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Simple Noninterference from Parametricity

MAXIMILIAN ALGEHED, Chalmers University of Technology, Sweden

JEAN-PHILIPPE BERNARDY, University of Gothenburg, Sweden

In this paper we revisit the connection between parametricity and noninterference. Our primary contribution

is a proof of noninterference for a polyvariant variation of the Dependency Core Calculus of Abadi et al. in the

Calculus of Constructions. The proof is modular: it leverages parametricity for the Calculus of Constructionsand

the encoding of data abstraction using existential types.This perspective gives rise to simple and understandable

proofs of noninterference from parametricity. All our contributions have been mechanised in the Agda proof

assistant.
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1 INTRODUCTION

Parametricity is a generic property of programming languages with polymorphism. It produces
useful theorems about programs from nothing but their types. Because such results do not depend
on the content of the program, but follow mechanically from their types, they have been dubbed
łfree theoremsž by Wadler [1989]. For example, he shows how parametricity gives us the following
theorem for any polymorphic list-transformation function r.

if r : ∀a. [a] → [a], then ∀f xs . map f (r xs) = r (map f xs)

This theorem tells us something useful and instructive about the way r interacts with its input:
it works on the structure of the input list in a way which is independent of the elements of the
list. Another way to look at this statement is that the elements of the list appear secret to r: it is
not able to inspect the elements. Many of the theorems we get from parametricity are of this form;
they tell us that parts of the input are opaque to our functions.

To further illustrate this point, we can draw a parallel with the notion of an erasure function from
the information-flow control literature [Russo et al. 2008; Stefan et al. 2011; Vassena et al. 2018],
whose role is to hide secrets from programs running under łunprivilegedž levels. In the meta-theory
of secure-by-construction programming languages, one will typically show that secure programs
commute with the erasure function: applying erasure before running the program yields the same
result as applying it after running the program. This commutation property is reminiscent of the
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89:2 Maximilian Algehed and Jean-Philippe Bernardy

way f commutes with r in the above example: if we instantiate the function f with an erasure
function, namely λa. <>, where <> is the only element of the unit type, and we instantiate the list xs
with any list of secret values, we see that the r function commutes with erasure, and r behaves just
as a secure program. In general, this sort of commutation property is used to prove noninterference,
the property that public outputs of a program may not depend on secret inputs.
This example suggests a general connection between parametricity and noninterference. They

talk about similar things, and in fact this connection has been observed several times in the literature
[Abadi et al. 1999; Bowman and Ahmed 2015; Tse and Zdancewic 2004]. For example, Bowman
and Ahmed [2015] develop a full abstraction result between the Dependency Core Calculus (DCC)
[Abadi et al. 1999] and System Fω [Barendregt et al. 2013] and use parametricity for one key part
of their proof and get noninterference as a result.

In this paper we provide a fresh look at the connection between parametricity and noninterference.
That is, instead of constructing a special-purpose free-theorem with custom logical relations (like
in our illustration about lists, or in the works cited above), we mechanically apply the most generic
parametricity result and specialize it to noninterference separately. Technically, we proceed as
follows:

(1) We perform a shallow embedding of DCC into a lambda-calculus with dependent types (say
the Calculus of Constructions Ð CC).

(2) We apply the generic parametricity result for CC to this encoding, obtaining a łfree theoremž
for every program written in the encoding.

(3) We show that noninterference is a consequence of such free theorems. Concretely, we pick
the parametric interpretation of security levels, types and combinators to make them coincide
exactly with the notion of independence found in the information flow control literature.

(4) Finally (and some may regard this conceptually simple step optional), we connect the shal-
low embedding to a deep embedding and show that noninterference carries over to this
representation.

Even though step (3) is not a trivial consequence of step (2) (one must still correctly instantiate the
relations of secret-preserving types), the complete proof becomes considerably simpler.
Such a simplification has several benefits:

(1) We can easily go beyond the state of the art and support the polyvariant variation of DCC,
where functions are not constrained to act on pre-defined security levels.

(2) The pattern can be applied to several other calculi Ð only the step (3) is non-mechanical.
One could even say that if a language is sufficiently expressive to embed a security library,
then the noninterference properties of such libraries can be proven as a consequence of the
parametricity theorem for said language.

(3) The technique is more amenable to formal verification. In fact all our proofs have been
mechanised in the Agda proof assistant [Norell 2007] and are available online 1.

We consider two calculi in this paper, the Sec language of Russo et al. [2008], and the DCC
language of Abadi et al. [1999]. Both calculi are given shallow embeddings in the Calculus of
Constructions (CC) and we develop noninterference proofs for both of them using parametricity.
Because DCC is strictly more expressive than Sec, we build our embedding of DCC as an extension
of the Sec embedding. To connect the noninterference theorem for DCC to the actual DCC calculus,
we show how to translate DCC terms into their corresponding embedding in CC.

The contributions of this paper are the following:

1https://github.com/MaximilianAlgehed/SimpleNoninterferenceFromParametricity
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Simple Noninterference from Parametricity 89:3

(1) We develop label-polymorphic shallow embeddings of the Sec calculus of Russo et al. [2008]
and the Dependency Core Calculus (DCC) of Abadi et al. [1999] in the Calculus of Construc-
tions (CC), Sections 4 and 5.

(2) We show that parametricity for CC implies noninterference for our shallow embeddings,
Sections 4 and 5. To the best of our knowledge, this constitutes the first parametricity-based
proof of the soundness of a security library, of which there are many [Algehed and Russo
2017; Buiras et al. 2015; Russo 2015; Russo et al. 2008; Stefan et al. 2011]. Unlike previous
work, however, our library is embedded in CC, not Haskell.

(3) We show that our shallow embedding of DCC in CC respects the operational semantics of
DCC in its usual presentation. As a corollary of this we also obtain noninterference for this
presentation of DCC, Section 6.

(4) We also implement our development as a shallow embedding of a small security library in
Haskell, Section 7.

In this paper we use a notation similar to that of the Agda programming language [Norell 2007],
with a few exceptions. The symbol ⋆ represents the universe of types, denoted Set in Agda. The
notation (a : A) → B represents the dependent product type Π(a : A) B. We use a shorthand for
multiple arguments of the same type as a comma-separated list of variables, (a0,a1 : A) → B is
shorthand for (a0 : A) → (a1 : A) → B. As an example, in this notation the type of the identity
function ∀A. A → A will be written (A : ⋆) → A → A.

2 PARAMETRICITY

Bernardy et al. [2012] have developed a notion of parametricity for Pure Type Systems (PTS)
[Barendregt et al. 2013] based on a term-level translation function J_K : PTS → PTS which
translates a PTS term into another PTS term, possibly in a more powerful PTS. (CC can be mapped
to itself.) The key idea is to transform types into relations; and their inhabitants into proofs that
they are related.

J⋆K = λA0,A1 : ⋆. A0 → A1 → ⋆

JxK = Rx

J(x : A) → BK = λf0 : (x : A0) → B0. λf1 : (x : A1) → B1.

(x0 : A0) → (x1 : A1) → (Rx : JAK x0 x1) → JBK (f0 x0) (f1 x1)

Jf aK = Jf K a0 a1 JaK

Jλx : A. eK = λx0 : A0. λx1 : A1. λRx : JAK x0 x1. JeK

Note that the translation of variables JxK = Rx assumes a variable Rx in scope which encodes
information about the variable x , like the associated relation when x denotes a bound type variable.
The variable Rx is in turn introduced by the translation of the binding constructs (x : A) → B

and λx : A. e , ensuring that the Rx associated with each bound variable x in an expression is also
bound in the translation of that expression. The situation is similar for the variables related by Rx ,
namely x1 and x2. Furthermore, we extend the subscript notation for expressions: in the above, A0

denotes the termAwhere every variable x is renamed to x0 (likewise forA1). The key result for this
translation is the parametricity lemma (also known as the fundamental lemma of logical relations).

