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Abstract
Numerical model reduction (NMR) is used to solve the microscale problem that arises from computational homogenization
of a model problem of porous media with displacement and pressure as unknown fields. The reduction technique and an
associated error estimator for the NMR error have been presented in prior work, where both spectral decomposition (SD) and
proper orthogonal decomposition (POD) were used to construct the reduced basis. It was shown that the POD basis performs
better w.r.t. minimizing the residual, but the SD basis has some advantageous properties for the estimator. Since it is the
estimated error that will govern the error control, the most efficient procedure is the one that results in the lowest error bound.
The main contribution of this paper is further development of the previous work with a proposed combined basis constructed
using both SD and POD modes together with an adaptive mode selection strategy. The performance of the combined basis is
compared to (i) the pure SD basis and (ii) the pure POD basis via numerical examples. The examples show that it is possible
to find a combination of SD/POD modes which is improved, i.e. it yields a smaller estimate, compared to the cases of pure
SD or pure POD.

Keywords Computational homogenization · Error control · Model reduction

1 Introduction

Multiscale modeling with computational homogenization is
a well-known approach for material modeling. The main
advantage over direct numerical simulation (DNS) is reduced
computational cost. One standard method for multiscale
modeling is the finite element squared (FE2) procedure,
where subscale computations are carried out on representa-
tive volume elements (RVE) in each point of the macroscale
domain1 in a nested iteration scheme. Even though there are
benefitswithFE2 overDNS, theFE2 scheme is still very com-
putationally demanding for practical problems, especially for
fine macroscale meshes in three dimensions, where the num-
ber of RVE problems rapidly increases with mesh density.
It is therefore of interest to reduce the computational cost of
solving the individual RVE problems.

1 In practice one RVE solution per macroscale quadrature point in a
finite element setting.

B Fredrik Ekre
fredrik.ekre@chalmers.se

1 Department of Industrial and Materials Science, Chalmers
University of Technology, 41296 Gothenburg, Sweden

A number of numerical model reduction2 (NMR) meth-
ods have been proposed for reducing the solution space
of a discrete RVE problem. We highlight, in particular,
methods based on superposition of “modes” that are char-
acteristic to the solution field. Waseem et al. [1] and
Aggestam et al. [2] presented reduced models for compu-
tational homogenization of linear transient heat flow based
on spectral decomposition (SD). In the context of small
strain (visco)plasticity various attempts have been made to
approximate the inelastic strains with “inelastic modes”.
One example is the “eigendeformation-based-reduced-order
homogenization” technique introduced by Fish and cowork-
ers [3,4], which relies on transformation field analysis
(TFA), originally proposed by Dvorak and Benveniste [5].
Michel and Suquet [6,7] proposed a similar approach coined
nonuniform transformation field analysis (NTFA). Fritzen et
al. [8–11] exploited NTFA combined with proper orthogonal
decomposition (POD) for visco-elasticity and a class of stan-

2 The terms reduced order modeling (ROM) and model order reduction
(MOR) are also used frequently in literature. We have chosen to use
the term numerical model reduction (NMR) to emphasize that we are
using numerical methods to reduce the numerical problem, rather than
tampering with the underlying model.
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dard dissipative materials. Jänicke et al. [12,13] applied this
approach to poroelasticity, where the pore pressure plays a
role similar to inelastic strains in the NTFA framework. As a
consequence of the reduced model, the macroscale problem
reduces to a single-phase continuum, and the “mode coeffi-
cients” can be interpreted as internal variables.

Naturally the use of a reduced basis results in an additional
source of error which is of interest to control and quantify.
Several different error estimators have been developed, for
different model reduction techniques, in the context of multi-
scale modeling. Methods for estimating the error from POD
type reduction techniques have been presented by Abdulle
et al. [14,15] for heterogeneous multiscale methods and by
Boyaval [16] for numerical homogenization. Ohlberger and
Schindler developed a method for estimating the error for
localized reduced basis multiscale methods. Error estimation
based on the constitutive relation error have been proposed
byKerfriden et al. [17] and Chamoin and Legoll [18]. Agges-
tam et al. [2] presented an estimator, with guaranteed bounds
for the NMR error, for the SD-reduced RVE problem per-
taining to transient linear heat flow. The estimator is based
on an auxiliary symmetric form of the original problem, cf.
Pares et al. [19–21] who presented this strategy for estima-
tion of discretization errors, and fully computable bounds
on the NMR error were derived based on the discrete resid-
ual, cf. e.g. Jakobsson et al. [22]. The estimator was derived
for (i) an energy norm and (ii) for arbitrary user-defined
quantities of interest in a procedure inspired by Oden and
Prudhomme [23]. The estimator presented in [2] was gen-
eralized for a POD basis in the context of poroelasticity by
Ekre et al. [24]where it was shown that the PODbasis outper-
forms the SD basis when it comes to minimizing the residual
(and hence the residual-based estimator), but the SD basis
behaves better in that it does not overestimate the error as
much.

For the NMR estimator in Aggestam et al. [2] and Ekre et
al. [24] the fully resolvedfinite element solution is considered
exact, i.e., the estimator only quantifies the error stemming
from the use of a reduced base and “ignores” discretization
errors. Naturally an estimatorwhich quantifies these errors as
well would be desirable, however, there are cases where the
point of departure is already a finemesh; it might for example
be obtained from detailed voxel data or be required to capture
complex microstructural features. In addition, many of the
necessary quantities can be precomputed in an “offline” stage
where one can afford a fine mesh without having to tackle
the increased cost of integration, as one would have to do for
e.g. a non-linear problem.

This paper is a continuation of the work presented
in [12,24]. In particular, we consider NMR for a continuum
mechanics model of porous media, cf. Jänicke et al. [12], and
an associated error estimator, cf. Ekre et al. [24]. The main
contribution is a proposed combined basis with the inten-

tion of combining the “residual minimizing” property of the
POD basis with the “estimator improving” property of the
SD basis, and in particular investigate whether it is possible
to find an improved composition. In terms of error control,
the solution will be accepted as sufficiently accurate when
the estimated error is below the prescribed tolerance. Hence,
at least when considering guaranteed bounds of the error, the
most efficient sequence of approximations is the one that has
the best convergence in terms of the estimated bound on the
error. In other words, the procedure that generates the lowest
(exact) error is not necessarily the most practical one if the
estimated error (that has to be used for the pertinent error
control) is large.

Throughout this paper, regular font is used to denote
scalars (e.g. α), bold italic font is used to denote first and sec-
ond order tensors (e.g. u, ε), and bold font to denote fourth
order tensors (e.g. E). The scalar product (single contraction)
is denoted with ‘·’, double contraction is denoted with ‘:’ and
the outer product is denoted with ‘⊗’. For first order tensors
a, b, second order tensor A and fourth order tensor B, we
thus have

a · b = aibi , (1a)

(A · b)i = Ai j b j , (1b)

(B : A)i j = Bi jkl Akl , (1c)

(a ⊗ b)i j = aib j , (1d)

forCartesian components,where repeated indices are summed
over (Einstein summation convention). A superposed dot is
used for time derivatives (e.g. u̇ = du

dt ). Volume averaging of
a field • is denoted as

〈•〉�:= 1

|��|
∫

��
• d�, (2)

where �� is the domain occupied by an RVE, and |��| the
corresponding volume.

