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Abstract. Sub-millimeter (200-1000 GHz) wavelengths contribute a unique capability to fill in the sensitivity
gap between operational visible—infrared (VIS-IR) and microwave (MW) remote sensing for atmospheric cloud
ice and snow. Being able to penetrate clouds to measure cloud ice mass and microphysical properties in the
middle to upper troposphere, a critical spectrum range, is necessary for us to understand the connection between
cloud ice and precipitation processes.

As the first spaceborne 883 GHz radiometer, the IceCube mission was NASA’s latest spaceflight demonstra-
tion of commercial sub-millimeter radiometer technology. Successfully launched from the International Space
Station, IceCube is essentially a free-running radiometer and collected valuable 15-month measurements of
atmosphere and cloud ice. This paper describes the detailed procedures for Level 1 (L1) data calibration, pro-
cessing and validation. The scientific quality and value of IceCube data are then discussed, including radiative
transfer model validation and evaluation, as well as the unique spatial distribution and diurnal cycle of cloud ice
that are revealed for the first time on a quasi-global scale at this frequency. IceCube Level 1 dataset is publicly

available at Gong and Wu (2021) (https://doi.org/10.25966/3d2p-f515).

1 Introduction

Ice clouds play a crucial role in Earth’s climate and weather
through interactions with atmospheric radiation, dynamics
and precipitation processes at a wide range of spatial and
temporal scales (Wu et al., 2019). By far ice clouds remain
the leading source of uncertainty in weather model predic-
tions and future climate projections (Stocker et al., 2013)
mainly because of two reasons. On the one hand, upper-
tropospheric ice clouds are radiatively important to Earth’s
energy budget, and inaccurate measurements of ice cloud
properties add poor or even misleading constraints on ice
cloud radiative feedback (CRF) in models. On the other hand,
large ice crystals fall and form precipitation eventually. Tra-
ditional remote sensing techniques leave gaps in this cloud-
precipitation transition and coupling process. As a result, ice
cloud and associated radiative and hydrological properties
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simulated by general circulation models (GCMs) vary wildly
and are often subjected to heavy tuning to close the radiation
budget at the top of the atmosphere and precipitation at the
surface, leaving the middle of the process highly uncertain
and underconstrained (Waliser et al., 2009; Li et al., 2016).
Ice clouds’ net radiative effect can be positive or negative
depending on its macrophysical (e.g., cloud top height and
optical thickness) and microphysical (e.g., particle size dis-
tribution and particle shape) properties. Large discrepancies
still remain among various satellite ice cloud retrieval prod-
ucts and between observations and reanalyses and/or GCM
simulations. Traditional remote sensing techniques working
at visible (VIS) and infrared (IR) spectrum ranges are sensi-
tive to ice cloud properties such as cloud top height, optical
thickness, particle size, etc. (Wang et al., 2016) but suffer
from only being able to penetrate the top few kilometers of
the cloud layer (Eliasson et al., 2011). For example, Eliasson
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etal. (2011) and Duncan and Eriksson (2018) identified more
than 300 % discrepancies among ice water path (IWP) re-
trievals derived from different A-Train satellite instruments,
although they all sample the same body of cloud at the same
local time.

Moreover, achieving consensus about ice cloud mass is un-
avoidably a critical step when attempting to close the global
hydrological budget. Unfortunately the aforementioned sen-
sitivity gap between the VIS-IR and MW (microwave) mea-
surements results in the missing piece of the inter-coupled
process that connects atmospheric clouds with precipitation-
sized hydrometers. Although combined spaceborne radar and
lidar observations (e.g., DARDAR - radar lidar — or 2C-
ICE - CloudSat and CALIPSO (Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation) Ice Cloud Prop-
erty Product — products) largely alleviated this problem, they
are not suitable for capturing daily weather-scale variabilities
because of narrow swaths and infrequent revisit times. Rela-
tively inexpensive passive sensors are still required to cover
the wide spatial and temporal scales of weather as well as to
produce the climate record.

The sensitivity gap is visually quantified in Fig. la. In
this figure, the two-dimensional probability density functions
(PDFs) between T and IWP are constructed based on pure
observations from a passive infrared sensor (Atmospheric In-
frared Sounder, or AIRS) and a passive-microwave sensor
(Microwave Humidity Sounder, or MHS), respectively. Ty,
the so-called “cloud-induced radiance depression”, is defined
as the difference between the observed brightness tempera-
ture (TB) and the simulated clear-sky radiance (T¢cr) by re-
moving any frozen hydrometeors from the column (Gong
and Wu, 2014; Wu et al., 2019). IWP “truth” is extracted
from the joint spaceborne radar and lidar product called 2C-
ICE, and T values are taken from collocated IR and MW
observations, respectively. From Fig. 1a we can see the sensi-
tivity range, where the slope is steep enough to be estimated,
is about 10-70 grn_2 for passive IR sensors; however, g
for a typical passive MW sensor does not start to become sen-
sitive to IWP before it exceeds 300 g m~2 or so, as marked by
the horizontal rectangles in Fig. 1a. The sensitivity range for
IceCube, based on a radiative transfer model simulation (blue
curve), is between 40 and 600 gm~2, which perfectly fills
in the gap between IR and MW sensors (orange rectangles).
Readers are directed to Appendix A for details of observa-
tional datasets, collocation algorithm and model simulations.
Hence, we add the sub-millimeter (sub-mm) sensitivity col-
umn (blue cylinder) in Fig. 1 of Eliasson et al. (2011), as
shown here in Fig. 1b. Admittedly the VIS-IR spectrum (yel-
low cylinder) could largely cover the same sensitivity range
of the sub-millimeter spectrum, but visible spectrum loses
its capability at nighttime and during the polar night season
and furthermore suffers from multiple scattering to small ice
crystals.

The 874 GHz channel (or more generally speaking, 860—
900 GHz range) not only provides great sensitivity to cloud
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ice scattering but also allows for sufficient penetration to
measure upper—middle-tropospheric cloud ice mass and size
properties. Gruntzun et al. (2018) found out that the sensi-
tivity level to cloud (snow) ice peaks at ~ 300 hPa (400 hPa)
for 874 GHz at the nadir view using the Atmospheric Ra-
diative Transfer Simulator (ARTS) and its comprehensive
ice scattering database and absorption spectrum (Buehler et
al., 2018). This channel also has a strong positive response
at about 200-300 hPa to water vapor, meaning that it can
be merely contaminated by complicated surface signals or
liquid/rain clouds in the lower troposphere, unless the up-
per troposphere is extremely dry. Since it is relatively easy
to obtain water vapor information in the upper troposphere
(e.g., Moradi et al., 2015; Bosilovich et al., 2017), 874 GHz
is an ideal channel for retrieving ice cloud mass for medium-
thick ice clouds located above 400 hPa. Moreover, radiative
transfer model (RTM) simulations also indicate that this fre-
quency is the most sensitive to ice particles with an effective
diameter (D.) between 100-200 um (Buehler et al., 2007;
Tang et al., 2015). While numerous studies have revealed
that MW Mie scattering only happens for precipitation-sized
particles (De > 200 um), the VIS channel sensitivity range
is 10120 um (Platnick et al., 2017), and the IR sensitivity
range is 20-100 um (Garnier et al., 2013; Wang et al., 2016);
874 GHz fills in not only the sensitivity gap of ice cloud mass
but also the gap of the ice particle size spectrum. Above
that frequency at the THz band, cloud ice remote sensing
becomes more difficult because of increasing atmospheric
attenuation from the gas continuum absorption (Wu et al.,
2019).

