
Securing Node-RED Applications

Downloaded from: https://research.chalmers.se, 2025-06-18 03:18 UTC

Citation for the original published paper (version of record):
Ahmadpanah, S., Balliu, M., Hedin, D. et al (2021). Securing Node-RED Applications. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 13066 LNCS: 1-21. http://dx.doi.org/10.1007/978-3-030-91631-2_1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Securing Node-RED Applications

Mohammad M. Ahmadpanah1,�, Musard Balliu2, Daniel Hedin1,3,
Lars Eric Olsson1, and Andrei Sabelfeld1

1 Chalmers University of Technology, Gothenburg, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

3 Mälardalen University, Väster̊as, Sweden

Abstract. Trigger-Action Platforms (TAPs) play a vital role in fulfill-
ing the promise of the Internet of Things (IoT) by seamlessly connecting
otherwise unconnected devices and services. While enabling novel and
exciting applications across a variety of services, security and privacy
issues must be taken into consideration because TAPs essentially act as
persons-in-the-middle between trigger and action services. The issue is
further aggravated since the triggers and actions on TAPs are mostly pro-
vided by third parties extending the trust beyond the platform providers.
Node-RED, an open-source JavaScript-driven TAP, provides the oppor-
tunity for users to effortlessly employ and link nodes via a graphical user
interface. Being built upon Node.js, third-party developers can extend
the platform’s functionality through publishing nodes and their wirings,
known as flows.
This paper proposes an essential model for Node-RED, suitable to rea-
son about nodes and flows, be they benign, vulnerable, or malicious.
We expand on attacks discovered in recent work, ranging from exfil-
trating data from unsuspecting users to taking over the entire platform
by misusing sensitive APIs within nodes. We present a formalization of
a runtime monitoring framework for a core language that soundly and
transparently enforces fine-grained allowlist policies at module-, API-,
value-, and context-level. We introduce the monitoring framework for
Node-RED that isolates nodes while permitting them to communicate
via well-defined API calls complying with the policy specified for each
node.

1 Introduction

Trigger-Action Platforms (TAPs) play a vital role in fulfilling the promise of the
Internet of Things (IoT). TAPs empower users by seamlessly connecting other-
wise unconnected trigger and action services. Popular TAPs like IFTTT [24] and
Zapier [57], as well as open-source alternatives like Node-RED [36], offer users
the ability to operate simple trigger-action applications (or, for short, apps)
such as “Tweet your Instagrams as native photos on Twitter” W, “Get emails
via Gmail with new files added to Dropbox’’ W, and “Covid-19 live Ticker via
Twitter” W.

� Corresponding author. Email: mohammad.ahmadpanah@chalmers.se

https://ifttt.com/applets/aVxGRrtD-tweet-your-instagrams-as-native-photos-on-twitter
https://zapier.com/apps/dropbox/integrations/gmail/241/get-emails-via-gmail-with-new-files-added-to-dropbox
https://flows.nodered.org/flow/2f2e67189934325d1051c8fff28a5ec7
mailto:mohammad.ahmadpanah@chalmers.se

M.M. Ahmadpanah et al.

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

Figure 1: Threat model of a malicious app deployed on a single-user TAP [3].

A TAP is effectively a “person-in-the-middle” between trigger and action
services. While greatly benefiting from the possibility of apps to run third-party
code, TAPs are subject to critical security and privacy concerns. Attacks by
third-party app makers on the platform may lead to compromising the integrated
trigger and action services. Figure 1 illustrates how a malicious app deployed by a
user on a TAP like Node-RED can compromise the associated trigger and action
services, another installed app, and the platform [3]. Depending on the security
configuration of the TAP’s deployment, the attacker may also compromise the
underlying system.

In contrast to proprietary centralized platforms such as IFTTT and Zapier,
Node-RED can be entirely run on a user’s own server. Node-RED is an open-
source platform built on top of Node.js, enabling users to inspect and customize
the source code of the platform and the apps as desired. Moreover, Node-RED
relies on JavaScript packages from third parties to facilitate the integration
of new functionalities. In fact, Node.js nodes are the basic building blocks of
Node-RED apps (also named as flows), freely available on the Node Package
Manager (NPM) [43] and automatically added to the Node-RED Library [41].
Node-RED is inspectable and thus can be verified by users in terms of the plat-
form’s correctness and security. Third-party apps integrated into the underlying
platform, however, can still threaten the security of the users and the entire
system.

The starting point of this paper is the recently identified attacks on
Node-RED by malicious nodes, ranging from exfiltrating users’ sensitive data
to taking over the platform and the host system [3]. A Node-RED flow is tech-
nically a static representation of how nodes are wired together; therefore, a
malicious node controlled by an attacker can be employed in any user-defined or
third-party flows, resulting in malicious behaviors.

This observation motivates the need for controlling APIs invoked in nodes
to ensure the security of the platform and the users. Although the enforcement
mechanism must guarantee security, it also should restrict access only if it is
against the node’s policy, according to the least privilege principle [47]. Only
the APIs which are necessary for the intended functionality should be accessible
in a node; thus, if none of the APIs of a module are required, loading of the
module must be denied. In some cases, the interaction through APIs needs to be

Securing Node-RED Applications

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

Figure 2: Node-RED architecture [3].

value-sensitive when an API call should be permitted only with a list of defined
arguments, for instance, when it comes to allowing a node to make an HTTPS
request to a specific trusted domain. Furthermore, Node-RED makes use of both
message passing and the shared context [40] to exchange information between
nodes and flows, and both types of exchange need to be secured. Previous work
proposes SandTrap [3], a runtime monitor for JavaScript-driven TAPs. However,
SandTrap’s security guarantees are argued only informally.

Motivated by SandTrap, this work is a step toward formally understanding
how to monitor Node-RED apps. We present a sound and transparent moni-
toring framework for Node-RED for enforcing fine-grained allowlist policies at
module-, API-, value-, and context-level. In the following, we discuss Node-RED
along with overviewing platform- and app-level vulnerabilities and attacks (Sec-
tion 2); propose an essential model for Node-RED, suitable to reason about
nodes and flows, be they benign, vulnerable, or malicious; and present a mon-
itoring framework to express and enforce fine-grained security policies, proving
its soundness and transparency (Section 3).

2 Node-RED Vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices, APIs
and online services”, which provides a way of “low-code programming for event-
driven applications” [36]. As an open-source platform, Node-RED is mainly tar-
geted for deployment as a single-user platform, although it is also available on
the IBM Cloud platform [23]. We overview the architecture of Node-RED (Sec-
tion 2.1) and explain two types of vulnerabilities with respect to our attacker
model, i.e., malicious app makers: (i) platform-level isolation vulnerabilities (Sec-
tion 2.2) and (ii) application-level context vulnerabilities (Section 2.3). Our dis-
cussion expands the condensed presentation of these vulnerabilities from previ-
ous work [3].

M.M. Ahmadpanah et al.

module.exports = function(RED){

function NodeName(config){

RED.nodes.createNode(this , config);

var node = this;

// register a callback when a message is received ...

node.on("input", function(msg){

... // functionality of node

node.send(msg); // or an array of messages for multiple

outputs

});

}

RED.nodes.registerType("type -name", NodeName);

}

Figure 3: Node-RED node structure.