Lemma 1 (Parametricity). ⊢ f : t ⇒ ⊢ Jf K : JtK f f .

The core statement of this lemma is that J_K computes both propositions and proofs from PTS
terms at the same time, and that any term f of an inhabited type t is related to itself.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



89:4 Maximilian Algehed and Jean-Philippe Bernardy

Example: The const function. As an example of how to work with parametricity in this setting
we briefly work through a proof that all functions f : (A,B : ⋆) → A → B → A ignore their last
argument. Note that this statement already has somewhat of a security flavour to it, from the point
of view of f the B argument is "secret" and therefore f may not make use of it. The statement we
are trying to prove is the following:

∀A,B : ⋆. ∀a : A. ∀b0,b1 : B. f A B a b0 ≡ f A B a b1

Which when cast in the setting of dependent types with types as propositions and programs as
proofs means we need to give an inhabitant of the following type:

(A,B : ⋆) → (a : A) → (b0,b1 : B) → f A B a b0 ≡ f A B a b1

To understand how the proof works, recall the parametricity lemma from above and what it says
about f :

Jf K : J(A,B : ⋆) → A → B → AK f f

Expanding the brackets gives us:

Jf K : (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

(B0,B1 : ⋆) → (RB : B0 → B1 → ⋆) →

(a0 : A0) → (a1 : A1) → (Ra : RA a0 a1) →

(b0 : B0) → (b1 : B1) → (Rb : RB b0 b1) →

RA (f A0 B0 a0 b0) (f A1 B1 a1 b1)

As can be seen from this simple example, the expansion of types quickly becomes quite large. To
ease reading of the expanded J_K brackets we arrange the expansion of each function argument
in the original type of f on its own line, with the result on the final line. When translating a
specific function like f the lambdas in the translation of the dependent function space go away
as the translation is immediately applied to f . This means that, like in the example above, the
translation of a type argument is two types and a relation on the types, J(A : ⋆) → . . .K becomes
(A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) → J. . .K. Note that while A0 → A1 → ⋆ denotes a relation on
typesA0 andA1, it is also a proof thatA0 andA1 are related at J⋆K. Similarly, the translation of what
one might call łtermž arguments like the last two arguments to f turn into two such arguments and
a proof that they are related, JA → . . .K becomes (a0 : A0) → (a1 : A1) → (Ra : RA a0 a1) → J. . .K.
In general, the mantra to follow when expanding expressions like Ja → _K is łtwo a’s and a proof
that they are relatedž.

We are going to use Jf K as the core of the proof; instantiating the argument relations RA and RB
correctly is going to give us precisely the statement we are looking for. Because we are only dealing
with two typesA and B; we chooseA0 = A1 = A and likewise for B. Furthermore, because we know
that the resulting type of proof is going to be equality at A for the applications of f it makes sense
that RA be precisely equality at A, RA a0 a1 = a0 ≡ a1. Next we turn to RB , we want to apply f to
two different and completely unrelated Bs, b0 and b1. This means that using, for example, equality
at B for RB cannot work, as we would then need to produce a proof that b0 ≡ b1 for arbitrary b0
and b1. The natural choice for RB is then RB b0 b1 = ⊤, where ⊤ denotes the unit type with one
element <> : ⊤. This definition of RB corresponds to the full relation B × B. With our intuition
formed and relations defined we can give the full proof:

proof : (A,B : ⋆) → (a : A) → (b0,b1 : B) → f A B a b0 ≡ f A B a b1

proof A B a b0 b1 = Jf K A A (≡) B B (λb0 : B.λb1 : B. ⊤) a a (refl A a) b0 b1 <>

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



Simple Noninterference from Parametricity 89:5

Here refl : (A : ⋆) → (a : A) → a ≡ a is the standard witness of reflexivity for propositional
equality in type theory. The proof is now complete, and we barely had to do any work other than
analysing what our intuitions for the relations between the various mentioned variables are. This
intuitive approach to the proofs is the bread-and-butter of proofs by parametricity and precisely
what makes the technique appealing. It is the foundation of the next sections of this paper.

Sigma types. While the above definition is for a PTS with no constants, Bernardy et al. show how
to give a parametricity translation for Σ : (A : ⋆) → (A → ⋆) → ⋆ types, also known as dependent
pairs where (a,b) : Σ A B if and only if a : A and b : B a. The type of JΣK is given below:

JΣK : (A1,A2 : ⋆) → (RA : A1 → A2 → ⋆) →

(B1 : A1 → ⋆) → (B2 : A2 → ⋆) →

((a1 : A1) → (a2 : A2) → RA a1 a2 → B1 a1 → B2 a2 → ⋆) →

Σ A1 B1 → Σ A2 B2 → ⋆

The actual translation of JΣK is straight forward, at least when we allow for minor abuse of notation
in pattern-matching on the last two arguments:

JΣK A0 A1 RA B0 B1 RB (a0,b0) (a1,b1) = Σ (RA a0 a1) (λRa . RB a0 a1 Ra b0 b1)

Note the meaning of this definition: two pairs (a0,b0) and (a1,b1) are related if the as and bs are
individually related, with the b relation conditioned on the proof that a0 and a1 are related.

Abstract (Data) Types. The application of Σ types that interests us here is the encoding of Abstract
Data Types using Modules. Let us assume a module M which exports an abstract type T and a
number of functions fi : Fi (T ) whose type may mention T . As explained by Cardelli and Wegner
[1985], in the Calculus of Constructions (CC) [Coquand and Huet 1988] with Σ types the above
can be represented as a sigma type M = Σ(T : ⋆)P(T ), where P(T ) is the product of function types
P(T ) =

∏
Fi (T ). The implementation of the moduleM is represented as a valuem of type M; and

importing the moduleM from a module N corresponds to taking an argument of the same type
(n = λ(m : M).t ). Linking corresponds to function application.

Assumingm : M ⊢ t : A, parametricity tells us thatm0 : M,m1 : M,Rm : JMKm0 m1 ⊢ JtK :
JAK t0 t1. The above judgement can be illustrated using the parable given by Reynolds [1983] in his
seminal paper, where students learn about complex numbers from two different professors. Each
professor uses a different representation for complex numbers (cartesian or polar) Ð but because the
rest of the course uses the same interface the students are not confused when switching professors.
We could let herem0 be a module containing a polar representation of complex numbers,m1 be
a module containing a cartesian one; relate them in the appropriate way (Rm), and get that any
program t using them satisfies the parametricity interpretation of its type.
However, in this paper, we will focus on the case where there is a single implementation of

the abstract module. Thus, we will have a single module m with a single type T and a single
implementation of the functions fi . According to the parametric interpretation of Σ, we then must
pick a definition of JT K and ensure that they are related by constructing a proof of JT K T T and
JFiK fi fi for each i .