The remainder of this paper is outlined as follows: Sect. 2
introduces computational homogenization for the model
problem of porous media. Section 3 introduces numerical
model reduction (NMR) and describes how it is applied to
the microscale (RVE) problem(s). Section 4 discusses how
the error in the reduced solution can be estimated in terms of
(i) an energy norm and (ii) user-defined quantities of inter-
est. Section 5 presents numerical results for two example
problems, which verify the error estimates, and Sect. 6 sum-
marizes and concludes the paper.
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2 Two-scale analysis based on
computational homogenization

2.1 Themodel problem: strong format of
linear-elastic porous media

As a model problem we consider a continuum mechanics
description of a linear poroelastic medium, where the pores
arefilledwith a viscousfluid.Webaseourmodel on Jänicke et
al. [12] which adapts Biot–Willis equations for linear consol-
idation [25,26], with displacement u = u(x, t) and pressure
p = p(x, t) as the primary fields satisfying

− σ (u, p) · ∇ = 0 ∀x ∈ � × (0, T ], (3a)

�̇(u, p) + ∇ · w(p) = 0 ∀x ∈ � × (0, T ], (3b)

where σ is the Cauchy stress tensor,� the fluid storage func-
tion and w the seepage velocity. The two fields are subjected
to standard boundary conditions on the Dirichlet (�(u|p)

D ) and

Neumann (�(u|p)
N ) parts of the boundary, respectively

u = upres on �
(u)
D × (0, T ], (4a)

t:=σ · n = tpres on �
(u)
N × (0, T ], (4b)

p = ppres on �
(p)
D × (0, T ], (4c)

h:=w · n = hpres on�(p)
N × (0, T ]. (4d)

For simplicity we will consider linear constitutive rela-
tions for the stress, fluid storage and fluid flux. The stress is
given by

σ = E : ε[u] − α p I, (5)

where E is the constant elastic stiffness tensor, ε[u] = [u ⊗
∇]s is the linear kinematics symmetric strain tensor and α

is the so-called Biot’s coefficient. The storage function and
seepage velocity for the liquid phase are given by

� = φ + α∇ · u + β p, (6a)

w = −K · ∇p, (6b)

where φ is the (initial) porosity, K = k I is the permeability
tensor with isotropic permeability k, and β is the effective
compressibility parameter of the fluid-filled pore space. α

and β are defined in terms of the bulk moduli of the fluid,
K f , and the solid, K s, phase as follows:

α = 1 − K

K s , (7a)

β = φ

K f + α − φ

K s . (7b)

Finally we need an initial condition for �, viz.

�|t=0 = �0 = φ + α∇ · u0 + β p0. (8)

2.2 First order selective homogenization in the
spatial domain

In order to derive the pertinent two-scale formulation we
follow the standard procedure of computational homogeniza-
tion, see e.g. Larsson et al. [27]. For brevity we summarize
the steps here and refer to Ekre et al. [24] for details. To
obtain the macro/microscale equations from the strong form
we:

• define the weak space–time format of Eq. (3);
• homogenize the spatial integrals by introducing running
averages over RVEs, located at macroscale points x̄;

• introduce scale separation andfirst order selective homog-
enization3, e.g.,

u(x̄; x, t) = ū(x̄, t) + ε̄(x̄, t) · [x − x̄]︸ ︷︷ ︸
=:uM(x̄;x,t)

+uμ(x̄; x, t),

(9a)

p(x̄; x, t) = pμ(x̄; x, t); (9b)

where ū is themacroscopic displacement field, andwhere
uμ and pμ are themicroscopic (fluctuation) displacement
and pressure fields, respectively;

• derive the macroscale problem by adopting the pertinent
macroscale testfunction vM (vμ = 0);

• derive the microscale problem by adopting the pertinent
microscale testfunction vμ (vM = 0), one for each RVE.

2.2.1 The macroscale (homogenized) problem

The resulting macroscale problem reads; Find ū ∈ Ū such
that

∫
I

∫
�

ε[v̄]:σ̄ (ū, uμ) d� dt =
∫
I

∫
�N

v̄·tpres d� dt ∀v̄ ∈ V̄,

(10)

where Ū and V̄ are the ansatz and test spaces for the
macroscale problem. We omit the exact definitions of these
spaces, since we henceforth in this paper focus solely on the
local microscale RVE-problem. The homogenized stress σ̄

is defined as

σ̄ {ε[ū]}:=〈σ 〉�, (11)

3 The selective homogenization applied here, where the pressure is
represented only as a fluctuation field, results in an undrained RVE and
mass conservation.
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where σ̄ {ε̄} is implicit due to the history dependence.

2.2.2 The microscale (RVE) problem

In this paper we are concerned only with the solution to
the RVE-problem, and thus consider the situation where
uM from (9a) is known, i.e. ū(t) and ε̄(t) are known func-
tions in time (for the given RVE in question). The resulting
microscale problem then reads; Find (uμ, p) ∈ Uμ

� × P�
that solve

A(u)

� (uμ, p; vμ) = L(u)

� (vμ) ∀vμ ∈ Vμ

�, (12a)

A(p)
� (uμ, p; q) = L(p)

� (q) ∀q ∈ Q�, (12b)

where we introduced the RVE space–time variational forms

A(u)

� (v, q;w) :=
∫
I

[
a
(u)

� (v,w) − b�(q,w)
]
dt, (13a)

L(u)

� (w) :=
∫
I
a
(u)

�
(−uM,w

)
dt, (13b)

A(p)
� (v, q; r) :=

∫
I

[
m�(q̇, r) + a

(p)
� (q, r) + b�(r , v̇)

]
dt

+
[
m�(q, r) + b�(r , v)

]∣∣∣
t=0

, (13c)

L(p)
� (r) :=

∫
I
b�

(
r ,−u̇M

)
dt +

[
m�(p0, r)

+ b�
(
r , u0 − uM

)]∣∣∣
t=0

, (13d)

and the space variational forms representing the running aver-
ages over each RVE

a
(u)

� (v,w):=〈ε[w] : E : ε[v]〉�, (14a)

b�(q, v):=〈∇ · v αq〉�, (14b)

m�(q, r):=〈rβq〉�, (14c)

a
(p)
� (q, r):=〈∇r · K · ∇q〉�. (14d)

Remark For later use we also introduce two norms based on
m� and a

(p)
� , respectively:

‖q‖m:=√
m�(q, q), ‖q‖a:=

√
a
(p)
� (q, q). (15)

�	
We adopt Dirichlet boundary conditions, for both uμ and

p, and the spaces of spatial functions for the RVE problem
are consequently defined as

U
0
�:={v ∈ U�,h : v = 0 on ��}, (16a)

P�:={q ∈ P�,h : q = 0 on ��}, (16b)

whereU�,h and P�,h are the (spatially) FE-discretized func-
tion spaces.We thus consider the fluctuation ofu and the pore
pressure itself to vanish on the boundary. The Bochner trial
and test spaces4 in (12) can be expressed as