2.1 Node-RED platform

Figure 2 illustrates the Node-RED architecture, consisting of a collection of
apps, known as flows, linking components called nodes. The Node-RED runtime
is built on the Node.js environment and can run multiple flows simultaneously. It
supports inter-node and inter-flow communication via direct messages through
the wiring between nodes in a flow, while the flow and the global contexts [40]
are alternative communication channels between the nodes of a flow and across
the nodes of different flows, respectively.

A node is a reactive Node.js application triggered by receiving messages on at
most one input port (dubbed source) and sending the results of (side-effectful)
computations on output ports (dubbed sinks), which can be potentially multiple,
unlike the input port. Figure 3 illustrates the code structure of a Node-RED
node. A special type of node without sources and sinks, called configuration
node, is used for sharing configuration data, such as login credentials, between
multiple nodes.

A flow is a representation of nodes connected together. End users can either
create their own flows on the platform’s environment or deploy existing flows pro-
vided by the official Node-RED catalog [33] and by third parties [41]. As shown
in Figure 4, flows are JSON files wiring node sinks to node sources in a graph of
nodes where messages, represented by JavaScript objects, are passed between.
Multiple messages can be sent by any given node, although instances of a single
message can be repeatedly sent to multiple nodes as well. To facilitate end-user
programming [55], flows can be shown visually via a graphical user interface and
deployed in a push-button fashion. As an example, Figure 5 demonstrates a flow
that retrieves earthquake data for logging and notifying the user whenever the
magnitude exceeds a threshold. Specifically, the flow retrieves data of the recent
quakes (either periodically or by clicking on the button), parses the given CSV
file, and shows the data (stored in msg.payload) to the user. For each magnitude
value exceeding the specified threshold, it also branches and the payload triggers
an alarm notification.

Securing Node-RED Applications

[// list of nodes

{ // node 0

/* parameters of interest in every node */

id: NODE0 , // unique ID of node , string

type: function // type of node , string

wires: [// array of array of strings

[NODE1], // first output port to node 1

[NODE2 , NODE3] // second output port to nodes 2 and 3

],

... // other parameters

},

... // other nodes

]

Figure 4: Node-RED flow structure.

Figure 5: Earthquake notification and logging W.

In Node-RED, contexts provide a shared communication channel between
different nodes without using the explicit messages that pass through a flow [40].
Therefore the node wiring visible in the user interface reflects only a part of the
information flows that are possible in the flow. It introduces an implicit channel
that is not visible to the user via the graphical interface of a flow. Node-RED
defines three scope levels for the contexts: (i) Node, only visible to the node that
sets the value, (ii) Flow, visible to all nodes on the same flow, and (iii) Global,
visible to all nodes on any flow. For instance, a sensor node may regularly update
new values in one flow, while another flow may return the most recent value via
HTTP. By storing the sensor reading in the global shared context, the data is
accessible for the HTTP flow to return.

Node-RED security relies on the platform running on a trusted network, en-
suring that users’ sensitive data is processed in an environment controlled by
the users. The official documentation [37] also includes programming patterns
for securing Node-RED apps. These patterns include basic authentication mech-
anisms to control access to nodes and wires. The official node Function W runs
user-provided code in a vm sandbox [42], suggesting that it may protect the user
from unauthorized access. However, the vm’s sandbox “is not a security mecha-
nism” [42], and there are known breakouts [26].

TAPs generally lack the means to specify user’s security policies [9]. Fortu-
nately, Node-RED’s user-centric setting enables us to interpret intended security
policies. In fact, Node-RED’s GUI for flows provides an intuitive way to interpret

https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/user-guide/nodes#function

M.M. Ahmadpanah et al.

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(a)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(b)

Figure 6: Node-RED vulnerabilities: (a) Isolation vulnerabilities; (b) Context
vulnerabilities [3].

top-level user policies; it is reasonable to consider that the user endorses the flow
of information between the nodes connected by the graph that depicts a flow in
the GUI. For instance, the Earthquake notification flow in Figure 5 implies a
policy where notification data may only flow to the notification message. Only
the Inject node can trigger updates. The policy allows no other node (from any
flow) to tamper with the Recent Quakes node, preventing any malicious node
from corrupting the source of quake information. Such an interpretation pro-
vides us with a baseline security policy. For more fine-grained policies, e.g., the
list of permitted URLs to retrieve the recent quakes, it is reasonably presumed
that the node developer designs these advanced policies since they know the
precise specification of the node. The provided policies can later be vetted by
the platform and the user, before deploying the node. SandTrap [3] offers a pol-
icy generation mechanism to aid developers in designing the policies, enabling
both baseline and advanced policies customized by developers or users to express
fine-grained app-specific security goals.

In the following, we discuss Node-RED attacks and vulnerabilities that mo-
tivate enriching the policy mechanism with different granularity levels. These
policies will further be formalized in Section 3.

2.2 Platform-level isolation vulnerabilities

While facilitating the integration and automation of different services and de-
vices, due to imposing insufficient restrictions on nodes, Node-RED is exploitable
by malicious node makers. All APIs provided by the underlying runtimes,
Node-RED and Node.js, are accessible for node developers, as well as the incom-
ing messages within a flow. As shown in Figure 6a, there are various attack sce-
narios for malicious nodes [3]. At the Node.js level, an attacker can create a ma-
licious Node-RED node including powerful Node.js libraries like child_process,
allowing the attacker to execute arbitrary shell commands with exec, e.g., taking
full control of the user’s system [44]. Restricting library access is laborious in
Node-RED; while access to a sensitive library like child_process is required for
the functionality of Node-RED, attackers can exploit trust propagation due to
transitive dependencies in Node.js [45,58]. A malicious node enables the attacker

Securing Node-RED Applications

to compromise the confidentiality and integrity of sensitive data and libraries
stored by other flows in the global context. A malicious node within a sensitive
flow may also indirectly read and modify sensitive data by manipulating the flow
context.

At the platform level, the main object in the Node-RED structure,
named RED [39], is also vulnerable. There are different ways for a ma-
licious node to misuse the RED object, such as aborting the server
(e.g., by RED.server._events = null) or introducing a covert channel shared be-
tween multiple instances of the node in different flows by modifying existing
properties or adding new properties to the RED object (like RED.dummy). There-
fore, access control at the level of modules and shared objects is necessary for
Node-RED nodes.

On the other hand, a malicious node can directly manipulate incoming mes-
sages resulting in accessing or tampering with the sensitive data. As a subtle
example of this scenario to invade users’ privacy, the official Node-RED email W
can be modified to send the email body to the original recipient and also forward
a copy of the message to an attacker’s address. The benign code sets the sending
options sendopts.to to contain only the address of the intended recipient:

sendopts.to = node.name || msg.to; // comma separated list

of addresses

It can be modified to the following by a malicious node maker to include the
attacker’s address as well:

sendopts.to = (node.name || msg.to) + ", me@attacker.com";

In this example, we demonstrate that an attacker can alter the value that is
placed as the argument of an API call, which is necessary for the functionality
of the node, to steal sensitive information of the user without being noticed.
As a result, the combination of function identity and its arguments needs to be
considered in security checks. This attack motivates us to provide fine-grained
access control at the level of APIs and their input parameters.