Example: Booleans. To understand how the choice of operators influences the parametricity
interpretation of an abstract type we will try to define parametricity conditions for simple booleans.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



89:6 Maximilian Algehed and Jean-Philippe Bernardy

We introduce the following interface, encoded in a Σ type as described above:

Bool : ⋆

true : Bool

false : Bool

if : (A : ⋆) → Bool → A → A → A

Next we need to introduce a relation RBool, and proofs Rtrue, Rfalse, and Rif each representing the
parametricity conditions on their respective constant. This means that RBool : J⋆K Bool Bool, that
is, by definition, RBool : Bool → Bool → ⋆. Notice that there is no strict requirement on RBool yet.
Right now we are free to pick any definition we want, say RBool b0 b1 = ⊤.
Assuming this definition of RBool for now, next we need to prove that Rtrue : RBool true true,

which is easily done by Rtrue = <>, likewise for false. However, problems arise when we try to
define Rif:

Rif : (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆)

(b0,b1 : Bool) → RBool b0 b1 →

(x0 : A0) → (x1 : A1) → RA x0 x1 →

(y0 : A0) → (y1 : A1) → RA y0 y1 →

RA (if A0 b0 x0 y0) (if A1 b1 x1 y1)

Here we have to show that given any two booleans (remember that we set RBool b0 b1 to be ⊤) the
two ifs return related results. Specifically, we have to show:

RA (if A0 true x0 y0) (if A1 false x1 y1)

which is the same as RA x0 y1. Furthermore by inspecting the symmetric case we see that we also
need to show RA x1 y0. This is clearly not possible given the arguments to Rif. However, what is at
fault is not the parametricity theory, but rather the choice of RBool. Instead we choose:

RBool b0 b1 = b0 ≡Bool b1

The translation of if now becomes straightforward as we only need to consider the cases where
both b0 and b1 are either true or false and we can rely on the two proofs of RA x0 y0 and RA x1 y1
respectively.
Then, every program using Booleans (via the interface spelled above) can then be associated a

parametric interpretation, and thus to every type will correspond a free theorem.

3 INTUITION BEHIND THE PROOF OF NONINTERFERENCE FROM

PARAMETRICITY

To prove noninterference using parametricity, we will formalise a very simple intuition present
in many security libraries. Security libraries like MAC [Russo 2015] and LIO [Stefan et al. 2011]
rely on defining secure types by hiding parts of the implementation from the user Ð that is, they
effectively define an abstract type. An early example is that of Russo et al. [2008]:

module Sec (S, return, bind, up) where

data S (l :: Lattice) a = Hide a

return :: a -> S l a

return a = Hide a

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



Simple Noninterference from Parametricity 89:7

up :: l `CanFlowTo` h => S l a -> S h a

up (Hide a) = Hide a

bind :: S l a -> (a -> S l b) -> S l b

Hide a `bind` f = f a

The above module makes the type S abstract by hiding the Hide constructor. The security lattice
which encodes security levels is represented as a kind Lattice, where the order of the lattice (⊑) is
encoded using the type class CanFlowTo. The role of the Lattice type parameter in the type S is to
track the łsensitivityž (for example, the confidentiality level) of the information which contributed
to the computation. Russo et al. argue, by modelling the clients of this library as a stand-alone
program calculus, that this is sufficient to ensure noninterference for programs constructed using
this module. The idea is that any value of type a is boxed in a monadic type S l a and values can
be promoted only to levels more secret than l. The return combinator simply boxes secret data at a
level l . The up combinator promotes data from one level in the lattice to a higher level, as indicated
by the l `CanFlowTo` h constraint, which represents the standard l ⊑ h lattice ordering. Finally
the bind combinator takes a secret at level l , a type a and a continuation which computes a new
secret at the same level (but of type b) based on the value of the first secret and gives back the
result. Russo et al. prove that the clients of the above library are noninterfering by using a custom
program calculus with multiple custom semantics. In our development, we instead use the standard
parametric interpretation of abstract types (as explained in the previous section).
The interface of the module, converted to a Σ-type using the recipe of Cardelli and Wegner

[1985], is the following:

Sec = Σ (S : L → ⋆→ ⋆)

( return : (A : ⋆) → (ℓ : L) → A → S ℓ A

, bind : (A,B : ⋆) → (ℓ : L) → S ℓ A → (A → B) → S ℓ B

, up : (A : ⋆) → (ℓ, ℓ′ : L) → ℓ ⊑ ℓ′ → S ℓ A → S ℓ′ A)

This type can be parsed either as nested Σ-types or as a single Σ containing S followed by simple
products Ð this makes no essential difference. The above type goes a bit beyond the usual abstract
data type. Indeed, instead of hiding a single type, it hides a family of types S ℓ A, one for each ℓ and
A. However the essence of the idea remains: we provide S : L → ⋆→ ⋆, together with a signature
of functions operating on it, but without providing any access to the implementation.
Any code written using this module is modeled as a function parameterised over the Sec type.

To see how this works consider the code below:

example :: Sec.S L Bool -> Sec.S H Bool

example s = S.up (S.bind s (\x -> S.return (not x)))

In CC, this corresponds to a function:

example : (m : Sec) → (S m) L Bool → (S m) H Bool

example = . . .

(the body of the function makes no difference). We also have:

S : Sec → (L → ⋆→ ⋆)

S (s, _) = s

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



89:8 Maximilian Algehed and Jean-Philippe Bernardy

Similarly the functions in the module can be extracted from the module:

return : (m : Sec) → (A : ⋆) → (ℓ : L) → A → (S m) ℓ A

return (_, (r , _)) = r

The upcoming parts of this paper will make extensive use of the techniques presented above.
Encoding modules and information-hiding as functions which are parametric in the implementation
of the module allows us to build upon the standard parametric interpretation of abstract types.
Doing so shows that noninterference is a consequence of the standard notion of abstract data type.
Additionally, and as it will become apparent in Sections 4 and 5 this structure gives rise to short
and simple proofs of noninterference.

4 NONINTERFERENCE FROM PARAMETRICITY

In this section we make use of the encoding of modules in Section 3 alongside parametricity for Σ
types described in Section 2 to give a simple proof of noninterference for a language similar to the
Sec language of Russo et al. [2008]. In the following development we assume a type L denoting the
security lattice. We take the parametric interpretation of L to be point-wise equality JLK = (≡).
This decision is in the interest of simplicity: we do not need any more complicated relation. One
benefit of this definition of JLK is that in any place where the parametricity condition states that
we have two related ℓ, (ℓ0, ℓ1 : L) → JLK ℓ0 ℓ1 → T we can substitute (ℓ : L) → [ℓ/ℓi ]T , where
[ℓ/ℓi ]T denotes the capture-free substitution of ℓ for ℓ0 and ℓ1 in T, without loss of generality. We
will use (⊑) : L → L → ⋆ as the ordering on L. As standard we expect this relation to come
equipped with transitivity and reflexivity. The inhabitants of ℓ0 ⊑ ℓ1 are proofs and carry no useful
computational content for our purposes, so we take the corresponding parametricity relation to
be pointwise equality, with the same justification as for L. Finally, we assume a designated level

ℓ̂ : L, called the observer level. Data at level ℓ such that ℓ ⊑ ℓ̂ can be thought of as public whereas

data labeled above ℓ̂ is private.
Because we are aiming at proving the implementation of the Sec module above correct, we

restate the type of the module here for clarity:

Sec = Σ (S : L → ⋆→ ⋆)

( return : (A : ⋆) → (ℓ : L) → A → S ℓ A

, bind : (A,B : ⋆) → (ℓ : L) → S ℓ A → (A → S ℓ B) → S ℓ B

, up : (A : ⋆) → (ℓ, ℓ′ : L) → ℓ ⊑ ℓ′ → S ℓ A → S ℓ′ A)

Next we need to tackle the implementation, which will be a simple translation of the Haskell
implementation into CC. Following Russo et al. we take the implementation of S ℓ A to be simply
A Ð ignoring ℓ. Consequently, the implementation of the functions in the module simply ignores

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 89. Publication date: August 2019.



