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Abstract: The glucan-rich fraction, hemicellulosic compounds-rich fraction, and a mixture of both
fractions obtained from organosolv pretreatment of oil palm empty fruit bunch (OPEFB) were used
as substrates to produce volatile fatty acids (VFAs) in acidogenic fermentation. In this study, the
effects of medium adjustment (carbon to nitrogen ratio and trace elements supplementation) and
methanogenesis inhibition (through the addition of 2-bromoethanesulfonate or by heat shock) to
enhance VFAs yield were investigated. The highest VFA yield was 0.50 ± 0.00 g VFAs/g volatile
solid (VS), which was obtained when methanogens were inhibited by heat shock and cultivated in a
mixture of glucan-rich and hemicellulosic compounds-rich fractions. Under these conditions, the
fermentation produced acetic acid as the only VFA. Based on the results, the mass balance of the
whole process (from pretreatment and fermentation) showed the possibility to obtain 30.4 kg acetic
acid and 20.3 kg lignin with a 70% purity from 100 kg OPEFB.

Keywords: oil palm empty fruit bunch; volatile fatty acids; acetic acid; acidogenic fermentation;
methanogenesis inhibition; waste valorization

1. Introduction

The increasing global demand for vegetable oils promotes palm oil production since it
has the lowest production cost [1] and a relatively high productivity [2]. According to the
United States Department of Agriculture (USDA), global palm oil production was about
72 million tons in 2019, and Indonesia had contributed to about 43 million tons [3,4]. For
every kilogram of palm oil produced, 1.3 kg of oil palm empty fruit bunches (OPEFB) are
generated [5]. Thus, 55.9 million tons of OPFEB were produced in Indonesia in 2019. The
typical treatment for OPEFB includes composting [6], combustion [7], or dumping in a
landfill [8]. The composting of OPEFB is a relatively slow biological process, and hence
it is inadequate to manage the enormous amount of OPEFB produced. The combustion
of OPEFB generates fly ash as an air pollutant [9] and produces corrosive materials that
damage the superheater [10]. Moreover, due to its large quantity, open dumping of OPEFB
requires vast land, and the decomposition process releases a foul odor [11]. Therefore, the
handling and valorization of OPEFB are pivotal. As a starting point, the fact that palm oil
production in Indonesia is concentrated in a few provinces [12] can be used as an advantage
for valorization in view of reduced transportation costs.
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‘Oil palm empty fruit bunch’ (OPEFB), a lignocellulosic biomass, mainly consists
of cellulose, hemicellulose, and lignin, which account for 24–65 wt%, 21–34 wt%, and
14–31 wt% of the material, respectively [13]. OPEFB’s composition makes it an attractive
substrate for conversion into biofuels and biochemicals [14,15]. For this purpose, pre-
treatment is essential to deconstruct the compact lignocellulosic structure of OPEFB to
make carbohydrate polymers more available and accessible for their subsequent utiliza-
tion. Organosolv pretreatment is a promising method, as it provides good purity and
recovery of glucan while hemicellulosic compounds can also be recovered. In addition,
lignin is recovered reasonably well with relatively high purity (Mondylaksita, et al. [16].
The resulting glucan and hemicellulosic compounds after delignification are potential
substrates for the production of various biochemical compounds. One of the promising
strategies is their bioconversion into platform compounds, such as volatile fatty acids
(VFAs), through the anaerobic digestion process. VFAs include monocarboxylic acids of C2-
C6 carbon atoms such as acetic acid, propionic acid, butyric acid, valeric acid, and caproic
acid [17]. VFAs are produced through the stages of hydrolysis and acidogenesis among
the four biochemical reactions (hydrolysis–acidogenesis–acetogenesis–methanogenesis)
taking place in anaerobic digestion. Therefore, VFAs production is known as acidogenic
fermentation. As platform compounds, VFAs have a broad range of applications in the
production of value-added products. Furthermore, the production process of VFAs does
not need additional enzymatic hydrolysis and sterilization since it is based on the concerted
action of a diversified microbial community. Hence, mixed microbial cultures can also
provide energy savings with a positive impact on the overall economy of the process [18].

Anaerobic digestion is a biological process that has been used to treat organic wastes.
The performance of anaerobic digestion, such as process stability, biogas production, or-
ganic reduction, and inhibition, depends on the substrates’ characteristics [19]. In anaerobic
digestion, substrates with a high degree of acidification (e.g., starch and whey) and high
accumulation of VFAs can be expected, and methanogenesis is usually the rate-limiting
stage. However, for the case of lignocellulosic materials, the rate-limiting step is the hydrol-
ysis process [20]. This means that if lignocelluloses have passed through degradation in
the hydrolysis process, methane will be quickly produced as the end-product (since VFAs
are not accumulated). Therefore, methanogenesis needs to be inhibited to obtain a high
accumulation of VFAs. For this purpose, physicochemical conditions (e.g., C/N ratio and
medium supplementation) can be optimized to boost hydrolysis-acidogenesis-acetogenesis
stages. At the same time, methanogens are inhibited by, for example, the addition of
chemicals or heat-shock treatment [21–25].

