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A B S T R A C T   

A novel numerical framework for low cycle fatigue analysis of lattice materials is presented. The framework is 
based on computational elastoplastic homogenization equipped with the theory of critical distance to address the 
fatigue phenomenon. Explicit description of representative volume element and periodic boundary conditions 
are combined for computational efficiency and elimination of the boundary effects. The proposed method is 
generic and applicable to periodic micro-architectured materials. The method has been applied to 2-D auxetic 
and 3-D kelvin lattices. The classical Coffin-Manson and Morrow models are used to provide fatigue life pre
dictions (strain-life curves). Predicted fatigue lives for the auxetic lattice are shown to provide good corre
spondence to experimentally found fatigue lives from the literature.   

1. Introduction 

The term “metamaterial” refers to lightweight, architectured mate
rials with tailored properties. Lattice materials, as a well-known class of 
metamaterials, have potential application in a range of engineering 
products, e.g. biomedical implants (Zhao et al., 2016) and lightweight 
sandwich structures (Molavitabrizi and Laliberte, 2020). Lattice mate
rials have periodic microarchitecture and exhibit interesting mechanical 
features like negative Poisson’s ratio and high specific stiffness. The 
elastic behavior of these materials is well-investigated, e.g. (Molavi
tabrizi and Mousavi, 2020), (Deshpande et al., 2001), (Dong et al., 2019) 
(Gazzo et al., 2020), (Wang and McDowell, 2004), (Warren and Kraynik, 
1997) and (Boutin et al., 2020), but this is not the case when plasticity is 
involved. Moreover, most studies in this field have mainly focused on 
quasi-static loading and there has been less attention on cyclic loading 
and fatigue analysis. However, fatigue characterization is a very crucial 
step towards industrial adoption of these materials, as it accounts for 
almost 90% of failures in engineering products. 

Earlier studies on the fatigue behavior of lattice materials were 
mainly experimental, with the aim of obtaining the stress-life (S–N or 
Wohler) curve in high cycle regime, e.g. (Côté et al., 2007a) and (Côté 
et al., 2007b). However, investigation of fatigue behavior through ex
periments is very time-consuming and expensive. Thus, numerical 
simulations are required to employ broader fatigue analyses. Demiray 

et al. (2009) studied the high cycle fatigue (HCF) behavior of 3-D kelvin 
cell by using a micromechanical model with beam elements. Hedayati 
et al. (2016) numerically and experimentally studied the fatigue 
behavior of rhombic dodecahedron lattice. It turned out that the pre
diction obtained by this numerical study is not valid for high stress 
amplitudes. Khalil Abad et al. (Masoumi Khalil Abad et al., 2013) used 
continuum shell elements to computationally analyze the HCF behavior 
of 2-D square and hexagonal lattices. They used 3-D solid elements to 
improve the simulation accuracy, as Simone and Gibson (1998) reported 
that numerical models with beam elements cannot capture stress con
centrations at lattice joints (nodes) and may therefore provide unreal
istic fatigue life predictions. 

A number of recent studies have tried to establish a relation between 
additive manufacturing processes and fatigue lives of lattice samples. 
These studies were mainly experimental and considered a wide range of 
additive-manufacturing-related parameters like radii variation and 
scatter in S–N curves for struts (Burret al., 2020), strut orientation, node 
fillet and unit-cell size (Dallago et al., 2021) as well as processing pa
rameters like laser power (Ashouriet al., 2020). Other studies empha
sized on the development of computational models using 3-D solid 
elements to enable the fatigue analysis of 3-D lattices. Peng et al. (2020) 
used a parametric computational approach to study the effect of lattice 
relative density and unit-cell topology on HCF. Refai et al. (2020) did an 
experimental and numerical study to characterize the multiaxial HCF 
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behavior of a wide range of lattice materials. Kolen et al. (Kolken et al., 
2021) experimentally investigated the HCF behavior of auxetic lattices. 
Recently, Tomazincic et al. (Tomažinčič et al., 2020) and (Tomažinčič 
et al., 2019) studied the low cycle fatigue (LCF) behavior of three 2-D 
lattices. 

It is observed that the fatigue-related research in lattice materials 
was mainly devoted to the high cycle regime, while there are only a few 
studies on LCF capabilities. The topic has received even far less attention 
in 3-D domain, despite its relevance in many of the potential real-world 
applications, e.g. the use of lattice materials as energy absorber, or as the 
core material in gas turbine blades. The current paper contributes to the 
field by introducing a novel numerical framework for LCF analysis of 2- 
and 3-D lattices, using the concept of elastoplastic homogenization 
along with the theory of critical distance (TCD). The use of homogeni
zation theory and periodic boundary condition (PBC) considerably re
duces the computational time and assures that the obtained material 
properties are not affected by the boundaries. Moreover, the complex 
geometry of lattice materials often leads to highly localized stressed/ 
strained areas which complicate fatigue analysis. A TCD approach is 
used to address this issue. 

The paper starts with the derivation of weak form equations and 
introduction of computational elastoplastic homogenization scheme for 
cellular media. Then, the TCD approach along with some remarks 
regarding its implementation on lattice material are discussed. Next, the 
proposed fatigue methodology is introduced in a structured framework. 
Following this, the model is numerically implemented on two sample 
topologies, i.e. a 2-D auxetic and a 3-D kelvin unit-cells, where the finite 
element method is applied for structural analysis, and an in-house code 
is developed for post-processing and fatigue analysis. Finally, LCF 
behavior of sample topologies are characterized by providing the fatigue 
life predictions for a range of load amplitudes. 

