then replicates, or

• if both members are equally strong, it is a draw and both players
remain in the game.

A draw results in no change to the size of each team, but if a member
of one team defeats a member from the other team there is an increase
by one to the �rst team while the other team is reduced by one member.
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Imagine that these indivual competitions take place simultaneously. If a
member cannot be paired with another member, it waits until the rest of
the members have compared strength. This is a timestep, or turn, in the
game of teams.

Strength is here a positive, real number. An individual’s strength is re-
ferred to as its competitive ability, in short CA. It should be assumed that
the competing species, or teams, are on average not stronger than some
positive number 𝐶 . Otherwise it would be easy to win: just let all mem-
bers of your team grow stronger. Thus, teams are characterized by the
distribution of strength among the team members. We therefore de�ne1

strategies in the following way.

De�nition 2.2.1. A strategy is a non-negative, Lebesgue-measurable,
bounded function that is not identically zero, supported on a compact
subset of [𝑥0,∞), for some real number 𝑥0.

We should think of strategies as assignment rules. At each turn, the
strategy is the distribution of CA over the population in the sense that
each player gets a CA randomly following the probability distribution
given by the normalized strategy under the constraint that the average of
the CAs is not greater than 𝐶 . Sometimes we do not distinguish a team
from its strategy but rather we use strategy and team interchangeably.

We will consider three classes of games. If no restrictions except those in
De�nition 2.2.1 are put on the strategies, we call this the bounded game of
teams or the bounded measurable game of teams. If we consider continuous
functions with support on a compact subset of [𝑥0,∞) we refer to this
as the continuous game of teams. Let𝑀 be a real number and let 𝑎 be an
integer. De�ne for all non-negative integers 𝑗 the fractions

𝑥 𝑗 =
𝑗 + 𝑎
𝑀

. (2.2)

If we consider strategies from this set of 𝑥 𝑗 , we say that the game is the
discrete game of teams. In this case we de�ne strategies as follows.

1Compare this with probability density functions; we assume not normalization but
boundedness because ‘strength’ is never in�nite.
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De�nition 2.2.2. A discrete strategy is a mapping 𝑛 from {𝑥 𝑗 } 𝑗≥0 into the
non-negative, real numbers such that 𝑛(𝑥 𝑗 ) is not identically zero and only
�nitely many 𝑛(𝑥 𝑗 ) are non-zero.

We will not distinguish discrete strategies if there is no risk of confusion,
since it can be understood which de�nition that applies in most situations.

Example 2.2.3. Assume that two teams of three players each are playing
cards with a special kind of deck: the cards can have �ve values 1, 2, 3,
4 or 5 and each team member can select one card as long as the average
over the team is 3. Two or more players can select the same value. Each
member pairs up with a member from the other team and the one having
the highest value wins. What is the ‘best’ strategy in this situation? Let
𝐴 be one team and 𝐵 be the other. If 𝐴 always plays with the number 3
while 𝐵 selects 4 for two of its members and 1 for the remaining member,
which team is expected to win? In each turn, the number of players in 𝐴
that are expected to win are the number of players in 𝐵 that play 1 or 2
and those players in 𝐵 playing 4 or 5 will always win. Let 𝑛𝐵 (𝑥 𝑗 ) be the
number of members of 𝐵 that play 𝑗 . Then

𝑛𝐵 (𝑥1) + 𝑛𝐵 (𝑥2) − 𝑛𝐵 (𝑥4) − 𝑛𝐵 (𝑥5) (2.3)

is the increase of members to team 𝐴 at each turn. This sum equals
1 + 0 − 2 − 0 = −1 meaning that 𝐴 wins one player but also loses two
players; 𝐵 wins the �rst turn. The teams are not equally strong even
though their average strength is the same. Team 𝐵 wins because it has a
smarter distribution of competitive ability among its members.

Let 𝑁𝐵 denote the number of individuals in 𝐵. Interpreting 𝑛𝐵 (𝑥 𝑗 )/𝑁𝐵
as the probability that a random player in 𝐵 has the strength 𝑥 𝑗 , we can
say that 𝑛𝐵 is a strategy. It is in fact the number of players in 𝐵 that are
expected to play 𝑥 𝑗 . The team 𝐴 plays with the strategy 𝑛𝐴 (𝑥3) = 3 and
𝑛𝐴 (𝑥 𝑗 ) = 0 for 𝑗 = 1, 2, 4, 5.
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The expectation in competition between teams

In general in the discrete game, the species𝐴 expects a population increase
(or decrease) in competition with 𝐵 given by

𝐸 [𝑛𝐴, 𝑛𝐵] =
min{𝑁𝐴, 𝑁𝐵}

𝑁𝐴𝑁𝐵

∑︁
𝑖≥0

𝑛𝐴 (𝑥𝑖)
(∑︁
𝑖> 𝑗

𝑛𝐵 (𝑥 𝑗 ) −
∑︁
𝑖< 𝑗

𝑛𝐵 (𝑥 𝑗 )
)

(2.4)

where an empty sum is interpreted as zero. The factor in front of the sums
accounts for the situation that one team is smaller than the other. If, say,
𝑁𝐴 = 100 and 𝑁𝐵 = 99 then

𝐸 [𝑛𝐴, 𝑛𝐵] =
∑︁
𝑖≥0

𝑛𝐴 (𝑥𝑖)
𝑁𝐴

(∑︁
𝑖> 𝑗

𝑛𝐵 (𝑥 𝑗 ) −
∑︁
𝑖< 𝑗

𝑛𝐵 (𝑥 𝑗 )
)

so that 𝐸 [𝑛𝐴, 𝑛𝐵] is in absolute numbers, ranging from −99 to 99, which
is exactly the minimal and maximal number of ‘lose’ and ‘win’ as one
member of 𝐴 cannot be paired with a member of 𝐵. If we are interested in
the relative increase, we compute

𝑝 [𝑛𝐴, 𝑛𝐵] =
𝐸 [𝑛𝐴, 𝑛𝐵]

min{𝑁𝐴, 𝑁𝐵}
.