Working at 883 GHz with the lower sideband at 874 GHz,
IceCube is one of the only three known instruments that
were ever built to work at this frequency. Therefore, mak-
ing IceCube data available to the public is of critical impor-
tance to benefit the entire scientific community to advance
our understanding of ice cloud radiative feedback and cloud-
precipitation coupling processes.

This paper is organized as follows. Section 2 describes the
procedures for data calibration, gain model construction and
geolocation registration. Section 3 validates the quality of the
delivered Level 1 (L1) radiance data against other satellite
datasets and previous campaign data collections as well as
RTM simulations. Section 4 discusses some scientific appli-
cations of this dataset. Section 5 includes the conclusion and
some discussion about future directions for instrument de-
sign and orbital selection.

2 Procedures for Level 1 data calibration and
processing

The IceCube mission was funded by NASA to make a fast-
track spaceflight demonstration and validation of the VDI
(Virginia Diodes, Inc.) 883 GHz receiver for cloud ice ob-
servations. VDI's commercialized 874 GHz receiver greatly
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Figure 1. (a) Two-dimensional probability density functions (PDFs) of cloud-induced radiance perturbation (7;) and ice water path IWP)
derived from collocated CloudSat—-CALIPSO and AIRS (color shaded) and MHS (color contours) observations in the tropics (30° S-30° N).
The blue solid line connects the PDF peak for AIRS and CloudSat—CALIPSO. Black solid (dashed) line is from the ARTS model simulation
for 874 (190) GHz. See Appendix A for details. (b) A conceptual depiction of the rough penetration depth of different passive and active
spaceborne sensors. This panel is modified from Fig. 1 in Eliasson et al. (2011) by adding the sub-millimeter sensitivity column (blue).

reduced the cost of this mission, yet the stability of this re-
ceiver in space is uncertain. IceCube was successfully de-
ployed from the International Space Station (ISS) on 16 May
2017 and re-entered Earth’s atmosphere on 2 October 2018.
During its ~ 15 months of life in space, IceCube not only
successfully completed its primary goal to retire the risks for
the VDI receiver but also collected a large amount of scien-
tifically valuable data over low latitudes to mid-latitudes that
led the first-ever global cloud ice map at this frequency. This
section is dedicated describing the procedures we carried out
to deliver the Level 1 radiance data (Gong and Wu, 2021).

To reduce the mission risk and power usage, IceCube was
chosen to fly without a scan mirror for radiometric calibra-
tion. Instead, it spins the spacecraft to obtain periodic views
between cold space and Earth’s atmosphere. Thus, the cold-
space count measurements and clear-sky Earth atmosphere
are used for the radiometric calibration and receiver gain
calculation. This simplified engineering design successfully
kept the cost low but poses some challenges for the data cal-
ibration, geolocation registration and data processing. The
IceCube antenna produces a 1.8° half-power beam width,
which translates to a 12.6 km nadir footprint size at ISS or-
bit (~400km), which gradually decreased as the IceCube
spacecraft dropped down to its orbit height. Interested read-
ers are encouraged to read Wu et al. (2019) for more details
regarding instrument design, altitude control, etc.

2.1 Cold-space calibration and offset

IceCube is essentially a free-running radiometer. As it lacks a
stable cold/hot reference for absolute calibration, IceCube is
calibrated against the predicted “space counts” in each spin,
which should be calibrated to O all the time. Here “count”
stands for the digitized number of voltage. The space count
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(Csp) is not a constant but a strong function of the receiver
temperature (Tp) and the relative time duration with respect
the most recent switch-on time (dt). A noise source injector
is included, so the output voltage counts have four modes:
antenna plus noise (Ant+N), antenna (Ant), reference (Ref)
and reference plus noise (Ref+N). Adding noise is for test-
ing the instrument calibration function, so the measured total
voltage count (C) is defined as Cani — Cref, Where C is a
function of Tp, as shown in Eq. (1):

C=Cc+ Csp(Tpv dt) = G(pr Ar)- Ty + Csp(Tpv dt) + Rsp- (1)

Here C. is the Earth-view counts. G is the instrument gain,
which is also a function of Tp and A¢. The latter corresponds
to the Julian day counted from 1 January 2017, as instrument
gain is degrading slowly through time but is considered sta-
ble each day. Ty is the Level 1 radiance that we aim to get
at the end. Rqp is the residual of Cg, which could not be fit-
ted by our space count fitting procedures. Four temperature
readings were recorded, which are temperatures for the iso-
lator (Tp,), detector (Tp,), reflector (Tp;) and mixer (Tp,).
They are highly correlated, but as the mixer is closest to the
output end, we use this record to represent Tp for the first
two steps of calibration. Another three Tp measurements are
used subsequently in the machine learning/artificial intelli-
gence (ML/AI) training step to identify any trivial contribu-
tions to the unexplained residual.

To give an example, Fig. 2a plots the time series (with
respect to the orbit switch-on time) of the raw counts (C)
measurements. The first step shown in Fig. 2b is to apply
a second-order polynomial fitting twice with respect to Tp,
to remove the temperature-dependent variation in Csp, which
is successfully captured (red line). The second step is to re-
move the periodically varying component by a fifth-order
polynomial fitting (blue line), which may be associated with
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IceCube location and/or spin velocity. The third step is to
further remove the periodically varying component with re-
spect to Tp; and Tp, by applying a sinusoidal fitting to Tp;
and then Tp, (purple line), respectively. After removing this
low-frequency component, the residual of Cg, is about four
counts for this case, and the Earth-view counts C. now re-
main stable on this orbit and are clearly separated from the
Csp. The fifth step is to separate them by detecting the sud-
den jumps along the time series, as shown by the blue and
red crosses in Fig. 3. Once the jumping points are identi-
fied, the average time in between is considered the “nadir-
view” time (indicated by thin black vertical lines). Now we
can see “dips” in some segments of C. in Fig. 3, e.g., the
one at dt =710s and the one at dt = 1720s. These dips are
induced by cloud scattering.

However, it turned out that steps 3 and 4 may not remove
all slowly varying Csp, components, as suggested by a “bad
example” in Appendix B. Therefore, a further polynomial fit
is carried out (green thin line in Fig. 3) to secure the stability
of Ce. In this final step, the spin velocity is calculated and
compared to the recorded angular velocity. If the spin veloc-
ity is too slow or if the contrast between the adjacent C and
Cqp is too small, this spin is considered of poor quality and
is entirely excluded from the final Level 1 product (see Ap-
pendix B for examples).

The residual (Rgp) (i.e., difference between the green dots
and the green line on Fig. 3) provides a good estimate of the
noise level of Ce, which remains ~ 4 K throughout the mis-
sion (black crosses in Fig. 4). Since only dt, Tp; and Tp,
are used for the empirical calibration of steps 1-5, an ML/AI
model was trained and used as the final step to check whether
the noise (ogp) can be further reduced. Here o), is defined as
the standard deviation of the residual Ryp. After applying this
model, oy, indeed was reduced to ~ 2 K as shown by the red
crosses in Fig. 4. While details of the ML/AI model can be
found in Appendix C, this exercise is somewhat illuminat-
ing to the engineering team: ML/AI may serve as a general
and cost-effective calibration approach for any instrument to
combat after-deployment variations that are not well under-
stood in the pre-launch phase and can be relatively easily car-
ried over to a constellation of CubeSats/microsatellites.