2. Elastoplasticity of periodic micro-architectured materials 

Lattice materials are a class of periodic cellular or so-called micro- 
architectured solids. In order to characterize their linear and nonlinear 
behavior, we start first (in section 2.1) with the derivation of the weak 
form equations for the most generic case, i.e. cellular materials with no 
prior assumption on material and/or deformation behavior. The generic 
weak form formulation is then used to derive the governing equations 
for linear elastic and elastoplastic material behavior. 

Lattice materials are formed by periodic arrangement of unit-cells. It 
is possible to characterize their mechanical behavior by studying a 
single unit-cell, also referred to as a representative volume element 
(RVE), along with periodic boundary condition (PBC). This is compu
tationally a very efficient approach which guarantees that material 
properties are not affected by the boundaries. In section 2.2, the linear 
and nonlinear weak form equations of cellular solids are numerically 
formulated for an RVE (unit-cell) using finite element method (FEM) and 
PBC. Finally, the equations for derivation of elastic and elastoplastic 
effective material properties (based on averaging theory) are reviewed. 

The derivations in sections 2.1 and 2.2 are discussed in detail, since 
the formulation provided in this paper is different from some of the 
preceding works. Previous studies, e.g. (Masoumi Khalil Abad et al., 
2013) and (Hollister and Kikuchi, 1992), have often employed the 
asymptotic method with separate treatment of microscale and macro
scale displacements, i.e. equilibrium equations are written in microscale 
and the finite element problem is solved for microscopic displacements. 
The current approach reduces complexity by solving the problem 
directly for the whole displacement field, i.e. simultaneously consid
ering both microscale and macroscale displacements. This results in a 
relatively different weak form equation and finite element formulation 
for an elastoplastic periodic cellular media, which has not been widely 
referred in the literature to the authors’ knowledge. 

2.1. Equilibrium equation 

Under static equilibrium conditions and in the absence of body 
forces, the weak form of equilibrium equations for a continuum body Ω 
in spatial description appears as 
∫

Ω

σijδεijdv=
∫

∂Ω

tiδuids (1) 

The above equation is presented in Einstein notation, where σji, εij, ti 
and δui are stress field, strain field, traction (defined on boundary ∂Ω) 
and virtual displacement, respectively. 

It is assumed that the strain field of a periodic cellular media can be 
decomposed into macroscopic strain field (εij) and microscopic strain 
field or local fluctuation (ε*

ij), i.e. εij = εij + ε*
ij. Thus, the above equi

librium equation is written as 
∫

Ω

σijδ
(

εij + ε*
ij

)
dv=

∫

∂Ω

tiδuids (2) 

Considering the Hill-Mandel Lemma, e.g. see (Yvonnet, 2019), we 
have 
∫

Ω

σijδ
(

ε*
ij

)
dv= 0 (3) 

Under the stated assumptions, this is the most generic form of 
equilibrium equation for a cellular media (no prior assumption was 
made on deformation and/or material behavior). Any material and/or 
geometrical behaviors can be obtained based on this equation. Two 
cases are considered and derived in this paper – a linear elastic media 
and an elastoplastic media under small deformations. 

For the linear elastic case, employing Hooke’s law in equation (3) 
leads to 
∫

Ω

Cijklεklδ
(

ε*
ij

)
dv= 0 (4)  

resulting in the equilibrium equation for an elastic material with small 
deformations. 

Equation (3) can also include material nonlinearity, e.g. plasticity. 
To linearize the weak from, the stress is linearized using the 1st-order 
Taylor expansion. 

σij(ε+Δε) = σij + Δσij = σij +
∂σij

∂εkl
Δεkl (5) 

With this, equation (3) follows as 
∫

Ω

(

σij +
∂σij

∂εkl
Δεkl

)

δε*
ijdv= 0 (6) 

This equation describes the behavior of an elastoplastic periodic 
cellular material with small deformation. It is the governing equation for 
most of the analyses conducted in this paper due to its computational 
efficiency and sufficient accuracy. The only exception is a single large 
deformation analysis to identify the loading strains as described in detail 
in section 4 (specifically in Fig. 1). 

Equations (4) and (6) are used to address elastic and elastoplastic 
problems, respectively. These equations can be numerically solved with 
FEM and the method of Lagrange multipliers, which is elaborated in the 
following section. 

2.2. Computational elastoplastic homogenization 

For computational homogenization, due to periodicity of the lattice 
material and the assumption of scale separation, we consider the domain 
Ω to be the RVE of the heterogenous material, i.e. the unit-cell of the 
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lattice. equation (6) depends not only on stress, σij, but also on strain 
increments, Δεkl. Thus, an incremental-iterative approach is required to 
solve this equation. Since the equation is to be solved with FEM, the 
variables are now written in Voigt notation. Consequently, equation (5) 
is now written as 
[
σn+1]= [σn] + [Δσ] = [σn] +

[
Dep

]
[Δε] (7)  

where [Dep] is the elastoplastic tangent matrix, as described in (Kim, 
(2015)). Superscripts n and n+1 denote the previous and current in
crements with [Δε] = [εn+1 ] − [εn]. Following this, equation (6) becomes 
∫

Ω

[δε*]
T (
[σn] +

[
Dep

]
[Δε]

)
dv= 0 (8) 

Using finite element formulation, the strain vector is defined as [ε] =
[B][u] and [Δε] = [B][Δu], where [B] is the gradient of element shape 
function and [u] is the element nodal displacements (includes both 
macro- and micro-scale, [u*], displacements). With this, equation (8) 
leads to 
∫

Ω

[δu*]
T (
[B]T

[
Dep

]
[B]

)
[Δu]dv= −

∫

Ω

[δu*]
T (
[B]T [σn]

)
dv (9) 

With [δu*]
T being the virtual microscopic displacement, we have 

∫

Ω

(
[B]T

[
Dep

]
[B]

)
[Δu]dv=

∫

Ω

(
− [B]T [σn]

)
dv (10) 

The above equation is the linearized equilibrium equation for an 
elastoplastic cellular media which is to be discretized over an RVE and 
solved using PBC. The volume integral of the terms in parentheses on the 
left-hand side and right-hand side of the equation are, respectively, the 
element tangent stiffness matrix, [kt ], and the element residual vector, 
[resn]. 