Game-theoretically, 𝑝 [𝑛𝐴, 𝑛𝐵] is the payo� to team 𝐴 in competition with
𝐵. The relative expectation, 𝑝 , ranges from −1 to 1. Passing between 𝐸 and
𝑝 simply means that we normalize the strategies.

In the continuous game and the bounded game, we de�ne the expectated
win for a strategy 𝑓 in competition with another strategy 𝑔 as

𝐸 [𝑓 , 𝑔] = 𝛼
∫ ∞

𝑥0

𝑓 (𝑥)
(∫ 𝑥

𝑥0

𝑔(𝑦) 𝑑𝑦 −
∫ ∞

𝑥

𝑔(𝑦) 𝑑𝑦
)
𝑑𝑥 (2.5)

where

𝛼 =

min
{∫ ∞
𝑥0
𝑓 (𝑥) 𝑑𝑥,

∫ ∞
𝑥0
𝑔(𝑥) 𝑑𝑥

}(∫ ∞
𝑥0
𝑓 (𝑥) 𝑑𝑥

) (∫ ∞
𝑥0
𝑔(𝑥) 𝑑𝑥

) . (2.6)

Againwe de�ne 𝑝 as 𝑝 [𝑓 , 𝑔] = 𝐸 [𝑓 /𝐹, 𝑔/𝐺] where 𝐹 and𝐺 are the integrals
of 𝑓 and 𝑔 over [𝑥0,∞), that is, we normalize them with respect to the
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𝐿1 norm. Integration here means integration with respect to Lebesgue
measure.

It is easily checked that both 𝐸 and 𝑝 satisfy the ‘zero sum dynamic’

𝑝 [𝑓 , 𝑔] + 𝑝 [𝑔, 𝑓 ] = 0 (2.7)

in the bounded, the continuous and the discrete game. If more than two
teams simultaneously compete we would like to consider one team in
competition with the rest. Since

𝑝 [𝑓 , 𝑔1 + 𝑔2] = 𝑝 [𝑓 , 𝑔1] + 𝑝 [𝑓 , 𝑔2], (2.8)

we may de�ne the expectated payo� to 𝑓 in competition with a collection
of strategies {𝑔𝑖}𝑛𝑖=1 as 𝑝 [𝑓 , 𝑔1+...+𝑔𝑛]. The linearity property (2.8) does not
hold for 𝐸 due to the factor 𝛼 , but nevertheless we de�ne the expectation
of 𝑓 in competition with a collection of species {𝑔𝑖}𝑛𝑖=1 as 𝐸 [𝑓 , 𝑔1 + ... +
𝑔𝑛] because any species competes against all the others (otherwise their
members would belong to the same species).

An equilibrium (or equilibrium point) in the game of teams is de�ned as
a collection of strategies {𝑓𝑖}𝑛𝑖=1 that satisfy the following condition: For
each 𝑘 ∈ {1, 2, ..., 𝑛}, if team no. 𝑘 changes its strategy but all other teams
retain their strategies then the payo� to team no. 𝑘 does not increase. This
means that for all 𝑘 ∈ {1, 2, ..., 𝑛},

𝑝 [𝑓𝑘 , 𝑓1+ 𝑓2+ ...+ 𝑓𝑘−1+ 𝑓𝑘+1+ ...+ 𝑓𝑛] ≥ 𝑝 [𝑔, 𝑓1+ 𝑓2+ ...+ 𝑓𝑘−1+ 𝑓𝑘+1+ ...+ 𝑓𝑛]

for any strategy 𝑔 of the same type (bounded, continuous or discrete). The
strategies that comprise an equilibrium point are known as equilibrium
strategies.

This agrees with the de�nition of a Nash equilibrium. By the following
proposition, it is equivalent to non-negative expectation in competition
with any other strategy.

Proposition 2.2.1. Assume that a collection of strategies {𝑓𝑖}𝑛𝑖=1 is an equi-
librium point. Then they satisfy

𝑝 [𝑓 𝑗 , 𝑓𝑘] = 0 for all 𝑘, 𝑗, and 𝑝 [𝑓𝑘 , 𝑔] ≥ 0 for any strategy 𝑔. (2.9)
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Equivalently, each 𝑓𝑘 is an equilibrium strategy for the two-player game.
Conversely, if {𝑓𝑖}𝑛𝑖=1 satisfy (2.9) then {𝑓𝑖}𝑛𝑖=1 is an equilibrium of the game.

A proof of this proposition is found in paper 1.