2.2 Viewing angle and geolocation registration

IceCube essentially flies on the same orbit as the ISS. How-
ever, due to its free-spinner design, its latitude coverage can
reach up to 58° N/S. Spin rate is a critical parameter in order
to accurately register the geolocation of an observation. Spin
rate in the unit of degrees per second (dps) is the second-
tier variable to determine. In addition, because geolocation
is necessary for the calculation of clear-sky radiance T¢r,
which is used for constructing the gain model as well as for
the IWP retrieval, spin rate is subsequently a must.

IceCube has three spinning modes. In the daytime, it spun
around the sun vector (—y axis) at the sun point (SP) mode
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(—1dps) or fine reference point (FRP) mode (—1.2dps). At
nighttime, it spun around the geomagnetic field (+z axis)
at a speed between +1 to +2dps. Three axis spin rates are
recorded as spin,, spin, and spin.. However, the observed
spin rate does not necessarily agree with the recorded num-
bers. As a matter of fact, a systematic low bias was iden-
tified when the viewing angle is greater than 30° at the SP
mode (see Figs. 1-10 in Wu et al., 2019 for comparison). We
therefore threw away all observations with a viewing angle
beyond 50° and assigned a low-quality flag to those between
30 and 50°.

After we obtained the Earth-view C. and identified the
limb-to-limb time (LLT) and nadir-to-nadir time (NNT), the
ratio between measured and calculated LLT and NNT are in-
spected, respectively. In Fig. 3, LLT is represented by the
time difference between each pair of the blue and red crosses,
and NNT is represented by the time difference between two
adjacent vertical lines. We found the ratio from measured and
calculated LLT for daytime is correlated with the beta angle
variation, while the LLT ratio at nighttime and NNT ratio at
both daytime and nighttime remain rather stable, varying be-
tween 0.9 to 1.1 (see Figs. 1-11 in Wu et al., 2019). We hence
use the NNT ratio as a scaling factor to multiply the mea-
sured spin rate, which is then used for viewing angle calcula-
tion and geolocation registration (with the altitude and orbit
information well-known from the orbital TLE — two-line ele-
ment — parameters). If this ratio is beyond 1.1 or less than 0.9,
this spin is excluded in the subsequent processing (e.g., the
last five spins in Fig. B2 are excluded due to slow spin rate).
Overall there is an estimated ~ 10 % uncertainty associated
with the viewing angle, which induces up to one footprint
offset (or 0.1° latitude and longitude offset) for geolocation
registration using the aforementioned processes. Readers are
referred to Sect. 1.4.1 of Wu et al. (2019) for details of this
part.

2.3 Gain model reconstruction

The gain model G(Tp, At) is the ratio between Ce and the
Level 1 radiance or brightness temperature TB. It is a func-
tion of instrument Tp and days in the orbit to account for
the instrument degradation. As ice cloud scattering strongly
depresses the Earth-view voltage counts Ce, simulated clear-
sky Ttor is used to compute the ratio and to construct the
gain model. T is computed from the radiative transfer
model (RTM) used for the Aura-Microwave Limb Sounder
(Wu et al., 2006). In this RTM, dry and wet continua, as
well as line emissions including broadening parameters for
ozone lines, were computed following Wu and Jiang (2004).
This RTM requires input of atmospheric profiles, including
temperature, water vapor and ozone interpolated from the
MERRA-2 (Modern-Era Retrospective analysis for Research
and Applications) reanalysis (Bosilovich et al., 2017) using
the nearest-neighborhood method. In addition, footprint ge-
olocation, timing and viewing angle (or solar zenith angle)
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Gain was computed on a daily basis from the ratio of Ce
and T as a function of Tp,. Every day we can compute the
two-dimensional statistics from the global samples and iden-
tify the most probable Tp,—G relationship. A second-order
polynomial fitting was then applied to parameterize this re-
lationship so to construct the final lookup table (LUT) as

are also required. In practice, given the fact that the nadir-
view footprint location and timing are well determined from
the orbital TLE parameters, we can then compute the 360°
full-spin radiances using three spin rate assumptions: 0.8, 1
and 1.2dps. T¢ is then interpolated (or extrapolated) given
the actual spin rate and viewing angle.
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shown in Fig. 6. The daily variation of G is plotted in Fig. 5,
separately for day and night. We can see that although the
night yield of high-quality observations is fewer than that
during the daytime because IceCube was turned off during
most of the night to save power, the magnitude of gain and
its degradation over time are almost identical. Therefore, we
do not separate day and night in the final construction of
the LUT. Yet small variations in the gain can be visually
identified from Fig. 5, which is nevertheless omitted with
using the LUT in Fig. 6. But in rare situations when the
daily gain dropped dramatically (e.g., the outlier at ~ day
270 in Fig. 5), data collected for the abnormal day were
excluded completely. It is worth mentioning the history of
the gain. It was measured at 2.37 count K~! at 20°C dur-
ing the instrument thermal vacuum test (TVAC). However,
it dropped to 1.1 count K~! at 20 °C after the integration and
testing (I&T) phase, which was suspected to be caused by
debris falling into the unprotected receiver’s feedhorn dur-
ing the I&T phase. Nevertheless, the in-flight gain at 20 °C
(black circles in Fig. 5) fortunately never dropped to below
1.3countK~!. C, is converted to TB using the gain LUT
shown in Fig. 6. Furthermore, TB values are flagged as “poor
quality” when the gain is smaller than 0.9.

As the final step, TB is computed from Eq. (1). Note that
we can also estimate the uncertainty of TB at the same time,
which is 2—4 K for most orbits. Details of the TB uncertainty
estimation can be found in Appendix D.

3 Level 1 data analysis

3.1 Comparison against model simulations

To evaluate the quality of the IceCube Level 1 TB, we
will first compare the general statistics of TB against RTM
simulations. The RTM employed here is the ARTS model.
This model is chosen not only because it is one of the
very few RTMs that can conduct cloud simulations at 874—
883 GHz but also because of its well-developed compre-
hensive ice scattering databases and absorption spectrum at
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sub-millimeter frequencies (Buehler et al., 2018). Cloud-
Sat ice water content (IWC) profiles together with ECMWF
ERA-Interim atmospheric profiles in the deep tropics (15° S—
15°N) during June, July and August 2017 are used as
the input parameters for ARTS model simulations, because
883 GHz is the least impacted by surface emissivity con-
taminations in the humid tropics, and IceCube data quality
was the best in these 3 months of flight. To limit the “beam-
filling” effect, this comparison is only limited to IceCube ob-
servations within £15° viewing angles.