We refer the interested reader to other types of investigated vulnerabilities in
Node-RED [3], such as the impact of compromised package repository and name
squatting [58] attack. The latter is critical since the “type” of nodes (what flows
use to identify them) is simply a string, which multiple packages can possibly
match. A flow defined by a third party can include the attacker’s malicious node
unless the user inspects each and every node to verify that there are no deviations
from the expected “type” string.

The empirical study shows the implications of such attacks [3]: privacy vi-
olations may occur in 70.40% of Node-RED flows and integrity violations in
76.46%. The vast number of privacy violations in Node-RED reflects the power
of malicious developers to exfiltrate private information.

2.3 Application-level context vulnerabilities

Node-RED uses various levels of the shared context to exchange data across
nodes and flows in an implicit manner. Figure 6b depicts the attack scenarios to

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

M.M. Ahmadpanah et al.

exploit vulnerabilities by reading and writing to libraries and variables shared
in the global and flow contexts [3]. The Node context shares data with the
node itself; thus only the shared contexts at the levels of Flow and Global are
intriguing to investigate. Malicious nodes in these scenarios can exploit other
vulnerable Node-RED nodes, even if the platform is secured against attacks in
Section 2.2.

Several Node-RED core nodes [38] make use of the shared context for their
purposes, including the nodes executing any JavaScript function (Function), trig-
gering a flow (Inject), generating text to fill out a template (Template), routing
outgoing messages to branches of a flow by evaluating a set of rules (Switch),
and modifying message properties and setting context properties (Change). It is
shown that more than 228 published flows utilize flow or global context in at
least one of the member nodes and more than 153 of the published Node-RED
packages directly read from or modify the shared context [3].

The main purpose of using the shared context is data communication between
nodes. Malicious operations on the shared data, such as tampering, adding, or
erasing, may lead to integrity and availability attacks, as well as to disrupting
the functionality entirely. As a real-world example, the Node-RED flow “Water
Utility Complete Example” W is vulnerable considering misuse of the Global
context. Targeting SCADA systems, this flow manages two tanks and two pumps;
the first pump pumps water from a well into the first tank, and the second pump
transfers water from the first to the second tank. The status of the tanks are
stored in globally shared variables as follows:

global.set("tank1Level", tank1Level);

global.set("tank1Start", tank1Start);

global.set("tank1Stop", tank1Stop);

Later, to determine whether a pump should start or stop, the flow retrieves the
shared status from the Global context:

var tankLevel = global.get("tank1Level");

var pumpMode = global.get("pump1Mode");

var pumpStatus = global.get("pump1Status");

var tankStart = global.get("tank1Start");

var tankStop = global.get("tank1Stop");

if (pumpMode === true && pumpStatus === false && tankLevel

<= tankStart){

// message to start the pump

}

else if (pumpMode === true && pumpStatus === true &&

tankLevel >= tankStop){

// message to stop the pump

}

A malicious node installed by the user and deployed in the platform could alter
the context relating to the tank’s reading to either exhaust the water flow (never
start) or cause physical damage through continuous pumping (never stop).

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Securing Node-RED Applications

One can also use the context feature to share resources such as common
libraries. In addition to integrity and availability concerns, this approach opens
up possibilities for exfiltrating private data. An attacker can encapsulate a library
to collect any sensitive information sent to the library. For instance, by modifying
the opencv shared library inside a malicious node, the attacker can exfiltrate
private information of video streaming for motion detection W. More details
and examples of such vulnerabilities are also studied [3].

These vulnerabilities motivate the need for monitoring access control at the
level of context.

3 Formalization

Section 2 motivates the need for secure integration of untrusted code in general
and restricting node-to-node and node-to-environment communications (i.e., be-
tween nodes, library functions, and contexts) for Node-RED in particular. To
achieve this, we propose a runtime monitoring framework capable of enforcing
allowlist policies at the granularity of modules, APIs and their input parameters,
and variables used in the shared context. Our runtime framework formalizes the
core of the flow-based programming model of Node-RED and was the basis when
developing the JavaScript monitor SandTrap [3].

This section presents a security model for Node-RED apps and characterizes
the essence of a fine-grained access control monitor for the platform. We show
how to formalize and enforce security policies for nodes at the level of APIs and
their values, along with the access rights to the shared context. Our main formal
results are the soundness and transparency of the monitor.

3.1 Language syntax and semantics

Syntax We define a core language to capture the reactive nature of nodes and
flows. Nodes are reactive programs triggered by input messages to execute the
code of an event handler and potentially produce an output message. Flows
model connections between nodes by specifying the destination nodes for each
node’s output port. Given the set of member nodes with their handlers, it is
sufficient to state the successor nodes on each output port to construct a flow.

A flow is syntactically defined as a set of nodes, written F = {Nk | k ∈ K},
where K is a finite subset of N, and k indicates a unique node identifier. A
Node-RED environment may execute flows simultaneously and the global envi-
ronment is defined by a set of flows, written G = {Fl | l ∈ L}, where L is a finite
subset of N, and l denotes a unique flow identifier. Based on a generalization of
Node-RED nodes, Figure 7 presents the syntax of a reactive language inspired
by Devriese and Piessens [17], where Val , Var , and Fun denote the set of all
possible values, variables, and functions, respectively. A handler handler (x){c}
is defined by an input parameter x , which is bound in a command c to perform
a computation. While most commands are standard imperative constructs, we

https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e

M.M. Ahmadpanah et al.

v ∈ Val , x ∈ Var , f ∈ Fun, i ∈ N
e ::= v | x | f (e)
c ::= skip | x := e | if e then c else c | while e do c | c ; c | send (e, i)
h ::= handler (x){c}

Figure 7: Syntax of node handlers.

use command send(e, i) to pass the value of expression e to the node’s out-
put port identified by i . For simplicity, we use functions f (e) to model module
imports, API calls, user-defined functions, and primitive operations such as ad-
dition and concatenation. To model the shared context, we distinguish between
node variables VarN , flow variables VarF , and global variables VarG such that
Var = VarN]VarF]VarG .

Semantics We model the execution of Node-RED apps by defining the node
semantics, flow semantics, and global semantics, respectively. Our trace-based
semantics records the sequence of events produced during the execution of a flow.
We use these events to define a semantic security condition that our monitor will
enforce in a sound and transparent manner.

Node Semantics A node N = 〈config ,wires, l〉k is defined by a node configuration
config , an array wires that specifies the connected nodes in the flow associated
with output ports, an identifier l that indicates the flow that the node belongs
to, and a unique node identifier k . Index k refers to an element of node Nk , as
in configk for the configuration of node k .

A node configuration config = 〈c,M , I ,O〉 stores the state of the node dur-
ing the execution, where c is a command, a handler, or a termination signal
(stop), M = [mN ,mF ,mG] represents the memory for the three scopes of node
(mN : VarN → Val), flow (mF : VarF → Val), and global (mG : VarG → Val),
where VarN , VarF , and VarG are disjoint sets, I is the input channel, and O
is the array of output channels, reflecting that a node has one input port and
as many output ports as it requires. We model an input (output) channel as
a sequence of values that a node receives (sends). A class of nodes, called in-
ject nodes, is triggered by external events such as button click or time. Inject
nodes send new messages to a flow, thus triggering the execution of the flow.
The wires array records the nodes that can read the content of the output chan-
nel for the corresponding output port. A node receives a message if the node
identifier is listed in wires among the recipients of the output port assigned in a
send command.