Using this proposition in the identi�cation of equilibrium strategies we
�nd those strategies 𝑓 that satisfy 𝐸 [𝑓 , 𝑔] ≥ 0 for all strategies 𝑔. It is never
important to retain the factor 𝛼 and neither is it important to normalize
the strategies, since any equation on the form 𝐸 [𝑓 , 𝑔] ≥ 0 is equivalent to
𝑝 [𝑓 , 𝑔] ≥ 0.

In paper 1, we use the notation ℘ (this symbol is called the ‘Weierstrass p’)
for the expectation 𝐸 with 𝛼 = 1. We also use the notation ℘[𝑓 ;𝑔1, ..., 𝑔𝑛] =
℘[𝑓 , 𝑔1 + ... + 𝑔𝑛]. Again, using 𝐸 or ℘ does not change which strategies
are equilibrium strategies, so we may use ℘ instead of 𝑝 .

A fair constraint on strategies. Translation invariance.

A team could always get better if all members would be stronger, that is,
if the CAs of the members were allowed to grow without any constraint it
would be trivial to construct a winning team. Assume therefore that only
teams with an average CA of less than or equal to some positive number
𝐶 are allowed to compete. We will refer to this as the constraint on the
mean competitive ability, or MCA, and we de�ne

MCA(𝑛) =
∑
𝑘≥0 𝑥𝑘𝑛(𝑥𝑘)∑
𝑘≥0 𝑛(𝑥𝑘)

(2.10)

in the discrete game, and in the bounded game as well as in the continuous
game we de�ne

MCA(𝑓 ) = 1
‖ 𝑓 ‖𝐿1

∫
R
𝑥 𝑓 (𝑥) 𝑑𝑥, ‖ 𝑓 ‖𝐿1 =

∫
R
𝑓 (𝑥) 𝑑𝑥. (2.11)

Notice that 𝑓 is non-negative and 0 < ‖ 𝑓 ‖𝐿1 < ∞ by the de�nition of a
strategy. Integrating over R is equivalent to integrating from 𝑥0 to∞ since
strategies have compact support in [𝑥0,∞).

The game of teams is translation invariant and scale invariant. This means
that given a collection of strategies we may assume that they are de�ned
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on [0, 1] or some other interval, say [−1, 1]. If 𝑓 and 𝑔 are two strategies,
their support is contained in a closed interval [𝑎, 𝑏] such that 𝑎 < 𝐶 < 𝑏.
De�ning ℓ = 𝑏 − 𝑎, 𝐶 = (𝐶 − 𝑎)/ℓ and

𝑓 (𝑡) = 𝑓 (ℓ𝑡 + 𝑎), 𝑔(𝑡) = 𝑔(ℓ𝑡 + 𝑎) for 𝑡 ∈ [0, 1] (2.12)

we have

MCA(𝑓 ) ≤ 𝐶 ⇐⇒ MCA(𝑓 ) ≤ 𝐶,
MCA(𝑔) ≤ 𝐶 ⇐⇒ MCA(𝑔) ≤ 𝐶

and 𝑝 [𝑓 , 𝑔] = 𝑝 [𝑓 , 𝑔]. This implies that the values of 𝐸 and 𝑝 are unchanged
under the translations

𝑥 ↦→ 𝑥 + 𝑥0, 𝐶 ↦→ 𝐶 + 𝑥0, (2.13)

with 𝑥0 ∈ R in the bounded or continuous game, and correspondingly for
the discrete game 𝑗 ↦→ 𝑗 + 𝑎, 𝐶 ↦→ 𝐶 + 𝑥𝑎 with 𝑎 ∈ Z. In other words, it is
only the relative distance to 𝐶 that matters for the outcome of the game.
Therefore, it makes no di�erence to assume that the strategies are de�ned
on a compact subset of [0,∞) or [𝑥0,∞) for some 𝑥0. For simplicity, one
may assume that 𝑥0 = 0.

One may of course ask whether it is necessary to have a lower bound at
all on the CAs. The answer is yes, if we want the game to be interesting.
If there is no lower bound on the CAs then we may always construct a
species similar to the winning species in Example 2.2.3, that is one which
sends one player to very low CAs and assign to the rest of its members
a CA which is just slightly higher than those of the competing species’.
A winning team is trivial to construct if the CAs are not bounded from
below.

2.3 Main results of Paper 1

In paper 1 we identi�ed the equilibria for the game of teams. Recall the
de�nition of the fractions 𝑥 𝑗 in (2.2). In the discrete game, assume that the
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MCA-constraint is such that 𝐶 lies on some CA or precisely between CAs,
that is,

𝐶 =
2𝑎 + 𝑘
2𝑀

for some integer 𝑘 > 0. (2.14)

Main results of paper 1

In the bounded game of teams, a strategy is an equilibrium strategy if and
only if it is almost everywhere equal to, for some constant 𝐾 > 0,

𝑓 (𝑥) =
{
𝐾, 𝑥 ∈ [𝑥0, 2𝐶 − 𝑥0]
0, otherwise.

