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ELZBIETA REMBEZA 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

 

ABSTRACT 
Millions of enzymes with desirable features or new exciting activities can be found in 
organisms occupying diverse niches all around the earth. However, enzyme studies tend to 
be biased towards characterisation of representatives from eukaryotes, model organisms, or 
disease-causing bacteria. As such, a large number of enzymes still remains underexplored. 
The so-called sequence space of proteins - all possible protein sequences - is even greater 
when we include not only natural sequences, but also the ones designed by human or artificial 
intelligence. This thesis explores various reasons, approaches, and outcomes of investigation 
of large enzymatic sequence spaces.  
 
In the first part of my work, I focused on investigation of a natural sequence space of oxidases 
using a high-throughput activity profiling platform. A functional screen of an industrially 
important class of enzymes, S-2-hydroxyacid oxidases (EC 1.1.3.15), revealed that nearly 
80% of the class is misannotated. Further exploration of annotations to public databases 
indicated that similar errors of annotations can be found in other enzyme classes. A broader 
activity profiling of 1.1.3.x oxidases resulted in the discovery of two novel microbial enzymes: 
N-acetyl-hexosamine oxidase, and a novel type of long-chain alcohol oxidase.  
 
Natural enzymes often need to be improved in order to be industrially applied, for example to 
become more stable, or accept non-natural substrates. A novel, and constantly developing, 
approach for enzyme design involves the use of machine learning (ML) tools. Second part of 
my work focused on screening an enzyme sequence space designed by generative 
adversarial networks. Our work proved that ML methods can generate fully functional enzymes 
that mimic sequences present in nature. 
 
Enzyme assays are necessary to get a full understanding of how enzymes work. Traditional 
kinetic assays are time- and reagent-consuming and as a result a limited number of variants 
and conditions are being tested for each target. In my final work I described a novel approach 
for enzyme kinetic studies, by adaptation of a microfluidic qPCR device. 
 
Keywords: enzyme sequence space, high-throughput-screening, enzyme discovery, 
oxidases, protein annotation  
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Chapter 1. Introduction 

1.1. History of enzyme studies 

Enzymes are molecules which facilitate reactions happening in all living organisms. Thanks to 

them we are able to eat, breathe, move, and think. Well-functioning enzymes ensure a well 

working organism, while their malfunction might have dire consequences for health [1]. 

Different organisms contain a different set of enzymes, some of which are crucial for survival 

in extreme environments or fighting and infecting other organisms [2–4]. Enzymes are also 

used in our everyday life in detergents, cosmetics, as pharmaceuticals and food additives 

[5,6]. In fact, people have been relying on enzymatic reactions for commercial purposes for 

centuries: to ferment sugars into alcohol, produce cheese or leather [7,8]. For many years, 

however, we took all those reactions happening inside and outside our bodies for granted.  

 

With the emergence of modern science in the middle of the 16th century, scientists started 

asking more questions about why things work the way they do [9]. By the beginning of the 

18th century, the processes of digestion of meat by stomach secretions and starch to sugars 

by saliva and plant extracts were described, but their mechanism remained unknown [10]. The 

first enzymes were discovered in the 1830s; they were extracellular, hydrolytic enzymes such 

as diastase (catalysing breakdown of starch), pepsin (degrading proteins), or invertase 

(hydrolysing sucrose) [11]. Around the same time, Jöns Jacob Berzelius introduced the 

concept of catalysts, as chemicals facilitating a reaction without undergoing any change 

themselves, and hypothesized that enzymes were such catalysts [12]. With more enzymes 

being discovered, scientists started looking into how the reactions catalysed by enzymes are 

conducted. It was noted that enzymes are very specific - active on a narrow scope on 

substrates: pepsin could digest proteins, but not sugars. To explain this phenomenon, a “lock 

and key” model was proposed by Emil Fisher in 1894, in which enzymes and substrates 

possess specific, complementary geometric shapes that fit exactly into one another [13]. This 

model was later modified in 1954 by Daniel Koshland in his “induced fit model”, which 

describes enzymes as flexible molecules that are reshaped upon binding of a substrate [14]. 

To explain how enzymatic reactions are conducted, a kinetic model was proposed in 1913 by 

Leonor Michaelis and Maud Menten [15], in which enzymatic reaction was divided into two 

stages: reversible binding of substrate to the enzyme, and catalysis of the chemical reaction 

ending with the release of the product (Figure 1). Their model, in which the rate of enzymatic 
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reaction is related to the concentration of substrate (Figure 1), is still largely applied to 

characterise single substrate biochemical reactions. 

 
Figure 1. The Michaelis-Menten model (upper) and equation (lower). Enzyme (E) and substrate (S) are 
reversibly combined to form the enzyme-substrate complex (ES), which then releases a product (P) 
and regenerates the original enzyme. The equation relates the rate of product formation (v) to 
concentration of a substrate. Vmax represents the maximum rate, happening at saturating substrate 
concentration. KM, the Michaelis constant, represents the substrate concentration at which the reaction 
rate is half of Vmax.  
 
For a long time, the chemical nature of enzymes was uncertain. Many observed that enzymatic 

activity is associated with proteins, although some argued that proteins are only carriers, not 

executors of the activity [16]. In 1926 James B. Sumner crystallized the first enzyme, urease, 

and confirmed it was a protein [17]. Proteins at that time were recognised as molecules able 

to flocculate or coagulate under treatment of heat or acid. Gerardus Mulder found in 1838 that 

nearly all proteins have an empirical chemical formula of C400H620N100O120P1S1 [18]. Franz 

Hofmeister and Hermann E. Fischer discovered in 1902 that proteins are polypeptides - they 

consist of amino acids linked by bonds [19]. Advances in protein purification and 

crystallization, together with development of X-ray crystallography, allowed for solving their 

first structures in 1958 [20]. Structures of enzymes followed, confirming the induced fit 

hypothesis of substrate binding, and opening doors for investigations of how enzymes work 

on a molecular level. To collect the new protein structures, the Protein Data Bank was founded 

in 1971 with seven entries, and it grew to over 180000 structures in 2021 [20].  

 

As more and more enzymes were discovered and characterised, the need for structuring 

enzyme terminology also appeared. In 1961 the Enzyme Commission (EC) classification 

system was introduced and contained 712 entries in its first edition [21]. The EC numbers 

consist of four numbers and describe reactions catalysed by an enzyme (Figure 2) Currently 

there are 7 main classes of enzymes (oxidoreductases, transferases, hydrolases, lyases, 

isomerases, ligases, translocases) and 6581 reactions with an EC number assigned [22]. 