CloudSat carries a spaceborne 94 GHz nadir-pointing
Cloud Profiling Radar (CPR) orbiting on a sun-synchronized
afternoon polar orbit. The synthetic 883 GHz TB is gener-
ated using the “dBZ-based” (decibel relative to Z) method
described in detail in Ekelund et al. (2020). Briefly speaking,
given a particle size distribution (PSD) and a particle shape
model (PM), the radar backscattering cross section from ice
and/or liquid can be computed and associated with CloudSat
radar reflectivity. An onion-peeling method is then applied
from the cloud top down layer by layer to account for the
two-way radar attenuation in each layer by IWC or rain wa-
ter content (RWC) as well as multiple scattering. The IWC
and RWC grids are calculated iteratively downward to con-
struct the final profile. Then the retrieved IWC and RWC ver-
tical profiles as well as ECMWF ERA-Interim atmosphere
gas and water vapor are supplied to the forward model ARTS
to compute the synthesized 883 GHz TB using the IceCube
channel specification. Through this dBZ-based way, the con-
sistency is kept for microphysics assumptions for hydrome-
teors between the CloudSat radar and IceCube radiometer.

Two particle PSDs, namely MH97 (McFarquhar and
Heymsfield, 1997) and FO7T (Field et al., 2007; tropics), are
considered. MH97 has been used widely in the sub-limb and
sub-millimeter community (e.g., Wu et al., 2006; Eriksson
et al., 2007). In contrast to many other PSDs, MH97 uses
the volume-equivalent (or mass-equivalent) diameter for the
size (Dpe) rather than the optically defined effective diam-
eter (De), so the PSD-integrated mass is not dependent on
density and is hence mass conserved with respect to dif-
ferent PMs. FO7 is a single-moment PSD based on in situ
data collected from multiple campaigns and has different set-
tings for tropics (FO7T) and mid-latitudes (FO7M). Similar
to the gamma-size PSD, it is not mass conserved. FO7 has
been used widely in the passive-microwave community (e.g.,
Kulie et al., 2010; Geer and Baordo, 2014) and is believed to
have a better representation of precipitation-sized frozen par-
ticles, while MH97 is believed to represent anvil or cirrus ice
better (a good comparison is given in Fig. 2 of Ekelund et al.,
2020). Eight particle shape models are tested for each PSD
assumption, as listed in the legend of Fig. 7. Random orien-
tation is assumed for all simulations. More descriptions of
model setups, including sensitivity to PSD and PM assump-
tions, can be found in Ekelund et al. (2020).

Based on the PDF comparison of simulated and observed
TB shown in Fig. 7, we can clearly see that model simula-
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Figure 6. Lookup table (LUT) of the gain model as a function of Tp, and Julian day.

tions capture well the peak of the IceCube-observed radi-
ances, although the clear-sky variation (roughly for TB >
220K) is significantly smaller than that observed. If Gaus-
sian noise with width of 7K is added to the ARTS simula-
tion, it can greatly mimic the IceCube statistics (not shown);
we thus speculate that the warm-end discrepancy is likely
induced by the nosier IceCube data. This Gaussian shape
of random noise mainly originates from three components:
error induced by gain uncertainty, space count prediction
and geolocation registration. The former two factors are
explained in more detail in Appendix D, which is 2—4 K.
The third factor’s contribution is therefore estimated to be
~ 3 K. Nevertheless, we cannot completely exclude other
factors; e.g., the water continuum might be slightly over-
represented in the model. At the cold end however, model—
observation discrepancies reveal interesting microphysical
information. Firstly, none of the spheroid PM assumptions
could make TBs cold enough that IceCube observes (ex-
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cept a solid spheroid with an MH97 assumption), indicating
that current sphere or spheroid assumptions in many retrieval
algorithms and model microphysical schemes are probably
wrong or at least not sufficient to capture the observed cloud
ice variabilities and radiative properties. Furthermore, even
for non-spheroid particles, the differences among produced
PDFs are discernible as well. For example, the “Hong eight-
column aggregate” (purple solid) seems to capture the ob-
served statistics with the MH97 assumption well but appar-
ently produces a TB that is too warm with the FO7T assump-
tion. This particle shape is very similar to the PM assumption
used in the current MODIS cloud retrieval algorithms (six-
column aggregate; Platnick et al., 2017), where a gamma-
size distribution is assumed. Recall that the sub-millimeter
spectrum has a similar penetration depth as the passive vis-
ible spectrum (Fig. 1b). Such an inconsistency could there-
fore only be explained by the inconsistent PSD assumptions
or the fact that IceCube and the MODIS visible band are ob-
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serving different parts of the ice particle size spectrum. An-
other discernible discrepancy is from the simulation using
DARDAR microphysics (blue dashed line in Fig. 7). DAR-
DAR is a joint CloudSat radar and CALIPSO lidar IWC re-
trieval product which is believed to provide the best global
knowledge about IWC vertical structures by far. However,
with the DARDAR spheroid assumption, neither of the PSDs
could reproduce IceCube ice observations in the upper tro-
posphere. This strongly indicates that the “one-size-fits-all”
approach does not work for all cloud ice particles. Aggre-
gates and an aggregate mix seem to overall produce the best
match to the IceCube observations. The spread of the simu-
lated PDF lines occurs at a warm TB (~ 220 K), which in-
dicates that the sub-millimeter channel is more sensitive to a
particular shape than MW channels (e.g., similar simulations
carried for 190 GHz in Ekelund et al., 2020).

To summarize this section, the comparison between the
IceCube TB distribution and a variety of ARTS model simu-
lations demonstrates the good quality of IceCube data, espe-
cially for the cold ice cloud. The difference on the warm-end
widths indicates that IceCube data probably contain ~ 7 K of
random noise (see Appendix E for IceCube instrument noise
estimation using ARTS simulations). On the other hand, the
spread of the simulations covers the IceCube measurements
fairly well, reflecting the model’s capability at simulating
cloud ice scattering at the sub-millimeter range. This model
serves as the core RTM for the upcoming Ice Cloud Imager
(ICT) mission with all channels at the sub-millimeter range.
Therefore, IceCube Level 1 data (Gong and Wu, 2021) pro-
vide a valuable asset for model validation and testing.

3.2 Comparison against other observations

In this section, IceCube TB will be compared against two
other independent spaceborne observations at collocated

Earth Syst. Sci. Data, 13, 5369-5387, 2021

footprints to validate the quality of IceCube cloud radiance
measurements. These comparisons will be further compared
with previous airborne campaign observations to evaluate the
consistency and accuracy of IceCube Level 1 data.

The two independent spaceborne observations are the
CloudSat 2B-CWC-RO (radar-only cloud water content)
IWC retrieval product (version 05) and CALIPSO Imag-
ing Infrared Radiometer (IIR) cloud product (version 4.20).
We chose the CloudSat 2B-CWC-RO product instead of the
DARDAR product that was used in the previous section sim-
ply because DARDAR data were not available for the Ice-
Cube flight period at the time when this part of the research
was conducted. IIR was chosen because of two considera-
tions. First, it is a passive IR radiometer, so we can scruti-
nize the sensitivity window overlaps between sub-millimeter
and IR techniques on the IWP spectrum. Secondly, IIR has
a 1km? footprint size and a 64km x 64km swath, and it is
geolocated with the CALIOP (Cloud-Aerosol Lidar with Or-
thogonal Polarization) lidar. It has three medium-IR broad-
band channels centered at 8.65, 10.6 and 12.05 um. IIR’s
cloud product was retrieved against collocated CALIOP lidar
measurements and then extended to the entire swath. There-
fore, it has the advantage of high spatial resolution, high ac-
curacy and a wider swath than lidar (hence more colloca-
tion samples with IceCube). Details of IIR cloud product re-
trieval algorithms and evaluation can be found in Garnier et
al. (2013, 2020).