Trace-based Semantics Figure 8 illustrates the small-step semantics of nodes.
We annotate transitions with the trace of events thus generated, where
−→⊆Config × Config and ⇓ : (Exp ×Mem)→ Val . A trace T is a finite sequence
of events tk ∈ E defined by variable reads Rk (x), variable writes Wk (x), or func-
tion calls fk (v) generated by the execution of node k in a flow.

Securing Node-RED Applications

Expression Evaluation
〈v ,Mk〉 ⇓ v

(Value)

〈e,Mk〉 ⇓Tk v

〈f (e),Mk〉 ⇓Tk.fk(v) f̄ (v)
(Call)

〈x ,Mk〉 ⇓Rk(x) Mk(x)
(Read)

Command Evaluation

I = I ′.v x ∈ VarN

〈handler(x){c},M , I ,O〉k −→ 〈c,M [x 7→ v], I ′,O〉k
(Input)

〈skip,M , I ,O〉k −→ 〈stop,M , I ,O〉k
(Skip)

〈e,Mk〉 ⇓Tk v M ′
k = Mk [x 7→ v]

〈x := e,M , I ,O〉k
Tk.Wk(x)−−−−−−→ 〈stop,M ′, I ,O〉k

(Write)

c = if e then ctrue else cfalse 〈e,Mk〉 ⇓Tk b

〈c,M , I ,O〉k
Tk−→ 〈cb ,M , I ,O〉k

(If)

c = while e do cbody 〈e,Mk〉 ⇓Tk true

〈c,M , I ,O〉k
Tk−→ 〈cbody ; c,M , I ,O〉k

(While-T)

c = while e do cbody 〈e,Mk〉 ⇓Tk false

〈c,M , I ,O〉k
Tk−→ 〈stop,M , I ,O〉k

(While-F)

〈c1,M , I ,O〉k
Tk−→ 〈c′

1,M ′, I ′,O ′〉k

〈c1; c2,M , I ,O〉k
Tk−→ 〈c′

1; c2,M ′, I ′,O ′〉k
(Seq-1)

〈stop; c,M , I ,O〉k −→ 〈c,M , I ,O〉k
(Seq-2)

c = send(e, i) 〈e,Mk〉 ⇓Tk v O ′[i] = O [i].v

〈c,M , I ,O〉k
Tk−→ 〈stop,M , I ,O ′〉k

(Output)

Figure 8: Node semantics.

Expression evaluation is standard and records the sequence of events pro-
duced during the evaluation, where Mk denotes the memory M in 〈c,M , I ,O〉k .
Command evaluation models the execution of a node’s handler. The handler
executes whenever there is a message in the input channel I by consuming the
message and updating the memory accordingly. Assignments operate in a similar
manner and record the trace of events produced by variable reads and writes. An
assignment updates the memory Mk to M ′

k , subsequently triggering an update
of the flow and global memories, as stated in the rule (Step) in Figure 9 and
in the rule (Global) in Figure 10. Send commands evaluate the expression e
in the current memory, update the associated output channel, and record the
trace of events. The index k distinguishes between events of different nodes. We
write −→∗ for the reflexive and transitive closure of the −→ relation, and −→n for
the n-step execution of −→.

M.M. Ahmadpanah et al.

Flow and Global Semantics We lift node semantics to formalize the semantics of
flows and the environment. A global configuration G = 〈mG , {Fl | l ∈ L}〉 con-
sists of a global shared memory mG and a finite set of flows that are executing
concurrently, where L ⊂ N is the set of flow identifiers. A flow configuration
F = 〈mF , {Nk | k ∈ K}}〉l is a tuple consisting of a flow shared memory mF , a
finite set of nodes where K ⊂ N is the set of node identifiers, and l is the flow
identifier. We use Nodes(Fl) for the set of nodes in a specific flow and Flows(G)
for the set of flows in the environment. Nodes are distinguished by unique node
identifiers in the environment and the node Nk can be present in only one flow.
To unify the trigger point of the flow, we assume that a flow has only one inject
node and denote it by Nl where Nl ∈ Nodes(Fl); in practice, it can be considered
as a dummy node which is the predecessor of all the inject nodes of the flow.

We model a flow by linking the output channels of a node to the input
channels of the next ones based on the flow specification. Note that a node can
have more than one output channel but only one input channel. The inject node
of a flow, which does not appear in any of the wires arrays, triggers the flow
execution by injecting a new message. An initial value is assigned to the input
channel of the inject node to model the behavior of the external event such as
a button click. We write Exec(Fl , vl) to refer to executions of a flow Fl with an
initial value vl . Also, Exec(G ,V) denotes executions of the environment G with
the set of initial values V = {(Nl , vl) |Fl ∈ Flows(G)} for the member flows.

We remark that message passing in Node-RED is asynchronous and mes-
sage objects traverse the graph in a non-deterministic manner, as reported in
the documentation (“no assumptions should be made about ordering once a
flow branches” [35] and “flows can be cyclic” [34]). Hence, we model the exe-
cution of nodes in a flow and the environment, as shown in Figures 9 and 10,
respectively. We overload the notation −→ for transitions between flow and global
configurations. In a nutshell, the flow and global semantics implements the non-
deterministic behavior of flows and the environment, and lifts the node semantics
to ensure that the flow of messages follows the flow specification.

The intuition of the rules is that the inject node of a flow, i.e., the node Nl

of the flow Fl , starts the execution by consuming the initial value (rule Init),
and then the execution continues according to the node semantics (rule Step).
When a node reaches a send command, it adds the output value to the input
channels of the next nodes in the flow; the output value transmits out to the
output channel indicated by the send command and the input channels of all
nodes in the corresponding elements of the array wires get updated with the
value (rule Send); wiresk denotes the array wires in 〈config ,wires, l〉k . The
execution proceeds until it terminates and gets back to the initial state, ready
to consume the next value in the input channel (rule Term). Note that nodes
are running concurrently; any of the ready nodes can make one execution step.
The only rule in the global semantics (rule Global) shows that any of the flows
with at least one ready node can make an execution step.