E + S E + PES

v = maxV [S]

MK + [S]
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Figure 2. Enzyme Commission classification. Each EC number consists of four numbers describing a 
progressively more defined classification of an enzyme. Glucose oxidases have an EC number of 
“1.1.3.4”, which means it is an oxidase (EC 1) acting on the CH-OH group of donors (EC 1.1), with 
oxygen as acceptor (EC 1.1.3), active with glucose as a substrate (EC 1.1.3.4). 
 
In the 1970s commercial application of enzymes began, with glucose isomerase used in 

production of high fructose corn syrup, and penicillin acylase for production of semi-synthetic 

antibiotics [6]. However, industrial use of enzymes was largely limited by low quantities they 

could be obtained in. Similarly, early scientific studies were focused on those enzymes that 

could be easily obtained in large quantities, for instance by purification from egg whites or 

blood. During the late 1950s the Armour Hot Dog company purified 1 kg of bovine ribonuclease 

A and donated it to scientists around the world, which made the enzyme a model for protein 

studies for the following years [23]. What made proteins much more accessible and allowed 

for studies of a whole spectrum of new enzymes, was crossing the pathways of enzymology 

with genomics and molecular biology. 

 

1.2. History of genomics 

The existence of discrete inheritable units was first suggested in the 1860s by Gregor Mendel, 

who conducted experiments by crossbreeding pea plants. It was not until 1952 and the 

experiments by Martha Chase and Alfred Hershey that DNA was confirmed as a carrier of 

genetic information [24]. At that time, it was known that DNA consists of four nucleotide bases: 

adenine, cytosine, guanine, thymine, and their pairing pattern was suggested (A always pairs 

with T and C always pairs with G). Based on this knowledge, as well as X-ray diffraction data 

by Rosalind Franklin, James Watson and Francis Crick proposed the double-helix structure 

model of DNA in 1953 [25]. Five years later a “central dogma of molecular biology” was coined 

by Francis Crick [26]. It described a flow of genetic information from nucleic acid to nucleic 

acid or protein and is nowadays commonly referred to as “DNA makes RNA, and RNA makes 

protein” (Figure 3). By 1967, thanks to work by groups of Marshall Nirenberg, Har Gobind 

EC 1.1.3.4
oxidoreductase acting on the

CH-OH group
of donors

with oxygen
as acceptor

active with
glucose



4 

Khorana and others, the “code for life” was cracked. It was demonstrated that the four bases 

that build DNA are read in blocks of three to code for a specific amino acid (Figure 3) [27]. 

With this, the knowledge gap between DNA and proteins was beginning to close.  

 

 
Figure 3. Linking DNA sequence to protein sequence. Left: the “central dogma of molecular biology” 
describes the flow of genetic information from nucleic acids to nucleic acids or proteins. Right: the 
genetic code. Codons consist of three RNA bases and encode one of the 20 amino acids or stop signals. 
The chart is read from the inside outwards, e.g. the codon “AUG” encodes methionine. 
   
 

In 1972 Paul Berg produced the first “recombinant” DNA by merging a piece of viral DNA into 

a DNA of the bacterium Escherichia coli [28], and so a method of molecular cloning was born. 

In 1977 with the work of Frederick Sanger, a new milestone appeared - the possibility to 

determine the nucleotide sequence of DNA, followed by sequencing the first DNA genome - 

the full genetic information of an organism [29]. Sanger sequencing, although ground-

breaking, was time consuming and costly, particularly when applied to whole genomes. At the 

beginning mainly small and simple viral genomes were published, while the work on more 

complex genomes was progressing slowly; in 2000, over 20 years after the invention of DNA 

sequencing, there were nearly 1300 viral genomes published, but only 28 prokaryotic and 6 

eukaryotic ones [30]. In 1990 the Human Genome Project was launched to obtain the genetic 

blueprint of humans. Their first draft of the human genome was published in 2001 [31] and 

two years later its final version was released. The project was a huge initiative: it took nearly 

13 years and cost $2.7 billion. Less than twenty years later, it is now possible to sequence a 

human genome in one day for $1000 [32]. This drastic decrease in time and money spent was 

achieved thanks to the “next generation” sequencing methods. These methods started to 

appear in 2005 and differed in adopted strategies, but all offered short-read, high-throughput, 

massively parallel platforms [33]. In 2009 the “next generation” methods were complemented 
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by the “long-read” sequencing strategies that enabled reading ultra-long stretches of DNA, up 

to 2 million base pairs [34]. When the new sequencing methods became commercially 

available, the cost of sequencing began to plummet, and the number of genomes sequenced 

started to increase rapidly (Figure 4).  

 

 
Figure 4. Decrease in the cost of DNA sequencing caused a rapid increase in the number of genomes 
sequenced. Left: cost of DNA sequencing per one megabase, source: National Human Genome 
Research Institute [35]. Right: number of sequencing projects deposited to the Genomes Online 
Database [36]. 
 
Suddenly, the scientists were faced with an amount and depth of genomic data never seen 

before. Although this offered great possibilities, it also came with its challenges, most 

importantly how to connect sequences of such a huge number of genes with their functions. 

As it became impossible to elucidate the function of all genes experimentally, the annotation 

of newly sequenced genes became primarily a computational task. Although not without their 

issues, the automatic pipelines allowed for processing and annotation of a vast amount of 

genetic data produced in sequencing projects [37]. 

1.3. Sequence space of enzymes 

All the developments in genetics, molecular techniques, and bioinformatics revolutionised 

protein science and enzymology (Figure 5). At the end of 1970s it was possible for the first 

time to read a sequence of a protein, clone it into an easy-to-handle host organism, and 

produce in large enough amounts to characterise it. Studies on metabolism and biocatalysis 

accelerated. Recombinant enzymes became very important tools for the development of 

molecular biology techniques [38]. New enzymes started to find their industrial use: for 

pharmaceutical synthesis, food production, detergents, personal care products, biofuels, and 

many others [39]. Discovery of enzymes from extreme environments allowed for exploration 
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of variants functional in very high or very low temperatures, high salt or acid concentrations 

[40]. The genomic revolution has provided scientists with an avalanche of protein sequences. 

Many of these sequences carry unknown functions which might be important for 

understanding ecosystems around us and prove useful for human applications.  