(2.15)

This is a constant, positive function with support on an interval centered
around 𝐶 . There are no equilibrium strategies in the continuous game of
teams, because it would need to equal (2.15) which is not continuous. In
the discrete case, 𝐴 is an equilibrium strategy if and only if it is given by a
constant 𝑏 > 0 and if 𝑘 is odd,

𝑛𝐴 (𝑥 𝑗 ) =
{
𝑏, 0 ≤ 𝑗 ≤ 𝑘
0, otherwise

(2.16)

or if 𝑘 is even, for 𝑏 and 𝑐 non-negative constants that are not both zero,

𝑛𝐴 (𝑥 𝑗 ) =


𝑏, 0 ≤ 𝑗 ≤ 𝑘, 𝑗 even
𝑐, 1 ≤ 𝑗 ≤ 𝑘 − 1, 𝑗 odd
0, otherwise

(2.17)

In (2.17), not all 𝑛𝐴’s are zero by de�nition of a strategy but either 𝑏 or 𝑐
can be zero. Conversely, when there exists an equilibrium in the game of
teams, it is comprised of the above strategies.

A vizualisation of equilibrium strategies are provided in the �gures below.
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𝐶 = 𝑥3, 𝑘 even
𝑦

𝑥 𝑗𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝐶 =
𝑎+5/2
𝑀

, 𝑘 odd
𝑦

𝑥 𝑗𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

The following is a visualization of the equilibrium strategies of the bounded
game with 𝑥0 = 0, which is no limitation due to translation invariance.
Notice that this is a discontinuous function. In fact, this is the reason that
there are no equilibrium strategies in the continuous game of teams. Any
continuous function will lose against a continuous function that better
mimics the equilibrium of the bounded game, but then no function will
ever be protected against losing the game, so there is no equilibrium.
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𝑓 (𝑥) = 𝐾 a.e.
for 𝐾 > 0 and 𝑥 ∈ [0, 2𝐶]

2𝐶

𝑦

𝑥

𝑓 (𝑥) = 0 a.e. for 𝑥 > 2𝐶 .

Proving these results requires computing the expectation between pairs
of strategies and using Proposition 2.2.1. In the bounded game we show
that 𝐸 [𝑓 , 𝑔] ≥ 0 for 𝑓 given by (2.15) and any other strategy 𝑔 by direct
computation of 𝐸. As mentioned above, given any collection of strategies
one can assume that they are de�ned on the interval [0, 1] with𝐶 ≤ 1/2 by
the change of variables in (2.12). Then the continuous strategies and the
discrete strategies satisfy the conditions of Theorem 1 in (Menden-Deuer
et al., 2021). These are some of the main arguments that prove the results
of paper 1.

Equilibrium strategies are positive and constant on an interval centered
around 𝐶 . In paper 1 we note that such functions distribute the CAs
without favoring any values in particular. Every CA is equally probable,
so the teams will have ‘maximal distribution’ of team members and all
members are treated equally. This motivates the title of the paper, The
Strength of Diversity.

Heuristically the main result of paper 1 may be summarized as follows:

A team can be guaranteed to not lose by assigning CAs to
its members in such a way that all CAs within an interval
centered on𝐶 are equally probable. In other words, a winning
strategy is to create a maximally diverse team.



Chapter 3

Decision-making and disease
outbreaks

A classical Game Theory case: People are not taking vaccines
in the hope that everyone else would be vaccinated and they
would be safe.

—Vineet Raj Kapoor (2021 on Instagram)

How many people will be infected in a population within, say, two weeks,
given the current conditions such as the number of infected individuals
and transmission rates? These types of questions are e�ectively answered
by diving the population into compartments (or categories). Changes
to the categories are captured by dynamical models which are typically
di�erential equations. This chapter introduces some of the standardmodels
and presents our contribution to the �eld.

The COVID-19 pandemic outbreak in the beginning of 2020 issued many
questions about people’s behavior during diseases, such as ‘What di�er-
ence does it make if this large a portion of the population complies with
recommendations while the rest do not?’ My supervisor and I incorporated
ideas from game theory with the disease spreading models SIR and SIS in
order to provide some insights to these questions. We realized that the
individual decisions during a pandemic resemble the prisoner’s dilemma

19
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(PD) and we investigated what happens when the population is under
in�uence of the PD game while also being aware of the risk of catching
the disease. This led to insights whether cooperation emerges when the
game’s payo� is a trade-o� between the PD and the e�ect on disease
spreading through changes to the infection transmission rate.

3.1 The early models: SIR and SIS

Some diseases infer immunity after an infection, while some do not. Im-
munity can last very long, sometimes as long as a lifetime, and sometimes
much shorter. Examples of the former is the measles (Vårdguiden 1177.se,
2019). Common colds and many STIs are examples of diseases that do
not confer immunity; one can catch the disease again almost immediately
after recovery. (Niespodziana et al., 2012; Workowski et al., 2021)

The SIR model

The following model was an early attempt at describing the dynamics
among the population during an outbreak of a disease that confers lifetime
immunity or immediate death. The model cannot di�erentiate between
dead and immune because both types mean that the individual – dead or
immune – does not participate in the disease spreading.

Assume that the population is divided into three categories, each consisting
of individuals that are in one of the following states:

• Susceptible

• Infectious

• Removed (dead or immune)

Denote by 𝑆 , 𝐼 and 𝑅 the number of susceptible, infectious and removed
individuals, respectively. Let 𝑁 denote the size of the population, so that
𝑆 + 𝐼 + 𝑅 = 𝑁 . Dynamics in this model are captured by the change of
state within the population, that is if, say, a susceptible individual gets sick
then it moves to compartment 𝐼 and correspondingly there would be an
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increase by 1 of 𝐼 while 𝑆 decreases by 1.