For a set of nodes being on two opposite sides of RVE, e.g. A and B, 
the periodicity condition is defined as u(A) − u(B) = ε(XA-XB), where X is 
the position of nodes (Yvonnet, 2019). This condition in the matrix form 
appears as 

[P][U] = [R] (11)  

where, [U] is the vector of unit-cell nodal deformations and matrix [P]
relates the deformation of paired nodes to the whole set of nodal de
formations. For each set of paired nodes, [R] is a column vector repre
senting the right-hand side of periodicity condition. Additionally, a 
nodal displacement boundary condition is also required to prevent rigid 

body motion. Here, only constraining the translational degrees of a 
chosen node is sufficient, as rotational degrees of the unit-cell are 
automatically constrained by PBC. The method of Lagrange multipliers 
is employed to find the nodal displacements and reaction forces. The 
system of equations is formulated as 
⎡

⎣
[Kt]

[
PT] [

QT]

[P] [∅] [∅]

[Q] [∅] [∅]

⎤

⎦

⎡

⎣
[ΔU]

[ΔΛ1]

[ΔΛ2]

⎤

⎦=

⎡

⎣
[Resn]

[ΔR]
[∅]

⎤

⎦ (12)  

where, [Kt ] is the assembled tangent stiffness matrix, [Resn] is the 
assembled residual vector and [Q] constrains the translational degrees of 
a chosen node. Finally, [ΔΛ1] and [ΔΛ2] are the increments of Lagrange 
multipliers. These are required to update the reaction forces resulting 
from periodicity and rigid body constraints, respectively. Additionally, 
the problem is strain-controlled and therefore, in each increment we 
have a constant [ΔR] = [Δε][XA − XB]. 

The above system of equations is solved iteratively for strain in
crements using Newton–Raphson method, as described in (Kim, (2015)). 
In the case of elastic analysis, the problem becomes linear, the residual 
vector vanishes and there is no need for an incremental-iterative solver. 
Additionally, the assembled tangent stiffness matrix simplifies to clas
sical global stiffness matrix, see (Molavitabrizi and Mousavi, 2020) and 
(Yvonnet, 2019) for details on elastic analysis. 

Homogenization techniques are employed for mechanical charac
terization of heterogeneous materials. Among different techniques, the 
averaging method is one of the most suitable ones for derivation of 
quasi-static properties (Molavitabrizi and Mousavi, 2020). The method 
is established for both elastic and elastoplastic heterogeneous materials, 
see (Yvonnet, 2019) and (Gross and Seelig, 2018), but it is briefly 
reviewed here. 

As was discussed in section 2.1, lattice materials are multiscale ma
terials with microscopically fluctuating fields. The behavior of these 
materials can be characterized with their macroscale stress/strain fields. 
Consider a lattice RVE defined in region Ω of the space, subjected to a 
uniform macroscopic strain ε at the boundaries. Based on the averaging 
theory, the material macroscopic stress σ and strain can be obtained by 
taking the volume average of the stress and strain field over the RVE 
domain. 

[σ] =< [σ]. >= 1
VRVE

∫

Ω

[
σ(x)

]
dV

[ε] =< [ε]. >=
1

VRVE

∫

Ω

[
ε(x)

]
dV

(13) 

Here, the volume averaging operator is denoted by <>. Now, 

Fig. 1. Schematic of the proposed fatigue analysis model.  
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considering Hooke’s law for the homogenized linear elastic continuum, 
we have 

[σ] = [C][ε] (14)  

where [C] is the effective elasticity matrix of the homogenized media. In 
the presence of plasticity and under assumption of small deformations, 
the macroscopic strain field is additively decomposed into elastic and 
plastic parts, i.e. [ε] = [εe] + [εp]. Therefore 

[σ] = [C][εe] = [C]([ε] − [εp]) (15) 

In the elastoplastic regime, the macroscopic elastic and plastic 
strains do not follow the ordinary volume average described in equation 
(13), i.e. [εp] ∕=< [εp] > and [εe] ∕=< [εe] >. They are indeed the weighted 
average of their respective microscopic fields, e.g. see (Gross and Seelig, 
2018). That is: 

[εp] = [C]
− 1

< [εp]
T
[C][M]>T (16)  

where [εp] is the elastic strain vector, [C] is the elasticity tensor of the 
base material and [M] is the localization matrix, i.e. [B][u] in FEM 
implementation. 

From the above equations, it is observed that the concept of ho
mogenization is based on the equivalency of averaged microscopic 
stress/strain fields with their macroscopic counterparts. This means that 
the selected RVE (a single unit-cell for periodic materials) along with 
PBC represent the material’s macroscopic behavior in terms of stress/ 
strain levels. This equivalency assures that the RVE can accurately 
represent the fatigue life if the fatigue model is selected from stress- and/ 
or strain-based approaches. 