A proper C/N ratio in the substrate is one of the crucial factors to boost acidogenic
activity. Generally, an optimum C/N ratio range for acidogenic fermentation ranges
from 20–30 [26]. Trace elements (such as cobalt, nickel, molybdenum, and iron) play
an essential role in activating and maintaining enzymatic activities in the acidogenic
fermentation process [23,27]. A commonly used method to inhibit the methanogens is
the addition of methanogen inhibitors such as 2-bromoethanesulfonate (BES). BES is
coenzyme M analog. Unlike the fermentative acidogenic bacteria, methanogens have a
coenzyme M that carries a methyl group to produce methane with the help of methyl-
CoM reductase [28]. Coenzyme M analogs act as competitive inhibitors in methyl transfer
reactions at concentrations between 5–50 mM [25,28]. In addition, acidogenic bacteria
can form spores when subjected to high temperatures, whereas methanogens lack that
functionality [28–30]. Thus, heat shock at around 80–100 ◦C for 15–120 min can be employed
to deactivate the methanogens [24,28].

This study aimed to evaluate the effect of C/N ratio adjustment, medium supplemen-
tation, and inoculum preparation (through adding chemicals and heat treatment) to obtain
high VFAs accumulation using glucan-rich fraction and hemicellulosic compounds-rich
fraction from OPEFB pretreatment with organosolv as the substrates. A biorefinery concept
of OPEFB based on the OPEFB fractionation and VFAs production was also proposed.
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2. Materials and Methods
2.1. The Oil Palm Empty Fruit Bunch

Oil palm empty palm fruit bunch (OPEFB) was collected from a palm oil industry in
Medan, Indonesia. It was sun-dried to achieve a 7% moisture content. The OPEFB contains
glucan, hemicellulose, lignin, and ash that account for 40.09 ± 0.01 wt%, 23.94 ± 0.02 wt%,
21.77 ± 0.27 wt%, and 3.72 ± 0.07 wt% of the total material, respectively. The dried OPEFB
was milled using a cutting mill (Retsch SM 100, Haan, Germany) with a pore size of 300 µm,
which resulted in the following particle size distribution: 44.24% of >500 µm, 17.96% of
250–500 µm, 23.81% of 100–250 µm, and 13.99% of 63–125 µm.

2.2. Organosolv-Derived OPEFB Fractions

Organosolv-derived OPEFB fractions were obtained through ethanol-organosolv pre-
treatment of OPEFB at the best conditions found in a previously published study [16].
The OPEFB was firstly dried and milled. The OPEFB powder and 50% ethanol solution,
adjusted to pH 3.0 with 2 M H2SO4 (corresponding to 0.07% of pure acid per substrate
dry weight), were added to 150 mL stainless steel reactors (Swagelok, El Paso, TX, USA)
at a solid-to-liquid ratio of 1:10. The reactors were then sealed and placed into an oil bath
(Julabo, Seelbach Germany) at 210 ◦C for 90 min under static conditions. After that, the
mixture was filtered using a 250 µm sieve for solid-liquid separation. The solid cellulose
(glucan)-rich fraction was obtained through sieving and then washed with 28.3 mL ethanol
solution per gram of dry-untreated OPEFB. As much as 56.6 mL water was added (per 1 g
dry-untreated OPEFB) into the remaining black liquor to precipitate and separate lignin
from hemicellulosic compounds-rich fraction. The precipitation was followed by centrifu-
gation (Thermo Scientific Heraeus Megafuge 8, Waltham, MA, USA) at 3360× g for 5 min.
The glucan-rich fraction, hemicellulosic compounds-rich fraction, and mixed fractions (a
mixture of glucan- and hemicellulosic compounds-rich fraction) were evaporated using
a rotary evaporator (LABO ROTA 20, Heidolph, Germany) at 110 ◦C, 40 rpm, and at a
vacuum pressure of 100 mPa, to eliminate the ethanol and water. The residue was then
used as the substrate for acidogenic fermentation. The total solids (TS), volatile solids (VS),
and nitrogen contents of each fraction are presented in Table 1.

Table 1. The total solid (TS), volatile solids (VS), and nitrogen (TKN) contents of untreated OPEFB
and organosolv pretreatment-derived OPEFB fractions.