 

The sequence space of enzymes - all the existing enzyme sequences - is vast. With the 

possibility of modifying and engineering proteins, the natural sequence space becomes even 

larger, hiding many possibilities and opportunities. In this thesis I aim to explore various 

reasons, challenges, outcomes, and approaches of investigating enzyme sequence space. 

The thesis is based on four manuscripts in the creation of which I was involved, as well as the 

literature that inspired me in my work. Chapter 2 focuses on describing exploration of the 

natural sequence space of enzymes, including annotation of enzymes to databases (Paper I), 

discovery of novel enzymes (Paper II), as well as methods used for large-scale activity profiling 

of enzymes (Papers I, II, and III). Chapter 3 presents the topic of engineered sequence space 

exploration, including machine learning-enabled enzyme design (Paper III). Chapter 4 

describes methods for enzyme activity profiling, particularly for high-throughput enzyme 

kinetic measurements (Paper IV). The final chapter presents my outlook on the future of 

protein sequence space exploration. 
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Figure 5. Timeline of major developments in protein research, enzymology, genetics and molecular 
biology techniques. Inspired by [6].  
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Chapter 2. Investigating sequence space of natural 

enzymes 

2.1. Underexplored enzyme sequence space 

Thousands of different enzymatic functions are present in nature. Some are central to nearly 

all organisms, while some are extremely specific and present only in a handful. Regardless of 

their function, they all have one thing in common: they are built of the same building blocks, 

amino acids. There are only 20 standard amino acids encoded by the genetic code (Figure 3). 

They are bound together by peptide bonds, and the sequence they appear in in the protein 

defines their folding into 3D folds, which in turn defines the protein’s function. Therefore, 

structure and function of a protein is encoded in the protein sequence. As more genetic 

information was collected, it was noted that proteins carrying the same function in two different 

organisms usually display very high similarity in amino acid sequence and 3D structure. This 

paradigm became a basis for homology-based computational prediction of protein function, 

where newly sequenced genes have their function assigned based on their sequence similarity 

to characterised proteins. In enzymes, a few amino acid residues are essential to carry out a 

catalytic function, such as the ones involved in substrate or cofactor binding. Conservation of 

these proved to be more crucial in carrying out a function than overall similarity of the whole 

sequence [41]. Thus, searching for “motifs” - characteristic signatures of a fold or domain 

associated with a function - became another method for function prediction. More refined 

methods of functional annotation rely on structure similarity, genomic context, or phylogeny 

[42].  

 

Computational methods for functional annotation, although constantly improving, often provide 

only broad clues for gene functionality, rather than specific answers. Prediction of completely 

novel functions is particularly challenging [43]. Additionally, incorrect automatic predictions are 

very common and tend to percolate, leading to error accumulation in the databases [44]. 

Experimental approaches provide the highest level of information for elucidation of enzymatic 

functions and create a base for reliable computational annotations. However, the classical 

biochemical methods of enzyme characterisation cannot keep up with the amount of genomic 

data produced. As such, protein studies tend to be heavily biased towards characterizing 

proteins from eukaryotes (Figure 6), model organisms, or disease-causing bacteria [45]. A 
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recent study revealed that enzymes from eukaryotes, the least diverse part of the tree of life, 

comprise 55% of all characterised enzymes, and five mammals contribute to 15% of enzyme 

database entries [46]. A large number of bacterial and archaeal phyla was shown to be 

completely underexplored. These data clearly show that a big part of the natural sequence 

space of enzymes remains underexplored.  

 

 
Figure 6. Experimental bias of protein investigation. Although there are more bacterial than eukaryotic 
enzymes deposited to the BRENDA enzyme database (left), the number of experimentally investigated 
bacterial enzymes is much smaller than eukaryotic ones (right). [47] 
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2.2. Large-scale activity profiling of enzymes 

2.2.1. The subject of large-scale activity profiling 

The issues with traditional experimental and computational methods for function annotation 

have led researchers to look for alternative ways to explore enzymes. Large-scale “genomic 

enzymology” approaches aim to shift the focus of enzyme exploration from a host organism 

to sequence space, enabling sampling through a wider swath of functional space. In such 

approaches, computational screening of sequences is followed by a high-throughput 

experimental characterisation of selected candidates with a large scope of potential 

substrates. Most commonly the subject studied with the high-throughput sequence space 

approach is an enzyme family, a group of evolutionary related proteins, often displaying 

sequence, structure, and function similarity. One of the earliest large-scale profiling 

experiments were carried out to unravel functions of families with domains of unknown 

functions [48,49]. Other subjects were experimentally underexplored families [50–55] or non-

homologous isofunctional enzymes [56]. In contrast, the subjects of studies in Paper I and 

Paper II are enzyme classes, rather than enzyme families. Enzyme class, described by an EC 

number (Figure 2), groups enzymes based on the reaction they catalyse, not homology. This 

means that two enzymes which catalyse the same reaction but are members of two 

evolutionary unrelated protein families would be assigned an identical EC number. Applying 

large-scale activity profiling to enzyme classes allows for exploration of many different 

sequences catalysing similar reactions and experimental validation of their existing 

annotations. Additionally, when applied to several enzyme classes and a wide range of 

different substrates, the experimental platform is also well-suited for discovery of promiscuous 

activities - side reactions that are distinct from the enzyme's main activity. 

 

2.2.2. Workflow of large-scale activity profiling 

Regardless of the subject of study, performing a large-scale activity profiling follows a three-

step procedure: selection of candidate sequences, protein production, and activity screening 

(Figure 7).  
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Figure 7. The typical workflow of large-scale activity profiling of enzymes.  
 

The first part of sequence selection often involves creating a sequence similarity network 

(SSN), where subfamilies of similar sequences are clustered together. In most studies the 

candidate sequences are sampled throughout the whole sequence space to represent its 

diversity as best as possible. Sometimes a particular weight is put on characterisation of 

sequences from underexplored or extremophilic hosts, very distant family members or 

hypothetical enzymes [53,54,56]. In Papers I and II sequences were iteratively selected so 

that each newly chosen sequence maximally increases the mutual information explained 

within each cluster. 

 

Once the candidate sequences are selected, their production comes next. Usually, hundreds 

of sequences are chosen in the first step, so the enzyme production platform has to be adapted 

for a higher throughput. In the early large-scale activity profiling studies selected genes were 

subcloned from the host genome, which involved a lot of hands-on time and occasionally 

limited the scope of selection in step 1, as it was dependent on availability of genomic DNA. 