3. Theory of critical distance 

Engineering components often possess geometrical features leading 
to localized stress/strain concentrations, and this challenges the fatigue- 
life prediction. One way to tackle this is to use a set of phenomenological 
methodologies known as theory of critical distance (TCD) (Taylor, 
2010). TCD refers to a group of methods which use a critical domain for 
stress/strain assessment and fatigue analysis. The method is divided into 
four sub-classes: point method (PM), line method (LM), area method 
(AM) and volume method (VM) (Taylor, 2010). For the PM, the effective 
stress/strain is considered at a certain distance from the point of the 
stress/strain concentration. The effective stress/strain in LM, AM and 
VM is obtained, respectively, by averaging the stress/strain over a crit
ical line, area, or volume defined around the point of stress/strain 
concentration. The averaged (or point value) of the stress/strain is 
considered representative for the fatigue behavior of the stress/strain 
concentration. The theory was initially proposed for HCF, see e.g. Taylor 
(2010), Neuber (1958) and Peterson (PETERSON et al., 1959), but 
recently, it has been successfully adopted for LCF as well, e.g. (Susmel 
and Taylor, 2010), (Faruq and Susmel, 2019), (Zhu et al., 2018) and 
(Pereira et al., 2020). 

Lattice materials often have complex geometries which result in high 
stress/strain gradients and localized stress/strain concentrations. This 
makes their fatigue analysis challenging, and the challenge has been 
recognized in the literature, e.g. see (Refai et al., 2020) and (Lohmuller 
et al., 2018). To resolve the issue, the TCD is employed for the first time 
in this study to assess the LCF behavior of lattice materials. Among 

different TCD methods, the area method (AM) is selected as the most 
suitable method for this study. Although PM and LM are the most 
common and widely used models (due to the ease of implementation) 
(Taylor, 2010), they may not be suitable for the analysis of lattices, 
especially 3-D topologies. This is because lattice materials often show 
high stress/strain gradients in different spatial directions, and this 
makes the identification of critical distance by means of PM or LM a very 
tedious task. Moreover, it has been experimentally observed that in 
lattice materials, fatigue initiates from the surface of struts (in the vi
cinity of struts connections) (Boniotti et al., 2019). Therefore, the use of 
AM seems to be more reasonable as compared to VM. 

In this work, the critical area is defined as the surface area resulting 
from the intersection of unit-cell surface with a circle (in 2-D) or a sphere 
(in 3-D) centered on the point of strain concentration. This definition is 
slightly different from what is typically considered as critical area, i.e. 
semicircle or hemisphere (see (Taylor, 2010) and (Pereira et al., 2020) 
for example), and the reason is that the classical definition is not 
applicable to the complex microarchitecture of lattice materials, espe
cially for 3-D lattices. The schematic of the critical area and its practical 
implementation (especially for 3-D case) is more explained in section 
5.3. 

If the surface of the critical region (resulting from the intersection) is 
defined as ∂Ωc, the effective strain obtained via AM is formulated as 

(
εij
)

eff =
1
Ac

∫

∂Ωc

εijd(∂Ωc) (17)  

where Ac is the surface area of the critical region and εij is the strain 
component of interest. 

To consider multiaxial effects at lattice joints (nodes), the equivalent 
strain range is defined as (Pereira et al., 2020)  

where Δεij is the strain variation in each load cycle, that is (εij)max −

(εij)min. Here, equation (18) is used for the calculation of both effective 
plastic strain range and effective total strain range. This equation is used 
after averaging the strain components on the critical area, as given in 
(17). 

The obtained equivalent strain range is evaluated by two different 
fatigue prediction models, namely Coffin-Manson (COFFIN, 1954), 
(Manson, 1953) and Morrow (1965) (superposition of the models of 
Coffin-Manson and Basquin (BASQUIN, 1910)). The Coffin-Manson 
model only considers plastic strains, while Morrow’s relation uses 
both elastic and plastic strains (total strain) for fatigue life prediction. 
The Coffin-Manson and Morrow relations, respectively, read as 

Δε p
eq

2
= ε′

f (2N)
c (19-a)  

Δεeq

2
=

Δε e
eq

2
+

Δε p
eq

2
=

σ′

f

E
(2N)

b
+ ε′

f (2N)
c (19-b)  

where σ′

f is fatigue strength coefficient, b is fatigue strength exponent, ε′

f 

is fatigue ductility coefficient, c is fatigue ductility exponent and 2N is 
the number of stress/strain reversals before crack initiation (each cycle 
has two reversals). 

4. Methodology outline 

In this section, a new methodology is proposed for LCF analysis of 

Δεeq =

̅̅̅
2

√

3
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δε11 − Δε22)
2
+ (Δε22 − Δε33)

2
+ (Δε33 − Δε11)

2
+

3
2
(Δε 2

12 + Δε 2
23 + Δε 2

13 )

√

(18)   
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lattice materials, i.e. combination of TCD and elastoplastic homogeni
zation. The methodology is outlined as following. 

The method aims at the uniaxial LCF analysis of lattice materials. It is 
based on computational strain-controlled type of analysis, and thus, 
requires determination of loading strains. The loading strain can be 
obtained through a numerical analysis of a quasi-static uniaxial tensile 
test. This is made in a first step through a large deformation elastoplastic 
finite element analysis (FEA) on a lattice unit-cell featuring PBC. The 
large deformation analysis is employed to determine the macroscopic 
failure strain. Remaining analyses employ small deformation assump
tions (to enhance the computational efficiency) unless stated otherwise. 
In the second step, a quasi-static small stain simulation is performed on 
the lattice RVE as described in section 2.2. Here, the maximum load 
(strain level) is set to be the failure strain obtained from the large strain 
simulation of the unit-cell. The macroscopic failure strain is then used 
for the estimation of the critical distance, see section 5.2 for more de
tails. This distance is thus selected such that it can represent the 
macroscopic failure of the lattice material at the local (microscale) level. 
Once the critical distance has been identified, a set of elastoplastic 
simulations are run for various cyclic macroscopic strains. COMSOL 
Multiphysics® solvers are used for solid mechanics analyses. However, 
the results are imported into an in-house MATLAB code for post- 
processing and fatigue analysis, as discussed in section 3. The sche
matic of the method is demonstrated in Fig. 1, where blue and red colors 
distinguish COMSOL solvers from the MATLAB code in the design 
process. 