Simple Noninterference from Parametricity 89:9

the security levels and the proofs that data can flow from one level to another:

S : L → ⋆→ ⋆

S ℓ A = A

return : (A : ⋆) → (ℓ : L) → A → S ℓ A

return A ℓ a = a

bind : (A,B : ⋆) → (ℓ : L) → S ℓ A → (A → S ℓ B) → S ℓ B

bind A B ℓ s f = f s

up : (A : ⋆) → (ℓ, ℓ′ : L) → ℓ ⊑ ℓ′ → S ℓ A → S ℓ′ A

up A B ℓ ℓ′ p s = s

The complete implementation of the module sec : Sec consists of a tuple of the above:

sec : Sec

sec = (S, return, bind, up)

Our goal is to show that object functions written using this module cannot leak any information.
The first key observation is that the the parametricity translation of these object functions will
express that each of them satisfies the non-interference property. Let us review the Parametricity
condition for functions taking a Sec argument. If o : (imp : Sec) → A we have:

JoK : (imp0, imp1 : Sec) → (Rimp : JSecK imp0 imp1) → JAK

Because we are concerned with o applied to the specific implementation sec , we must provide
an Rsec : JSecK sec sec denoting the interpretation of the sec module. Having this gives us the
following:

JoK sec sec Rsec : [sec/impi ]JAK

To see how to construct Rsec to allow us to prove noninterference, recall that Sec is a Σ type and
that the translation of a Σ type is a Σ of translations.

Rsec = (RS ,Rreturn,Rbind,Rup)

where each of these Rx relates the terms of the same type as the corresponding members of the sec
module.

RS : JL → ⋆→ ⋆K S S

Rreturn : J(A : ⋆) → (ℓ : L) → A → S ℓ AK return return

Rbind : J(A,B : ⋆) → (ℓ : L) → S ℓ A → (A → S ℓ B) → S ℓ BK bind bind

Rup : J(A : ⋆) → (ℓ, ℓ′ : L) → ℓ ⊑ ℓ′ → S ℓ A → S ℓ′ AK up up

What we have in JoK sec sec Rsec , then, is a proof that o respects the relations and proofs we
instantiate Rx with. This realisation is the key fact that underlies the rest of this paper. Parametricity
asks us to provide the security conditions and in return we get the proof that the code we write
obeys them Ð for free. In other words, what we are saying is that the combinators in the language
are all locally secure and parametricity gives us the proof that their resulting combination is secure.
In other words, this proof technique is entirely compositional.

The rest of this section is concerned with the construction of these conditions; the definition of
each Rx . The first and most important one of these is RS . To see clearly what is going on here we
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expand the type of RS :

RS : (ℓ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) → S ℓ A0 → S ℓ A1 → ⋆

Recall that we implement S ℓA asA. So, a natural candidate for RS ℓA0 A1 RA is simply RA. However,
if we choose this definition, we will not be hiding any information and no proof of noninterference
could ever go through. The key is to encode the idea of observer-sensitive equivalence in this

relation. Thus, we condition the relation RA by ℓ ⊑ ℓ̂, recall that ℓ̂ is the fixed observer level. That

is, when ℓ ̸⊑ ℓ̂, no information can be extracted from the relation, encoding the property that secret
inputs are opaque to the observer.

RS ℓ A0 A1 RA s0 s1 = (ℓ ⊑ ℓ̂) → RA s0 s1

This definition is the root of non-interference. It will be expanded in the types of the other combi-
nators, ensuring that they all satisfy it. Our task will be to fulfill the corresponding condition Rx
for each combinator x . We start with the straightforward implementation of Rreturn:

Rreturn : (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

L → (a0 : A0) → (a1 : A1) → (Ra : RA a0 a1) →

RS ℓ A0 A1 RA (return A0 ℓ a0) (return A0 ℓ a1)

Rreturn A0 A1 RA ℓ a0 a1 Ra = λ(p : ℓ ⊑ ℓ̂). Ra

We get the proof that the two secrets are related precisely because the values being made secret are
related in the first place.
Next we attack Rbind. When expanding the type of Rbind we get the following:

Rbind : (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

(B0,B1 : ⋆) → (RB : B0 → B1 → ⋆) →

(ℓ : L) → (s0 : S ℓ A0) → (s1 : S ℓ A1) →

RS ℓ A0 A1 RA s0 s1 →

(f0 : A0 → S ℓ B0) → (f1 : A1 → S ℓ B1) →

((a0 : A0) → (a1 : A1) → RA a0 a1 → RS ℓ B0 B1 RB (f0 a0) (f1 a1)) →

RS ℓ B0 B1 RB (bind A0 B0 ℓ s0 f0) (bind A1 B1 ℓ s1 f1)

This expression may look big and intimidating. But, the most important takeaway is that given two
related inputs s0 and s1 and functions which preserve relatedness f0 and f1, we must produce a
proof that the outputs of bind applied to si and fi are related at the output relation RS . . .RB . After
expanding the definition of bind, the target type becomes simply RS ℓ B0 B1 RB (f0 s0) (f1 s1). In
this light we can give the surprisingly simple implementation of Rbind:

Rbind A0 A1 RA B0 B1 RB ℓ s0 s1 Rs f0 f1 Rf = λ(p : ℓ ⊑ ℓ̂). Rf s0 s1 (Rs p) p

Finally we approach Rup. This proof makes use of the transitivity of (⊑) to prove that if ℓ ⊑ ℓ′

and ℓ′ ⊑ ℓ̂ then ℓ ⊑ ℓ̂. For this to work (⊑) needs to come equipped with transitivity:

trans-flow : (ℓ, ℓ′, ℓ′′ : L) → (ℓ ⊑ ℓ′) → (ℓ′ ⊑ ℓ′′) → (ℓ ⊑ ℓ′′)

With this in place the definition of Rup is simple:

Rup A0 A1 RA ℓ ℓ
′ p s0 s1 Rs = λp ′ : (ℓ′ ⊑ ℓ̂). Rs (trans-flow ℓ ℓ

′
ℓ̂ p p ′)

We are now done with the core of the sec module as introduced by Russo et al..
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Having established a parametric interpretation of the Sec module which encodes observer-
sensitive equivalence, we can state the Noninterference theorem. We prove the theorem here in
the same form provided by Russo et al. for the calculus which inspires Sec.

Theorem 2 (Noninterference). Given A : ⋆ and ℓ : L such that ℓ ̸⊑ ℓ̂ for any f : (sec : Sec) →

(S sec) ℓ A → (S sec) ℓ̂ Bool and any two a0,a1 : A we have f sec a0 ≡ f sec a1 where sec is the

module defined in this section.

Proof. By Lemma 1 (Parametricity) we have:

Jf K sec sec Rsec : (a0,a1 : S ℓA) → RS ℓAA JAKa0 a1 → RS ℓ̂ Bool Bool JBoolK (f sec a0) (f sec a1)

Let p be the witness of ℓ ̸⊑ ℓ̂. By the definition of S and RS we have, for any a0,a1 : A:

Jf K sec sec Rsec a0 a1 (λq. ex-falso (p q) (JAK a0 a1)) (refl-flow ℓ̂) : f sec a0 ≡ f sec a1

Where ex-falso : ⊥ → (A : ⋆) → A is the standard eliminator for the empty type ⊥ and
refl-flow : (ℓ : L) → ℓ ⊑ ℓ is the witness of reflexivity for ⊑ □

5 SHALLOW EMBEDDING OF DEPENDENCY CORE CALCULUS

The small language of protected values presented in Section 4 is simple, yet forms the core of other
languages with similar capabilities. Most notably, the language is one primitive short of replicating
the Dependency Core Calculus (DCC) of Abadi et al. [1999]. The terminating fragment of DCC
is a simply typed lambda calculus with one special construct, a family of monads T indexed by
elements of a lattice of security levels (T : L → ⋆→ ⋆). This construct plays the same role as S :
values of type T ℓ A are constructed using the constructor ηℓ : A → T ℓ A and combined using a
primitive bind with a special typing rule:

Γ ⊢ e : T ℓ A Γ,x : A ⊢ e ′ : B ℓ ⪯ B

Γ ⊢ bind x = e in e ′ : B

There are two things going on in this definition: a binding and a side condition. The binding of the
variable x plays the role of binding the secret value inside e in the expression e ′. The idea of the
side-condition ℓ ⪯ B, read łB is protected at ℓž, is to ensure that it is safe for information to flow
from a value in a secure context at ℓ into a value of type B, as long as the type B protects secrets at
level at least ℓ. The operational semantics of bind bring nothing new compared to Sec: there is a
congruence rule in the bound expression and a rule for extracting secret values from an ηℓ .

bind x = ηℓ a in e −→ [a/x]e

It remains to explain how ℓ ⪯ B captures the property that B protects secrets at level ℓ, or in other
words, when the structure of B cannot leak any information to an observer below ℓ.