In the most recent studies, including Papers I and II, gene synthesis is preferred over 

subcloning, due to its convenience and possibility of codon optimisation. E. coli is usually 

chosen as an expression host of choice because of its ease of growth in high-throughput 

conditions. Expression of genes is carried in 1 - 2 ml culture volumes in multiwell plates, and 

affinity purification is conducted in a 96-well format, if necessary. After production, the 

presence of enzymes is assessed by SDS-PAGE or its automated, capillary-based alternative 

LabChip GX. Protein expression and/or solubility is often a limiting factor in large-scale activity 

profiling, with recovery ranging 15 - 75%, which can lower greatly the number of proteins that 

can be tested in the downstream analysis. This could be minimised by solubility prediction at 

the sequence selection step [53] or codon optimisation for the expression host. 

sequence selection

- sequence clustering
- selection of representatives

- DNA subloning or synthesis
- gene expression
- protein purification

- selection of substrates
- activity assay

protein production activity screening
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Functional screening is the final, and most crucial step. Like enzyme production, it should be 

easily adaptable for a high-throughput setup. Oftentimes selection of the subject of study relies 

on the availability of a high-throughput screening method for a given enzyme family or class. 

The most common activity screening methods are based on measuring change in absorbance 

or fluorescence of a substrate, product, or a coupled probe in a multiwell plate. The 

successfully purified enzymes are assayed with a range of pre-selected substrates and their 

activity recorded by endpoint or continuous measurements. The initial results of this large-

scale activity profiling are usually just a stepping-stone to further, more detailed studies. 

Depending on the obtained results, investigations may continue by testing a broader range of 

substrate and activities, analysing sequence-function relationship within the enzyme 

sequence space, or obtaining detailed kinetic, biophysical, or structural information for 

selected candidates.   

 

2.2.3. Exploration of EC 1.1.3.x in the “all-vs-all” experiment 

The first application of a large-scale enzyme profiling for characterisation of an entire protein 

family was performed to assign a function to proteins containing a domain of unknown function 

[48]. The study discovered 14 new β-keto acid cleavage activities, unravelled their metabolic 

functions and predicted key residues responsible for specificities. Since its publication, each 

year new studies using similar approaches and tools are being released, expanding 

knowledge of sequence-structure-function relationships of the investigated enzymes. In 

Papers I and II a high-throughput experimental platform was used to screen a sequence space 

of selected enzyme classes. We chose oxidases acting on the CH-OH group of donors with 

oxygen as an acceptor (EC 1.1.3.x) as a subject of the studies. Nearly 15000 sequences are 

currently annotated as 1.1.3.x in UniProt (https://www.uniprot.org/), but only a fraction of them 

have been experimentally characterised. Representative of EC 1.1.3.x take part in a wide 

range of biological processes, such as ascorbic acid production [57], photorespiration [58], 

production of osmoprotectants [59], synthesis of antibiotics [60,61] and phytotoxins [62]. They 

are also of interest to the medical and food industries as biosensor candidates for sensing 

specific marker molecules, like glucose, lactate, ethanol, cholesterol, galactose, and choline 

[63,64]. Additionally, some EC 1.1.3.x oxidases display a big potential in organic synthesis, 

being used in production of drugs, antioxidants, flavour and fragrance compounds [65,66]. 

The majority of 1.1.3.x oxidases produce hydrogen peroxide as one of the products, which 
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can be easily detected in a fluorescence-based assay (Figure 8). The ease of assaying, 

adaptability for a high-throughput setup, as well as their biological and industrial relevance 

makes the enzyme class a perfect candidate for large-scale activity screening.  

 

 
Figure 8. General reaction schemes of 1.1.3.x oxidase (bottom) and the Amplex Red activity assay 
(top) used for hydrogen peroxide detection, and applied for assaying enzymes in Papers I, II and IV.  
  

In order to get an overview of the activity profile of the oxidases selected for my work, we first 

conducted an “all-vs-all” experiment. 96 candidate enzymes annotated to EC 1.1.3.x were 

chosen to be screened with 23 representative substrates of EC 1.1.3.x for the oxidation activity 

(Paper II, Tables S1 and S2). Typically for a large-scale screening platform, we experienced 

a drop in numbers of produced proteins, with 58% recovery, which left us with only 54 enzymes 

to screen. Surprisingly, the vast majority of the purified enzymes displayed no activity, even 

with their predicted substrates. Part of this inactivity could be explained by improper folding of 

the produced enzymes, a limited number of substrates tested, or assay conditions. However, 

in a follow-up study we confirmed that the main reason behind the result was the issue of 

misannotation in enzyme databases (Paper I). Additionally, the “all-vs-all” screen revealed two 

enzymes active with substrates of other enzyme classes than the predicted ones. The 

discovery and characterisation of the two novel oxidases were described in Paper II. 
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2.3. Exploration of functional annotations in enzyme databases. 

2.3.1. Protein databases 

As proteins began to reveal their vast repertoire of functions, new databases were being 

created to accommodate the collected data. Primary databases, such as GenBank [30] and 

PDB [67], started collecting direct results of sequencing or structural projects, and serve 

primarily archival purposes. Secondary databases, otherwise known as knowledge 

databases, began collecting experimental results, literature research, or interpretation of data 

from other databases. One of the largest secondary protein databases is UniProt, consisting 

of Swiss-Prot and TrEMBL resources [68]. Swiss-Prot was established in 1986 to contain 

manually curated entries and information on protein function, domain structure, modifications, 

variants, literature, and links to other secondary databases, among others. Manual curation is 

a labour-intensive undertaking, and ten years after Swiss-Prot its non-curated supplement, 

TrEMBL, was created to accommodate computationally annotated protein entries [69]. 

BRENDA, created in 1987, is one of the largest enzyme-focused databases, collecting 

functional and molecular information about enzymes from primary literature [70]. A whole 

range of specialised enzyme-related databases exist, with focus on pathways and metabolism, 

such as KEGG [71] or MetaCyc [72], as well as those collecting information on specific 

enzymatic functions, such as CAZy (carbohydrate-active enzymes) [73], or PeroxiBase 

(peroxidases) [74]. 

 

The majority of protein databases contain both high-quality functional annotations based on 

the literature or manual curation, as well as computational annotations, often transferred 

directly from primary databases or UniProt. Functional annotation is not a straightforward task, 

and errors often creep in. Firstly, issues may appear at the genome sequencing and assembly 

step: errors in gene sequencing, border establishing, or assembly inevitably result in incorrect 

protein sequences deposited to databases [75]. Secondly, there are issues with the functional 

prediction of the protein function itself [76]. Oftentimes the presence of motifs and domains is 

used as a substitute for a functional assignment, where a sequence with a similar set of 

domains to known protein is automatically assigned with this protein’s function. It is common 

to see specific assignments with no, or very remote, similarity to proteins of known function. 