Uμ

�:=H1(I ;U0
�
)
, (17a)

Vμ

�:=L2
(
I ;U0

�
)
, (17b)

P�:=H1(I ;P�
)
, (17c)

Q�:={q(x, t) : q|t=0 ∈ P�, q|I ∈ L2(I ;P�)}. (17d)

3 Numerical model reduction

3.1 Preliminaries

As a preliminary step we follow [24] and utilize the time-
invariance of Eq. (12a) to introduce an implicit reduction of
the displacement fluctuation uμ. For any t ∈ I we define

uμ(t) = uμ
ε̄ (t) + uμ

p{p(t)}, (18)

where uμ
ε̄ (t) ∈ U

0
�, and the implicit function uμ

p , are defined
such that they fulfill (12a). With the decomposition in (18)
we thus consider the following decomposition of u within
each RVE:

u = uM + uμ = uM + uμ
ε̄︸ ︷︷ ︸

=:uε̄

+uμ
p = uε̄ + uμ

p . (19)

Finally we formulate a condensed version of the original
problem in (12); Find p ∈ P� such that

A�(p, q) = L�(q) ∀q ∈ Q�, (20)

where we defined

A�(q, r):=
∫
I

[
m�(q̇, r) + a

(p)
� (q, r) + b�

(
r , uμ

p{q̇})] dt
+
[
m�(q, r) + b�

(
r , uμ

p{q})]
∣∣∣
t=0

, (21a)

L�(q):=
∫
I
b�(q,−u̇ε̄) dt +

[
m�(p0, q)

+ b�(q, u0 − uε̄)
]∣∣∣

t=0
. (21b)

Equation (20) is the starting point for the numerical model
reduction and the error estimation.

4 We refer to Ekre et al. [24] for the detailed definitions of these spaces.
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3.2 NMR-ansatz

We now introduce numerical model reduction (NMR) with
the goal of reducing the computational effort of solving each
RVE problem (20). To this endwe construct a reduced spatial
basis for the pressure, and define pR(x, t) as the approxima-
tion of p(x, t). For the approximation we use NR modes as
follows

p(x, t) ≈ pR(x, t) =
NR∑
a=1

pa(x)ξa(t) ∈ P�,R:=H1(I ;P�,R), (22)

where {pa}NR
a=1 is a set of linearly independent basis functions

that span the reduced RVE space

P�,R:= span{pa}NR
a=1 ⊂ P�, (23)

and where ξa are mode “activity coefficients”. In previous
work by the authors [24] the spatial modes have been iden-
tified using (i) spectral decomposition (SD) and (ii) proper
orthogonal decomposition (POD). In this paper we propose
to combine SD modes and PODmodes in an attempt to min-
imize the error bound. We therefore define NSD

R and NPOD
R

as the number of SD modes and POD modes, respectively,
and expand the approximation (22) in terms of these different
modes

pR(x, t) =
NSD
R∑

a=1

pSDa (x)ξSDa (t)

+
NPOD
R∑
a=1

pPODa (x)ξPODa (t) ∈ P�,R, (24)

where {pSDa }NSD
R

a=1 is the set of SD modes, where {pPODa }NPOD
R

a=1
is the set of POD modes, and where ξSDa and ξPODa are the
corresponding mode activity coefficients. We adopt the fol-
lowing enumeration of the modes

{p1, p2, . . . , pNR } =
{
pSD1 , pSD2 , . . . , pSD

NSD
R

, pPOD1 ,

pPOD2 , . . . , pPOD
NPOD
R

}
, (25)

and similarly for the mode activity coefficients

{ξ1, ξ2, . . . , ξNR } =
{
ξSD1 , ξSD2 , . . . , ξSD

NSD
R

, ξPOD1 ,

ξPOD2 , . . . , ξPOD
NPOD
R

}
, (26)

and henceforth use the compact notation from Eq. (22) when
differentiation between SD modes and POD modes is not

necessary. SD modes are obtained from Eq. 12b (by ignor-
ing the coupling). POD modes are obtained by performing
representative, fully resolved, training simulations to collect
pressure snapshots which then are used as the basis for the
POD procedure. For the details of the mode identification we
refer to Ekre et al. [24].

Remark We note that all pSDa are linearly independent, and
that all pPOD

a are linearly independent, by construction.
However, this does not guarantee that a combination of basis
is linearly independent and, thus, it is important to ensure
this property in the combining procedure. Alternatively it
would be possible make orthogonalization part of the basis
construction procedure using, e.g., Gram–Schmidt orthogo-
nalization. �	
Weutilize linearity of the sensitivity uμ

p{•} introduced in (18)
and express

uμ
p,R(x, t) =

NR∑
a=1

uμ
a ξa(t) =

NSD
R∑

a=1

uμ,SD
a ξSDa (t)

+
NPOD
R∑
a=1

uμ,POD
a ξPODa (t), (27)

where each displacement mode is solved from each corre-
sponding pressure mode under the constraints of (12a): Find
uμ
a ∈ U� such that

a
(u)

� (uμ
a , δuμ) = b�(pa, δuμ) ∀δuμ ∈ U

0
�

a = 1, 2, . . . NR, (28)

i.e., one stationary, linear, problem to solve for each mode
pa .

3.3 Explicit form of the reduced subscale problem

With the approximations from the previous section we can,
following the procedure in Jänicke et al. [12], define the
reduced equivalent of (12): Find pR ∈ P�,R such that

A�(pR, qR) = L�(qR) ∀qR ∈ Q�,R, (29)

whereQ�,R follows from (17d), with P� replaced by P�,R.
Hence, we can expand the test function q using the spatial
pressure modes, i.e. qR = ∑NR

a=1 paηa , and express (29)
explicitly as the problem of finding the mode coefficients
ξa(t) ∈ H1(I ), a = 1, 2, . . . , NR. The RVE problem is
now reduced to a semi-discrete system of size NR

M ξ̇ + K ξ = f , (30a)

M ξ0 = f 0, (30b)
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where

(M)ab = m�(pb, pa) + b�
(
pa, u

μ
b

)
, (31a)

(K )ab = a
(p)
� (pb, pa), (31b)

( f )a = b�(pa,−u̇ε̄)

=
[ndim∑

i j

b�
(
pa,−ei ⊗ e j · [x − x̄] − û(i, j)

ε̄ ei ⊗ e j
) : ˙̄ε

]

(31c)

( f 0)a =
[
m�(p0, pa) + b�(pa, u0 − uε̄)

]∣∣∣
t=0

. (31d)

4 Goal oriented error estimation for the NMR
error

4.1 Preliminaries

Using a reduced basis for the solution obviously results in an
approximate result, since pR �= p. In this section, we will
present a method for assessing the accuracy of the reduced
solution and approximate the error. We note that the error
has other sources besides the NMR. In particular the error is
also a result of the time- and space-discretization used for the
solution. In this paperwe focus entirely on theNMRerror and
assume that the discretization errors are negligible compared
to the NMR error. Effectively this means that we consider
the fully resolved finite element solution to be exact, i.e. that
a sufficiently fine discretization is used. We thus consider
p = ph ≈ pR, where ph is the discrete solution and define
the error as

g(x, t):=p(x, t) − pR(x, t) ∈ P�. (32)

The following “building blocks” will be used in order to
derive fully explicit and computable error estimates for the
reduced basis:

• definition of the error equation and the corresponding
residual (Sect. 4.2);

• definition of linear output functional with associated dual
problem, error equation and residual (Sect. 4.3);

• definition of an auxiliary bilinear form in space–timewith
associated norm, cf. the work by Parés et al. [21], and
auxiliary error equations (Sect. 4.4);

• formulation of explicit and computable error estimates
based on the primal and dual error equations (Sect. 4.5).