The relation ℓ ⪯ B is defined inductively by the following rules:

protectT
ℓ ⊑ ℓ′

ℓ ⪯ T ℓ′A
protectT ′

ℓ ⪯ A

ℓ ⪯ T ℓ′A
protect×

ℓ ⪯ A ℓ ⪯ B

ℓ ⪯ A × B

protect→
ℓ ⪯ B

ℓ ⪯ A → B

The first rule in this four-part definition tells us that moving up the lattice preserves secrets:
ℓ ⪯ T ℓ′A holds as long as ℓ ⊑ ℓ′ holds as well. The second rule says that wrapping something in a
T ℓ cannot make it less secret. The third rule says that the structure of a product cannot leak any
information if the two types in the product do not leak. The intuition for why this makes sense
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is that given a value of type T ℓ (A × B) we know that it must contain precisely two secrets, one
of type A and one of type B, likewise T ℓ A × T ℓ B also contains precisely two secrets. Finally,
functions producing secret things are also secret-preserving. Most notable in this definition is that
there are no rules which allow us to derive things like ℓ ⪯ Bool, because booleans can be used
to leak one bit of information. Similarly, there is no way to form ℓ ⪯ A + B or ℓ ⪯ List A, for
any A or B. The reason for this is that the structure of co-products and lists can be enough to leak
information. For example, the length of a list can encode information regardless of the contents of
the list.
In this section we extend the module given in the previous section (implementing the Sec

language) to an implementation of a shallow embedding of DCC, as a DCC module. In keeping with
the terminology of DCC, we rename the S type constructor to T and the RS relation to RT . Instead
of implementing the DCC bind primitive directly, we consider two slightly simpler but equally
expressive map and join primitives.

join : (ℓ : L) → (A : ⋆) → ℓ ⪯ A → T ℓ A → A

map : (ℓ : L) → (A,B : ⋆) → (A → B) → T ℓ A → T ℓ B

Indeed, using these, bind can be straightforwardly implemented:

bind : (ℓ : L) → (A B : ⋆) → (ℓ ⪯ B) → T ℓ A → (A → B) → B

bind ℓ A B p a k = join ℓ B p (map ℓ A B k a)

Note that this definition represents the variable binding in the DCC bind primitive using a higher-
order function instead of implementing it directly in the typing relation. The two formulations
are however equivalent; a program using the higher-order formulation corresponds to a program
under the other formulation and vice-verse. Next we need to add the relation (⪯) : L → ⋆→ ⋆ to
the dcc module, as well as the rules that define it.

protectT : (ℓ, ℓ′ : L) → (A : ⋆) → (ℓ ⊑ ℓ′) → ℓ ⪯ (T ℓ′ A)

protectT ′ : (ℓ, ℓ′ : L) → (A : ⋆) → (ℓ ⪯ A) → ℓ ⪯ (T ℓ′ A)

protect× : (ℓ : L) → (A,B : ⋆) → (ℓ ⪯ A) → (ℓ ⪯ B) → ℓ ⪯ (A × B)

protect→ : (ℓ : L) → (A,B : ⋆) → (ℓ ⪯ B) → ℓ ⪯ (A → B)

To sum up, instead of the Sec type from Section 4 we have now a DCC type:

DCC = Σ (T : L → ⋆→ ⋆)

( (⪯) : L → ⋆→ ⋆

, return : (A : ⋆) → (ℓ : L) → A → T ℓ A

, map : (A,B : ⋆) → (ℓ : L) → (A → B) → T ℓ A → T ℓ B

, join : (ℓ : L) → (A : ⋆) → (ℓ ⪯ A) → T ℓ A → A

, protectT : (ℓ, ℓ′ : L) → (A : ⋆) → (ℓ ⊑ ℓ′) → ℓ ⪯ (T ℓ′ A)

, protectT ′ : (ℓ, ℓ′ : L) → (A : ⋆) → (ℓ ⪯ A) → ℓ ⪯ (T ℓ′ A)

, protect× : (ℓ : L) → (A,B : ⋆) → (ℓ ⪯ A) → (ℓ ⪯ B) → ℓ ⪯ (A × B)

, protect→ : (ℓ : L) → (A,B : ⋆) → (ℓ ⪯ B) → ℓ ⪯ (A → B))

These abstract types and functions, along with an implementation, constitute a shallow embed-
ding of DCC into CC. We can start looking at the implementation of this embedding, which will
form our module dcc : DCC. The implementation of T is the same as for S in Section 4, namely
T ℓ A = A, from which the definitions of return, map, and join follow trivially. Next we need
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an implementation of (⪯). Note that the type ℓ ⪯ A needs to correspond to a proof that ℓ and A
are related as constructed by the rules above (protectT , protectT ′ , . . . ). However, because we
choose T ℓ A to be implemented as A, we do not need any specific information from the witnesses
ℓ ⪯ A. Effectively, in the implementation, all security levels are erased Ð non-interference is
ensured purely statically. For this reason we choose ℓ ⪯ A = ⊤, and given this implementation the
implementations of the protectx functions are all trivial. As a result, we need not move from CC
to the Calculus of Inductive Constructions [Bertot and Castéran 2013] even though the original
definition of ⪯ is as an inductive relation.

Having given the interface and the implementation of thedcc module, we turn to its parametricity
interpretation.
The key ingredient is the relation associated with (⪯).

R⪯ : (ℓ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) → ℓ ⪯ A0 → ℓ ⪯ A1 → ⋆

R⪯ ℓ A0 A1 RA p0 p1 = (ℓ ̸⊑ ℓ̂) → (a0 : A0) → (a1 : A1) → RA a0 a1

Contrary what one might expect, this relation does not restrict its arguments p0 and p1. Indeed,
those contain no information Ð so there is nothing to restrict. Instead, we choose R⪯ to restrict the
relation RA. In essence, what we did not do in ⪯ itself, we do here. The restriction is the following:

if (ℓ ̸⊑ ℓ̂), then RA must be the full relation. Intuitively, this means that if the types A0 and A1 are
secret, then RA must consider their values indistinguishable. The cognoscenti will note that this
definition is very close to Proposition 3.2 in Abadi et al.’s original text on DCC [Abadi et al. 1999].
We will see shortly how this definition happens to fit our needs.