Following the above-mentioned steps, the combined fatigue model is 
practically implemented on two sample lattice materials in the next 
section. 

5. Numerical implementation and results 

In this section, the step-by-step implementation of the proposed 
computational model (section 4) is demonstrated for a 2-D auxetic and 
3-D kelvin unit-cell. The aluminum alloy 7075-T651 is selected as the 
base (bulk) material of the lattice samples. The static and fatigue 
properties of this alloy are reported in (Tomažinčič et al., (2019)), and 
are summarized in Table 1. The material shows kinematic hardening 
behavior (Tomažinčič et al., 2019), and thus, linear kinematic hardening 
is selected for the material model. To find the value for tangent modulus, 
a numerical tensile test is carried out on the test specimen, and results 
are calibrated with the experimental strain–stress curve provided in 
(Tomažinčič et al., (2019)). The details of the numerical test are not 
given here for brevity. 

5.1. RVE topology 

Recently, there has been a growing interest towards the application 
of auxetic lattices, e.g. (Kolken et al., 2021), (Tomažinčič et al., 2020), 
(Novak et al., 2021), (Mirzaali et al., 2020), (Lan et al., 2021), (Bonfanti 
and Bhaskar, 2018) and (Alkhader et al., 2020). The main feature of 
these materials is their negative Poisson’s ratio at macroscale, i.e. their 
cross-sectional area expands under axial tension and shrinks under 
compression. This feature classifies such lattices as a so-called me
chanical metamaterial. Hence, a 2-D auxetic is selected as the candidate 
material for LCF characterization. The schematic of the lattice sample 
and its RVE is presented in Fig. 2, where the RVE length in x and y 

directions are 11.4 mm and 22.1 mm, respectively. Also, the in-plane 
and out-of-plane thickness of struts are 1.7 mm and 2 mm, respec
tively. This lattice is simulated with plane-strain assumption. This is an 
established and valid assumption for plate lattices, as they are much 
stiffer in the out of plane direction (z-direction in this case). 

Kelvin cell (also known as tetrakaidekahedron) is a space-filling unit- 
cell, which nearly satisfies the minimum surface energy and can 
reasonably represent the unit-cell of an open-cell foam (Zhu et al., 
1997). Open-cell foams are used for high temperature applications, 
energy absorption as well as sound isolation, see e.g. (Belardi et al., 
2021), (Zhu et al., 2017) and (Gao et al., 2017). Thus, this lattice is of 
great interest for the industry. The schematic of the space filling RVE and 
its macroscopic lattice sample is shown in Fig. 2. This form of RVE is 
suitable for the implementation of the described computational ho
mogenization scheme, as the macroscopic kelvin lattice can be obtained 
by tessellation of the RVE along coordinate axes. The length of the cubic 
RVE is 12.7 mm and the radius of struts is 2.54 mm. The relative density 
of the lattice is 20.6%. 

Before proceeding with the design methodology, the importance of 
homogenization and PBC in elimination of boundary effects is high
lighted through a comparison between numerical and experimental 
tensile tests on an auxetic lattice sample. It is to be noted that 8-node 
rectangular (plane-strain) and 10-node tetrahedral elements are used 
for 2- and 3-D simulations, respectively. A fine mesh is used to ensure 
convergence in the analyses. The minimum element size in 2- and 3-D 
models being 0.02 mm and 0.05 mm, respectively. 

5.2. Boundary effects 

To characterize the tensile behavior of the lattice, a macroscopically 
strain controlled elastoplastic FEA with PBC is conducted on the unit- 
cell (RVE). The results are then homogenized, based on equation (13), 
to characterize the macroscopic behavior of the lattice. The obtained 
stress–strain curve is then compared with the experimental study carried 
out in (Tomažinčič et al., (2019)). The experimental sample used in 
(Tomažinčič et al., (2019)) has 9 unit-cells (3 unit-cells in each direction, 
i.e. 3 × 3 unit-cells). However, for mechanical characterization of lattice 
materials, it is very crucial to have a sample with an adequate number of 
unit-cells to avoid boundary effects. This can be numerically achieved 
with PBC, as it mimics the condition of an infinite number of unit-cells 
and guarantees that the results are not altered by boundaries. 
Comparing the results in Fig. 3 reveals that the number of unit-cells in 
the test specimen used in (Tomažinčič et al., (2019)) is not sufficient. 

To validate this claim and assess the results obtained by PBC, a set of 
numerical experiments of tensile tests is conducted on samples with 
different number of unit-cells, where one end is clamped and the other 
end displaced in the x-direction, see Fig. 4. An elastoplastic FEA is 
performed and the middle unit-cell (with the largest distance from the 
boundaries) is isolated to assess the behavior of the lattice. Following the 
elastoplastic homogenization rules (section 2.3), the stresses are aver
aged over the RVE (isolated unit-cell), and the macroscopic behavior of 
the lattice is derived. The results of these numerical experiments (Fig. 3) 
show that as the number of unit-cells in a sample increases, its stress- 
strain curve converges towards the one obtained by PBC. Eventually, 
it turned out that a sample with at least 81 unit-cells (9 unit-cell in each 
direction, i.e. 9 × 9 unit-cells) can closely represent the behavior of an 
infinite lattice (single unit-cell with PBC). 