4.2 The error equation and corresponding residual

From linearity of A�(•, •) we may establish the error equa-
tion: Find g ∈ P� such that

A�(g, q) = L�(q) − A�(pR, q)=:R�(q) ∀q ∈ Q�,

(33)

where g(x, t):=p(x, t) − pR(x, t) is the exact error and
where the residual is defined by

R�(q) :=
∫
I
m�(Mt , q) dt +

[
m�(M0, q)

]∣∣∣
t=0

=

R�(�Cq) =
∫
I
m�(�CMt , q) dt +

[
m�(�CM0, q)

]∣∣∣
t=0

,

(34)

where the Galerkin orthogonality-type identity R�(q) =
R�(�Cq) follows from (i) ignoring space–time errors,5 and
(ii) the definition of the projection operator �C = I − �R.
Here the projection into the reduced set of spatial functions
is defined as follows: �Rv ∈ P�,R s.t.

m�(�Rv,w) = m�(v,w) ∀w ∈ P�,R. (35)

Mt and M0 are defined by collecting all the right hand side
terms in m�(•, •) using the following identities

Mt ∈ P� : m�(Mt , δ p) = b�(δ p,−u̇ε̄ − uμ
p{ ṗR})

− m�( ṗR, δ p) − a
(p)
� (pR, δ p) ∀δ p ∈ P�,

(36a)

M0 ∈ P� : m�(M0, δ p) = m�(p0 − pR, δ p)

+ b�(δ p, u0 − uε̄ − uμ
p{pR}) ∀δ p ∈ P�.

(36b)

Remark It is important to note that it is not necessary to solve
Mt explicitly in each time step, since it is enough to compute
the sensitivities w.r.t the time dependent functions.

4.3 Linear output functional, dual problem and dual
error equation

In order to measure the error in arbitrary, user-defined,
quantities of interest (QoI) we introduce linear goal function-
als Q(u)

� , Q(p)
� , corresponding to the original (uncondensed)

RVE problem in (12)

Q(u)

� (u) :=
∫
I
q
(u)

�,t (t; u) dt + q
(u)

�,T (u(T )), (37a)

5 The solution to Eq. (29) is considered to be exact, such that R�(qR) =
0 ∀qR ∈ Q�,R.
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Q(p)
� (p) :=

∫
I
q
(p)
�,t (t; p) dt + q

(p)
�,T (p(T )). (37b)

For the condensed problem (20), we can clearly re-formulate
the QoI as

Q�(p):=Q(u)

� (uε̄ + up{p}) + Q(p)
� (p). (38)

However, for the subsequent error analysis, wewish to estab-
lish up{•} for the entireP�, and not just forP�,R aswas done
in Sect. 3.2. To this end we establish the following problems
to solve for auxiliary “influence functions” u�

t (t) ∈ U
0
� and

u�
T ∈ U

0
�:

a
(u)

� (δu, u�
t (t)) = q

(u)

�,t (t; δu) ∀δu ∈ U
0
�, ∀t ∈ I , (39a)

a
(u)

� (δu, u�
T ) = q

(u)

�,T (δu) ∀δu ∈ U
0
�. (39b)

We may now rewrite (38) as an explicit expression in p, by
using the auxiliary dual problems in (39), and the definition
of the implicit function up (see Sect. 3.1)

Q�(p) =
∫
I

[
q
(u)

�,t (t; uε̄) + b�(p, u�
t ) + q

(p)
�,t (t; p)

]
dt

+ q
(u)

�,T (u0(T )) + b�(p(T ), u�
T ) + q

(p)
�,T (p(T ))

. (40)

Equation (40) now represents the output and is fully explicit
in p. Finally, noting that Q�(p) is affine, we may express
the linear functional

Q̄�(q) =
∫
I

[
b�(q, u�

t ) + q
(p)
�,t (t; q)

]
dt + b�(q(T ), u�

T )

+ q
(p)
�,T (q(T )), (41)

such that Q�(p)−Q�(pR) = Q̄�(q). Q̄�(•) is an explicit
functional on the space

Q�
� = {q(x, t) : q|I ∈ L2(I ;P�), q|t=T ∈ P�}. (42)

Example 1 Time averaged homogenized stress Consider
the i j-component of the homogenized stress, σ̄i j , as the quan-
tities of interest. The output functional can thus be defined
by

q
(u)

�,t (t; u) = 1

|I ||��|
∫

��

[
ei ⊗ e j : E : ε[u]

]
d�, (43a)

q
(u)

�,T (u) = 0, (43b)

q
(p)
�,t (t; p) = 1

|I ||��|
∫

��

[
− α pδi j

]
d�, (43c)

q
(p)
�,T (p) = 0. (43d)

Example 2 Homogenized stress at t = T Similarly to the
example above, the homogenized stress at t = T as a quanti-
ties of interest can be obtained using the following definitions

q
(u)

�,t (t; u) = 0, (44a)

q
(u)

�,T (u) = 1

|��|
∫

��

[
ei ⊗ e j : E : ε[u]

]
d�, (44b)

q
(p)
�,t (t; p) = 0, (44c)

q
(p)
�,T (p) = 1

|��|
∫

��

[
− α pδi j

]
d�. (44d)

We note, in particular, that these example functionals does
not depend on time, and therefore it is enough to solve the
auxiliary problems (39a) once, instead of once per time step,
which is needed in the general case.

We now define the dual problem and the corresponding
reduced dual problem as that of finding p� ∈ P� such that

p� ∈ P� : A�
�(p�, q) = Q̄�(q) ∀q ∈ Q�

�, (45a)

p�
R ∈ P�,R : A�

�(p�
R, q) = Q̄�(q) ∀q ∈ Q�

�,R, (45b)

where we recall the test spaceQ�
� from (42), from which we

also obtainQ�
�,R by replacing P� with P�,R. The dual form

A�
� is defined as

A�
�(q, r) :=

∫
I

[
− m�(q̇, r) − b�(r , up{q̇}) + a

(p)
� (q, r)

]
dt

+m�(q(T ), r(T )) + b�(r(T ), up{q(T )}). (46)

We can now define the dual error equation: Find g� ∈ P�
such that

A�
�(g�, q) = Q̄�(q) − A�

�(p�
R, q)=:R�

�(q) ∀q ∈ Q�
�
(47)

where g�:=p�− p�
R is the error in the dual solution andwhere

the dual residual is given by

R�
�(q) :=

∫
I
m�(M�

t , q) dt + m�(M�
T , q(T )) =

R�
�(�Cq) =

∫
I
m�(�CM

�
t , q) dt + m�(�CM

�
T , q(T )).