Additionally, terms like “predicted” or “possible” function are used that do not carry much 

information about the actual function. Single errors of functional annotation can have 

disproportionate consequences. Chains or “percolations” of misannotations appear, as the 
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annotations are often copied from similar protein sequences in each database, not necessarily 

from experimentally characterised or curated sequences [44]. 

 

It is hard to estimate the exact extent of functional misannotation in protein databases. One of 

the best attempts to do this was published in 2009 by Patricia Babbitt’s group [77]. In the study 

by Schnoes et al., functional annotation of 37 well-studied enzyme families was evaluated in 

one primary database (GenBank) and three secondary databases (Swiss-Prot, TrEMBL, 

KEGG). The manually curated database, Swiss-Prot, had by far the lowest annotation error - 

close to 0%. The other three databases displayed a similar, and surprisingly high error: 5-80%, 

depending on the enzyme family. The most common annotation error was “overprediction”, 

where sequences were members of a superfamily, but there was not enough evidence that 

they catalyse a specific enzymatic reaction. It is important to point out that this study, as well 

as other investigating the issue of functional misannotation, were published before the 

“sequencing boom” (Figure 4), when the size of genome and protein databases was much 

smaller [77–79]. Awareness of the issue has been raised, and new annotation methods have 

developed, so has anything changed since then?  

 

2.3.2. Misannotation of enzyme classes to enzyme database (Paper I) 

In Paper I we performed a computational and experimental analysis of the sequence space of 

enzymes annotated as S-2-hydroxyacid oxidases (EC 1.1.3.15) in the BRENDA database [47]. 

This enzyme class is the largest one among the 1.1.3.x oxidases; at the time we started the 

work 1058 unique sequences were annotated to it. Representatives of the class oxidize S-2-

hydroxyacids like glycolate or lactate to 2-oxoacids. Characterised members of the EC 

1.1.3.15 operate on a broad substrate range in vitro, although the physiological substrate for 

plant and mammalian homologues is mainly glycolate or long chain hydroxyacids [58,80,81], 

while lactate is the main physiological substrate of bacterial homologues [82,83]. Members of 

EC 1.1.3.15 are of high biological importance, with plant glycolate oxidase being crucial for 

photorespiration, mammalian hydroxyacid oxidases taking part in glycine synthesis and fatty 

acid oxidation, and bacterial lactate oxidases metabolising L-lactate as an energy source [58]. 

The latter are of particular medical and industrial interest, being used for lactate biosensor 

development in clinical care, sport medicine, and food processing [84]. 
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Figure 9. Sequence space of enzymes annotated to EC 1.1.3.15, where proximity between two points 
indicates sequence similarity. Top left: percentage of sequence identity to the closest experimentally 
tested or curated S-2-hydroxyacid oxidase. Top right: Pfam domain architecture. Bottom: comparison 
of Pfam domains of sequences annotated to EC 1.1.3.15 in BRENDA version 2017.1 and 2019.2. 
Adapted from [47]. 
 

The initial bioinformatic analysis of the sequences annotated to EC 1.1.3.15 showed that 

nearly 80% of them share less than 25% sequence identity with characterised representatives 

of the family and have a different predicted domain architecture (Figure 9). This result by itself 

is a very strong indication of misannotation of those sequences to the enzyme class. To further 

investigate the large diversity of the sequences, we performed a high-throughput experimental 

validation of their predicted activity. 122 candidate sequences were selected throughout the 

EC 1.1.3.15 sequence space for the large-scale activity profiling. 65 proteins were successfully 

produced and assayed with six different 2-hydroxy acids. In the cluster of sequences 

homologous to the known S-2-hydroxyacid oxidases, the majority of enzymes displayed a 

typical activity profile for the oxidases (Figure 10). The inactive sequences within the cluster 

were primarily missing one or more of the amino acids crucial for catalysis. Additionally, we 

found a few sequences in the homologous cluster that were most likely members of the same 

superfamily as S-2-hydroxyacid oxidases but catalysing different reactions. Through 

experimental profiling, we also confirmed that the sequences with little or no similarity to the 

characterised S-2-hydroxyacid oxidases are indeed misannotated: are either inactive or do 

not display a broad substrate scope characteristic for EC 1.1.3.15 (Figure 10).  

characterised
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Figure 10. Experimental profiling of sequences annotated to EC 1.1.3.15. Dendrogram indicates protein 
relatedness. Recorded activities are marked with squares, for proteins active with more than one 
substrate, the substrate preference is shaded with the highest activity for each enzyme scaled to 100%. 
Listed amino acids correspond to conserved residues in a glycolate oxidase from Spinacia oleracea. 
The cartoons represent predicted domains and motif composition of the sequences, based on Pfam 
search. Domains lacking full Pfam alignment are represented with a sharp edge. Proteins with 
alternative activities chosen for kinetic characterisation are marked in bold. Adapted from [47]. 
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We were not able to establish activities for all the misannotated sequences, however, we did 

confirm the presence of enzymes with four alternative activities among them: L-2-

hydroxyglutarate dehydrogenase, D-2-hydroxyglutarate dehydrogenase, D-lactate 

dehydrogenase, and glycerol-3-phosphate dehydrogenase. Like in previous studies 

investigating misannotation in databases, we confirmed that the misannotation in this enzyme 

class accumulated over time, from at least 78% in 2017 to 87% in 2019 (Figure 9). 

 

To find out whether the large annotation error is only a problem of this particular enzyme class, 

we analysed annotations into all enzyme classes in BRENDA, based on sequence and domain 

similarity to characterised and curated sequences (Figure 11). Strikingly, almost one fifth of 

sequences share less than 25% pairwise sequence identity with the closest characterised or 

curated enzyme of the enzyme class they were annotated to. Additionally, 18% of all 

sequences, mainly the low-identity ones, are not predicted to have the same Pfam domains 

as the experimentally characterized enzymes. Based on the results obtained for 1.1.3.15, 

these sequences are very likely to be misannotated. Although this analysis was performed on 

the BRENDA database, we expect that similar levels of misannotations are present in other 

databases, since BRENDA, like many other secondary protein databases, largely relies on 

annotations from UniProt. 