Can this condition be ensured by the functions that produce ⪯, namely protectX ? We focus
on the definition of the two most interesting cases, RprotectT and RprotectT ′ . For RprotectT we are
looking for an inhabitant of the following type:

RprotectT : (ℓ, ℓ′ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) → (p : ℓ ⊑ ℓ′) →

R⪯ ℓ (T ℓ
′ A0) (T ℓ

′ A1) (RT ℓ
′ A0 A1 RA) (RprotectT ℓ ℓ

′ A0 p) (RprotectS ℓ ℓ
′ A1 p)

Recall that protectT ℓ ℓ
′ Ai p = <> and RT ℓ

′ A0 A1 RA t0 t1 = (ℓ ⊑ ℓ̂) → RA t0 t1. Hence the above
type signature is equivalent to the simpler:

RprotectT : (ℓ, ℓ′ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

(ℓ ⊑ ℓ′) → (ℓ ̸⊑ ℓ̂) → (t0 : T ℓ
′ A0) → (t1 : S ℓ

′ A1) →

(ℓ′ ⊑ ℓ̂) → RA t0 t1

The implementation follows naturally from the transitivity of (⊑), which gives us the contradictory

fact that ℓ ⊑ ℓ̂ and ℓ ̸⊑ ℓ̂ hold at the same time. Thus the conclusion (RA t0 t1) holds vacuously. To
find the type of RprotectT ′ , we expand the J_K brackets in the type and simplify it by removing ⊤

arguments. We get that the type of RprotectT ′ is equivalent to the following:

(ℓ, ℓ′ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

((ℓ ̸⊑ ℓ̂) → (a0 : A0) → (a1 : A1) → RA a0 a1) →

(ℓ ̸⊑ ℓ̂) → (t0 : T ℓ A0) → (t1 : T ℓ A1) →

(ℓ′ ⊑ ℓ̂) → RA t0 t1
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We can see that by ignoring the last argument and by the fact that T ℓ A = A the type can be
simplified to the following:

(ℓ, ℓ′ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

((ℓ ̸⊑ ℓ̂) → (a0 : A0) → (a1 : A1) → RA a0 a1) →

(ℓ ̸⊑ ℓ̂) → (a0 : A0) → (a1 : A1) → RA a0 a1

In turn, this means that RprotectT ′ is also trivially implementable. The other cases, Rprotect× and
Rprotect→ follow structurally, using the ℓ ⪯ . . . arguments in their respective definitions.

We are now ready to set the keystone of the construction, namely the full definition Rjoin. To
inhabit the type of Rjoin:

Rjoin : (ℓ : L) → (A0,A1 : ⋆) → (RA : ⋆) →

(p0 : ℓ ⪯ A0) → (p1 : ℓ ⪯ A1) → R⪯ ℓ A0 A1 RA p0 p1 →

(t0 : T ℓ A0) → (t1 : T ℓ A1) → RT ℓ A0 A1 RA t0 t1 →

RA (join ℓ A0 p0 s0) (join ℓ A1 p1 s1)

we must produce a proof that RA t0 t1 holds Ð ostensibly from thin air. Since if ℓ ⊑ ℓ̂ holds
then we can use the proof of RT ℓ A0 A1 RA t0 t1 to produce a proof that RA t0 t1 holds (recall

RT ℓ A0 A1 RA t0 t1 = (ℓ ⊑ ℓ̂) → RA t0 t1). If ℓ ⊑ ℓ̂ does not hold, then we had carefully prepared
the definition of R⪯ to give us exactly what we wanted.

Hence, to be able to conclude, we are only missing the decidability of the (⊑) relation, namely a
function (⊑̃) which produces proofs of (⊑) or its negation2:

(⊑̃) : (ℓ, ℓ′ : L) → (ℓ ⊑ ℓ′) + (ℓ ̸⊑ ℓ′)

We promptly add this function to the list of requirements, allowing us to define Rjoin. The definition

proceeds by case-split on ℓ ⊑ ℓ̂:

Rjoin ℓ A0 A1 RA p0 p1 R⪯ t0 t1 RT =

case (ℓ⊑̃ℓ̂) of

inl p → RT p

inr p → R⪯ p t0 t1

In the interest of completeness we also include the definition of Rmap. Because of the higher-order
type of map, the type for Rmap is somewhat involved:

Rmap : (ℓ : L) → (A0,A1 : ⋆) → (RA : A0 → A1 → ⋆) →

(B0,B1 : ⋆) → (RB : B0 → B1 → ⋆) →

(t0 : T ℓ A0) → (t1 : T ℓ A1) → RT ℓ A0 A1 t0 t1 →

(f0 : A0 → B0) → (f1 : A1 → B1) →

(Rf : (a0 : A0) → (a1 : A1) → RA a0 a1 → RB (f0 a0) (f1 a1)) →

RT ℓ B0 B1 RB (map ℓ A0 B0 t0 f0) (map ℓ A1 B1 t1 f1)

2Note that the type of (⊑̃) requires that we have co-products in the language. It is however well known that these can be

encoded using a standard church-encoding so we do not need to change anything in the type-system or the definition

of J_K. Regardless, the proofs that we write make use of Haskell-style case . . . of . . . syntax for ease of reading when

deconstructing values of type A + B .
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What this type says is that given that the functions f0 and f1 return related results given related
arguments, relatedness at RT is preserved. Defining Rmap is straightforward:

Rmap ℓ A0 A1 RA B0 B1 RB t0 t1 Rt f0 f1 Rf = λp : (ℓ ⊑ ℓ̂). Rf t0 t1 (Rt p)

With all the relations in place we are ready once again for the noninterference theorem.

Theorem 3 (Noninterference). Given A : ⋆ and ℓ : L such that ℓ ̸⊑ ℓ̂ for any f : (dcc : DCC) →

(T dcc) ℓ A → (T dcc) ℓ̂ Bool and any two a0,a1 : A we have f dcc a0 ≡ f dcc a1 where dcc is the

module defined in this section.

Proof. By Lemma 1 (Parametricity) we have:

Jf Kdcc dcc Rdcc : (a0,a1 : T ℓA) → RT ℓAA JAKa0 a1 → RT ℓ̂ Bool Bool JBoolK (f sec a0) (f sec a1)

Let p be the witness of ℓ ̸⊑ ℓ̂. By the definition of T and RT we have, for any a0,a1 : A:

Jf K dcc dcc Rdcc a0 a1 (λq. ex-falso (p q) (JAK a0 a1)) (refl-flow ℓ̂) : f sec a0 ≡ f sec a1

□

Having tackled Noninterference, the next question is how this proof of Noninterference compares
to the original by Abadi et al. [1999]. The denotational semantics of DCC is as objects and relations
in a category of complete partial orders, where types are represented as sets and relations on sets.
In that semantics, Abadi et al. obtain a sort of Noninterference theorem in the following form:

If t is a type protected at level ℓ and ℓ ̸⊑ ℓ̂ then the relation associated with |t | is the
total relation.

Where |t | denotes the set underlying the translation of the type t . In the formulation presented
here, the above propositions follows immediately from the definition of R⪯ .

In this section we have given an encoding of DCC in the Calculus of Constructions and used it to
prove noninterference in a simple fashion. Expressing proofs by Parametricity inside the language
being studied enabled clear definitions and a proof devoid of any inductive argument.

6 DEEP EMBEDDING OF DEPENDENCY CORE CALCULUS

All our results so far concern a shallow embedding of DCC into CC. While many will be satisfied
with a shallow embedding, others (including some anonymous reviewers of a previous version of
this paper) may rightly wonder if these results carry over to the usual presentation of DCC, which
uses an inductively-defined family of well-typed terms (also sometimes called a deep embedding).