Generally speaking, any node that is able to progress continues the execution
for one execution step, and it might affect the flow and global contexts. An

Securing Node-RED Applications

Il = vl ∀Nk ∈ (Nodes(Fl) \Nl). Ik = ∅
Ml = [mN ,mF ,mG] M ′

l = [m ′
N ,mF ,mG]

configl = 〈handler(x){c},M , I ,O〉l config ′
l = 〈c,M [x 7→ vl],∅,O〉l

configl −→ config ′
l Nl = 〈configl ,wires, l〉l N ′

l = 〈config ′
l ,wires, l〉l

〈mF ,Nodes(Fl)〉l −→ 〈mF , (Nodes(Fl) \ {Nl}) ∪ {N ′
l }〉l

(Init)

Il = ∅ Mk = [mN ,mF ,mG] M ′
k = [m ′

N ,m ′
F ,m ′

G]
configk = 〈c,M , I ,O〉k config ′

k = 〈c′,M ′, I ′,O〉k
configk

Tk−−→ config ′
k

Nk = 〈configk ,wires, l〉k N ′
k = 〈config ′

k ,wires, l〉k

〈mF ,Nodes(Fl)〉l
Tk−−→ 〈m ′

F , (Nodes(Fl) \ {Nk}) ∪ {N ′
k}〉l

(Step)

configk = 〈send(e, i); c,M , I ,O〉k config ′
k = 〈stop; c,M , I ,O ′〉k

O ′
k[i] = Ok[i].v configk

Tk−−→ config ′
k

Nk = 〈configk ,wires, l〉k N ′
k = 〈config ′

k ,wires, l〉k
ω = {Nk} ∪ {Nj | j ∈ wiresk [i]}

ω′ = {N ′
k} ∪ {N ′

j | j ∈ wiresk [i], I ′
j = v .Ij}

〈mF ,Nodes(Fl)〉l
Tk−−→ 〈mF , (Nodes(Fl) \ ω) ∪ ω′〉l

(Send)

configk = 〈stop,M , I ,O〉k config ′
k = 〈handler(x){c},M , I ,O〉k

Nk = 〈configk ,wires, l〉k N ′
k = 〈config ′

k ,wires, l〉k
〈mF ,Nodes(Fl)〉l −→ 〈mF , (Nodes(Fl) \ {Nk}) ∪ {N ′

k}〉l
(Term)

Figure 9: Flow semantics.

Mk = [mN ,mF ,mG] M ′
k = [m ′

N ,m ′
F ,m ′

G]
Fl = 〈mF ,Nodes(Fl)〉l F ′

l = 〈m ′
F ,Nodes(F ′

l)〉l
Fl

Tk−→ F ′
l

〈mG ,Flows(G)〉 Tk−→ 〈m ′
G , (Flows(G) \ {Fl}) ∪ {F ′

l }〉
(Global)

Figure 10: Global semantics.

execution step of a node corresponds to one execution step of the flow it belongs
to and one execution step of the environment. Considering the non-deterministic
behavior of Node-RED’s scheduler, any ready node can be selected for the next
execution step.

3.2 Security condition and enforcement

We leverage our trace-based semantics to define a semantics-based security con-
dition. The condition is parametric on node-level security policies, represented
as allowlists of API calls and accesses to the shared context. Then, we present
the semantics of a fine-grained node-level monitor and prove its soundness and
transparency with respect to the security condition.

M.M. Ahmadpanah et al.

Security condition We extend the definition of nodes with allowlist poli-
cies N = 〈config ,wires, l ,P ,V ,S 〉k , where P ⊆ APIs ⊆ Fun describes permit-
ted API functions, V : P → 2Val defines the allowlist of arguments for each API
function, and S specifies read/write permissions on the shared global and flow
variables, such that S = {(x ,RW) | x ∈ VarF]VarG ,RW ∈ {R,W }}.

The security condition matches the trace of events produced by the semantics
with the allowlist policies to check that any event produced by an execution is
permitted by the policy.

Definition 1 (Event Security). Let tk be an event emitted from an execu-
tion of node Nk . We define a secure event with respect to 〈Pk ,Vk ,Sk 〉, written
secure(tk , 〈Pk ,Vk ,Sk 〉), as follows:

secure(Rk(x), 〈Pk ,Vk ,Sk 〉)
∆
= x ∈ VarF ∪VarG ⇒(x ,R)∈ Sk

secure(Wk(x), 〈Pk ,Vk ,Sk 〉)
∆
= x ∈ VarF ∪VarG ⇒(x ,W)∈ Sk

secure(fk(v), 〈Pk ,Vk ,Sk 〉)
∆
= f ∈ APIs ⇒ f ∈ Pk ∧ v ∈ Vk (f).

We lift the security of events to define the security condition for node traces
secure(TN), flows traces secure(TF), and global traces secure(TG) as expected.
A finite sequence of events forms a trace. Hence a trace is secure if all its events
are secure. We define trace security by the conjunction of security checks on the
composing events.

Definition 2 (Trace Security). Trace T is secure, written secure(T), if

T = tk .T
′ ⇒ secure(tk , 〈Pk ,Vk ,Sk 〉) ∧ secure(T ′).

A node starts executing when it receives a value over its input channel. An
execution of a node is secure if the corresponding trace is secure, according to
the node policy.

Definition 3 (Node-Level Security). The execution of a node
Nk = 〈config ,wires, l ,P ,V ,S 〉k with an input message I = v is secure with re-
gard to 〈Pk ,Vk ,Sk 〉 if each step of the node execution complies with 〈Pk ,Vk ,Sk 〉,
i.e.,

∀〈c′,M ′, I ′,O ′〉k . 〈handler (x){c},M , v ,O〉k
Tk−→∗ 〈c′,M ′, I ′,O ′〉k ⇒ secure(Tk).

We now define the security of Node-RED app executions based on the flow and
global semantics. The inject node of a flow initiates the flow execution, and it
triggers other nodes by traversing the flow graph. At the global level, nodes in
flows generate events while they are executing concurrently in the environment.
We present flow and global execution security for the trace of events produced
by their nodes at each execution step.

Definition 4 (Flow-Level Security). LetFl be a flow and vl be an initial value
for the inject node of the flow, i.e.,Nl =〈〈handler(x){c},M , vl ,O〉l,wires, l〉l. We
define flow executions Exec(Fl , vl) secure if

Nl ∈ Nodes(Fl) ∧ ∀F ′l . Fl
TF−−→∗ F ′l ⇒ secure(TF).

Securing Node-RED Applications

Expression Evaluation

secure(Rk(x), 〈Pk ,Vk ,Sk 〉)
〈x ,Mk〉 ⇓Rk(x)

M Mk(x)
(ReadM)

〈e,Mk〉 ⇓Tk v secure(fk(v), 〈Pk ,Vk ,Sk 〉)
〈f (e),Mk〉 ⇓Tk.fk(v)

M f̄ (v)
(CallM)

Command Evaluation

secure(Wk(x), 〈Pk ,Vk ,Sk 〉) 〈e,Mk〉 ⇓Tk v M ′ = M [x 7→ v]

〈x := e,M , I ,O〉k
Tk.Wk(x)−−−−−−→M 〈stop,M ′, I ,O〉k

(WriteM)

Figure 11: Excerpt of monitor semantics.

The trace TF is secure if secure(TF) holds, i.e., every event of the trace is secure
according to the security policy of the corresponding node.

Definition 5 (Global-Level Security). Let G be an environment and Vinit be
a set of initial values for the inject nodes of the flows in G, i.e., ∀(Nj , vj) ∈ Vinit .
Fj ∈ Flows(G) ∧Nj ∈ Nodes(Fj)∧ Nj = 〈〈handler(x){c},M , vj ,O〉j,wires, j 〉j.
We define global executions Exec(G ,Vinit) secure if

∀G ′. G
TG−−→∗G ′ ⇒secure(TG).