Table 1 
Properties of Al 7075-T651 alloy.  

Static properties (Tomažinčič et al., 2019) Hardening Fatigue parameters (Tomažinčič et al., 2019) 

Young Modulus 
(GPa) 

Yield strength 
(MPa) 

Ultimate tensile strength 
(MPa) 

Elongation to failure 
(%) 

Tangent modulus 
(GPa) 

σ′

f 

(MPa)  
ε′

f  c  b  

68.9 539 596 10.5 0.4 114.5 0.0686 − 0.3605 − 0.0048  
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Additionally, manufacturing defects could possibly contribute to the 
discrepancies. For example, the sample in (Tomažinčič et al., (2019)) 
was manufactured using waterjet cutting process which produces 
noticeable surface roughness and influences the strain-stress state. Note 
however that the surface roughness typically has a minor effect on static 
behavior and/or the low cycle fatigue resistance. 

The above simulations highlight the fact that under uniform loading 
conditions, e.g. uniaxial loading in this case, an RVE (single unit-cell) 
along with PBC can effectively represent the stress and/or strain field 
of a macroscopic lattice with a large number of unit-cells. Accordingly, 
the use of single unit-cell with PBC is suitable for stress- and/or strain- 
based uniaxial (or even multiaxial) fatigue analysis. In such cases, 
using a single unit-cell with PBC is computationally far more efficient 
compared to the simulation of a large arrangement of unit-cells with 
clamped/displaced BC. 

5.3. Computational fatigue model 

Now, the design methodology is elaborated step by step. The 
explained elastoplastic computational scheme (FEM/homogenization) 
in conjunction with the TCD approach are used as the main design 
strategies. Numerical tests are conducted under a uniaxial macroscopic 
strain (εxx) loading condition, which under linear conditions leads to a 
proportional cyclic state of strain locally. In general, the plasticity may 
introduce some non-linearity but as can be seen in Fig. 10, its influence 
on proportionality is limited here. Hence, the equivalent strain method, 
equation (18), would still provide a good characterization of the fatigue 
impact. 

Fig. 2. Schematic of the lattice samples and their RVEs (unit-cells): (a) auxetic sample; (b) kelvin sample, (c) 2-D auxetic RVE, and (d) 3-D kelvin RVE.  

Fig. 3. Numerical vs experimental (Tomažinčič et al., 2019) stress-strain curves 
for the tensile test (xx-direction). Data for: experiment (with 3 × 3 unit-cells), 
numerical with clamp/disp. BC (with 3× 3 unit-cells), numerical with 
clamp/disp. BC (with 7× 7 unit-cells), numerical with clamp/disp. BC (with 9×
9 unit-cells) and numerical with PBC (with an infinite number of unit-cells 
enforced by PBC). 
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5.3.1. Large deformation 
The first step towards the LCF analysis of lattice materials is the 

identification of the macroscopic loading strain. This loading is 
considered to be in the range between the macroscopic yield and failure 
strain. However, the tensile behavior of lattice materials is not yet well- 
established and is an active field of research, see for example (Ronan 
et al., 2016), (Tankasala et al., 2017) and (Seiler et al., 2020) in which 
the topic is explored for a number of 2-D topologies. This is even more 
challenging and less established when it comes to 3-D samples. In fact, 
very few studies have experimentally and/or numerically investigated 
the topic. Therefore, we aim for the numerical characterization of tensile 
behavior of lattices using large deformation elastoplastic analysis. This 

is performed on a single unit-cell with PBC, and typical assumptions 
related to large deformation theory. It is of the interest to evaluate the 
field variables in reference configuration (material frame). Thus, using 
the results of FEA and following equation (13), the second 
Piola-Kirchhoff stress is averaged over the RVE volume in the reference 
configuration. This is plotted in Fig. 5. Here, failure is assumed to occur 
when the averaged (effective) second Piola-Kirchhoff stress starts to 
decrease. No material softening mechanism (damage) is included in the 
constitutive model, since this would require additional uncertain ma
terial data. Consequently, reduction of the averaged stress can be 
contributed to the structural softening caused by the plasticity. For the 
auxetic and kelvin cells this point, respectively, corresponds to the total 
strain of 5.75% and 4.5%. This is considered as the failure strain of the 
lattice and pointed out in Figs. 5 and 6. 

The large deformation (finite strain) analysis is performed only to 
characterize the tensile behavior of the lattice. The failure strain 
determined in this analysis is the input to the following fatigue analysis 
which is carried out with the small deformation assumption. 

5.3.2. Elastoplastic FEA/Homogenization 
A macroscopically strain-controlled (εxx) elastoplastic analysis with 

PBC is conducted on the lattice RVE. The total macroscopic strain, εxx, is 
incrementally increased from zero up to the failure point, and the finite 
element problem, equation (12), is solved at every load increment. Then, 
using the data obtained from FEA, the elastoplastic homogenization 
scheme (section 2.2) is implemented, and stresses are averaged over the 
RVE (unit-cell). The average stress-strain relationship characterizes the 
macroscopic behavior of the lattice, as shown in Figs. 7 and 8. 

Investigating the results provided in Figs. 7 and 8, the macroscopic 
yield strains of auxetic and kelvin cells are found to be 0.75% and 1%, 
respectively. These points were selected when the slope of the macro
scopic stress-strain curve has deviated from linear elastic behavior. In 
this study, this strain level is taken as the lower bound for LCF analyses. 