The classic SIR model assumes that all individuals in the population has
a certain, constant probability to get in contact with any of the other
individuals. It further assumes that the probability of disease transfer from
a infectious individual to a susceptible individual is a positive constant 𝛽 .
The number of susceptible individuals can only decrease since the infected
individuals eventually become removed (by death or – hopefully – by
becoming immune.) At each time, the expected decrease is proportional to
the risk of a susceptible individual meeting with an infectious individual,
that is, 𝑆 would decrease by 𝛽𝑆𝐼 . Let 𝑆 (𝑡𝑘) be the number of susceptible
individuals at time 𝑡𝑘 . Then 𝑆 (𝑡𝑘+1) − 𝑆 (𝑡𝑘) = 𝛽𝑆 (𝑡𝑘)𝐼 (𝑡𝑘) would describe
this situation.1

Susceptible Infectious Removed

In large populations, it is usually feasible to approximate the integer num-
bers 𝑆 , 𝐼 and 𝑅 with continuous real values. Therefore we describe the
dynamics of 𝑆 by means of the ordinary di�erential equation ¤𝑆 = −𝛽𝑆𝐼 ,
where the dot over 𝑆 means di�erentiation with respect to the time vari-
able. Then the �ow scheme above says the the amount subtracted from
𝑆 should be added to the compartment 𝐼 . The rate at which individuals
transfer to the removed state is such that ¤𝑅 = 𝛾𝐼 for a constant 𝛾 > 0.We
obtain

¤𝑆 = −𝛽𝑆𝐼 (3.1)
¤𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼 (3.2)
¤𝑅 = 𝛾𝐼 (3.3)

Notice that ¤𝑆 + ¤𝐼 + ¤𝑅 = 0 meaning that the size of the population is constant.

A sketch of typical time dynamics in the SIR model is pictured below.
The portion of susceptible (full line) decreases as the portion of infectious

1Notice that 𝛽 is dimensionless, although, since each timestep is indexed, we may
argue that it has dimensions 1/(time).
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(dashed line) increases during the outbreak of the disease. After some
time, there is a portion of removed individuals (dashed dotted line). The
dynamics stabilize after long time to a steady state with no infectious
individuals. Notice that there might be susceptible individuals at steady
state, because with 𝐼 = 0 there is no �ow between the compartments.

0%
0 𝑡

50%

100%

portion of susceptible, 𝑆

portion of infectious, 𝐼
portion of removed, 𝑅

If we rewrite (3.2) as ¤𝐼 = (𝑅0𝑆 − 1)𝛾𝐼 with 𝑅0 = 𝛽/𝛾 we see that the ratio
𝑅0 determines whether there is a disease outbreak at small times. Above it
is assumed that 𝑅0𝑆 (0) > 1 because otherwise there would be no increase
of 𝐼 at small times.

The SIS model

Instead of being ‘removed’ as in the SIR model we may assume that recov-
ery from the disease is immediately followed by the risk of catching the
same disease again. In other words, ending the disease is a recovery for the
individual. This situation is correctly modeled if the recovered individuals
‘�ow back’ to the susceptible compartment. That is, the portion 𝛾𝐼 is added
at each time to the change of 𝑆 , giving ¤𝑆 = −𝛽𝑆𝐼 + 𝛾𝐼 . In total,

¤𝑆 = −𝛽𝑆𝐼 + 𝛾𝐼
¤𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼

Since 𝑆 + 𝐼 = 1 in this situation, we can eliminate 𝑆 from the equations.
The full dynamics is described by

¤𝐼 = 𝛽 (1 − 𝐼 )𝐼 − 𝛾𝐼 (3.4)

A sketch of typical time dynamics in the SIS model is pictured below. The
portion of susceptible (full line) decreases as the number of infectious



§3.2. Evolutionary game theory 23

(dashed line) increases during the outbreak of the disease. After some time,
the dynamics stabilize to a steady state which is characterized by a balance
between recovery and infection, that is, 𝛽𝑆𝐼 = 𝛾𝐼 .

0%
0 𝑡

50%

100%

portion of susceptible, 𝑆 = 1 − 𝐼

portion of infectious, 𝐼

Using (3.4) we compute
𝑑

𝑑𝑡

1
𝐼
= −

¤𝐼
𝐼 2

=⇒ 𝑑

𝑑𝑡

1
𝐼
+ (𝛽 − 𝛾) 1

𝐼
= 𝛽. (3.5)

If 𝛽 ≠ 𝛾 then

𝐼 (𝑡) = 𝛽 − 𝛾
𝑣0𝑒−(𝛽−𝛾)𝑡 + 𝛽

(3.6)

for some 𝑣0 ∈ R, cf. (Hethcote, 1989). If 𝛽 = 𝛾 then 𝐼 (𝑡) = 1/(𝛽𝑡 +𝑤0) for
some 𝑤0 ∈ R. If 𝛽 > 𝛾 then 𝐼 (𝑡) → 1 − 𝛾/𝛽 as 𝑡 → ∞ and if 𝛽 ≤ 𝛾 then
𝐼 (𝑡) → 0 as 𝑡 → ∞. The ratio between 𝛽 and 𝛾 plays an important role in
the dynamics, similar to the case of the SIR model.