In this section we address this question by the affirmative.We show that our shallow embedding is
faithful to the deep embedding. Consequently all results about the evaluation of shallow-embedded
terms carry over to the evaluation of deep-embedded terms. As a corollary, non-interference carries
over. The situation is summarized schematically in Fig. 1.
Since DCC is mostly standard, with the exception of the typing rules for return and bind

presented in the previous section, we focus directly on the encoding of the traditional DCC (of
Abadi et al. [1999]) in our shallow embedding of label-polymorphic DCC in CC. The encoding is
structured as a usual denotational semantics. For every DCC type t , we give a CC type |t |, assuming
that we have a dcc : DCC implementation of the DCC module in our context. The translation of types
is straightforward:
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Shallow DCC

Shallow Label-Polymorphic DCCInductively-defined DCC

Inductively-defined Label-Polymorphic DCC

specializes
is equivalent

is equivalent (Section 6)
specializes

Fig. 1. Overview of calculi of interest. The bulk of the paper is concerned with non-interference for the

Shallow Label-Polymorphic DCC. We additionally prove the equivalence of that result with non-interference

for the inductively-defined Label-Polymorphic DCC in 6. We automatically get the corresponding results for

DCC, because the Label-Polymorphic DCC is a conservative extension of DCC.

|unit | = ⊤

|t0 × t1 | = |t0 | × |t1 |

|t0 + t1 | = |t0 | + |t1 |

|t0 → t1 | = |t0 | → |t1 |

|T ℓ t | = (T dcc) ℓ |t |

WhereT dcc : ℓ → ⋆→ ⋆denotes the selector which picks out the first item (the implementation
of theT type) from the dcc : DCC product. As before we assume products and co-products encoded in
the usual fashion and a lattice L common to DCC and our encoding. The interpretation extends to
typing contexts: |x : t , Γ | = x : |t |, |Γ |. Note that while CC has a notion of telescopes, or dependent
contexts, this generality is only be exploited to a very narrow extent, because all source contexts
are simply typed.
For every well-typed DCC term e we give an interpretation in CC, JeK. We do not write the

translation in full here (supplementary material can be consulted for any detail), but rather give a
pedagogical account which ignores some of the tedium of working in pure CC. We also take the
liberty to present this in terms of the bind primitive rather than map and join primitives of Section
5 to keep the exposition clean of the clutter introduced by the different presentations.
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Definition 4 (Interpretation).

Jλx . e[x]K γ = λx . JeK(x ,γ )

Je e1K γ = JeK γ (Je1K γ )

J(e1, e2)K γ = (Je1K γ , Je2K γ )

Jπi eK γ = πi (JeK γ )

Jιi eK γ = ιi (JeK γ )

Jcase e e1 e2K γ = case (JeK γ ) (Je1K γ ) (Je2K γ )

Jreturnℓ eK γ = return ℓ (JeK γ )

Jbind p e e1K γ = bind (protect-type p) (JeK γ ) (λx . Je1K (x ,γ ))

Most of the constructions are mapped simply to their CC counterparts 3. The main idea is that the
free variables (denoted by name on the left hand side) correspond to positions in the environment γ .
Note however that on the left-hand-side, bind refers to the DCC bind, while on the right-hand-side
it points to the function in the the dcc : DCC module, defined in the previous section. For our
purposes, the most interesting case in the definition above is that of bind. Recall the typing rule
for bind from before:

Γ ⊢ e : T ℓ A Γ,x : A ⊢ e ′ : B ℓ ⪯ B

Γ ⊢ bind x = e in e ′ : B
An auxiliary translation protect-type is needed to convert the precondition ℓ ⪯ B into a proof
of ℓ ⪯dcc |B |. We do not give the implementation of protect-type here, noting that it is a simple
case-by-case translation of the rules for the ⪯ relation into the protectx functions from the
dcc : DCC module in the previous section. In the translation above we refer to this proof as p on the
left-hand-side and the translation as protect-type p on the right. Constructing this proof is done
as one would expect by induction on the derivation of ℓ ⪯ B. Note also that the bound variable x
gives rise to an abstraction in CC in (λx . Je1K γ )
Having established a translation from DCC to CC we can turn to the issue of correctness. The

first important theorem about the translation is that the translation is type-preserving.

Theorem 5 (Type-preservation). If Γ ⊢ e : t , then dcc : DCC ⊢ JeK : |G | → |t |.

Proof. By induction on the derivation Γ ⊢ e : t . □

We can then turn our attention to the behaviour of evaluation.
The we adopt the usual small-step evaluation relation for DCC, written (−→). Its reflexive and

transitive closure is written (−→∗). This relation is strongly normalizing. On the CC side, we
rely on the standard evaluation relation. But, because the proof is formalised within CC itself, all
β-equivalent CC terms are definitionally equal (by the relation (≡)). We can then show that the
translation preserves equality on terms. For induction to work, we must however generalise to
open terms, as follows:

Theorem 6. Assume Γ ⊢ e1 : t and Γ ⊢ e2 : t . If e1−→e2 then for every environment γ : |Γ | we have
Je1K(γ ) ≡ Je2K(γ ).

The proof is mostly standard: one proves the usual substitution lemmas; then the proof can
proceed by case analysis for the reduction relation. One particular aspect deserves mention however.
One might assume that we require the specific instance of our DCC module, defined above, for the
proof to go through. However this is not the case: the proof is almost entirely independent of the

3In the original paper, returnℓ in DCC is written ηℓ . We use return here in the interest of consistency and ease of reading
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implementation of the DCC module. There just is one exception; we need to be able to prove the
following proposition:

bind dcc ℓ A B p (return dcc ℓ a) f ≡ f a

This condition turns out to be nothing more than the the right-unit monadic law for bind and
return found in the literature [Moggi 1991], generalised to take into account security levels. It is
necessary to discharge the case for reduction of a term on the form bind x = returnℓ vin e

′. In
this light this precondition should come as no surprise given both the semantics of bind in DCC
and our idea of T as a family of monads.

Corollary 7. For any closed DCC terms a and b such that ⊢ a : Tℓ(Bool) and ⊢ b : Tℓ(Bool), if
JaK ≡ JbK, then a ≡β b.

Proof. By case analysis. By strong normalisation of DCC, we either have a−→∗ returnℓ true

or a−→∗ returnℓ false, and likewise for b. Assume a−→∗ returnℓ false without loss of gen-
erality. If b−→∗ returnℓ false we have our result, by confluence. Assume on the contrary
b−→∗ returnℓ true. Then by the above theorem JaK ≡ returnℓ false and JbK ≡ returnℓtrue,
which is contradictory with the assumption that JaK ≡ JbK. □

Theorem 8 (Noninterference, for original DCC). Given A a DCC type, and ℓ : L such that

ℓ ̸⊑ ℓ̂ for any DCC term e , such that ⊢ e : Tℓ(A)−→T
ℓ̂
(Bool), and any two other closed terms a0,a1 : A,

we have e(returnℓ a0) ≡β e(returnℓ a1).

Proof. By applying Theorem 3 (Noninterference for the shallow embedding of DCC) on JeK, we
get that, for any CC values a′0 and a′1, JeK a

′
0 ≡ JeK a′1. By letting a′0 = Ja0K() and a′1 = Ja1K(), we

have JeK(Ja0K()) ≡ JeK(Ja1K()). By the above corollary, we get e[returnℓ a0] ≡β e[returnℓ a1]. The
desired result is obtained by one step of beta-expansion on both sides. □

7 IMPLEMENTATION IN HASKELL

Because our development is completely formalised in Agda, and Agda can be used as a programming
language, one could simply make use our dcc module as a security library for Agda.