5.3.3. Determination of critical distance 
From FEA, it is observed that the lattices fail locally at unit-cell joints 

(corners), i.e. local stresses exceed the base material’s yield strength, 
well before the occurrence of macroscopic yielding, i.e. well before 
0.75% strain in auxetic and 1% strain in kelvin. This indicates that any 
fatigue/failure assessment based on the critical element/node (highly 
strained elements/nodes at joints) would lead to unrealistic results. 
Hence, following the theory of critical distance, the aim is to find a 

Fig. 4. Numerical analysis of a tensile test with clamped/displacement BC (von 
Mises stress distribution); left-side is clamped and right-side displaced in x-di
rection. The isolated unit-cell is marked with black circle. 

Fig. 5. Auxetic lattice: averaged Piola-Kirchhoff stress (xx-direction) vs 
macroscopic strain. 

Fig. 6. Kelvin lattice: averaged Piola-Kirchhoff stress (xx-direction) vs macro
scopic strain. 
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region around the strain/stress concentration, which can realistically 
represent the macroscopic behavior of the lattice. Ideally, this region 
should be evaluated based on the outcome of a (large) number of fatigue 
tests, e.g. see (Zhu et al., 2018). However, in the current study (and often 
in practice) there are no fatigue data for the material available. Under 
these circumstances we employ the fact that LCF is strongly correlated to 
plastic deformation. Hence, we define the critical area so that it reflects 
the plastic deformation characteristics of the structure. In other words, 
the plastic strain average over the selected region should reasonably 
demonstrate the macroscopic tensile behavior of the lattice. More spe
cifically, when the macroscopic strain reaches the estimated failure 
point (5.75% strain in auxetic and 4.5% strain in kelvin), the average of 
plastic strain of the material in this region should correspond to the 
plastic failure strain of the base material, i.e. 9.7% plastic strain (plastic 
strain of Al-7075 at the point of softening). To sum up, the critical dis
tance is determined such that the relation (εp,avg)lattice ≅

(εp,fail)Al− 7075 ≅ 9.7 % is stratified at the macroscopic failure load 
(strain). Here, εp is the plastic strain, and the subscript “lattice” repre
sents the critical area on the lattice unit-cell (not the whole unit-cell). 

It should be noted that the (quasi-static) failure strain can be 
considered as an extreme case of low-cycle fatigue with a fatigue life of 
one cycle. The use of such an extreme to establish the critical distance in 
LCF is analogous to the use of the fatigue limit (infinite fatigue life) to 
establish the critical distance in HCF analysis, see e.g. (Taylor, 2010). 

As explained in section 3, the critical area is defined as the surface 
area resulting from the intersection of lattice unit-cell with a circle (in 2- 
D) or a sphere (in 3-D) centered on the point of the strain concentration. 
The concept of surface area in 2-D is intuitive but this may not be the 
case for 3-D lattices. In the tridimensional case, the surface area is the 
area formed by intersecting a volume (sphere centered on the point of 
strain concentration) with a surface of the lattice struts. In fact, what is 
highlight in Fig. 9-b is a surface (with no depth). It is to be reminded that 

Fig. 7. Macroscopic stress-strain curve for auxetic lattice (xx-direction).  

Fig. 8. Macroscopic stress-strain curve for kelvin lattice (xx-direction).  
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Fig. 9. The critical surface obtained on (a) RVE of auxetic lattice, and (b) RVE of kelvin lattice. The critical surface is highlighted in purple. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Plastic/total strain components resulting from macroscopic cyclic loading: (a) auxetic with εa = 1.25%, and (b) kelvin with εa = 2%. The dotted and solid 
graphs represent total and plastic strains, respectively. 
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the AM is chosen over VM, since experimental observations (see e.g. 
(Boniotti et al., 2019)) show that fatigue in lattice predominantly ini
tiates from the surface (in the vicinity of joints). 

Following the above strategy for definition of the critical length, the 
radius of such circle for 2-D auxetic is obtained as 0.34 mm. For 3-D 
kelvin cell, this would be the radius of a sphere and is obtained as 
1.38 mm. The critical surface (surface obtained from the intersection of 
unit-cell surface with defined circle/sphere) is demonstrated in Fig. 9. 

5.3.4. Cyclic Loading & fatigue analysis 
Once the lattice yield strain, failure strain and critical length (radius) 

is established, one can proceed with the fatigue analysis. Various strain 
amplitudes are considered, starting from the lattice yield strain. For 
fatigue analysis of the 3D model, a refined mesh with a minimum 
element size of 0.002 mm is used on the ciritical surface. Homogeniza
tion along with the application of PBC provides the possibility of 
employing such fine mesh resolution with reasonable computational 
costs. The fatigue assessment is carried out as below. 

First, a cyclic macroscopic strain is defined, e.g. εxx = εa.sin(2πT), 
where εa is the macroscopic strain amplitude and T is time, T ∈ [n − 1, n]
with n being the load cycle number. The loading is macroscopically 
uniaxial and alternating (zero mean-stress). Under this loading condi
tion, the elastoplastic FEA is conducted on the lattice RVE, following 
equation (12) in section 2.2 with a linear kinematic hardening material 
model. No averaging is involved at this first stage. Second, the plastic/ 
total strain data obtained from FEA is averaged over the critcal surface, 
as given in (17). In lattice materials, the uniaxial macroscopic strain, εxx, 
often results in a multiaxial total/plastic state of strain, especially at 
unit-cell joints (corners). For that reason, the equivalent total/plastic 
strain is obtained from the averaged total/plastic strain variation (over 
the critcal surface) using equation (18). Finally, this equivalent strain is 
used as an input for Coffin-Manson and Morrow models in equation (19), 
to calculate the fatigue life. An in-house MATLAB code, which takes the 
data obtained from the structural analysis as input is developed for this 
purpose. 