More complex models

There is vast literature on more advanced models that the ones outlined
above. For instance, one may assume that there is an incubation period
for the disease. Then the susceptible individuals will not contribute to
the disease spreading immediately after becoming infected, so there is a
time delay between catching the disease and moving to the compartment 𝐼 .
Further examples of models are found in e.g. Vynnycky and White (2010).

3.2 Evolutionary game theory

Recall that a mixed strategy is a probability distribution over the options
in a game. Playing with mixed strategies, it is standard notation to call
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𝑝𝑥 the payo� for playing 𝐶 with probability 𝑥 . Assuming that the other
player in a 2 × 2 matrix game uses the same strategy we can compute the
expected payo�s. We will do this in the following section.

Replicator equations of symmetric games

In most classical applications, game theory focuses on decisions made by
rational players using cognitive choice. On the contrary, the evolutionary
application of games speci�es a process of natural selection—individuals
are merely the performers of an inherited program. In a 2 × 2 symmet-
ric matrix game, a mixed strategy 𝑥 may be subjected to a ‘replicator’s
equation,’

¤𝑥 = 𝐹 (𝑥), (3.7)
which speci�es the change of the strategy. A common model is assuming
that the strategy changes in proportion to the payo�’s linear deviation
from the mean, that is 𝐹 (𝑥) = 𝑥 (𝑝𝑥 − 〈𝑝〉), where 𝑝𝑥 is the payo� to 𝑥 and
〈𝑝〉 is the mean value of the payo�s.

Recall the payo� matrix from §1.1.1. We abstract away from the numbers
of said matrix and denote the payo�s of the 2 × 2 symmetric game by
R,T, P and S.

R T

R S

S P

T P

C D

C

D

player 𝐵

pl
ay
er
𝐴

The symmetric nature of the game implies that the game payo�s can be
represented by the matrix [

R S
T P

]
. (3.8)

The entries are the payo�s to player 𝐴, where the top row is the payo� if
𝐴 plays ‘cooperate.’ Now we can de�ne what the prisoner’s dilemma (PD)
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is mathematically: It is the situation

T > R > P > S. (3.9)

Consider a replicator’s equation with 𝐹 (𝑥) = 𝑥 (𝑝𝑥 −〈𝑝〉). In the symmetric
matrix-form game we have

¤𝑥 = 𝑥
(
R𝑥 + S(1 − 𝑥) − R𝑥2 − S𝑥 (1 − 𝑥) − T𝑥 (1 − 𝑥) − P(1 − 𝑥)2

)
= 𝑥

(
R𝑥 (1 − 𝑥) + S(1 − 𝑥)2 − T𝑥 (1 − 𝑥) − P(1 − 𝑥)2

)
= 𝑥 (1 − 𝑥)

(
R𝑥 + S(1 − 𝑥) − T𝑥 − P(1 − 𝑥)

)
= −𝑥 (1 − 𝑥)

(
(T − R)𝑥 + (P − S) (1 − 𝑥)

)
. (3.10)

We can write ¤𝑥 = −𝑥 (1 − 𝑥) (𝐷𝑔𝑥 + 𝐷𝑟 (1 − 𝑥)), where 𝐷𝑔 = T − R and
𝐷𝑟 = P − S (cf. Tanimoto, 2015, ch. 2). A special case of the PD game is
the Donor-Recipient game which has 𝐷𝑔 = 𝐷𝑟 , meaning that the payo�
advantage of defection over cooperation is independent of the opponent’s
choice. Denoting the payo� disadvantage by 𝐶 (for ‘cost’) we write 𝐷𝑔 =
𝐷𝑟 = 𝐶 . In the donor recipient game,

¤𝑥 = −𝑥 (1 − 𝑥)𝐶. (3.11)

Without loss of generality, one can assume that P = 0. In accordance with
the PD-condition (3.9) we require

−𝐶 < 0 < R < R +𝐶 (3.12)

and the payo� matrix becomes[
R −𝐶

R +𝐶 0

]
. (3.13)

In the next sections, we will formulate the dynamics using R and 𝐶 only,
and forget S, T and P.

Network reciprocity

Networks in games represent contacts between players. Only neighbors
can interact, that is, in the context of disease spreading there are a lim-
ited number of possible transmission paths of the disease. We make the
following assumptions:
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1. What two-steps neighbors do is irrelevant.

2. We assume the graph is degree-regular, meaning that each node has
the same number, 𝑘 , of connecting edges.

Under these assumptions the cost𝐶 in the donor recipient game decreases
by 𝑁 (𝑘), where

𝑁 (𝑘) = R𝑘 − 2𝐶
(𝑘 + 1) (𝑘 − 2) , 𝑘 ≠ 2, 𝑁 (2) = R

(Tanimoto, 2015; Ohtsuki and Nowak, 2006). Notice that 𝑁 (𝑘) → 0 if 𝑘 →
∞, which re�ects the fact that unlimited network connectivity recovers
the network-free, well-mixed situation. Now the equation (3.10) modi�es
by the change of the payo� matrix to

¤𝑥 = −𝑥 (1 − 𝑥) (𝐶 − 𝑁 (𝑘)) . (3.14)

By (3.12), the game is of PD type when 𝑁 (𝑘) − 𝐶 < 0 < 𝑅, which is
equivalent to

0 < 𝑅 < 𝐶 (𝑘 − 1). (3.15)

That is, the bene�t of mutual cooperation compared to the cost of miti-
gation determines whether the game is of PD type. For example, when
R/𝐶 is large, corresponding to low costs of mitigation and/or high bene�t
of mutual cooperation, the game may cease to be of PD type for values
of su�ciently small values of 𝑘 such that (3.15) breaks. For su�ciently
large values of 𝑘 – in particular for well-mixed populations – the game is
always of PD type.