Collocated observations between CloudSat-, IIR- and Ice-
Cube TB observations within a £30° viewing angle are iden-
tified globally and mapped on Fig. 8c as blue filled cir-
cles and red triangles, respectively. The collocation criteria
are defined as the time difference within 10 min and dis-
tance within 30 km. We can see collocation samples are too
limited to make robust statistics. However, they are enough
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between 7—-15 km.

to put together a steep and near-linear TB—IWP relation-
ship that agrees with ARTS model simulation in a broad
sense (Fig. 8a, model simulation is taken from the one on
Fig. 1a), although model simulation seems to overestimate
the TB depression at a larger IWP. Note that the partially
column-integrated IWC profile in the middle-to-upper tro-
posphere (7-15km), or pIWP, computed from CloudSat re-
trievals has been presented and compared here to account
for the maximum penetration depth of IceCube observations
in the mid-latitudes according to a mid-latitude case simu-
lation in Gruntzun et al. (2018). We tried different bottom
heights for the pIWP integration and found that the slope
barely changed. We can also see from the limited collocated
samples that IceCube only starts to show sensitivity to IWP
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when it exceeds 40 g m~2, which agrees beautifully with the
RTM simulation even though this simulation has quite some
oversimplified settings.

Moreover, IceCube TB is found to show some sensitivity
to the equivalent sphere diameter D, in the 50-100 um range
before the slope becomes chaotic (Fig. 8b). We will revisit
this point in the comparison with a field campaign below.

So far the only other two passive sensors that carry a 874—
883 GHz channel are ESA’s airborne International SubMil-
limeter Airborne Radiometer ISMAR) and NASA’s airborne
Compact Scanning Submillimeter-wave Imaging Radiome-
ter (CoSSIR). ISMAR only added the 874 GHz channel in
recent flights, so data are not publicly available at this mo-
ment (Hammar et al., 2018; Fox, 2020). CoSSIR channel
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frequencies range from 183 + 1, +£3, £7 GHz (water vapor
profiling), 220, 380+£1, £2, &3, +6 GHz (temperature profil-
ing) and 640 GHz vertically polarized and horizontally polar-
ized pairs to 874 GHz. Designed with both conical and cross-
track scan patterns, CoSSIR was onboard the NASA ER-
2 aircraft and deployed to the TC4 (Tropical Composition,
Cloud and Climate Coupling) campaign together with the
94 GHz Cloud Radar System (CRS) (Zhang and Monosmith,
2008). Comparison between CoSSIR 874 GHz and CRS re-
trievals is equivalent to comparisons between IceCube and
CloudSat except that the in-flight comparison should yield
a much cleaner and more robust relationship because of the
perfect collocation, lower noise level and fortune to sample
deep convective systems during the TC4 campaign. Evans et
al. (2012) and Davis et al. (2010) described detailed retrieval
procedures for D and IWC from CoSSIR. Dy, is the mass-
weighted equivalent sphere diameter, defined as

_ [ N(De)D}Ded D,
~ [ N(De¢)D3dD:

where N is the number density. Evans et al. (2012) has
proven that a dedicated suite of MW and sub-millimeter
cloud radiometers such as CoSSIR can achieve the vertical
profiling of cloud ice. Gong and Wu (2017) demonstrated
the usefulness of polarized 640 GHz radiance measurement
on inferring ice crystal shape and orientation.

Collocated CoSSIR 874 GHz TB-CRS IWP and Dy
are scattered in Fig. 9. To make a fair comparison, only
cross-track scan samples with viewing angles < 30° are
used. Also, again the partial column integration is used for
IWP and Dy, calculation but for 9km above instead of
7km above for CloudSat pIWP integration. This consider-
ation is to account for the tropopause height difference be-
tween the mid-latitudes and deep tropics because almost
all CloudSat—IceCube collocations happen at mid-latitudes,
while the TC4 campaign flew in the deep tropics. Compar-
isons from IceCube—CloudSat and IceCube-IIR are overlaid
as blue filled circles, and the difference between physical
meanings of Dy, and D, is ignored here. To account for gas
absorption between the flight altitude and satellite altitude,
a 10K warm offset is added to the spaceborne comparison
data. From visual inspection we can tell the TB-IWP and
TB—-Dyye relationships are robust and consistent with those
spaceborne relationships. The scattered spaceborne observa-
tions at ~ 1000 g m~2 and 400—500 um are from one collo-
cation overpass over the central US. While it is reasonable
to argue that these may be outliers or caused by imperfect
collocations, their spread and mean values indicate the up-
per boundary of 874 GHz sensitivity thresholds, as also sug-
gested by the flattening end to the right of Fig. 9 from the
campaign data.

In summary, TB-IWP and TB-D. relationships observed
by collocated IceCube and other independent spaceborne ob-
servations show impressively good agreement with RTM pre-
diction as well as airborne observations. Based on these two

Dime , 2
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sets of comparisons, we can conclude that IceCube observa-
tions can indeed fill in the sensitivity gap between passive
IR and MW sensors for IWP and ice particle size. CoSSIR is
anticipated to be deployed again in the near future for the IM-
PACTS (Investigation of Microphysics and Precipitation for
Atlantic Coast-Threatening Snowstorms) campaign, where
more 874 GHz measurements are going to be collected from
mid-latitude winter frontal systems. IceCube data (Gong and
Wu, 2021) can be used as observational references for future
RTM simulations or feasibility studies for developing new
sub-millimeter instruments (e.g., CoSSIR and ICI).

4 Cloud ice science

IceCube provides the first-ever global ice cloud observa-
tion at 874-883 GHz. Although IceCube was not designed
as a science mission, it is still worthwhile exploring and dis-
cussing the scientific value of this dataset (Gong and Wu,
2021). We do not intend to provide the Level 2 retrievals at
this moment mainly due to two considerations. Firstly, the
geolocation registration has ~ 14 km uncertainty as afore-
mentioned. As clouds can often be very inhomogeneous,
pixel-by-pixel retrieval might yield poor quality, especially
at large viewing angles. Despite this, we will show in the
last example that IceCube data can be used for weather-scale
studies as well. Secondly, with only one single-frequency
channel, the retrieval cannot avoid large uncertainties in-
duced by microphysics assumptions. Even it is backed up
by sophisticated RTM simulations, one can clearly see from
Fig. 7 how different microphysics assumptions can make
huge differences in the simulated TB and therefore impact
the retrieved IWP. Nevertheless, IceCube data (Gong and
Wu, 2021) are suitable for climatology studies. The IceCube-
observed cloud ice distribution and diurnal variation can help
reveal the physical processes that were missing in the IR and
MW pictures.