Material TS (%) VS (% dw) TKN (% dw) * C/N Ratio

Untreated OPEFB 93.43 ± 0.40 96.02 ± 0.21 0.75 ± 0.01 71
Glucan-rich fraction 5.52 ± 0.43 97.96 ± 0.02 0.21 ± 0.14 257

Hemicellulosic
compounds-rich fraction 0.55 ± 0.00 93.54 ± 0.04 0.43 ± 0.14 120

Mixed fractions 2.02 ± 0.03 96.55 ± 0.05 0.26 ± 0.01 205
* C/N ratio was calculated by dividing the total carbon (% dw) with the sample’s total nitrogen (% dw) contents.

2.3. Inoculum

The inoculum used in the acidogenic fermentation process was obtained from an
upflow anaerobic sludge blanket (UASB) reactor treating wastewater (Hammarby Sjöstad,
Stockholm, Sweden) and contained flocculated bacteria. The UASB was operated at 20 ◦C.
The inoculum was stored for five days in an incubator at 37 ◦C before being used. The
inoculum comprised 9.54 ± 0.32% of total solids (TS) and 6.50 ± 0.15% of volatile solids
(VS). The microbial community analysis of the inoculum is according to Owusu-Agyeman,
et al. [31].

2.4. Acidogenic Fermentation

The untreated OPEFB, glucan-rich fraction, hemicellulosic compounds-rich fraction,
and mixed fractions were used at an inoculum-to-substrate ratio of 1:1 (0.3 g VS inoculum
and 0.3 g VS substrate) in 120 mL serum bottles. Water was added so that the working
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volume in each bottle was 50 mL. The initial pH of all samples was adjusted to pH 5.5 using
2 M HCl and 2 M NaOH; there was no pH adjustment during the acidogenic fermentation.
The bottles were then sealed and sparged with a gas mixture of 80% N2 and 20% CO2
for 2 min to ensure anaerobic condition. Lastly, the bottles were incubated at 37 ◦C in a
water bath, shaking at 100 rpm for 14 days. The experiments were carried out in triplicate.
Glucose, Avicel, and samples containing only inoculum were used as control.

To study the effect of substrate type and medium adjustment on VFA production, a
5 × 22 full factorial experimental design was planned and conducted using MINITAB®

17 (Minitab Ltd., Coventry, UK). Factors examined were substrate type (Avicel as con-
trol, untreated OPEFB, glucan-rich fraction, hemicellulosic compounds-rich fraction, and
mixed fraction), C/N ratio adjustment, and trace metals supplementation. The measured
responses were VFAs yield and methane gas. The C/N ratio adjustment used in this exper-
iment was 22, which was adjusted with urea. The CoCl2·7H2O, NiCl2·6H2O, FeSO4·7H2O,
and Na2MoO4·2H2O, was added at 0.076, 0.159, 0.296, and 0.082 mg/L, respectively, to
mimic the commercial supplement [23].

Another full factorial experimental design of 5 × 3 was performed to study the effect
of substrate type and methanogenesis inhibition on VFAs and methane gas production. Fac-
tors investigated included substrate type (Avicel as control, untreated OPEFB, glucan-rich
fraction, hemicellulosic compounds-rich fraction, and mixed fractions) and methanogene-
sis inhibition strategy (addition of 2-bromoethanesulfonate (BES) and application of heat
shock). The responses were VFAs yield and methane gas. The heat shock inoculum treat-
ment was carried out in a water bath which was shaken at 100 rpm at 80 ◦C for 15 min,
while the BES treatment was carried out by adding 10 mmol/L to each bottle [25].

2.5. Analytical Methods

The total solids (TS), tCOD (total chemical oxygen demand), and volatile solids (VS)
were determined according to biomass analytical procedures by APHA-AWWA-WEF [32].
The samples’ TS and VS were analyzed with the thermogravimetric method. The samples
were dried in an oven at 105 ± 3 ◦C until the constant weights were achieved (TS). Oven-
dried samples were then ignited at 550 ± 25 ◦C to obtain a fixed solid. Volatile solid (VS)
was then calculated from the subtraction of total solid with fixed solid.

The total Kjeldahl nitrogen (TKN) content of all the fractions was determined using
the Kjeldahl method according to Mahboubi, et al. [33]. The total carbon was calculated by
correcting the total dry weight carbon value for the ash content according to Haug [34] and
Zhou, et al. [35].