Enforcement Mechanism Figure 11 presents the core of our fine-grained mon-
itor to enforce the above-mentioned security condition with respect to allowlist
policies. We annotate evaluation relations with M to distinguish between the
monitored behavior and the original one. We only present the rules that differ
from the semantic rules given in Figure 8; we replace −→ with −→M, and ⇓ with
⇓M. We add security constraints to the semantic rules for reading a variable
from the shared context (rule ReadM), calling an API function (rule CallM),
and writing to a shared variable (rule WriteM).

For the email example W in Section 2, the policy requires allowlisting the
API for sending the message and the list of intended recipients. The monitor
intervenes whenever the API is called and ensures that the recipient is in the
allowlist policy. An execution of a flow containing the malicious email node will
be suppressed because the attacker’s email address is not listed in the permitted
values of the API call. The malicious event is detected by the rule CallM, i.e.,
sendMail ∈ Pk ∧ "me@attacker.com" /∈ Vk (sendMail).

For context vulnerabilities, such as Water Utility Complete Example W, the
allowlist consists of access rights to shared variables for each node deployed in
the environment. The monitor observes the interaction of nodes with the shared
context and blocks the execution whenever the allowlist policy does not permit
access to the shared variable. The attack scenario in the vulnerable water utility
flow can also be prevented by specifying an allowlist policy (tank1Level,W) only

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

M.M. Ahmadpanah et al.

for the nodes that must write to a shared variable, which stops any attempt from
other nodes to write to the global context (rule WriteM).

We prove the soundness and transparency properties of our monitor. The
soundness theorem shows that any global traces produced by an execution of
the monitor are secure with respect to the allowlist policy.

Theorem 1 (Soundness). The monitor enforces global-level security for any
finite executions,

∀(G ,V).∀G ′.G TG−−→∗MG ′ ⇒ secure(TG).

The transparency theorem shows that if a monitored execution is secure, the
monitor semantics and the original semantics generate the same trace. Moreover,
if both semantics run under the same scheduler, the monitor preserves the longest
secure prefix of a trace.

Theorem 2 (Transparency). The monitor preserves the longest secure prefix
of a trace yielded by an execution,

∀(G0,V).∀n ∈ N.G0
T−→n Gn ⇒ ∃m ≤ n.G0

T ′

−−→m
M Gm ∧[(

secure(T)⇒ T = T ′ ∧ n = m
)
∨((

∃i < n.G0
Tpre−−→i Gi ∧Gi

Ti−→ Gi+1 ∧Gi+1
Tpost−−−→n−i−1 Gn ∧ secure(Tpre) ∧

¬secure(Ti)
)
⇒ T ′ = Tpre ∧ i = m

)]
.

The proofs of the theorems are reported in the online appendix [2].

4 Related work

We discuss the most closely related work on Node-RED security and modeling,
monitor implementation, and securing trigger-action platforms in general. We
refer the reader to surveys on the security of IoT app platforms [7,13] for further
details.

Node-RED security and modeling Ancona et al. [5] investigate runtime
monitoring of parametric trace expressions to check the correct usage of API
functions in Node-RED. Trace expressions allow for rich policies, including tem-
poral patterns over sequences of API calls. By contrast, our monitor supports
both coarse and fine access control granularity of modules, functions, and con-
texts. Schreckling et al. [49] propose COMPOSE, a framework for fine-grained
static and dynamic enforcement that integrates JSFlow [21], an information-flow
tracker for JavaScript. COMPOSE focuses on data-level granularity, whereas our
monitoring framework supports module- and API-level granularity.

Clerissi et al. [15] use UML models to generate and test Node-RED flows to
provide early system validation. A preliminary set of guidelines has also been
proposed to assist Node-RED flow makers in terms of user comprehension and

Securing Node-RED Applications

for testing activities [16]. Focusing more on end users and less on developers, Kle-
infeld et al. [27] introduce an extension of Node-RED called glue.things, enabling
Node-RED easier to use by predefined trigger and action nodes. Blackstock and
Lea [12] propose a distributed runtime for Node-RED apps such that flows can
be hosted on various platforms. Tata et al. [53] propose a formal modeling for de-
composing process-aware applications deployed in IoT environments using Petri
nets; Node-RED indeed fits in this setup, thus extended as a prototype for their
approach [25].

In terms of modeling, Node-RED can be intrinsically seen as a concurrent
system, thus our approach shares similarities with the broad range of formal ap-
proaches such as process calculi [46,8], CSP [22], and CCS [31]. In the same spirit,
our formalization is targeted to capture the execution model of Node-RED flows
consisting of concurrent node executions that trigger the execution of code upon
receiving messages, and modify, create, and dispatch messages to the next nodes.
In contrast, our modeling is explicit and it captures the essence of the execution
semantics of Node-RED. Focusing on security policies in concurrent systems,
KLAIM [11,32] is a programming language providing a mechanism to customize
access control policies. The mechanism, based on a hierarchical capability-based
type system, enforces policies that control resource usage and authorize migra-
tion and execution of processes. While KLAIM is designed for programming
distributed applications with agents and code mobility, our Node-RED model is
simple and expressive enough to describe the API-based access control enforce-
ment mechanism.

Monitor implementation Regarding the possible candidates for implement-
ing our theoretical framework, it should be noted that the dynamic nature of
JavaScript requires more precise analysis provided by dynamic approaches. An-
dreasen et al. [6] survey available methods for dynamic analysis for JavaScript,
and outline three general categories: runtime instrumentation, source code in-
strumentation, and metacircular interpreters.

DProf [19] and NodeProf [52] are two well-known runtime instrumentation
tools. DProf instruments a program at the instruction level, targeting a vari-
ety of languages, including JavaScript. NodeProf instead instruments a program
at the abstract syntax tree (AST) level and is specifically made as a dynamic
analysis framework for Node.js. However, some important Node.js features, such
as module.exports, commonly used in Node-RED nodes, are not supported by
NodeProf yet. In addition, to obtain the desired results, it requires the instru-
mentation of the entire Node-RED environment. NodeMOP [48] is a Monitoring-
Oriented Programming (MOP) tool built on top of NodeProf that also looks
interesting for our purposes, while the challenges in practice remain unresolved.

Ferreira et al. [18] propose a lightweight permission system to enforce the
least-privilege principle at the Node.js packages level at runtime, restricting ac-
cess to security-critical APIs and resources. Sharing some of our motivations,
however, this work does not enforce access control policies at the context and
value levels. Pyronia [29] is a fine-grained access control system for IoT applica-
tions restricting access at the function level via runtime and kernel modifications.

M.M. Ahmadpanah et al.

To detect access to sensitive resources, Pyronia leverages OS-level techniques
such as system call interposition and stack inspection. By contrast, our monitor
needs to be implemented in language-level isolation to prevent access to sensitive
resources at different levels of granularity.

Membrane-based approaches [3,30,50,20,1] seem to be the most promising
compared to other techniques. Membranes are a “defensive programming pat-
tern used to intermediate between sub-components of an application” [54]. This
pattern is implemented in Node.js by recursively wrapping an object in a proxy
with respect to prototype hierarchies such that the wrapped object can only
be modified in protected ways. Staicu et al. [51] provide an example of this
technique applied to Node.js, isolating libraries to extract taint specifications
automatically.