(48)

where the identity R�
�(q) = R�

�(�Cq) follows from the
same argumentation as in Sect. 4.2 i.e. the solution to
Eq. (45b) is considered to be exact. M�

t and M�
T are defined

by collecting all terms in m�(•, •), i.e.

M�
t ∈ P� : m�(M�

t , δ p) = b�(δ p, u�
t + up{ ṗ�

R}) + q
(p)
�,t (t; δ p)
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+ m�( ṗ�
R, δ p) − a

(p)
� (p�

R, δ p) ∀δ p ∈ P�, (49a)

M�
T ∈ P� : m�(M�

T , δ p) = b�(δ p, u�
T − up{p�

R(T )})
+ q

(p)
�,T (δ p) − m�(p�

R(T ), δ p) ∀δ p ∈ P�. (49b)

Remark We once again note that it is not necessary to solve
for M�

t explicitly in each time step, it is enough to solve for
the sensitivities w.r.t. the time dependent functions.

4.4 Auxiliary bilinear form, error equations, and
associated norm

Following the strategy in Ekre et al. [24] we introduce an
auxiliary bilinear form

Â�(q, r) :=
∫
I
a
(p)
� (q, r) dt

+ 1

2
m�(q, r)|t=0 + 1

2
m�(q, r)|t=T , (50)

cf. the work by Parés et al. [21]. Since Â�(•, •) defines a
scalar product on the space

P̂�:={q(x, t) : q|t=0 ∈ P�, q|I ∈ L2(I ;P�),

q|t=T ∈ P�}, (51)

it induces a norm that will be used to estimate the error

‖q‖:=
√
Â�(q, q) ≤ √

A�(q, q), (52)

where we also note the bound w.r.t. the symmetric part of the
original bilinear form.

With the definition of the auxiliary form we also define
the following two error equations for auxiliary error repre-
sentations ĝ and ĝ�

ĝ ∈ P̂� : Â�(ĝ, q) = R�(q) ∀q ∈ P̂�, (53a)

ĝ� ∈ P̂� : Â�(ĝ�, q) = R�
�(q) ∀q ∈ P̂�. (53b)

Following from the primary and dual error equations,
in (33) and (47), the corresponding auxiliary error equations
in (53), the relation between A� and Â� in (52), and the
Cauchy-Schwartz inequality, we find that the norm of the
true errors g and g� are upper bounded by the norm of the
corresponding auxiliary error representations ĝ and ĝ�, viz.

‖g‖ ≤ ‖ĝ‖, and ‖g�‖ ≤ ‖ĝ�‖. (54)

4.5 Explicit and fully computable error estimates

4.5.1 Preliminaries

In order to obtain explicit and fully computable estimates in
terms of (i) the energy norm and (ii) arbitrary quantites of

interest expressed in the linear goal functional we will first
consider the following generic error equation; Find χ ∈ P̂�
s.t.

Â�(χ, q) = R̃�(q) ∀q ∈ P̂�, (55)

where the residual is defined as

R̃�(q) :=
∫
I
m�(M̃t , q) dt + [

m�(M̃0, q)
]|t=0

+ [
m�(M̃T , q)

]|t=T , (56)

for generic functions M̃t (x, t) ∈ P� and M̃0(x), M̃T (x) ∈
P�. Given this configuration we derive an explicit and fully
computable upper estimate of ‖χ‖, see “Appendix A”, given
by

‖χ‖ ≤
√√√√∫

I

‖�CM̃t‖2m
λNSD

R

dt + 2‖�CM̃0‖2m + 2‖�CM̃T ‖2m,

(57)

where λNSD
R

is the largest spectral eigenvalue used for the
reduced basis.

4.5.2 NMR error in energy norm

In order to obtain an estimate for theNMRerror in terms of an
energy norm we apply the generic error estimate from (57),
and choose χ = ĝ, resulting in

M̃0 = M0, M̃t = Mt , M̃T = 0, (58)

in the residual. The estimate for the energy norm of the error
thus becomes

‖g‖ ≤ ‖ĝ‖ ≤
√∫

I

‖�CMt‖2m
λSDNR

dt + 2‖�CM0‖2m=:Eest.

(59)

4.5.3 NMR error in quantity of interest

In order to find explicit NMR-error estimates for the quantity
of interest we first define the “composite errors”, g± and ĝ±,
as linear combinations of the corresponding primal and dual
parts, viz.

g± := κg ± κ−1g� ∈ P�, ĝ± := κ ĝ ± κ−1ĝ� ∈ P̂�,

(60)
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for any κ �= 0. From linearity, it follows that6

A�(g±, δg) = R±
�(δg) ∀δg ∈ P�, and

Â�(ĝ±, δg) = R±
�(δg) ∀δg ∈ P�, (61)

where R±
�(•) = κR�(•) ± κ−1R�

�(•).
Consider now the following equalities, which follow from

the error equations and the Galerkin orthogonality, cf. [24],

Â�(ĝ±, g±) = ±2Q̄�(g)+κ2 Â�(ĝ, g)+κ−2 Â�(ĝ�, g�).

(62)

Similarly to the procedure in Oden and Prudhomme[23] we
substract the “−”-equation from the “+”-equation and obtain

Q̄�(g) = 1

4

[
Â�(ĝ+, g+) − Â�(ĝ−, g−)

]
. (63)

To obtain upper and lower estimates we note that the terms
on the right hand side can be bounded from below, using
Eqs. (33), (47), (52), and (61),

Â�(ĝ±, g±) = R±
�(g±) = A�(g±, g±) ≥ ‖g±‖2, (64)

and from above using the Cauchy–Schwartz inequality,

Â�(ĝ±, g±) ≤ ‖ĝ±‖‖g±‖. (65)

By combining Eq. (63) with Eqs. (64), (65), the trivial bound
‖g±‖ ≥ 0, and the relation between ‖•‖ and ‖•̂‖ from
Eq. (54), we obtain the following upper and lower bound
on the quantity of interest:

−1

4
‖ĝ−‖2 ≤ Q̄�(g) ≤ 1

4
‖ĝ+‖2. (66)

The last step is to apply the generic estimate from Eq. (57)
to obtain estimates for ‖ĝ−‖2 and ‖ĝ+‖2, respectively. We
note that the auxiliary composite error can be solved from
the generic error equation in (55), with χ = ĝ±, and with

M̃0 = κM0, M̃t = κMt±κ−1M�
t , M̃T = ±κ−1M�

T . (67)

The final upper and lower bounds on the error in quantity of
interest become

Q̄�(g) ≤ E+
Q,est :=

1

4
min
κ

⎡
⎣
∫
I

‖�C

[
κMt + κ−1M�

t

]
‖2m

λNR

dt

+ 2‖�C [κM0]‖2m + 2‖�C[κ−1M�
T ]‖2m

⎤
⎦ , (68a)

6 Note that we here use the subscript ± as an alternative to presenting
two equations; one “+” and one “−”.

Q̄�(g) ≥ E−
Q,est := − 1

4
min
κ

⎡
⎣
∫
I

‖�C

[
κMt − κ−1M�

t

]
‖2m

λNR

dt

+ 2‖�C [κM0]‖2m + 2‖�C

[
−κ−1M�

T

]
‖2m

⎤
⎦ .