To avoid arbitrarily setting too many assumptions before
using an RTM (e.g., ARTS) for retrieval, we applied the
empirical relationships of TB—pIWP and TB—Dy,e derived
from the airborne campaign CoSSIR—CRS collocation statis-
tics shown in Fig. 9. A 10K gas absorption offset is added
to IceCube TB before the conversion. Apparently a positive
value of IWP or Dy, should not be assigned for every TB
observation. Accounting for the sensitivity range and gen-
eral statistics, a commonly used cloud-screen method, called
the iterative 30 method, is used. This method and the em-
pirical retrieval approach has been used previously in Gong
and Wu (2014) and Wu et al. (2014). A 10-loop iteration is
carried out to screen out the clear-sky TB. In each iteration,
the standard deviation o and the corresponding peak value
TBpeax are calculated, and then any TB values below the
TBpeak — 20 threshold are excluded from the next iteration
step. After several iterations, the contribution from the long
left tail of the TB’s PDF to the skewness can be removed, and
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Figure 9. (a) IWP-TB and (b) Dme—TB relationship derived from collocated CoSSIR-CRS measurements (black dots) during the TC4
campaign. Note that IWP here is the partial column integration from 9 km above. IceCube—CloudSat-IIR data from Fig. 8 are overlaid as
blue dots with a warm offset of 10 K added. ARTS simulation (red curve) is added as the reference.

the Gaussian spread of the clear-sky variability can be rela-
tively well captured. We then apply TBpeax — 30 from the
last iteration step as the threshold to separate clear-sky and
cloudy-sky scenes. Only pixels with TB < TBpeax — 30 are
used for the “retrieval”. This procedure has been carried out
monthly for every 5° latitude band and only for observations
at viewing angles < 30°.

Figure 10 shows the geographic distribution of the mean
IWP, cloud occurrence frequency (OF) and mean Dy,
for June—July—August 2017 and 2018 (left) and January—
February 2018 (right). December 2017 was not included
because of too few data samples collected during that
month. Note that by saying IWP, it is actually the par-
tially column-integrated pIWP from about 9km above in
the tropics and 7km above in the mid-latitudes based on
the empirical relationships. As expected, large IWP, OF
and Dy, measurements are identified in the tropical deep
convective regions. The geographic distributions of Ice-
Cube IWP agree well with Aura Microwave Limb Sounder
(MLS) 640 GHz pIWP retrieved above 10 km (Wang et al.,
2021), Odin SMR (501 and 554 GHz; Submillimeter wave
Radiometer) and SMILES (624-650 GHz; Superconduct-
ing Submillimeter-Wave Limb-Emission Sounder) pIWP re-
trieved above 260 hPa (Eriksson et al., 2014). Overall the
magnitude of IceCube IWP is slightly larger than the above
three other passive satellite measurements but within good
agreement with CloudSat pIWP above 260 hPa (Eriksson et
al., 2014). This is more or less expected because we used
the empirical relationship, while Odin SMR and SMILES
pIWP retrievals are based on RTM simulations, while Aura
MLS 640 GHz retrieval is based on the empirical relationship
against the CALIPSO lidar. OF derived from IceCube data
ranges between 15 %—-30 % in the tropical deep convective
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regions. Comparing to MODIS IR band ice cloud coverage
retrieved at 40 %—80 % in the same regions which is more
widely spread (Wang et al., 2016) and to CloudSat-observed
deep convective clouds occurring at a frequency of 5 %20 %
in the deep tropics and more narrowly defined (Sassen et al.,
2009), we can thus reconfirm that an observed sub-millimeter
cloud is in the middle of the developing processes of deep
convective systems between deep convective clouds and IR-
observed cirrus and anvils when they spread out, as well as
in the middle of the decaying processes when the anvil and
cirrus clouds settle down. Mean Dy, however, starts to lose
its geographic differentiation in these regions, indicating the
sensitivity threshold in deep convective regions. Other than
tropical deep convective regions that migrate with the sea-
son shift, coherent enhancements of the three parameters are
also found at the Southern Ocean storm track and cold-air
outbreak regions in austral winter and North Atlantic storm
track regions in boreal winter.

As we argued about the importance and unique merit of
sub-millimeter techniques, it is more straightforward to com-
pare the diurnal cycle from sub-millimeter observations with
surface precipitation to identify some plausible coupling pro-
cesses between the cloud and precipitation. Figure 11 over-
laps the diurnal cycle of IceCube cloud IWP with that of the
surface precipitation rate (PRS) retrieved by the Global Pre-
cipitation Mission Dual Precipitation Radar (GPM-DPR) in
the deep tropics (20° S—20° N) for ocean and land conditions,
separately. Over tropical land, we can see that the IceCube
cloud diurnal cycle lags the minima and maxima of surface
precipitation by ~ 3-5h. Early-evening heavy precipitation
at around 17:00LST (local solar time) is well-known as a
result of the development of tropical mesoscale convective
systems (MCSs) (Nesbitt and Zipser, 2003). While deep con-
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January—February 2018 (d, e, f). Grid box size is 5° latitude x 7.5°
longitude.

vective systems downpour, its upper level cloud continues
to develop and spread out. IceCube cloud IWP peak tim-
ing (22:00 LST) strongly suggests they are likely anvils or
thick cirrus. As land convection calms down and eventu-
ally dissipates and surface precipitation reaches minimum at
~ 10:00 LST, the upper-level cloud does not completely dis-
sipate until noon. So from the diurnal cycles of precipitation
and clouds over land, we may conclude that these IceCube-
observed clouds are likely dominated by those deep convec-
tive clouds and cloud systems.

However, the diurnal cycle of precipitation and IceCube
cloud over tropical ocean tell a different story. Firstly, the
magnitude of the diurnal cycle of oceanic precipitation is sig-
nificantly smaller than that over tropical land, although the
mean is larger, which has been reported previously in lit-
erature. The overall precipitation peak at 05:00LST is be-
lieved to be a mixed signature among isolated convection,
shallow convection and MCSs (Nesbitt and Zipser, 2003).
However, an IceCube-observed ice cloud leads the develop-
ment of surface precipitation by about 5 h, as does the trough
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Figure 11. Diurnal cycle for IceCube IWP (red) and surface precip-
itation rate (PRS) derived from GPM-DPR radar (black) over trop-
ical ocean (a) and land (b) with respect to local solar time (LST).
Only IceCube data within a +30° viewing angle are used for gen-
erating these statistics, and the tropics are bounded by 20° S and
20° N. Time interval is every 3 h, and IceCube does not have sam-
ples between 22:00 to 01:00 LST.

(i.e., dissipation phase). This hints that stratiform precipita-
tion forming from anvils rather than bottom-up convective
downpours is likely the dominant physical process in deter-
mining the diurnal cycle of the tropical oceanic precipitation.
This speculation explains the opposite phase lag between the
diurnal cycle of IWP and surface precipitation over tropical
ocean versus land. It is also supported by the longer time de-
lay over ocean (~ 5h) than over land (~ 3 h), as it takes a
longer timescale for the stratiform precipitation particle to
form from the anvils and to fall down to the ground. Using
Tropical Rainfall Measurement Mission (TRMM) products,
Yang and Smith (2008) found that stratiform precipitation
dominated the tropical oceanic precipitation throughout the
day, with more contributions from local afternoon to mid-
night. This partially supports our hypothesis. Nevertheless,
we could only complete the picture of the convection-cloud—
precipitation process by wisely using a combination of satel-
lite observations that detect different components of this en-
tire process.