SandTrap [3] combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce fine-grained access control policies.
SandTrap has been integrated with Node-RED and evaluated on a set of flows
while enforcing a variety of policies yet incurring negligible runtime overhead.
Our framework is a step toward providing the formal grounds for characteriz-
ing the soundness and transparency of the SandTrap instantiation to Node-RED.
The formalization can be further enhanced by modeling the Node.js environment
and full-featured JavaScript [28].

Securing trigger-action platforms IoTGuard [14] is a monitor for enforc-
ing security policies written in the IoTGuard policy language. Security policies
describe valid transitions in an IoT app execution. Bastys et al. [9,10] study
attacks by malicious app makers in IFTTT and Zapier. They develop dynamic
and static information flow control (IFC) in IoT apps and report on an empirical
study to estimate to what extent IFTTT apps manipulate sensitive information
of users. Wang et al. [56] develop NLP-based methods to infer information flows
in trigger-action platforms and check cross-app interaction via model checking.
Alpernas et al. [4] propose dynamic coarse-grained IFC for JavaScript in server-
less platforms. Our presented monitor is based on access control rather than
IFC. Hence, these works are complementary, focusing on information flow after
access is granted. IFC supports rich dependency policies, yet arduous to track
information flow in JavaScript without breaking soundness or giving up preci-
sion.

5 Conclusion

We have investigated the security of Node-RED, an open-source JavaScript-
driven trigger-action platform. We have expanded on the recently-discovered
critical exploitable vulnerabilities in Node-RED, where the impact ranges from
massive exfiltration of data from unsuspecting users to taking over the entire
platform. Motivated by the need for a security mechanism for Node-RED, we
have proposed an essential model for Node-RED, suitable to reason about nodes
and flows, be they benign, vulnerable, or malicious. We have formalized a prin-
cipled framework to enforce fine-grained API control for untrusted Node-RED

Securing Node-RED Applications

applications. Our formalization for a core language shows how to soundly and
transparently enforce global security properties of Node-RED applications by
local access checks, supporting module-, API-, value-, and context-level policies.

Acknowledgments This work was partially supported by the Swedish Foundation
for Strategic Research (SSF), the Swedish Research Council (VR), and Digital
Futures.

References

1. Agten, P., Van Acker, S., Brondsema, Y., Phung, P.H., Desmet,
L., Piessens, F.: JSand: Complete Client-side Sandboxing of Third-
party JavaScript without Browser Modifications. In: ACSAC (2012).
https://doi.org/10.1145/2420950.2420952

2. Ahmadpanah, M.M., Balliu, M., Hedin, D., Olsson, L.E., Sabelfeld, A.: Securing
Node-RED Applications. Proofs. https://www.cse.chalmers.se/research/gro
up/security/SandTrap/proofs.pdf (2021)

3. Ahmadpanah, M.M., Hedin, D., Balliu, M., Olsson, L.E., Sabelfeld, A.: SandTrap:
Securing JavaScript-driven Trigger-Action Platforms. In: USENIX Security (2021),
https://www.usenix.org/conference/usenixsecurity21/presentation/ahma

dpanah

4. Alpernas, K., Flanagan, C., Fouladi, S., Ryzhyk, L., Sagiv, M., Schmitz, T., Win-
stein, K.: Secure Serverless Computing using Dynamic Information Flow Control.
In: OOPSLA (2018). https://doi.org/10.1145/3276488

5. Ancona, D., Franceschini, L., Delzanno, G., Leotta, M., Ribaudo, M., Ricca, F.:
Towards Runtime Monitoring of Node.js and Its Application to the Internet of
Things. In: ALP4IoT@iFM (2017). https://doi.org/10.4204/EPTCS.264.4

6. Andreasen, E., Gong, L., Møller, A., Pradel, M., Selakovic, M., Sen, K., Staicu,
C.A.: A Survey of Dynamic Analysis and Test Generation for JavaScript. ACM
Computing Surveys (2017). https://doi.org/10.1145/3106739

7. Balliu, M., Bastys, I., Sabelfeld, A.: Securing IoT Apps. IEEE S&P Magazine
(2019). https://doi.org/10.1109/MSEC.2019.2914190

8. Balliu, M., Merro, M., Pasqua, M., Shcherbakov, M.: Friendly Fire: Cross-
app Interactions in IoT Platforms. ACM Trans. Priv. Secur. (2021).
https://doi.org/10.1145/3444963

9. Bastys, I., Balliu, M., Sabelfeld, A.: If This Then What? Controlling Flows in IoT
Apps. In: CCS (2018). https://doi.org/10.1145/3243734.3243841

10. Bastys, I., Piessens, F., Sabelfeld, A.: Tracking Information Flow via Delayed
Output - Addressing Privacy in IoT and Emailing Apps. In: NordSec (2018).
https://doi.org/10.1007/978-3-030-03638-6 2

11. Bettini, L., Bono, V., Nicola, R.D., Ferrari, G.L., Gorla, D., Loreti, M., Moggi, E.,
Pugliese, R., Tuosto, E., Venneri, B.: The Klaim Project: Theory and Practice. In:
Global Computing (2003). https://doi.org/10.1007/978-3-540-40042-4 4

12. Blackstock, M., Lea, R.: Toward a Distributed Data Flow Platform
for the Web of Things (Distributed Node-RED). In: WoT (2014).
https://doi.org/10.1145/2684432.2684439

13. Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.D.: Program Analysis
of Commodity IoT Applications for Security and Privacy: Challenges and Oppor-
tunities. ACM Computing Surveys (2019). https://doi.org/10.1145/3333501

https://doi.org/10.1145/2420950.2420952
https://www.cse.chalmers.se/research/group/security/SandTrap/proofs.pdf
https://www.cse.chalmers.se/research/group/security/SandTrap/proofs.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://doi.org/10.1145/3276488
https://doi.org/10.4204/EPTCS.264.4
https://doi.org/10.1145/3106739
https://doi.org/10.1109/MSEC.2019.2914190
https://doi.org/10.1145/3444963
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1007/978-3-030-03638-6_2
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1145/3333501

M.M. Ahmadpanah et al.