 

 
Figure 11. Misannotation to enzyme classes in BRENDA DB. Histograms show the distribution of 
sequence identities between sequence cluster representatives (after clustering at 90% identity) and 
their closest characterised/curated enzyme for Eukaryote, Bacteria, and Archaea. Proteins which do 
not have the same Pfam domains as characterised/curated enzymes are coloured in grey. [47] 
 

Just like other studies investigating annotation errors in protein databases, Paper I showed 

that misannotation continues to be a big issue. The main difference between the earlier 

findings and ours is the reason for the error in annotation. In the work by Schnoes et al. [77], 

which was based on entries to public databases in 2005, only 3% of all sequences were 

considered misannotated due to the lack of sequence similarity and domain architecture to 
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the characterised representatives. Although using a slightly different methodology for error 

estimation, we show in our study that 15 years later this number is much higher now - close 

to 20%. One can think that these kinds of annotation errors would be very easily fixable even 

with the most basic homology-based annotation methods. The problem, however, lies in the 

way genome annotation pipelines work [44]. New entries to genomic databases are usually 

annotated based on a “majority rule” - similarity to already existing entries, with little concern 

as to what the previous annotations were based on. This can result in a sequence being 

annotated not based on similarity to the closest characterised sequences, but on similarity to 

the largest number of already annotated sequences – whether the annotations were carried 

correctly or not [85,86]. Genome annotation pipelines largely follow a policy of providing 

maximum coverage of annotation, rather than as good annotation as possible based on the 

current experimental and curated data. Instead, identity to the nearest characterised sequence 

combined with prediction of domain architecture should be vital checkpoints in functional 

annotations of genomes. Many secondary protein databases, such as UniProt, InterPro, or 

KEGG already use more refined automated systems for functional annotations, some of which 

contain curated sequences as templates. However, when asked about their annotation 

policies, the UniProt representatives admitted that application of such systems is often limited 

and does not cover all the sequences, which might also be true for other databases.  

 

Similarly to previous misannotation studies, in Paper I we also found the types of annotation 

errors which cannot be easily corrected with the simple homology-based methods: sequences 

belonging to the same superfamily but not the same enzyme class, or those without 

functionally important residues. The more sophisticated annotation methods could be of help 

here, although they too have their limits. Additionally, their incorrect use might result in 

overprediction of function, for instance when a presence of a domain or a motif is made equal 

to the presence of a certain function [86]. When no clear evidence for a functional assignment 

exists, a sequence should be annotated only with the level of information one can confidently 

assign to it, for instance as a member of a superfamily [77]. This approach avoids spreading 

misinformation and provides a good starting point for guiding experimental annotation efforts. 

However, with such an approach many sequences are annotated only with their general 

characteristics, and the number of sequences for which reaction specificity is annotated is 

greatly lowered. Although this may result in less densely annotated genomes, their overall 

quality will be of much higher standards. 
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2.3.3. Registration of experimental data 

Our article, like many others, proved the value of experimental validation of annotations. What 

is equally important, but often overlooked, is correct registration of experiments. The classical 

biochemical characterisation studies cannot keep up with the amount of genomic data 

produced. It is therefore of prime importance that the ones that are being performed, could 

become a basis for computational annotations. This might seem like an obvious statement but 

is still an issue. In Paper I we described four proteins which were misannotated as S-2-

hydroxyacid oxidases, but for which we found alternative activities. After a literature search, 

we found articles describing close homologues of all the four proteins, which carried the same 

activities as we found [87–90]. Only one of the articles proposed an annotation transfer [87] 

which resulted in a recent re-annotation of the protein in UniProt. The remaining enzymes are 

still not recorded in protein databases as being experimentally tested, and as such do not 

serve as a reliable base for function transfer. In those three articles the main issue was the 

lack of a clear link between the characterised enzyme and its sequences. It is not uncommon 

when describing a new activity that only the gene name or abbreviation is stated, which is not 

enough to identify the unique enzyme sequence. As a response to this issue, the journal 

Biochemistry called on authors to include unique accession identifiers, such as UniProt or 

NCBI IDs, of all the proteins characterised in the manuscript [91]. This requirement facilitates 

capture of experimental data by electronic search engines, for example of UniProt, and should 

certainly be adopted by other journals. Submission of new experimental data directly to 

databases is also possible: secondary protein databases, such as UniProt or BRENDA, 

welcome users’ corrections, however, it is uncertain to what extent those options are actively 

used by the community and result in correction of annotations. With the rise of large-scale 

activity profiling approaches, there is also a need for a discussion about registering such 

results in databases. High-throughput screening platforms enable obtaining a large amount of 

evidence about activity or substrate scopes of tested enzymes. Although not as precise and 

thorough as the classical characterisation methods, they could nevertheless provide good 

evidence for computational annotations. The articles which apply high-throughput platforms 

do excellent work investigating underexplored enzymatic sequence spaces, yet their results 

are mostly not recorded in protein databases. A structured way of utilising the large-scale 

activity profiling data should be organised, to make the most of the results. Interestingly, one 

of the works describing novel carbohydrate-active enzymes has part of the results registered 

in the CAZy database, but not UniProt, the most common source used by protein feature 

databases [54]. This indicates the need for more careful cross-reference between databases. 
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Correct annotation of genes is crucial for exploration of novelty and understanding 

fundamentals of biological functions. The fields of systems biology [92], metabolic and enzyme 

engineering [93,94] also heavily rely on accurate functional annotations. One example of the 

dire consequences of misannotation in protein databases comes directly from our laboratory. 

A project aiming at testing various thermophilic lactate oxidases for sensor development was 

conceived. Several sequences with high catalytic temperature optima were chosen for 

screening from a publicly available dataset [95]. The proteins purified well, but to our surprise 

none had the expected lactate oxidase activity. After some time of confusion, we realised that 

the proteins were misannotated, and their sequences had no similarity to the known lactate 

oxidases. Admittedly, the non-homologous genes should have been filtered out before 

ordering the sequences, but at this time we did not think about doubting the existing 

annotations. Time and money were spent, lessons were learned. Similar mistakes might have 

been made in the laboratories worldwide, although it is hard to precisely estimate to what 

extent misannotation affects research projects, as mistakes are rarely reported, and some 

issues are never detected. 