Gas samples were withdrawn using a 0.25 mL gas-tight syringe (VICI, Precision Sam-
pling Inc., Baton Rouge, LA, USA). Gas analysis was conducted to determine the methane
content using a Perkin-Elmer gas chromatograph (Clarus 550; Perkin Elmer, Norwalk, CT,
USA). The gas chromatograph was equipped with a packed column (CarboxenTM 1000, 6′

× 1.8” OD, 60/80 Mesh, Supelco, Shelton, CT, USA) and a thermal conductivity detector
(Perkin-Elmer, Norwalk, CT, USA). The injection temperature was 200 ◦C. The carrier gas
was N2 with a flow rate of 30 mL/min at 75 ◦C.

The VFAs were measured using a gas chromatograph (Perkin-Elmer, Shelton, CT,
USA), equipped with a capillary column (Elite-WAX ETR, 30 m × 0.32 mm × 1.00 µm,
Perkin-Elmer, Shelton, CT, USA) and a flame-ionized detector (PerkinElmer, Shelton, CT,
USA). The injection and detection temperatures were 250 ◦C and 300 ◦C, respectively. The
carrier gas was nitrogen at a 2 mL/min flow rate and a pressure of 20 psi. The volume of
each injection was 1 µL. The stock solution of caproic acid, iso-valeric acid, valeric acid,
iso-butyric acid, butyric acid, propionic acid, and acetic acid was prepared by dissolving
each of these VFAs in water. These solutions were subsequently mixed to prepare a 10 g/L
mixed stock standard solution. For quantification and calibration, the concentration of
the mixed standard solution was diluted to 5.00, 2.50, 1.25, 0.62 and 0.31 g/L in distilled
water. Butanol at the concentration of 1 g/L was used as an internal standard. During
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intermittent injection, a clean-up procedure was performed before each injection of a new
sample. Distilled water was used for the clean-up procedure.

2.6. Statistical Analysis

MINITAB® 17 (Minitab Ltd., Coventry, UK) was used for statistical analysis. A general
linear model with a confidence interval of 95% was applied to analyze variance (ANOVA)
and factor interaction; statistical differences were identified at p-value < 0.05. Pairwise
comparisons were also carried out according to Tukey’s test. All intervals and error bars
reported represent two times the standard deviation.

3. Results and Discussion

Glucan and hemicellulosic compound fractions are potential substrates for VFAs
production. To obtain high VFAs production, acidogenic fermentation in which VFAs are
produced needs to be boosted by inhibiting methanogenesis through adding chemicals
or heat-shock treatment. The first stage of the work was focused on the substrate type,
C/N ratio, and medium supplementation on the yield of VFAs and methane. In the second
stage, the focus was on methanogenesis inhibition by adding a methanogen inhibitor or
applying a heat-shock treatment.

3.1. Effect of C/N Ratio and Medium Supplementation

Acidogenic fermentation was performed using OPEFB fractions as the substrates after
ethanol-organosolv pretreatment. In addition, the untreated OPEFB and Avicel were used
as controls. As shown in Figure 1a, the highest production of VFAs (0.40 ± 0.02 g VFA/g
VS) from Avicel was obtained when the C/N ratio was adjusted. However, there was
a simultaneous consumption of VFAs for methane production (Figure 1f), although the
methane yield was relatively small (Table 2), ca. 13% of the theoretical value, which was
calculated based on modified Buswell equation [36]. Medium supplementation with trace
metals had a detrimental effect on the VFAs yield since it led to an increase in methane
yield, which was 80.29 ± 0.75 mL/g VS (26% of theoretical value). As for the untreated
OPEFB, negligible VFAs accumulation was observed (Figure 2b and Table 2). When trace
metals were added, the produced VFAs appeared to be consumed directly for methane
production (Figure 2g), even though the methane yield was low (less than 20% of the
theoretical value).

Table 2. Maximum VFAs yield from different substrates with different medium adjustments. The experiments were carried
out in triplicate.

Substrates Treatments Highest VFA Yield (g
VFA/g VS)

Methane Yield
(NmL/g VS)

Avicel

Without medium adjustment 0.19 ± 0.01 lmn 2.30 ± 0.38 k

C/N ratio adjustment 0.40 ± 0.02 de 38.15 ± 0.09 fg

Trace metals supplementation 0.14 ± 0.01 mn 80.29 ± 0.75 b

C/N ratio adjustment and trace metals supplementation 0.10 ± 0.02 no 33.20 ± 0.18 h

Untreated OPEFB

Without medium adjustment 0.07 ± 0.01 op 2.01 ± 0.29 k

C/N ratio adjustment 0.05 ± 0.00 jkl 12.10 ± 0.82 j

Trace metals supplementation 0.00 ± 0.00 q 60.73 ± 0.65 c

C/N adjustment and trace metals supplementation 0.00 ± 0.00 q 37.41 ± 2.90 fg

Glucan-rich fraction

Without medium adjustment 0.10 ± 0.02 no 34.63 ± 0.03 gh

C/N ratio adjustment 0.03 ± 0.00 pq 46.18 ± 3.53 d

Trace metals supplementation 0.07 ± 0.01 op 84.58 ± 9.89 a

C/N ratio adjustment and trace metals supplementation 0.19 ± 0.00 klm 43.00 ± 2.73 de