As an example, the variation of the averaged total and plastic strains 
over the critical surface is demonstrated for the auxetic cell with εa =

1.25%, and for the kelvin cell with εa = 2%, see Fig. 10. The figure 
represents the data for the first and second load cycles depicting a very 
slight kinematic hardening effect. The fatigue analysis is done using data 
from the second load cycle, which is considered to represent the stabi
lized (plastic shake down) behavior. 

Following the final step in the methodology, the fatigue life of 
auxetic and kelvin lattices are characterized for a range of strain am
plitudes using both Morrow and Coffin-Manson models. The results are 
summarized in Tables 2 and 3, and the corresponding strain-life curves 
are visualized in semi-log plots in Figs. 11 and 12. Additionally, the 
numerical fatigue lives obtained for the auxetic lattice are compared 
with the experimental data provided in (Tomažinčič et al., (2019)), see 
Table 2 and Fig. 11. The results show a close match between numerical 
and experimental fatigue data. Note that the experimental fatigue lives 
are related to a finite lattice (see section 5.2) and comparing these to 
numerically evaluated lives of the infinite lattice implies an assumption 

that the number of unit-cells (boundary effect) has a limited influence on 
LCF behavior. Finally, it can be noted that the difference in 
Coffin-Manson and Morrow curves is essentially due to the contribution 
of the elastic strains and the HCF part. 

6. Conclusion 

The LCF behavior of lattice materials is less-established, especially 
for 3-D topologies. The current paper proposed a novel fatigue meth
odology for the LCF analysis of both 2- and 3-D lattice materials. Due to 

Table 2 
Fatigue life estimates for low cycle regime (auxetic lattice).  

Strain amplitude 
(εa)  

Ni (Coffin- 
Manson)  

Ni 

(Morrow)  
Ni (Experiment (Tomažinčič 
et al., 2019))  

0.0075 1733.8 398 No data 
0.01 310.72 131.6 240 
0.0125 128.30 68.20 90 
0.015 65.75 39.9 38 
0.02 26.40 18.40 No data 
0.0325 (a 0.03) 5.94 4.90 3–24  

a Refers to the applied experimental strain amplitude that is slightly different 
from the numerical one in the last row. 

Table 3 
Fatigue life estimates for low cycle regime (kelvin lattice).  

Strain amplitude (εa)  Ni (Coffin-Manson)  Ni (Morrow)  

0.01 5797.9 3547.3 
0.015 1022.8 585.7 
0.02 379.12 229.8 
0.025 180.78 118.7 
0.03 98.05 69.8  

Fig. 11. Numerical and experimental (Tomažinčič et al., 2019) strain-life curve 
for LCF analysis of the auxetic lattice. 

Fig. 12. Strain-life curve for LCF analysis of the kelvin lattice.  
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the general lack of available data on LCF and tensile behavior of lattice 
materials, this study was focused on providing a novel methodology for 
LCF analysis of lattices based on computational homogenization and the 
theory of critical distance. The input for the analysis is restricted to yield 
and LCF data from the base material. Numerical simulations featuring 
elastoplastic homogenization theory have been adopted to establish the 
yield point and failure strain of the lattice. These are then employed to 
derive the critical distance in the TCD approach for fatigue evaluation. 
The obtained data are then employed in LCF life predictions for lattice 
unit-cells, where periodic boundary conditions have been used to 
minimize computational demands. Following this methodology, two 
sample lattice topologies, namely auxetic and kelvin, were numerically 
tested and their corresponding strain-lives were characterized. Fatigue 
life predictions for the auxetic lattice show good correspondence to 
experimentally found fatigue lives reported in the literature. 

This is the first work of its kind aiming at the investigation of LCF and 
tensile behavior of 2- and 3-D lattice materials from limited knowledge 
on fatigue characteristics of the lattice base material. The numerical 
framework presented in this study is generic and applicable to other 
lattice topologies or periodic micro-architectured materials, e.g. surface- 
based lattices. Of course, the fatigue criterion (Morrow in the current 
study) and the constitutive modeling should be adopted accordingly 

with regards to the base material. The proposed numerical model and 
the obtained results are to be further validated and calibrated in future 
experimental studies. In particular, the TCD method can benefit from 
further experimental results to quantify the accuracy of the approach. 
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Appendix A. Schematic of applied PBC 

The applied PBC on auxetic and kelvin cells are schematically illustrated in Figs. A-1 and A-2, respectively. Since the opposite boundaries of the 3-D 
Kelvin cell are not visible in a 2-D figure, their positions are highlighted with red arrows.

Fig. A-1. Schematic of the applied PBC on auxetic unit-cell; (a) periodicity in x-direction, and (b) periodicity in y-direction. (The constrained boundaries are 
highlighted in blue.) 

Fig. A-2. Schematic of the applied PBC on Kelvin unit-cell; (a) periodicity in x-direction, (b) periodicity in y-direction, and (c) periodicity in z-direction. (The 
constrained boundaries are highlighted in purple). 
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Appendix B. Schematic of critical area in TCD assessment 

The critical area is defined as the surface area resulting from the intersection of lattice unit-cell with a circle (in 2-D) or a sphere (in 3-D) centered 
on the point of the strain concentration. This is schematically shown in Fig. B-1 for both 2-D auxetic and 3-D Kelvin cells. The defined circle (in 2-D) 
and sphere (for 3-D) are highlighted in purple and marked with red arrows. The intersection of these geometries with unit-cells forms the critical area.

Fig. B-1. Schematic of how critical area is formed in the selected unit-cells.  
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