3.2.1 The dynamical beta-parameter

In the previous section we encountered the equations of the SIR model
and the SIS model, which both assume that there is a infection rate 𝛽 such
that 𝛽𝑆𝐼 is the portion of susceptible individuals that catch the disease at
each timestep. The parameter 𝛽 need not be constant. In our work, we
have assumed that some individuals in the population are more e�ective
at disease spreading, meaning that we associate a larger infection rate to
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them. We denote those individuals by 𝐷 and the rest get the label 𝐶 , so
that 𝛽𝐷 is the infection rate of individuals of class 𝐷 and 𝛽𝐶 is the infection
rate of individuals of class𝐶 . By assumption 𝛽𝐶 < 𝛽𝐷 . Let 𝛽 be the average
over the population, that is if 𝑥 is the portion of 𝐶-individuals then

𝛽 = 𝑥𝛽𝐶 + (1 − 𝑥)𝛽𝐷 . (3.16)

Assuming that the infection rate is determined by individual choice, we
may interpret 𝐷 as the game theoretic strategy ‘defection.’ Similarly, 𝐶
stands for ‘cooperation.’

In order to model trends in the choice between cooperation and defection
within the population, we assumed that the portion 𝑥 is governed by a
replicator’s equation. The payo�s that each individual perceive is assumed
to be a balance between contributing to the common good (by cooperating)
or gaining personal bene�ts (by defecting). In this situation 𝑥 depends on
time and we write 𝑥 = 𝑥 (𝑡).

By interpreting 𝑥 as the portion of cooperators there is a �ow of the
defectors becoming cooperators given by

¤𝑥 = 𝛼𝑥 (1 − 𝑥) (𝛽𝐷 − 𝛽𝐶)𝐼 , (3.17)

where 𝛼 ≥ 0 is a parameter. The factor 𝑥 (1 − 𝑥) ensures that 𝑥 remains in
the range 0 ≤ 𝑥 ≤ 1. We may interpret (3.17) as a risk assessment managed
by each individual: If there are many more infectious individuals that do
not cooperate, then there is more risk of catching the disease and more
individuals will decide to cooperate, that is, 𝑥 will increase.

3.2.2 The combined SIR-PD and SIS-PD models

We would like to consider the total contribution of (3.17) and (3.14). Notice
that both equations are on the same form as (3.11). Individuals are assumed
to consider the total cost as the sum of −𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 and 𝐶 − 𝑁 (𝑘). The
portion𝑥 is thus determined by the choices of individualsmaking conscious
decisions based on the risk of catching the disease on the one hand, and
on the other hand the bene�ts of the PD-game. These decisions determine
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the total transmission rate of the disease, which the entire population
experiences. In the SIR-PD model,

¤𝑆 = −
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 (3.18)

¤𝐼 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
𝑆𝐼 − 𝛾𝐼 (3.19)

¤𝑅 = 𝛾𝐼 (3.20)
¤𝑥 = 𝑥 (1 − 𝑥)

(
𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 − (𝐶 − 𝑁 (𝑘))

)
(3.21)

whereas in the SIS-PD model,

¤𝐼 =
(
(1 − 𝑥)𝛽𝐷 + 𝑥𝛽𝐶

)
(1 − 𝐼 )𝐼 − 𝛾𝐼 (3.22)

¤𝑥 = 𝑥 (1 − 𝑥)
(
𝛼 (𝛽𝐷 − 𝛽𝐶)𝐼 − (𝐶 − 𝑁 (𝑘))

)
(3.23)

Notice that the portion of cooperators is in�uenced by 𝐼 which is itself
dynamic. This results in a feedback mechanism. If a member of the
population decides to change strategy from defect to cooperate, then the
e�ective disease transmission rate (3.16) is decreased which causes 𝐼 to
shrink which in turn causes 𝑥 to increase. Nevertheless, there are steady
state solutions to the SIR-PD model and the SIS-PD model as we will see
in the next section.

The parameter 𝛼 balances the contribution from the term (𝛽𝐷 − 𝛽𝐶)𝐼 with
that of the term 𝐶 − 𝑁 (𝑘). We interpret this as a timescale di�erence. If
an individual gets updates on the portion of infectious, 𝐼 , on the timescale
‘days’ whereas the PD game payo� can be received on the timescale ‘hours’
then the PD payo�s have more in�uence on this player’s decision. In that
case, 𝛼 is small. Conversely, if 𝛼 is large then the information about 𝐼 is
acquired frequently and the player acts accordingly. In this interpretation,
the non-negative sign on 𝛼 can be thought of as correctness in the player’s
risk assessment. If the player thinks that a disease is dangerous and if the
source of information is reliable, then the rational and conscious player
acts with 𝛼 ≥ 0.

3.3 Main results of Paper 2

Heuristically the main result of paper 2 may be summarized as follows:
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For a communicable disease that do not infer immunity, the
quicker individuals access information about the portion of
infectious individuals in the population the lower is the por-
tion of infectious individuals at steady state. However, in the
context of diseases that infer immunity, no one cooperates at
steady state.