 

Protein databases play a crucial role in collecting information about sequence, function, 

structure, interactions, among others. They form a basis for ever-evolving annotation methods, 

as well as provide a starting point for many experimental research. Currently in many 

databases, right next to high quality information, misinformation spreads. Not all the users 

might be aware of this issue or are able to judge the quality of information. It is therefore of 

prime importance that both experimental, and computational data are registered in such 

databases to the highest possible standards.  
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2.4. Discovery of novel enzymes 

2.4.1. Exploration of the “catalytic dark matter” 

One of the reasons why it is difficult to functionally annotate proteins, is because we simply 

have not discovered all the types and flavours they come in. There is a vast enzymatic 

potential in nature, but for many activities we still do not know their sequence-function 

relationships. In all newly sequenced genomes, there is a portion of genes for which no 

function is annotated, the so-called “genes of unknown functions”. Usually, their sequence is 

too dissimilar to any other known protein to be classified. Genes of unknown functions make 

up a sizable portion of even well-studied organisms: 20-30% of human, yeast and bacterial 

genomes [43,96,97], out of which a third were estimated to be enzymes [43]. A special case 

of unknown enzymes are orphan enzymes - experimentally characterised enzyme activities, 

for which we lack sequence information. Around 20% of current enzyme classes do not have 

corresponding genes linked to them and are considered orphan [98]. These numbers show 

that there is still a lot to unravel about the mechanisms ruling human bodies and other fellow 

organisms. The “catalytic dark matter” of plants and microorganisms is of particular interest 

as a source for enzyme discovery, with many esoteric activities and useful biocatalysis lurking 

in the less studied genomes [43,99].  

 

So how are novel enzymes found? There are two general ways to approach the task: using 

hypothesis-driven or untargeted methods [43]. Hypothesis-driven approaches start with 

screening for a known or theorised activity. Such approaches were commonly used in the 

beginning of enzyme studies, when crude cell lysate was assayed for an activity of interest 

and multiple steps of purification led to obtaining fractions enriched for the new activity. Pure 

preparation can later be identified by protein sequencing or mass spectrometry. This 

approach, although tedious and time-consuming, is still being used nowadays, and has 

recently led to the identification of such proteins as lignin-modifying hemocyanin from a termite 

or a plant glucuronokinase [100,101]. A high-throughput variant of this classical biochemical 

approach is metagenomic screening for novel functions. Instead of cell lysate, genetic libraries 

obtained from environmental samples are screened for a desired function. It is particularly 

popular when screening for industrially relevant biocatalysts and resulted in the discovery of 

hundreds of novel microbial cellulases, chitinases, oxidases, lipases, among others [102,103]. 

The most commonly applied hypothesis-driven approaches start with a gene of interest that is 

subcloned, expressed, and characterised. Bioinformatic tools based on homology or motif 
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presence are often used to generate functional hypotheses and narrow down what activities 

and substrates to screen for. High-throughput activity profiling, described in Chapter 2.1 of this 

thesis, is a variant of this method where the “exploratory net” is cast much wider, in terms of 

numbers and types of sequences, as well as activities being tested. Hypothesis-driven 

approaches are still the most commonly used methods for enzyme discovery, although they 

do come with a caveat of: “you get what you screen for”, where unexpected enzymatic 

activities might be missed. This problem could be partially solved by untargeted approaches, 

which begin with little or no prior information about potential substrates or products of the 

enzyme of interest. In the early days of gene function discovery, many activities were 

confirmed by studying deletion mutants of model organisms: if a clear phenotype of a mutant 

was observed, this could be later linked to a gene function. Enzyme discovery using 

metabolomics is also another method which applies an untargeted approach. Enzymes of 

interest are purified and incubated with an enriched molecular extract, and their activities are 

revealed by analysing consumption or production of metabolites using mass-spectrometry. 

Similar techniques can be applied to study cells deficient in or overexpressing a gene of 

unknown function. Metabolomics-based approaches can also be scaled-up and has recently 

led to identification of 241 potential new enzymes in E. coli, of which 12 were experimentally 

validated [104]. 

 

Although experimental validation is necessary to confirm a novel function, computational 

approaches play an equally essential part in driving the discovery of enzymes and oftentimes 

provide a starting point for experimental research. Comparative genomics methods rely on 

inferring the function of an unknown gene through its association with known genes and 

extracting information from biological databases about the genomic context, coexpression, or 

protein-protein interactions [105]. In-silico docking methods can provide clues about enzyme’s 

substrates and ligands [106]. Genome-scale metabolic networks allow for evaluation of 

“missing” enzymes by identification of dead-end or disconnected metabolites [107]. New 

computational tools, platforms and databases aiming at guiding experimental attempts are 

being created, such as the Enzyme Function Initiative Tools for creating sequence similarity 

networks and genome neighbourhood maps [108], STRING database collecting functional 

association networks [109], or PaperBLAST search engine looking for scientific articles about 

homologous proteins [110]. Initiatives like CAFA (Critical Assessment of protein Function 

Annotation algorithms) aim to bring the scientific community together in order to assess the 

quality of current available annotation methods [42].  
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2.4.2. Discovery of two novel oxidases (Paper II) 

Our high-throughput activity profiling of EC 1.1.3.x, described as “all-vs-all” experiment in 

Chapter 2.2.3 and Paper II [111], is an example that combines the hypothesis-driven and 

untargeted approaches. In our setup, a number of non-homologous sequences were screened 

with a range of very different, structurally diverse substrates. As such, this setup presents 

more opportunities of finding unexpected or side activities than standard activity profiling 

approaches. Indeed, screening 96 putative oxidases with 23 diverse substrates resulted in 

discovery of two novel enzymes: an orphan enzyme N-acetylhexosamine oxidase from 

Ralstonia solanacearum, and a novel long chain alcohol oxidase from an uncultured marine 

euryarchaeote, an example of a non-homologous isofunctional enzyme.  

 

The majority of orphan activities were identified before the sequencing methods were readily 

available [112]. The enzymes were usually purified from native hosts and thoroughly 

characterised, including such information as the substrate scope, reaction kinetics, isoelectric 

point or molecular weight, but no amino acid sequence information was linked to them. One 

example of such orphan enzyme is N-acetylhexosamine oxidase (HexNAcO), discovered in 

1989 in a Pseudomonas-like bacterium [113]. The enzyme was confirmed to be a flavoprotein 

oxidase active with a range of monosaccharides and displayed the highest activity with N-

acetylated hexosamines: N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine 

(GalNAc). Information about the enzyme’s substrates, reaction, and catalytic optima was 

included, but no sequence investigation was carried out in the original paper.  