Hemicellulosic
compounds-rich fraction

Without medium adjustment 0.22 ± 0.08 jkl 0.96 ± 0.20 k

C/N ratio adjustment 0.24 ± 0.01 hijk 21.33 ± 1.15 i

Trace metals supplementation 0.11 ± 0.01 no 2.09 ± 0.97 k

C/N ratio adjustment and trace metals supplementation 0.12 ± 0.01 no 1.13 ± 0.08 k

Mixed fraction

Without medium adjustment 0.44 ± 0.04 b 40.33 ± 2.16 ef

C/N ratio adjustment 0.44 ± 0.00 b 0.75 ± 0.20 k

Trace metals supplementation 0.15 ± 0.01 mn 18.29 ± 0.35 i

C/N ratio adjustment and trace metals supplementation 0.24 ± 0.01 ijk 0.00 ± 0.00 k

Numbers followed by different letters indicate significant differences at p < 0.05 according to Tukey’s test.
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Figure 1. Total volatile fatty acid (TVFA) (a–e) and methane gas (f–j) yield during batch acidogenic fermentation of
Avicel, untreated OPEFB, glucan-rich fraction, hemicellulosic compounds-rich fraction, and mixed fraction with or without
C/N ratio adjustment and medium supplementation. The experiments were done in triplicate. Wma: without medium
adjustment; C/N adj: C/N ratio adjustment; Sup: supplementation with trace metals.
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Figure 2. Total volatile fatty acid (TVFA) (a–e) and methane gas (f–j) yield during batch acidogenic fermentation of
Avicel, untreated OPEFB, glucan-rich fraction, hemicellulosic compounds-rich fraction, and mixed fraction with or without
methanogenesis inhibition. The experiments were done in triplicate. The abbreviations of the medium adjustment are: Wmi:
without methanogenesis inhibition, BES: 2-bromoethanesulfonate, HT: heat-shock treatment.

When glucan-rich fraction was used as a substrate, C/N ratio adjustment or trace
metals supplementation alone did not accumulate VFAs. The VFAs yields were even
lower than those without medium adjustment (Table 2 and Figure 1c). The highest VFAs
accumulation of 0.19 ± 0.00 g VFA/g VS was obtained when the C/N ratio adjustment and
the trace metals supplementation were conducted simultaneously. However, the results
presented in Figure 1h suggest that the VFAs were being used for methane production.
Table 2 shows that glucan-rich fraction with trace metals supplementation alone resulted in
the highest methane yield of 84.58 ± 9.89 mL/g VS (27% of the theoretical value). For 1 g
of VS, 84.58 mL CH4 is produced from 0.23 g of acetic acid conversion. Hence, if methane
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formation was successfully inhibited, then 0.23 g acetic acid/g VS could be accumulated
instead of converted into CH4.

In the acidogenic fermentation of hemicellulosic compounds-rich fraction, the medium
adjustment did not positively affect the VFAs yield. After all, the results in Figure 1d
showed that there were ups and downs in the VFAs accumulation. The VFAs were accu-
mulated on the sixth day, but it was then followed by VFAs consumption on the eighth
day. VFAs accumulation occurred again on the tenth day, and it started to be consumed
afterward. This phenomenon indicates that VFAs accumulation slightly inhibited methane
production. The highest methane yield of 21.33 ± 1.15 mL/g VS was achieved when the
C/N ratio was adjusted. However, the highest methane yield was only 7% of the theoretical
value.

In the experiment with mixed fraction, C/N ratio adjustment and trace metals supple-
mentation did not enhance VFA yield (Table 2). It can be seen in Figure 1e that the VFAs
were accumulated on the eighth day when the C/N ratio adjustment was applied. The VFA
accumulation was faster than the VFAs accumulation without C/N ratio adjustment, which
happened on the tenth day. In all conditions, the accumulated VFAs were followed by
methane production (Figure 1e,j). Like the hemicellulosic compounds-rich fraction results,
accumulation of VFAs seemed to have a slight inhibition effect on methane production
since a delay in its production was observed (Figure 1j).