(68b)

4.6 Adaptivemode selection strategy

For the purpose of obtaining the lowest estimate it is of
interest to find a strategy for adaptive mode selection, i.e.
a strategy for determining if the next mode should come
from the pool of SD modes or the pool of POD modes. The
modes in each pool are ordered based on relevant eigenval-
ues. Hence, we only have to determine which out of the two
candidates to include in the approximation space. For a basis
with NR modes with estimate ENR

est wewant to predict E
NR+1
est

for the two alternatives. We note that, ignoring the boundary
term, the estimate in (59) can be written as

ENR
est = ENR

est,0√
λNR+1

. (69)

The results from Ekre et al. [24] suggest that the strength
of the SD modes is mainly that a higher eigenvalue can be
used in the estimate. In order the estimate ENR+1

est , for the case
of one extra spectral mode, we assume that its contribution
is only the increased eigenvalue, and ignore any effect this
mode have on the residual, and obtain

ENR+1
est ≈ ENR

est,0√
λNR+2

=
√

λNR+1

λNR+2
ENR
est =:φSD ENR

est , (70)

i.e. with one extra SD mode the estimate is approximated to
reduce with the factor φSD.

To estimate ENR+1
est , for the case of one extra POD mode,

we assume that the estimate is reduced with the same factor
as the previous POD mode addition, i.e.

ENR+1
est = ENR+1

est,0√
λNR+1

= ENR+1
est,0

ENR
est,0

ENR
est ≈ ENR

est,0

ENR−1
est,0

ENR
est

= φPOD Ek
est, (71)

i.e. with one extra POD mode the estimate is approximated
to reduce with the factor φPOD.

We can now compare φSD and φPOD and choose the
next mode based on the estimated error estimate reduction.
Finally, in order to not get stuck on local “plateaus” (e.g. con-
secutive eigenvalues that are close in the spectrum, or “bad”
POD modes), if both φSD and φPOD are large, e.g. φSD > ρ

andφPOD > ρ for somevalueρ, we instead alternate between
SD and POD modes.
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Fig. 1 RVEs used for the numerical examples; RVE-1 (left): multiple
spherical inclusions (Phase 2) with two different permeability k, RVE-
2 (middle): a single spherical inclusion (Phase 2), and RVE-3 (right):

array of spherical inclusions (Phase 2) with varying permeability. The
matrix material (transparent) for all three RVEs is of Phase 1

Remark Clearly, at the extreme case of using all available
PODmodes, enrichment with SD modes remains as the only
option. �	

5 Numerical examples

In this Section we present numerical results that showcase
the estimator. As a performance measure of the estimator, as
compared to the exact error, we define the effectivity indices
η and ηQ for the estimator of the energy norm and quantity
of interest, respectively

η := Eest

E
, (72a)

ηQ := EQ,est

|EQ| , EQ,est:=max
(
|E+

Q,est|, |E−
Q,est|

)
, (72b)

where Eest and E are the estimate and exact error in energy
norm, and where EQ,est and EQ are the (“worst case”) esti-
mate and exact error in the quantity of interest. The exact
errors E and EQ are obtained by computing reference finite
element solutions using the original discretization that was
used for obtaining the reduced basis.

5.1 RVE configurations and eigenvalue spectra

We consider three different RVE configurations in three spa-
tial dimensions, see Fig. 1. The RVEs consist of gas saturated
matrix material (phase 1) with spherical, water saturated,
inclusions with various permeability (phases 2 and 3, respec-
tively). The material parameters are presented in Table 1.
The experimental setup is the same as in Ekre et al. [24] and
training computations for the POD modes are performed in
the same manner, e.g. by simulating stress relaxation after
a rapid increase of strain in the 11, 22, and 33 directions,
respectively, cf. Sections 6.1.1 and 6.2.1 in [24].

We note from the previous Section that, in order for the
estimator to be improved by spectral modes, the eigenvalue

Table 1 Material parameters for the three material phases in the RVEs
used for the numerical examples

Phase 1 (matrix) Phase 2 (inclusions)

G [GPa] 8.8 15.8

K [GPa] 9.6 16.2

φ [–] 0.2 0.1

K s [GPa] 36 36

K f [GPa] 0.022 2.3

k [m2MPa−1 s−1] 2 Figure 1

sequence is important, and in particular for the first eigenval-
ues since the region of interest is where NR � N . The first 25
eigenvalues for the three RVEs are plotted in Fig. 2. We note
that the eigenvalues for RVE-1 and RVE-3 increase much
faster than for RVE-2; for RVE-1 a factor of 10, compared to
the first eigenvalue, is reached already at the second eigen-
value, whereas for RVE-2 a factor 10 is reached only after
20+ modes. Based on this we can predict that the addition of
spectral modes to the POD basis will be more beneficial for
RVE-1 than for RVE-2. The spectrum for RVE-3 is similar to
that of RVE-1 and both of them reach a factor 100 around 25
modes, however, RVE-3 has multiple consecutive identical
values meaning that several spectral modes need to be added
before the estimator benefits from an increased eigenvalue.

5.2 Example 1: Heterogeneous RVE withmultiple
inclusions

For the first example we consider an RVE of size 1m ×
1m × 1m, with multiple, non-overlapping, spherical inclu-
sions with radii between 0.1m and 0.4m, see RVE-1 in Fig. 1.
The RVE is prescribed with macroscale strain history in 11,
22, and 33 directions according to Fig. 3, which results in
macroscale stresses presented in Fig. 4.
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Fig. 2 First 25 eigenvalues for RVE-1, RVE-2, and RVE-3 (see Fig. 1)
scaled with their respective first eigenvalue

Fig. 3 Example-1: Prescribed macroscale strains, as functions of time,
defining the load case used for prediction

Fig. 4 Example-1: Homogenized stress, normalized with their peak
values, from the fully resolved solution for the load case used for pre-
diction

5.2.1 Energy norm of the error

The estimated error in energy norm, Eest (Eq. (59)), and the
corresponding exact error, E = ‖g‖, are plotted in Fig. 5 for
multiple solutions with varying number of spectral modes

included in the reduced basis. The corresponding effectivity
index, η, is plotted in Fig. 6. We note that, as the combined
basis includes more spectral modes, the estimate performs
better7. In Ekre et al. [24] it was shown that POD modes are
superior, compared to SD modes, in terms of minimizing the
residual, and, thus, the improvement for the combined basis
is attributed (almost entirely) to the larger eigenvalue used
in the estimate. At a certain threshold, however, it will be
more benefitial to enhance the basis with only POD modes
since the eigenvalue spectrum typically flattens out as seen
in Sect. 5.1.

In order to understand the advantage of the combined esti-
mator it is helpful to study the behavior for a fixed total
number of modes, with varying composition of SD and POD
modes. In Figs. 7 and 8 the estimate, exact error, and corre-
sponding effectivity index is plotted for NR = NSD

R +NSD
R =

5 and NR = NSD
R +NSD

R = 10, respectively. From the figures
it is clear that, for a given number of total modes, there is an
optimal number of spectral modes. Note also that, although
the effectivity index descreases monotonically with number
of spectral modes, the raw value of the estimate starts to
increase after a certain threshold number of spectral modes.