SIS-PD equilibrium points

Recall that the SIS-PD model is de�ned by the set of equations (3.22)–(3.23)
with 𝛽𝐶 < 𝛽𝐷 .

Theorem 3.3.1. The equilibrium points of the SIS-PD system are

(𝑥, 𝐼 ) ∈
{
(0, 0), (1, 0),

(
0, 1 − 𝛾

𝛽𝐷

)
,

(
1, 1 − 𝛾

𝛽𝐶

)
, (𝑥∗, 𝐼 ∗)

}
, (3.24)

where

𝑥∗ =
𝛽𝐷

𝛽𝐷 − 𝛽𝐶
− 𝛾

(𝛽𝐷 − 𝛽𝐶) (1 − 𝐼 ∗)
, 𝐼 ∗ =

(𝐶 − 𝑁 (𝑘))
𝛼 (𝛽𝐷 − 𝛽𝐶)

(3.25)

The equilibrium poins are well-de�ned and stable under the conditions given
in the following table.

Equilibrium Condition
(0, 0) 𝛽𝐷 < 𝛾, 𝛼 (𝐶 − 𝑁 (𝑘)) > 0
(1, 0) 𝛽𝐶 < 𝛾, 𝛼 (𝐶 − 𝑁 (𝑘)) < 0
(0, 1 − 𝛾/𝛽𝐷) 𝛽𝐷 > 𝛾, 𝛼 ≤ 𝛼
(1, 1 − 𝛾/𝛽𝐶) 𝛽𝐶 > 𝛾, 𝛼 ≥ 𝛼
(𝑥∗, 𝐼 ∗) 𝛼 < 𝛼 < 𝛼, 0 < 𝐼 ∗ < 1, 0 < 𝑥∗ < 1

Here,

𝛼 =
𝛽𝐷

𝛽𝐷 − 𝛾
𝐶 − 𝑁 (𝑘)
𝛽𝐷 − 𝛽𝐶

and 𝛼 =
𝛽𝐶

𝛽𝐶 − 𝛾
𝐶 − 𝑁 (𝑘)
𝛽𝐷 − 𝛽𝐶

. (3.26)

Since 𝐼 denotes a portion we must have 0 ≤ 𝐼 ≤ 1 which is one main
criterion for the steady states to be well-de�ned. The same holds for 𝑥 .
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Proving the stability of each steady state solution also involves comput-
ing the Jacobian matrix of the SIS-PD equations. They are stable if the
eigenvalues of the Jacobian matrix are negative (Chione, 2009).

Following the values of 𝛼 , the equilibrium transitions between the asymp-
totically stable equilibrium points of Theorem 3.3.1. The following table
shows the equilibria in three regions of 𝛼 assuming 𝛾 < 𝛽𝐶 < 𝛽𝐷 . The
transitions occur at 𝛼 and 𝛼 , which are de�ned in (3.26).

Range Equilibrium
𝛼 ≤ 𝛼 (0, 1 − 𝛾/𝛽𝐷)

𝛼 < 𝛼 < 𝛼 (𝑥∗, 𝐼 ∗)
𝛼 ≤ 𝛼 (1, 1 − 𝛾/𝛽𝐶)

The following �gure is a visualization of the values in the above table.

0 𝛼
0%

50%

100%
𝑥 at steady state

𝐼 at steady state

𝛼 𝛼

As 𝛼 increases, the population moves from defection (𝑥 = 0) to partial
cooperation to cooperation (𝑥 = 1). At the same time, 𝐼 , the portion
of infectious individuals is decreasing. If 𝛼 is su�ciently large and the
transmission rate for cooperating individuals, 𝛽𝐶 , decreases (still keeping
𝛾 < 𝛽𝐶 ) then the portion of infectious individuals tends to zero.

SIR-PD equilibrium points

Recall that the SIS-PD model is de�ned by the set of equations (3.18)–(3.21).
Computing the Jacobian of this system, we identify the stable steady states
precisely like in the above SIS-PD situation. Since 𝑆 +𝐼 +𝑅 = 1, the quantity
𝑅 at equilibrium is given by 𝑅∗ = 1 − 𝑆∗ in the following theorem.
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Theorem 3.3.2. The SIR-PD model always stabilizes to a set of equilibrium
points (𝑥∗, 𝐼 ∗, 𝑆∗) with

𝑥∗ ∈ {0, 1}, 𝐼 ∗ = 0, 0 ≤ 𝑆∗ ≤ 1. (3.27)

All of these are possible; the exact values are determined by initial conditions.
The equilibrium points with 𝑥 = 0 are stable if 𝛽𝐷𝑆 ≤ 𝛾 . If 𝛽𝐷𝑆 < 𝛾 the
equilibrium point is unstable. All equilibrium points with 𝑥 = 1 are unstable.

Only the outcome with no cooperation whatsoever, 𝑥∗ = 0, is stable in the
SIR-PD model, which is actually expected because the SIR model ‘empties’
the 𝐼 -compartment. At steady state there are no infectious individuals left;
the SIR model terminates at a no-disease state. Therefore, there is nothing
to gain from cooperating. Looking at the dynamics before steady state,
however, there is an increase of cooperators during the outbreak of the
disease.
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