The results showed that a C/N ratio adjustment was needed to achieve the highest
yield of VFAs during acidogenic fermentation of Avicel. During acidogenic fermentation
of a somewhat similar substrate, namely glucan-rich fraction, C/N ratio adjustment and
supplementation of trace metals led to the highest yield of VFAs. Previous studies also re-
ported that a C/N ratio of 20–30 effectively increased VS degradation of textile wastewater
sludge and during co-digestion of algal sludge and waste paper [37,38]. In the untreated
OPEFB, it is more likely that the slow digestion of the substrate resulted in the slow VFAs
production, which was immediately converted into methane. Hence, no accumulation of
VFAs occurred.

Nevertheless, C/N ratio adjustment and trace metals supplementation did not com-
pletely inhibit methane production. The results from this study are in agreement with those
reported by Karlsson, et al. [27], where supplementation of trace metals (500 mg/L of Fe,
0.5 mg/L of Co, and 0.25 g/L of Ni) on anaerobic digestion of food industry and household
waste caused acetate production with a concomitant increase in biogas production. Simi-
larly, a study carried out by Menon, et al. [39] suggested that medium supplementation
with 303 mg/L of Ca, 777 mg/L of Mg, 7 mg/L of Co, and 3 mg/L of Ni resulted in
VFAs production, which was directly followed by an increase of methane gas yield by
40%. In addition, trace metals such as Fe, Co, Ni, and Mo are essential for the activity of
many hydrogenase enzymes, which affect both acidogenic and methanogenic microor-
ganisms [40]. Hence, the micronutrients helped to increase methane production. The
results showed that the VFAs produced were not high enough to suppress the methane
production. For this reason, inhibition of methanogenesis with other methods such as
heat-shock treatment or adding methanogen inhibitor was necessary to be conducted to
produce a high accumulation of VFAs.

3.2. Effect of Methanogenesis Inhibition

When Avicel was used as the substrate, the addition of methanogen inhibitor (BES)
and application of heat-shock treatment of inoculum increased VFAs yield (Figure 2a) and
decreased methane yield (Figure 2f). The enhancement of VFAs yield was 50% compared
to without methanogenesis inhibition (Table 3).
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Table 3. Maximum VFAs yield from different substrates with different methanogenesis inhibition
methods. The experiments were carried out in triplicate.

Substrates Treatments
Highest VFA

Yield (g VFA/g
VS)

Methane Yield
(NmL/g VS)

Avicel
Without methanogenesis inhibition 0.19 ± 0.01 lmn 2.30 ± 0.38 k

BES 0.29 ± 0.01f ghi 1.09 ± 0.10 k

Heat-shock treatment 0.30 ± 0.00 efgh 0.62 ± 0.04 k

Untreated OPEFB
Without methanogenesis inhibition 0.07 ± 0.01 op 2.01 ± 0.29 k

BES 0.04 ± 0.01 pq 2.02 ± 0.05 k

Heat-shock treatment 0.03 ± 0.00 pq 0.71 ± 0.01 k

Glucan-rich
fraction

Without methanogenesis inhibition 0.10 ± 0.02 no 34.63 ± 0.03 gh

BES 0.31 ± 0.03 efg 0.83 ± 0.01 k

Heat-shock treatment 0.38 ± 0.02 cd 3.49 ± 0.41 k

Hemicellulosic
compounds-rich

fraction

Without methanogenesis inhibition 0.22 ± 0.08 jkl 0.96 ± 0.20 k

BES 0.34 ± 0.02 def 0.00 ± 0.00 k

Heat-shock treatment 0.43 ± 0.04 bc 0.01 ± 0.00 k

Mixed fraction
Without methanogenesis inhibition 0.44 ± 0.04 b 40.33 ± 2.16 ef

BES 0.26 ± 0.07 ghij 0.00 ± 0.00 k

Heat-shock treatment 0.50 ± 0.00 a 0.02 ± 0.00 k

Numbers followed by different letters indicate significant differences at p < 0.05 according to Tukey’s test.

The results suggested that methanogenesis inhibitions, by adding a methanogen
inhibitor and applying a heat-shock treatment, successfully increased the accumulation of
VFAs and inhibited methane production on Avicel. On the other hand, for the untreated
OPEFB, negligible VFAs and methane were produced for all conditions (Figure 2b,g). Heat-
shock treatment and addition of BES did not affect VFAs enhancement since the untreated
OPEFB was hard to digest. Therefore, no VFAs production was observed (Table 3).