In Fig. 9 the result of the adaptive procedure (cf. Sect. 4.6
with ρ = 0.9) is shown. For this example the adaptive pro-
cedure results in a basis that give a smaller estimated error
compared to the pure SD or pure POD basis.

5.2.2 Error in time-averaged homogenized stress

In Sect. 4 we discussed how to estimate the error in a
user-defined quantity of interest, and in particular the homog-
enized stress. For this example we consider time-averaged
homogenized stress, σ̄11, as the quantity of interest and com-
pute the resulting combined estimate, EQ,est from Eq. (72b).
The result is plotted in Fig. 10 together with the correspond-
ing exact error, EQ. The behavior of the estimates, and the
corresponding effectivity indices in Fig. 11, are similar to
the estimate of the energy norm presented in the the previ-
ous section—including spectral modes is advantageous, up
to a certain threshold, for the estimator, and result in a better
effectivity index.

In Figs. 12 and 13 the estimated and exact error is plotted
for a fixed total number of modes; NR = NSD

R + NSD
R = 5

and NR = NSD
R + NSD

R = 10, respectively. Similar to the
energy norm estimate we note that for a given total number
of modes there is an optimal composition of SD and POD
modes that minimizes the estimate.

7 Note that for NSD
R = 0, i.e. a pure PODbasis, we still need to compute

the first eigenvalue for the estimator. Thus, NSD
R = 0 and NSD

R = 1 use
the same eigenvalue for the estimate.
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Fig. 5 Example-1: Estimated error (left) and exact error (right) in energy norm for a pure SD base, a pure POD base and for POD basis combined
with the first five SD modes

Fig. 6 Example-1: Effectivity index for the estimate in energy norm
for a pure SD base, a pure POD base and for POD basis combined with
the first five SD modes

5.3 Example 2: RVE with a single centered inclusion

As a second example we consider an RVE of size 1m×1m×
1m, with a single centered inclusion with radius 0.4m, see
Fig. 1. From Fig. 2 it is evident that the eigenvalue spectrum
for this RVE is much less advantageous for the estimator
since the initial eigenvalues are very close. In addition, for
this examplewe use the same load case as in the training com-
putations, cf. Ekre et al. [24], and simulate stress relaxation
after a rapid increase of normal strain.

5.3.1 Error in time-averaged homogenized stress

Once again we consider time-averaged homogenized stress,
σ̄11, as the quantity of interest and compute estimate, EQ,est

(Eq. (72b)), and exact error EQ. The results are plotted in
Fig. 15. For this example, the advantage with the higher
eigenvalue in the combined basis is almost entirely dimin-
ished and using additional SD modes is comparable to using
a pure POD basis. Note, however, that the effectivity index,
plotted in Fig. 16 is still noticeably improved.

Figure 14 shows the result of the adaptive procedure. Sim-
ilar to the energy norm estimate from the previous section,
the combined basis give a smaller estimated error compared
to the two cases of pure SD or pure POD basis.

Once again we plot the estimate and the exact error
for a fixed total number of modes, in Fig. 17 for NR =
NSD
R + NSD

R = 5 and in Fig. 18 for NR = NSD
R + NSD

R = 10.
Compared to the previous example, where there were a dis-
tinct minimum for the estimator for NSD

R > 1, the benefit of
enhancing the basis with SDmodes, rather than PODmodes,
is almost entirely diminished since the POD modes decrease
the residual with a higher rate than the eigenvalues increase.

Figure 19 shows the result of the adaptive procedure. For
this example the first SD mode is not added until mode num-
ber eight when the effectiveness of additional POD modes
decrease.

5.4 Example 3: RVE with an array of spherical
inclusions

In the third examplewe consider anRVEwithmultiple spher-
ical inclusions, with varying permeability k, arranged in a
3 × 3 × 3 grid, see Fig. 1. The eigenvalue spectrum for this
configuration is plotted in Fig. 2. It is in particular of interest
to note that the first four eigenvalues are very close to each
other, and it is thus necessary to add five spectralmodes to the
basis before the estimator benefits from an increased eigen-
value. The training and loading is the same as for Example
1.

5.4.1 Error in homogenized stress at time t = T

We now consider homogenized stress at time t = T , σ̄11(T ),
as the quantity of interest. The estimated error in this quantity,
EQ,est, and the exact error EQ are plotted for combinations
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Fig. 7 Example-1: Exact and estimated error in energy norm (left) and the corresponding effectivity index (right) for NR = NSD
R + NSD

R = 5

Fig. 8 Example-1: Exact and estimated error in energy norm (left) and the corresponding effectivity index (right) for NR = NSD
R + NSD

R = 10

Fig. 9 Example-1: Estimated error in energy norm using (i) pure SD basis, (ii) pure POD basis, and (iii) the combined basis resulting from the
proposed adaptive mode selection strategy
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Fig. 10 Example-1: Estimated error (left) and exact error (right) in time-averaged homogenized stress for a pure SD base, a pure POD base and
for POD basis combined with the first five SD modes. Figures 12 and 13 presents the same data for NR = 5 and NR = 10, respectively

Fig. 11 Example-1: Effectivity index for the estimate of time-averaged
homogenized stress for a pure SD base, a pure POD base and for POD
basis combined with the first five SDmodes. Figures 12 and 13 presents
the same data for NR = 5 and NR = 10, respectively

of SD/POD modes in Figs. 20 (NR = 5) and 21 (NR = 10),
respectively. As expected it is not until the basis include five
SD modes that the benefit from the higher eigenvalue gives
an impact on the estimate.

The result from the adaptive procedure is plotted inFig. 22.
As the figure shows, this example is challenging for the adap-
tive strategy, which, in fact, performs worse than the pure
PODbasis. This can be explained by the eigenvalue spectrum
(Fig. 2) which has multiple eigenvalues with the same mag-
nitude. Even though some SDmodes are added at steps 7, 10,
14, and 15, when effectiveness of the POD basis decreases,
they do not decrease the estimate much since the eigenvalue
stays the same.

Fig. 12 Example-1: Exact and estimated error in time-averaged homogenized stress (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 5
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Fig. 13 Example-1: Exact and estimated error in time-averaged homogenized stress (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 10

Fig. 14 Example-1: Estimated error in time averaged homogenized stress using (i) pure SD basis, (ii) pure POD basis, and (iii) the combined basis
resulting from the proposed adaptive mode selection strategy

Fig. 15 Example-2: Estimated error (left) and exact error (right) in time-averaged homogenized stress for a pure SD base, a pure POD base and
for POD basis combined with the first five SD modes. Figures 17 and 18 presents the same data for NR = 5 and NR = 10, respectively
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Fig. 16 Example-2: Effectivity index for the estimate of time-averaged
homogenized stress for a pure SD base, a pure POD base and for POD
basis combined with the first five SDmodes. Figures 17 and 18 presents
the same data for NR = 5 and NR = 10, respectively

6 Conclusions and outlook

In this paper we have presented an a posteriori error estimate
for the error introduced by NMR in the context of homog-

enization of porous media. In particular, we proposed and
investigated a combined basis, consisting of SD modes and
PODmodes, as an extension to the reduced model presented
in Jänicke et al. [12]. The explicit error estimator proposed in
Ekre et al. [24] is presented for the combined basis for esti-
mation of the NMR error. The combined basis utilizes both
the “residual minimizing” property of the POD modes and
the “estimator improving” property of the SDmodes. It is the
estimated error that will be considered in the pertinent error
control, i.e., it is the estimated error that will be compared
to the pre-set tolerance. Therefore, the best procedure is the
one that shows the most efficient convergence in the (guar-
anteed) error estimator. A procedure for adaptively choosing
the “correct” next mode is presented. This procedure indi-
cates whether the next mode should come from the pool of
SD modes or POD modes.