However, Agda is not very commonly used as a programming language. Therefore in this section
we show how our theoretical development can be adapted as a Haskell library.

module DCC (T, eta, mu, Protected, protect_T, protect_T', protect_x, protect_fun) where

data T (f :: lattice -> lattice -> *) (l :: lattice) (a :: *) = T a

eta :: a -> T f l a

eta = T

mapT :: T f l a -> (a -> b) -> T f l b

mapT (T a) f = T (f a)

joinT :: Protected f l a -> T f l a -> a

joinT Proof (T a) = a

Wemake use of the Haskell module structure to hide the T constructor, making pattern matching on
values of type T f l a impossible. The f :: lattice -> lattice -> * argument in the definition
of T is an addition to the theoretical development. It serves as a way to make the code parametric
in the choice of the ⊑ relation, a value of type f l l' is a proof that l ⊑ l ′. The Protected f l a

argument to joinT mirrors the ℓ ⪯ A argument from the theory. In the theoretical development we
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defined Protected f l a as ⊤, or () in Haskell. We can do the same here, selecting the following
implementation for Protected:

data Protected :: (l -> l -> *) -> l -> * -> * where

Proof :: Protected f l a

Alongside which we add functions for constructing the proofs:

protectT :: NFData (f l l') => f l l' -> Protected f l (T f l' a)

protectT f = f `deepseq` Proof

protectT' :: Protected f l a -> Protected f l (T f l' a)

protectT' Proof = Proof

protectx :: Protected f l a -> Protected f l b -> Protected f l (a, b)

protectx Proof Proof = Proof

protectfun :: Protected f l b -> Protected f l (a -> b)

protectfun Proof = Proof

These functions are precisely the ones found in the definition of the dcc : DCC module in Section 5.
The NFData (f l l') constraint in the definition of protectT and the use of deepseq, which simply
fully evaluates its first argument before returning the second, are there to make sure that the f l l'

proof is fully evaluated before the function returns. This alongside the explicit pattern-matches
on Proof constructors ensures this code is strict in all its arguments. This is important to ensure
similar soundness for the Haskell code as the theory. Were this not the case we would be able to
write code that forges evidence of the proof-carrying objects. Code which does forge evidence
will diverge at runtime, for this reason along with Haskell’s usual partiality we are only able to
provide termination insensitive noninterference. Information can still be leaked via the termination
side-channel. The code requires some extensions to enable Haskell to act more like a dependently
typed language. The extensions are GADTs, PolyKinds, DataKinds, and KindSignatures.
To see how to use this code with a specific lattice we give the necessary definitions for the

canonical two point lattice with elements H and L where H ̸⊑ L is the only disallowed flow. We
represent the lattice as a datatype data TwoPoint = H | L. The (⊑) relation is represented as a
simple proof carrying GADT:

data TPFlow :: TwoPoint -> TwoPoint -> * where

Up :: TPFlow L H

Same :: TPFlow l l

We also need to give an instance of NFData TPFlow:

instance NFData (TPFlow l l') where

rnf Up = ()

rnf Same = ()

Finally we can specialise the T family to the two-point lattice type T_TwoPoint = T TPFlow.

8 RELATED WORK

The connection between parametricity and noninterference has a rich history. Abadi et al. [1999]
introduced the Dependency Core Calculus (DCC), a unifying framework for dependency tracking in
program calculi. Tse and Zdancewic [2004] attempted to give a translation of DCC into System
F. However, a counterexample to Tse and Zdancewic’s key lemma was found by Shikuma and
Igarashi [2008]. Bowman and Ahmed [2015] attempted to fix the issue by giving a full-abstraction
result for DCC and System Fω . While this result is very impressive, the proof technique used,
involving open logical relations and back-translation of Fω terms into DCC, hides the simplicity
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of the underlying connection between noninterference and parametricity. Bowman and Ahmed’s
choice of translation scheme forT , a CPS conversion, further complicates the reading of their result.
In this paper we have shown how to give a more straightforward account of noninterference as a
consequence of parametricity by lifting the DCC primitives into a PTS in a way very reminiscent
of how one would naively implement DCC in a functional language. None of the previous proofs
of noninterference from parametricity have, to the best of our knowledge, been mechanised in a
proof assistant, a clear contribution of our work. The core proof is surprisingly small, coming in at
under 200 lines of Agda, evidence that our technique does indeed yield simple proofs.
As opposed to Bowman and Ahmed we prove noninterference for a polyvariant, i.e. label-

polymorphic, version of DCC, embedded in the Calculus of Constructions. As is, our result does not
subsume theirs however. One key contribution made by Bowman and Ahmed is the translation
from DCC to System Fω and back again.

Aguirre et al. [2017] give a translation of DCC into a higher-order relational calculus. Their proof
uses a logical relations argument with a logical relation similar to ours. Instead of giving a direct
definition of R⪯ to show that values of protected types are always equivalent this result is given as
a lemma in their system, similarly to Abadi et al..

Algehed [2018] recently proposed an alternative presentation of DCC which he calls SDCC (for
Simplified DCC). The calculus does away with the ⪯ relation in favour of a number of arguably
simpler primitives, most notably up : (A : ⋆) → (ℓ, ℓ′ : L) → (ℓ ⊑ ℓ′) → T ℓ A → T ℓ′ A and
com : (A : ⋆) → (ℓ, ℓ′ : L) → T ℓ (T ℓ′ A) → T ℓ′ (T ℓ A). Similarly, Algehed and Russo [2017]
point out that ℓ ⪯ A corresponds to a function T ℓ A → A. While these presentations can both
easily fit into the parametricity framework (the reader is encouraged to attempt this as an exercise),
we have chosen to stick with the traditional presentation of DCC because we believe that that our
definition of R⪯ can serve as an instructive example of how to apply the parametricity theory.

We have implemented our DCC module in Haskell as a security library. Typical Noninterference
proofs for security libraries use a very different technique from the ones presented in this paper.
Vassena and others have made extensive use of a technique called erasure to conduct their proofs
for libraries like MAC [Russo 2015], LIO [Stefan et al. 2011], and Sec [Russo et al. 2008]. Erasure
establishes a simulation between a semantics with all secrets replaced by a dummy construct. While
the technicalities of this technique and ours differ, both are based on the same core intuition. One
advantage of the erasure technique is its applicability to non-terminating or partial programs in
proofs of Termination Sensitive Noninterference and Progress Sensitive Noninterference [Vassena
and Russo 2016]. We are unsure how well parametricity extends to this setting. However Wadler
[1989] remarks that weaker versions of Parametricity still hold in a variant of System F with
non-termination. This leads us to believe that at least some of our results carry over to this setting.
We leave further investigation of the topic as future work.

9 CONCLUSION AND FUTURE WORK

In this paper we have provided the first mechnized proof of noninterference based on parametricity.
This is made possible by the simplicity and expressivity of parametricity for dependent types.
We find that this proof structure clearly separates the essential parts (how to interpret security
types) from the mechanical inductive work (handled for free by parametricity). We find our logical
interpretation to be sufficiently elegant to serve as a (formal) introductory semantics of information-
flow security. We would go so far as recommending this proof structure for all non-interference
proofs where the technique applies.
This approach is best-suited for shallow embedding of security languages. In fact we have pro-

vided the first such security library with a proof of noninterference based entirely on parametricity.
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Such a proof is easily amenable to mechanisation: the noninterference proof for our DCC library is
less than 200 lines of Agda.

Yet, if one insists on a classic presentation of a security language as an inductively defined family
of well-typed expressions (also known as a deep-embedding), we can transport our non-interference
proofs to such a setting. This can be done using an interpretation from a deep embedding to the
shallow one.

One potential shortcoming of the technique presented in this paper is with languages containing
arbitrary side-effects and non-termination. How parametricity for dependent types extends to
effectful calculi has yet to be thoroughly explored. A possible avenue is to encode such effects,
using a standard monadic setting. However, Abadi et al. [Abadi et al. 1999] and Algehed and Russo
[Algehed and Russo 2017] show how to encode a large number of what are normally considered
impure side-effects in DCC. These encodings are done using only pure functions, and so are entirely
applicable in our setting.
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