As for glucan-rich fraction, VFAs production started to accelerate after the tenth day
of the fermentation (Figure 2c). It can be seen in Figure 2h that the addition of BES and heat-
shock treatment were able to inhibit methane production, and as a result, VFAs could be
accumulated. Compared to the conditions without methanogenesis inhibition, the increase
in VFAs yield was three-fold for the addition of BES and four-fold for heat-shock treatment
(Table 3). For the condition without methanogenesis inhibition, VFAs accumulation was
relatively low, and methane started directly to be produced on the second day. Similar
results were obtained from acidogenic fermentation of hemicellulosic compounds-rich
fraction. Both BES addition and heat shock-treatment led to VFAs accumulation, with no
methane production (Figure 2d,i). The VFAs yields for hemicellulosic compounds-rich
fraction without methanogenesis inhibition, with the addition of BES, and with heat-shock
treatment were 0.22 ± 0.08, 0.34 ± 0.02, and 0.43 ± 0.04 g VFA/g VS, respectively (Table 3).
The increase of VFAs yield from the condition with heat-shock treatment was almost 100%,
compared to that without any methanogenesis inhibition.

In comparison, it was only a 55% increase of VFAs yield from the condition when
BES was added. Unlike fermentation of glucan-rich fraction, which mainly was cellulose,
acidogenic fermentation of the hemicellulosic compounds-rich fraction did not have a lag
phase in producing VFAs. The reason for this is most likely since hemicellulosic compounds
are more easily degraded than cellulose. In the mixed fraction, VFAs were accumulated,
and no methane production was observed for the conditions with the addition of BES or
application of heat-shock treatment (Figure 2e,j). However, the addition of BES gave a lower
VFAs yield than those without methanogenesis inhibition and heat-shock treatment. In the
mixed fraction without heat-shock application, although the VFA yield was 0.45 g VFA/g
VS, VFA could not accumulate since it was used for methane gas production (Figure 2e,j).
Meanwhile, with the application of heat shock, the highest VFA yield was 0.50 ± 0.00 g
VFA/g VS with acetic acid as the only VFA produced. In addition, there was no methane
production observed on this condition.

Overall, the addition of BES and heat-shock treatment enhanced VFAs yield. 2-
bromoethanesulfonate (BES) is the chemical most commonly used as a methane inhibitor [41].
A dosage of 10 mmol BES/L successfully inhibited 100% of methanogens in anaerobic
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digestion of cow dung and municipal wastewater treatment sludge [25]. In this study,
when glucan, hemicellulosic compounds and mixed-fractions were used as substrates for
acidogenic fermentation, the addition of BES resulted in a lower VFAs yield compared
to that of heat-shock treatment. Studies by Liu, et al. [42] and Lu, et al. [43] showed that
BES might inhibit the growth of other microorganisms responsible for VFAs or hydrogen
biosynthesis. This finding indicates that BES might harm the acidogens.

On the other hand, the ability of acidogens to form spores under extreme conditions,
such as high temperature, can be used as a strategy to kill methanogens. The genera
Clostridium and Bacillus of acidogens, which were responsible for producing VFAs, can
form spores that are resilient to heat shock [28]. The microbes’ resilience could be the
reason for heat-shock treatment to be more effective than the addition of BES in inhibiting
methane production in this study. Moreover, the inoculum used in this work was taken
from a UASB reactor operated at 20 ◦C, so that a short time of heat-shock treatment (15 min)
at 80 ◦C effectively inhibited methane production. A previous study by Mei, et al. [24]
also showed that after heat-shocking methanogens at 60 and 70 ◦C for 15 min, methane
production was inhibited entirely throughout 90 days of incubation.

3.3. Profile of VFAs

Acidogenic fermentation of mixed fraction with heat-shock treatment (referred to as
the best condition in this work) resulted in acetic acid as the only type of VFA produced.
Without heat-shock treatment, the percentage of acetic acid produced from mixed fractions
was 77%. For other conditions, other types of VFAs were produced, and the percentages
were in the range of 44–100% acetic acid, 3.75–56% propionic acid, and 5.55–26.75% butyric
acid (data not shown). Methane gas was not produced under the best condition. These
results might suggest that the methanogens were completely inhibited by heat-shock treat-
ment and the anaerobic digestion stopped at the acidogenesis stage. Heat-shock treatment
was reported to inhibit the acetoclastic methanogens’ activity [44]. A study by Penning
and Conrad [45] showed that there was a linear accumulation of acetic acid when the
acetoclastic methanogen was inhibited by methyl fluoride. As it was previously reported,
the most abundant methanogens in the inoculum used in this work were acetoclastic
methanogens [31]. Thus, it is possible that when acetoclastic methanogens were inhibited
by heat-shock treatment, acetic acid could be solely produced.