The performance of the estimator, with both (i) energy
norm and (ii) user-defined quantities of interest as the target,
was demonstrated by examples. We show that it is possi-

Fig. 17 Example-2: Exact and estimated error in time-averaged homogenized stress (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 5

Fig. 18 Example-2: Exact and estimated error in time-averaged homogenized stress (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 10
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Fig. 19 Example-2: Estimated error in time averaged homogenized stress using (i) pure SD basis, (ii) pure POD basis, and (iii) the combined basis
resulting from the proposed adaptive mode selection strategy

Fig. 20 Example-3: Exact and estimated error in homogenized stress at time t = T (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 5

Fig. 21 Example-3: Exact and estimated error in homogenized stress at time t = T (left) and the corresponding effectivity index (right) for
NR = NSD

R + NSD
R = 10
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Fig. 22 Example-3: Estimated error in time averaged homogenized stress using (i) pure SD basis, (ii) pure POD basis, and (iii) the combined basis
resulting from the proposed adaptive mode selection strategy

ble to find an improved composition of modes in order to
minimize the estimated error. The results also show that the
proposed adaptive mode selection strategy works well, but
has problems when there are multiple eigenvalues close in
the spectrum.

For future work it would be of interest to utilize the error
estimate, and the adaptive scheme, for the full two-scale FE2

problem.
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A NMR error estimate for generic error equa-
tion

Consider the following generic error equation; Find χ ∈ P̂�
s.t.

Â�(χ, q) = R̃�(q) ∀q ∈ P̂�, (73)

where the generic residual is defined as

R̃�(q) :=
∫
I
m�(M̃t , q) dt

+ [
m�(M̃0, q)

]|t=0 + [
m�(M̃T , q)

]|t=T =
R̃�(�Cq) =

∫
I
m�(�CM̃t , q) dt + [

m�(�CM̃0, q)
]|t=0

+ [
m�(�CM̃T , q)

]|t=T , (74)

for generic functions M̃t (x, t) ∈ P� and M̃0(x), M̃T (x) ∈
P�. The identity R̃�(q) = R̃�(�Cq) follows from (i) the
assumption8 that R̃�(qR) = 0 ∀qR ∈ P�,R, and (ii) the
definition of the projection operator.

In order to estimate ‖χ‖ we need to estimate ‖χ‖a,
‖χ(•, 0)‖m, and ‖χ(•, 0)‖m in terms of the data in the right
hand side, i.e. in terms of M̃t , M̃0, and M̃T . We note that
since Â(•, •) localizes in time we can express the generic
error equation explicitly for t = 0, t ∈ I and t = T and
obtain explicit computable bounds for the error.

A.1 Generic error equation at t = 0 and t = T

At the endpoints of the time interval the generic error equa-
tion reduced to the following two equations, with τ = 0 and
τ = T . Find χ(τ)=:χτ ∈ P� s.t.

1

2
m�(χτ , q) = m�(�CM̃τ , q) ∀q ∈ P�. (75)

8 We note, in particular, that this assumption is valid for both residuals,
Eqs. (34) and (48), given that we consider the solution to the corre-
sponding reduced problems to be exact.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computational Mechanics

From Eq. (75) we obtain the following upper bounds by uti-
lizing Cauchy–Schwarz inequality

‖χτ‖2m = m�(χτ , χτ )
(75)= 2m�(�CM̃τ , χτ )

C−S≤ 2‖�CM̃τ‖m‖χτ‖m, (76)

fromwhich we obtain an upper estimate for the contributions
to ‖χ‖, viz.

‖χτ‖m ≤ 2‖�CM̃τ‖m. (77)

A.2 Generic error equation at t ∈ I

Inside the time interval the generic error equation reduced to
the following. Find χ(t)=:χt ∈ P� s.t.

a
(p)
� (χt , q) = m�(�CM̃t , q) ∀q ∈ P�, (78)

from which we obtain the following upper bound using
Cauchy–Schwarz inequality

‖χt‖2a = a
(p)
� (χt , χt )

(78)= m�(�CM̃t , χt )
C−S≤ ‖�CM̃t‖m‖χt‖m. (79)

In order to relate ‖•‖a to ‖•‖m we utilize the properties of the
spectral basis, and write χt = ∑N

a=1 ξaϕa where ξa = ξa(t)
are coefficients, and where ϕa = ϕa(x) are the eigenmodes
from the solution to the following eigenvalue problem

a
(p)
� (ϕa, δ p) = λam�(ϕa, δ p) ∀δ p ∈ P� a = 1, 2, . . . , N , (80a)

m�(ϕa, ϕb) = δab a, b = 1, 2, . . . , N , (80b)

where λa are the eiganvalues in increasing order (λ1 ≤
λ2 . . .) and ϕa the corresponding eigenmodes. From the
generic error Eq. (78) and the Galerkin-like property of the
residual (cf. Sects. 4.2 and 4.3), we note that ξa ≡ 0, a =
1, 2, . . . , NSD

R , and consequently we note that

χt =
N∑

a=1

ξaϕa =
N∑

a=NSD
R +1

ξaϕa = �Cχt . (81)

From the relationship between a�(•, •) and m�(•, •) given
by the eigenvalue problem in (80) and the properties of the
projection we obtain the following upper estimate:

‖χt‖2m = ‖�Cχt‖2m =
N∑

a=NSD
R +1

ξ2a = 1

λNSD
R

N∑
a=NSD

R +1

λNSD
R

ξ2a

= 1

λNSD
R

N∑
a=NSD

R +1

λaξ
2
a = 1

λNSD
R

‖�Cχt‖2a = 1

λNSD
R

‖χt‖2a.

(82)

Remark We note that the estimate in (82) can be improved
by replacing λNSD

R
with λNSD

R +1, i.e. with a larger eigenvalue.

However, in practice we will only consider the NSD
R eigen-

values that are already computed as part of constructing the
reduced basis. �

Equations (79) and (82) now results in the following esti-
mate of ‖χt‖a

‖χt‖a ≤ ‖�CM̃t‖m√
λNSD

R

. (83)

A.3 Final NMR error estimate of the generic error

Wemaybe now combine the definition of the norm inEq. (52)
with the partial estimates from Eqs. (77) and (83) to obtain
a full upper estimate of the generic error

‖χ‖ ≤
√√√√
∫
I

‖�CM̃t‖2m
λNSD

R

dt + 2‖�CM̃0‖2m + 2‖�CM̃T ‖2m.

(84)
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