There are some caveats to this diurnal comparison though.
IceCube does not collect enough cloudy-sky samples be-
tween 22:00 and 01:00 LST in the tropics, so the diurnal cy-
cle is not complete. Due to the same reason, we cannot fur-
ther scrutinize different regions (e.g., maritime continent), so
different mechanisms are unavoidably mixed together. More-
over, the IceCube diurnal cycle over tropical land is similar to
that derived from SMILES, but its diurnal cycle over the trop-
ical ocean is too strong compared to that of SMILES (Mil-
lan et al., 2013; Eriksson et al., 2014). The discrepancy be-
tween the two passive sub-millimeter missions could not be
understood without further sub-millimeter missions that scan
Earth at different local times. Multiple channels will greatly
improve the retrieval quality and increase the retrievable mi-
crophysical parameters (Eriksson et al., 2020).

In the last example to demonstrate IceCube data’s scien-
tific merit, we show a case study of Typhoon Trami (Fig. 12).
IceCube overpassed this typhoon on 29 September 2018 at an
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Figure 12. IWP retrievals of Typhoon Trami on 29 September 2018 from an overpass of IceCube (color bar on the top) and Terra—-MODIS
(color bar on the bottom left corner). Their time difference is about 1.5 h. MODIS retrieval image is from https://worldview.earthdata.nasa.gov
(last access: 11 November 2021). We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.
nasa.gov, last access: 11 November 2021), part of the NASA Earth Observing System Data and Information System (EOSDIS).

orbital altitude of ~ 250km 4 d before it re-entered Earth’s
atmosphere. However, it was still capable to yield a set of
scientifically valuable observations in terms of both the re-
trieved IWP value range compared with Terra MODIS re-
trievals, as well as the geolocations. Although there is a
~ 1.5h time difference between the Terra MODIS and Ice-
Cube measurements, both observations exhibit good agree-
ments with each other: large IWP values (> 1000 g m~2) for
the northern arm and medium IWP values (200-500 g m_z)
for the outer bands. IceCube data show a sharp gradient of re-
trieved IWP from left to right across the northern arm, while
the MODIS visible band apparently saturated and cannot tell
more detailed structures within the band.

5 Code availability

Data processing codes are available upon request.

https://doi.org/10.5194/essd-13-5369-2021

6 Data availability

IceCube Level 1 data are available in NASA’s
Open Data Portals at Gong and Wu (2021)
(https://doi.org/10.25966/3d2p-f515). They are also
available to the public on the main IceCube website at
https://earth.gsfc.nasa.gov/climate/missions/icecube/  (last
access: 11 November 2021). A list with variable names and
their meanings can be found in Appendix F.

7 Conclusions

IceCube carries the first-ever spaceborne 874—883 GHz ra-
diometer, which kept on acquiring Earth’s ice cloud measure-
ments for more than 15 months. In this paper, we discussed
the motivation and algorithms to obtain IceCube Level 1 radi-
ance data (Gong and Wu, 2021). The detailed procedures for
data processing have been documented in Sect. 2. The main
steps include space count prediction and calibration, viewing
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angle determination and geolocation registration, and gain
model construction. The processed IceCube radiance data
are then compared with RTM-simulated clear-sky radiances,
collocated active and passive satellite observations, and air-
borne campaign data to validate their quality. Overall Ice-
Cube Level 1 data are found to be of good quality at near-
nadir viewing angles. Data quality in general decreases in
2018 compared with 2017 because of instrument degrada-
tion. The estimated uncertainty of IceCube radiance data is
~TK.

Scientific values of IceCube data are discussed with three
examples presented. The first is the global 883 GHz cloud
ice map. The agreement and disagreement with what have
been found from other passive and active spaceborne mea-
surements demonstrate unique assets of this dataset in filling
the missing piece of the entire coupled cloud—precipitation
process. Then we show the diurnal cycle to further demon-
strate this point. A typhoon case is given at last to showcase
that IceCube data are unique and important not only for un-
derstanding the climatologies but also valuable for weather
scale studies.

A few sub-millimeter sensors will hopefully be launched
to space in the upcoming years. Together with their airborne
and ground variants as well as their predecessors such like
IceCube, we will gain more comprehensive understanding
of this band and explore more capabilities from this band
for better monitoring and predicting Earth’s weather and cli-
mate.

Appendix A: Details of Fig. 1a

As CloudSat, CALIPSO and AIRS are the spaceborne radar,
lidar and passive infrared sensors flying on the A-train con-
stellation, only 1 month of tropical collocation statistics (Jan-
uary 2009, 30° S-30° N) is robust enough. The collocation
criteria is defined such that the spatial difference should be
less than 5 km, and temporal difference should be less than
1 min. AIRS water vapor channel no. 1247 (wavenumber =
1128.57cm™!) is employed here. AIRS T is computed
by subtracting Level 2 cloud-cleared radiance (7, version
6) from Level 1B brightness temperature TB (version 5).
The CloudSat—CALIPSO joint IWP retrieval product 2C-
ICE (version 4) is used as the truth showing on the horizontal
axis. In the case that multiple CloudSat—-CALIPSO footprints
collocated with one AIRS footprint, the IWP values retrieved
from the former are averaged first before constructing the
two-dimensional PDF. The blue solid line connects the peaks
of the AIRS—CloudSat—-CALIPSO two-dimensional PDF.
To construct MHS’s T;—IWP relationship, collocated
tropical near-nadir samples from multiple months are used
to compile the statistics. Details about collocation criteria,
the near-nadir definition, etc. can be found in Gong and Wu
(2014). Different from the above blue line, the black dashed
line is created from an ARTS model simulation at 190 GHz
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by inserting a Gaussian shape of an ice cloud layer between
150 and 600 hPa with a peak at 400 hPa. One can see that the
RTM simulation, even when using an idealized cloud layer,
can accurately mimic the observed T¢;;—IWP relationship, in-
dicating that MW channels are more sensitive to the total
mass than to the vertical structure.

The black solid line is based on another ARTS model sim-
ulation at 8§74 GHz with the same ice cloud configuration.
For both the simulations at 190 and 874 GHz, T, is derived
by subtracting the simulated clear-sky radiance (i.e., setting
IWC =0 in the entire column), so any surface contribution
is excluded using this strategy.

Appendix B: Poor-quality orbit examples

Figures 2 and 3 only give an example of good measurements.
In the later time of the IceCube mission, various experiments
were tested to gain knowledge of instrument behavior under
different scenarios. Figure B1 and B2 here gave an exam-
ple of a poor-quality orbit. IceCube was kept on for several
orbits actually, but the instrument temperature was kept un-
der 35°C. As a result, one can clearly see the oscillation in
the later part of this orbit, and the C.—Cgp contrast declines
over time due to the relatively high temperature (Fig. Bla). In
Fig. B1d, it is also clear that the periodic low-frequency os-
cillation of Cgp against Tp; and Tp, also changed after Tp,
hit the temperature cap and IceCube was cooled down and
then heated up again. As a result, Fig. Blc and d failed to
capture the slowly varying oscillations of Cgp. Therefore, we
need to further apply a fitting to Cy, (green line in Fig. B2),
and the final Ce now remains largely stable among different
spins (red dots of Fig. B2, shifted upward by 200 counts).
Some spins that have too low of a Ce—Cy,, contrast (e.g., the
five spins between dt = 1.0 x 10*s and dt = 1.1 x 10*s) or
too slow of a spin velocity (e.g., the last four spins) are ex-
cluded.