Furthermore, the inoculum used in this work was flocculated bacteria from the UASB
reactor in the wastewater treatment (described in the Section 2). According to Wainaina,
et al. [41] and Owusu-Agyeman, et al. [31], who used the same inoculum, in this flocculated
bacteria, at the phylum level, Actinobacteria and Firmicutes were dominating (5–8%) [41],
whereas, at the family level, Anaerolinaceae was the predominant family with a relative
abundance of 16.2–17.5%, followed by Syntrophaceae with a relative abundance of 7.9–10.1%.
Other bacterial genera found in the granular sludge of the reactor were Paludibacter, Desul-
fomicrobium, and Proteiniclasticum [31]. Based on the previous studies [46–49], these bacteria
were fermentative bacteria with acetate as the main fermentation product of several sub-
strates. This could be the reason why under all conditions acetic acid was more dominantly
produced than the other VFAs.

3.4. OPEFB Based Biorefinery

To increase the economic feasibility of lignocellulosic bioconversion, a biorefinery
concept in which all lignocellulosic components are utilized to produce value-added
products, is an excellent strategy to be implemented. The construction of a cost-effective
lignocellulosic biorefinery will be significantly influenced by the selling price of the final
value-added product. Based on the results of previous work by Mondylaksita, et al. [16]
and current work, a new concept of OPEFB biorefinery is proposed (Figure 3). In this study,
the yield of acetic acid was 0.50 g/g VS with a titer of 3%. The titer of acetic acid from the
commercial fermentation ranges from 3.9–10% [49], while the yield ranges from 0.31–0.96 g
of acetic acid/g of the substrate [50]. The yield of acetic acid from this study is comparable
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to the yield of the commercial fermentation process. Acetic acid is quite popularly used
in industries such as food, paint, paper, textile, pharmaceutical, adhesive, and plastics
industries [51,52]. Acetic acid has the highest market size among other VFAs of about
3,500,000 tons/year with a price per tonne of 800$ compared to the other VFAs [53]. In
addition to glucan and hemicellulosic compounds, lignin with relatively high recovery and
purity can be generated from organosolv pretreatment [16]. Lignin has a high value, and
lignin derivatives such as resins, flavoring compounds, and nanofibers with antioxidant
activity, which are helpful in many applications, can compensate for the costs incurred in
the pretreatment process.
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From 100 kg OPEFB (dry basis), 38.5 kg of glucan-rich fraction and 22.9 kg of hemi-
cellulosic compounds-rich fraction were obtained [16]. The total solid was 63.0 kg (in-
cluding lignin and ash). According to Table 1, the VS content of the mixed fraction was
96.55 ± 0.05%. Hence, volatile solid (VS) was assumed as the total amount of organic
materials from the pretreated OPEFB. Using the VS value, the number of organic materials
in the mixed fraction was calculated to be 60.8 kg. Our previous results also showed that a
high lignin purity of 70% and 65% lignin recovery were obtained [16]. Using these values,
it can be calculated that from 100 kg of OPEFB (dry basis) with a lignin content of 21.77%,
30.4 kg of acetic acid, and 20.3 kg of lignin with 70% purity can be produced (Figure 3).
With 55.9 million tons of OPEFB produced in 2019, scaling up by multiplication, 17 million
tons of acetic acid and 11.3 million tons of lignin can be produced.

This acetic acid production through the acetogenesis process could be an alternative to
the existing process. The Monsanto process for the carbonylation of methanol to acetic acid
has been used as the method of choice for acetic acid production [54]. However, this method
uses high temperatures between 150 and 200 ◦C, requires an expensive (rhodium) catalyst,
and the equipment is prone to severe corrosion due to the iodide co-catalyst used [54]. Other
than the Monsanto process, acetic acid has been produced through biological processes.
According to food purity law, a food-grade acetic acid should preferably originate from
biological processes [55]. Acetic acid is produced through a two-stage fermentation, namely,
alcoholic and acetous fermentation [56]. On alcoholic fermentation, yeast Saccharomyces
cerevisiae is mainly used, while on the acetous fermentation, the acetic acid bacteria used are
mainly Acetobacter [50]. Using two different microbes requires two different fermentation
conditions and fermenters. Hence it is quite laborious. Therefore, a one-step biological
process, i.e., acidogenic fermentation, which offers milder conditions, can be considered.

4. Conclusions

The fractions of oil palm empty fruit from organosolv pre-treatment were used as
substrates for acidogenic fermentation to produce volatile fatty acids. Adjusting the
C/N ratio and adding trace metals did not result in high VFAs accumulation, which was
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expected to inhibit methane production. Meanwhile, the addition of methanogen inhibitor
(BES) and application of heat-shock treatment succeeded in inhibiting methane production,
where heat-shock treatment was more effective than the BES addition. The mixed fraction
with heat-shock treatment produced the highest VFA yield of 0.50 ± 0.00 g VFA/g VS with
acetic acid as the only detected VFA. From the integrated process in the biorefinery concept,
bioconversion of OPEFB through acidogenic fermentation can produce valuable products
(i.e., acetic acid and lignin).
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