14. Celik, Z., Tan, G., and, P.D.M.: IoTGuard: Dynamic Enforcement
of Security and Safety Policy in Commodity IoT. In: NDSS (2019).
https://doi.org/10.14722/ndss.2019.23326

15. Clerissi, D., Leotta, M., Reggio, G., Ricca, F.: Towards An Approach for Devel-
oping and Testing Node-RED IoT Systems. In: EnSEmble@ESEC/SIGSOFT FSE
(2018). https://doi.org/10.1145/3281022.3281023

16. Clerissi, D., Leotta, M., Ricca, F.: A Set of Empirically Validated Development
Guidelines for Improving Node-RED Flows Comprehension. In: ENASE (2020).
https://doi.org/10.5220/0009391101080119

17. Devriese, D., Piessens, F.: Noninterference through Secure Multi-Execution. In:
S&P (2010). https://doi.org/10.1109/SP.2010.15

18. Ferreira, G., Jia, L., Sunshine, J., Kästner, C.: Containing Malicious Pack-
age Updates in npm with a Lightweight Permission System. In: ICSE (2021).
https://doi.org/10.1109/ICSE43902.2021.00121

19. Gregg, B., Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional (2011)

20. Groef, W.D., Massacci, F., Piessens, F.: NodeSentry: Least-privilege
Library Integration for Server-side JavaScript. In: ACSAC (2014).
https://doi.org/10.1145/2664243.2664276

21. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Track-
ing Information Flow in JavaScript and its APIs. In: SAC (2014).
https://doi.org/10.1145/2554850.2554909

22. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM (1978).
https://doi.org/10.1145/359576.359585

23. IBM Cloud. https://cloud.ibm.com/ (2021)
24. IFTTT: If This Then That. https://ifttt.com (2021)
25. Jain, R., Klai, K., Tata, S.: Formal Modeling and Verification of Scal-

able Process-Aware Distributed IoT Applications. In: ISPA/BDCloud/Social-
Com/SustainCom (2019). https://doi.org/10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970.2019.00047

26. jcreedcmu: Escaping NodeJS vm. https://gist.github.com/jcreedcmu/4f6e6d
4a649405a9c86bb076905696af (2018)

27. Kleinfeld, R., Steglich, S., Radziwonowicz, L., Doukas, C.: glue.things: a Mashup
Platform for Wiring the Internet of Things with the Internet of Services. In: WoT
(2014). https://doi.org/10.1145/2684432.2684436

28. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript. In:
APLAS (2008). https://doi.org/10.1007/978-3-540-89330-1 22

29. Melara, M.S., Liu, D.H., Freedman, M.J.: Pyronia: Intra-Process Access Control
for IoT Applications. CoRR abs/1903.01950 (2019), http://arxiv.org/abs/1903
.01950

30. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. Ph.D. thesis, Johns Hopkins University (2006)

31. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag (1982)
32. Nicola, R.D., Ferrari, G.L., Pugliese, R.: Programming access control: The KLAIM

experience. In: CONCUR (2000). https://doi.org/10.1007/3-540-44618-4 5
33. Node-RED: Community Node Module Catalogue. https://github.com/node-re

d/catalogue.nodered.org (2021)
34. Node-RED: Cyclic Flows. https://groups.google.com/g/node-red/c/C6M3Hok

oSTI/m/B2tqcb cAQAJ (2021)
35. Node-RED: Making Flows Asynchronous by Default. https://nodered.org/blog

/2019/08/16/going-async (2021)

https://doi.org/10.14722/ndss.2019.23326
https://doi.org/10.1145/3281022.3281023
https://doi.org/10.5220/0009391101080119
https://doi.org/10.1109/SP.2010.15
https://doi.org/10.1109/ICSE43902.2021.00121
https://doi.org/10.1145/2664243.2664276
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/359576.359585
https://cloud.ibm.com/
https://ifttt.com
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00047
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00047
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://doi.org/10.1145/2684432.2684436
https://doi.org/10.1007/978-3-540-89330-1_22
http://arxiv.org/abs/1903.01950
http://arxiv.org/abs/1903.01950
https://doi.org/10.1007/3-540-44618-4_5
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://nodered.org/blog/2019/08/16/going-async
https://nodered.org/blog/2019/08/16/going-async

Securing Node-RED Applications

36. Node-RED. https://nodered.org/ (2021)
37. Node-RED: Securing Node-RED. https://nodered.org/docs/user-guide/runt

ime/securing-node-red (2021)
38. Node-RED: The Core Nodes. https://nodered.org/docs/user-guide/nodes

(2021)
39. Node-RED: The RED Object. https://github.com/node-red/node-red/blob/

master/packages/node modules/node-red/lib/red.js (2021)
40. Node-RED: Working with Context. https://nodered.org/docs/user-guide/co

ntext (2021)
41. Node-RED Library. https://flows.nodered.org/ (2021)
42. Node.JS: VM (executing JavaScript). https://nodejs.org/api/vm.html#vm vm e

xecuting javascript (2021)
43. NPM: Node Package Manager. https://www.npmjs.com/ (2021)
44. OWASP: NodeJS Security Cheat Sheet. https://cheatsheetseries.owasp.org

/cheatsheets/Nodejs Security Cheat Sheet.html#do-not-use-dangerous-fu

nctions (2021)
45. Pfretzschner, B., ben Othmane, L.: Identification of Dependency-based Attacks on

Node.js. In: ARES (2017). https://doi.org/10.1145/3098954.3120928
46. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR (1997)
47. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-

tems. Proceedings of the IEEE (1975). https://doi.org/10.1109/PROC.1975.9939
48. Schiavio, F., Sun, H., Bonetta, D., Rosà, A., Binder, W.: Node-

MOP: Runtime Verification for Node.js Applications. In: SAC (2019).
https://doi.org/10.1145/3297280.3297456

49. Schreckling, D., Parra, J.D., Doukas, C., Posegga, J.: Data-Centric Security for the
IoT. In: IoT 360 (2) (2015). https://doi.org/10.1007/978-3-319-47075-7 10

50. Simek, P.: Proposal for VM2: Advanced vm/sandbox for Node.js. https://gith
ub.com/patriksimek/vm2 (2021)

51. Staicu, C., Torp, M.T., Schäfer, M., Møller, A., Pradel, M.: Extract-
ing Taint Specifications for JavaScript Libraries. In: ICSE (2020).
https://doi.org/10.1145/3377811.3380390

52. Sun, H., Bonetta, D., Humer, C., Binder, W.: Efficient Dynamic Analysis for
Node.js. In: CC (2018). https://doi.org/10.1145/3178372.3179527

53. Tata, S., Klai, K., Jain, R.: Formal Model and Method to Decompose Process-
Aware IoT Applications. In: OTM (2017). https://doi.org/10.1007/978-3-319-
69462-7 42

54. Tom Van Cutsem: Isolating Application Sub-components with Membranes. https:
//tvcutsem.github.io/membranes (2018)

55. Ur, B., McManus, E., Ho, M.P.Y., Littman, M.L.: Practical
Trigger-Action Programming in the Smart Home. In: CHI (2014).
https://doi.org/10.1145/2556288.2557420

56. Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., Gunter, C.A.: Chart-
ing the Attack Surface of Trigger-Action IoT Platforms. In: CCS (2019).
https://doi.org/10.1145/3319535.3345662

57. Zapier. https://zapier.com (2021)
58. Zimmermann, M., Staicu, C., Tenny, C., Pradel, M.: Small World with High Risks:

A Study of Security Threats in the npm Ecosystem. In: USENIX Security (2019),
https://dl.acm.org/doi/10.5555/3361338.3361407

https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/nodes
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://doi.org/10.1145/3098954.3120928
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1145/3297280.3297456
https://doi.org/10.1007/978-3-319-47075-7_10
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1007/978-3-319-69462-7_42
https://doi.org/10.1007/978-3-319-69462-7_42
https://tvcutsem.github.io/membranes
https://tvcutsem.github.io/membranes
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/3319535.3345662
https://zapier.com
https://dl.acm.org/doi/10.5555/3361338.3361407

	Securing Node-RED Applications