Appendix C: Machine learning/artificial intelligence
model

Empirical relationships have been used in steps 1—4 to ac-
count for the majority of Cgp variations even for irregular
orbits like the one shown in Fig. B2. Therefore, the resid-
ual between observed Cgp and predicted ones remain stable
with a standard deviation of ~ 4 K (black crosses in Fig. 4).
During these procedures, instrument parameters such as spin
rate (spin,, spin, and spin_), measured magnet field (Mag,,
Mag, and Mag,) were not used. They were believed to not
affect Cyp, in the pre-launch tests. As such, the ML/AI model
is only included in this Appendix for the purpose of testing
the robustness of this approach in reducing any generic in-
strument noise for IceCube and future CubeSat type missions
or constellations that are less well calibrated due to the low
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Figure B1. Same with Fig. 2, except this is an example showing a bad-quality orbit. This orbit is the second orbit of IceCube on 2 April
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Figure B2. Same with Fig. 3, except this is the final step for the case in Fig. B1. The final polynomial fitting to the space-view counts only
is a very necessary step to capture the slowly varying component of the time series, which was failed to be captured in the step 3 based on
Fig. Blc using all-sky counts. Please note that the date format in this figure is year month day.

cost cap. In the final product, we provide both the TB before
and after this ML/ALI step for the user to select.

Only the random forest model was tested for this work. As
we can see from the poor-quality orbit case in Fig. B1b and d,
Csp shows a hint of slight elevation after IceCube has been
switched on for a long time given the same Tp; and Tp,.
Therefore, relative change in time and temperature with re-
spect to the switch-on parameters for each orbit are also fac-
tored in as DTy, DT,, DT3, DT4 and DTime. The Julian day
counted from 1 January 2017 is marked as “time”. As there

https://doi.org/10.5194/essd-13-5369-2021

is no need or intention to “predict for the future” but rather
to capture the fast-varying and slow-varying components of
the Cgp residual, we split the total samples randomly so to as-
sign 70 % for training and the remaining 30 % for testing and
validation. This is different from a traditional ML/AI model
performance check and admittedly makes some caveats to
the argument. Only 30 % of the testing sample statistics are
shown in Fig. C1.

As one can see from the heatmap in Fig. Cla, the major-
ity of the predicted residual is centered around 0K, mean-
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ing that the trained model can largely capture the residual
variations most of the time (recall that “residual” is defined
as the discrepancies between the predicted and the observed
Csp values). It also indicates that there is no associated bias
to skew the statistics. The standard deviation of the predicted
residual oy is ~ 2 K as opposed to ~ 4 K before the ML/AI
treatment, which is a direct reflection of the strength of
this ML/AI approach in capturing the sophisticated, “white-
noise-like” features of the residuals. In the meantime, large
residual values up to £10 K, showcased along the 1 : 1 line in
the heatmap, can be produced as well. These values mainly
occur at the start and end of the Earth-view leg with big slant
viewing angles.

The rank of importance among all variables can help fur-
ther diagnose the sources of the residual time series. As
expected, instrument degradation (i.e., time) and switch-on
time duration affect the residual noise of Cs, the most. In ad-
dition, the relative change of Tp, and Tp;, indicated by DT4
and DT3, and the spin rate along three axes contribute about
the same amount of importance to the final prediction.

Appendix D: TB uncertainty

The uncertainty (i.e., error bar) of derived TB can be cal-
culated as follows. According to the definition of TB, TB =
C./G; therefore, the full derivative of TB, i.e., dTB, could
be written as

arp =29 Lo 0Ce _AG gy, A€ (D1)
G G G G G’

The first term is uncertainty induced by gain estimation,
and the second term is induced by the space count predic-
tion. AC is calculated for each orbit as shown in Fig. 4,
which should be ~ 4 K (~ 2 K) before (after) the ML/AI pro-
cess. AG is computed from the standard deviation of PDFs
of daily G, the value of which varies around 0.002-0.005
[counts K~!] for most days and occasionally reaches up to
0.02 [counts K~1]. dTB is thus calculated for each given C,
once TB is converted. This value is reported in the Level 1
data as well.

Appendix E: IceCube instrument noise estimation

The ~ 7 K instrument noise is estimated as shown in Fig. E1.
With applying a 7 K random noise that follows the Gaussian
distribution on the simulated TB, we can achieve an excel-
lent agreement on spread of the warm side (red versus black
lines), indicating that the warm-side discrepancy in Fig. 7 is
indeed mainly induced by IceCube noise of ~ 7 K. Note that
this instrument noise includes the TB uncertainty quantified
for each single observation using the method described in
Appendix D. However, the total noise can only be quantified
using the PDF method suggested here, and it is impossible to
accurately capture this noise at a single footprint level.
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Another interesting feature to notice is that the discrepancy
between 220-235 K shown in Fig. 7 disappears if the model
inputs are self-consistent in terms of particle shape and PSD
when the retrieval algorithm is applied (i.e., DARDAR algo-
rithm assumptions about microphysics are applied through-
out the simulations in Fig. E1). We cannot reach a quick con-
clusion before rerunning a group of sensitivity tests. Unfor-
tunately Fig. E1 was generated at the end of this project, and
we do not have further resources to rerun sensitivity experi-
ments like those in Fig. 7 again.

Appendix F: Variable name list

IceCube Level 1 data (Gong and Wu, 2021) are stored
in the HDF5 (Hierarchical Data Format) format. The
data filename is IceCube.L1.YYYYMMDD.VO01.h5, where
YYYYMMDD indicates the year (four digits), month (two
digits) and day (two digits).

The variable name list can be found below.

LAT - latitude; unit: [°]

LNG - longitude; unit: [°]

TB_MODEL — RTM-simulated clear-sky TB; unit: [K]
TB_OBS1 — observed TB; unit [K]

TB_OBS2 — observed TB with ML/Al-predicted resid-
ual subtracted (see Appendix C for details of this proce-
dure); unit: [K]

TB_UNCI - TB uncertainty; unit: [K]

TB_UNC2 — TB uncertainty after ML/AI treatment;
unit: [K]

UTC — universal time; unit: [s]
VIEW_ANG - viewing angle from the nadir; unit: [°]

DN_FLAG - day/night flag (O for day, 1 for night); unit-
less

QC — quality control flag; unitless

0: good quality

1: geolocation quality is poor due to large viewing
angle

2: quality is doubtable due to abnormal gain
3: quality is doubtable due to abnormal spin rate or

instrument temperature

ORBIT _NUMBER - orbit number counted from the
switch-on time to the switch-off time (every day reset
to 0); unitless

https://doi.org/10.5194/essd-13-5369-2021
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Figure C1. (a) Heatmap of the predicted Csp residuals (vertical axis) against the observed ones (horizontal axis), colored in log-scale.
(b) Rank of importance of different parameters. Spin(Mag)_x, _y and _z correspond to the spin rate (magnetic field) on the x, y and z axes,
respectively; DDN stands for the day of the year, and please refer to text in Appendix C for the meaning of other variables.
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Figure E1. PDF comparisons of IceCube TB (black) against ARTS
model simulations using DARDAR retrieved IWC profiles as the
input (blue) and the same simulation with 7 K Gaussian random
noise applied (red). Only DARDAR profiles that are within the same
area and time range of Fig. 7 are used and the simulation follows
Ekelund et al. (2020).
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