 

In our “all-vs-all” screen we found a protein displaying activity with GlcNAc. We carried out 

characterisation of the protein and found that its substrate scope is very similar to the one 

published for the original HexNAcO (Table 1). In this manner, we confirmed that the enzyme 

from R. solanacearum is indeed a HexNAcO, and we found the sequence for this orphan 

activity. Once available, analysis of its amino acid sequence revealed that the enzyme is 

homologous to characterised fungal FAD-binding saccharide oxidases, as well as bacterial 

oxidases involved in antibiotic production. All these proteins are berberine bridge enzyme 

(BBE) -like enzymes, which display a vanillyl-alcohol oxidase (VAO) fold and contain an 

atypical bi-covalent anchoring of the FAD cofactor [114] (Figure 12). What seems to 

distinguish the novel HexNAcO from the other VAO enzymes, is an elongated stretch of amino 
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acids by the edge of the substrate binding cavity (Figure 12). A similar pattern can also be 

found in another saccharide oxidase operating primarily on monosaccharides: hexose oxidase 

from Chondrus crispus [115]. It is possible that such an extension acts as a lid of the substrate 

binding domain, allowing in primarily smaller substrates. Currently ongoing structural 

investigation of the HexNAcO revealed that even in a high-resolution structure (1.5 Å), this 

region did not generate an interpretable X-ray diffraction pattern, which might indicate a 

flexible or disordered nature of the loop.  

 
Table 1. Comparison of substrate specificity of the N-acetyl-D-hexosamine oxidases characterised in 
the paper first describing the activity (Horiuchi, 1989) and in our paper (A3RXB7). [111] 
 

Substrate KM [mM] Specific activity [µmol min-1 mg-1] 

 
Horiuchi, 
1989[113] A3RXB7 Horiuchi, 1989[113] A3RXB7 

GlcNAc 0.24 0.26 71 6.08 
GalNAc 0.1      0.32 70 4.78 
ManNAc 40 182 12 2.39 
chitobiose 18 19 45 0.9 
D-glucosamine 40 4.5 34 0.38 
D-galactosamine 10 1.4 35 0.67 
D-mannosamine -- 65 -- 0.01 
D-glucose 290 216 3.8 0.17 
D-galactose 170 102 3.3 0.21 
D-mannose 59 118 1.2 0.15 

 
 
 

 

 
Figure 12. Homology model of HexNAcO. FAD-binding domain is coloured in blue, substrate binding 
domain is coloured in green, highlighted in grey is the elongated loop of the substrate binding domain. 
Model obtained using RaptorX server, using 2Y08 chain A structure (tirandamycin oxidase TamL) as a 
template. [111] 
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Non-homologous isofunctional enzymes (NISE) are evolutionarily unrelated proteins that 

catalyse the same biochemical reactions [116]. As they share no sequence, and often no 

structure similarity, it is impossible to infer a function of one of them from the sequence 

similarity to the other. In our “all-vs-all” screen we found a protein active with 1-dodecanol, a 

typical substrate for long-chain alcohol oxidases (LCAOs). Surprisingly, the enzyme from our 

screen displayed no sequence similarity to the known LCAOs. All previously characterised 

LCAOs belong to the glucose-methanol-choline (GMC) superfamily of oxidoreductases and 

are composed of an N-terminal FAD-binding domain containing a Rossmann fold, and a C-

terminal substrate binding domain [117]. In contrast, the novel enzyme from our screen was 

predicted to contain an FAD-binding domain which spans the N- and C-termini of the protein, 

as well as a central substrate binding domain of a lactone oxidase (ALO)-type (Figure 13). 

The closest characterised enzymes to the archaeal LCAO, in terms of sequence identity, are 

L-gulonolactone dehydrogenase from Mycobacterium tuberculosis (27% sequence identity) 

and mouse L-gulonolactone oxidase (25% seq identity), which might explain why the protein 

was annotated as L-gulonolactone oxidase (EC 1.1.3.8). Although dissimilar in sequence, the 

enzyme displayed a typical activity profile of a LCAO, active with a range of fatty alcohols, with 

1-dodecanol being the preferred substrate (Figure 13). Overall, our results confirmed that the 

archaeal enzyme is a novel type of LCAO, and together with the previously characterised 

PCMH-type LCAOs, they are an example of non-homologous isofunctional enzymes. 

 

 
Figure 13. Characterisation of the archaeal long-chain alcohol oxidase. Left: structural model of LCAO. 
The PCMH-type FAD-binding domain is coloured in blue, the substrate binding domain is coloured in 
green, the membrane-bound helix is coloured in orange, the model obtained using AlphaFold Collab 
[118]. Right: Activity of LCAO with a range of fatty alcohols (C4: 1-butanol, C6: 1-hexanol, C8: 1-octanol, 
C10: 1-decanol, C12: 1-dodecanol, C14: 1-tetradecanol, C16: 1-hexadecanol). [111] 
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The results of Paper II show that our semi-untargeted approach of enzyme profiling proved 

useful in finding novel enzymes. The more classical screening used for enzyme families 

profiling might have been successful in finding the HexNAcO as well, since the enzyme is 

homologous to other known sugar oxidases. However, confirming activity for the novel 

archaeal LCAO would not be possible using targeted approaches, as the enzyme shows no 

similarity to the known alcohol oxidases. Our approach could also be potentially useful for 

detecting promiscuous activities of enzymes - side reactions that are distinct from the 

enzyme's main activity. At first thought to be of marginal relevance, they are now considered 

crucial for investigating protein evolution [119], as well as designing in vitro metabolic 

pathways [93].  

 

Although successful in finding novel enzymes, our method has its limitations. Like many other 

high-throughput activity profiling platforms, we screened purified enzymes, and their recovery 

can be low, in our case 58%. Additionally, in the “all-vs-all” screen we focused on testing only 

the oxidation reaction, so any enzyme with a different type of activity would not be detected. 

Also, the type of substrates tested was limited to the ones commercially available, and their 

number limited to suit the format of a 384-well plate. Finally, it is worth noting that the selection 

process of the sequences for the “all-vs-all” experiment could have been improved by filtering 

out those sequences with no identity to the known EC 1.1.3.* representatives. Since the 

misannotated sequences made up a big part of the tested proteins, replacing them with the 

EC 1.1.3.* homologues would give a more accurate view of the enzyme class’ sequence 

space. 

 

2.4.3. Biological function of proteins 

“Protein function” can be defined in many ways, but the fullest description allows answering 

two questions: WHAT does the protein do and WHY. One caveat in many approaches of 

finding new enzymes, including ours, is focusing only on the molecular function of an enzyme 

- the WHAT. The biological function - the WHY - oftentimes remains unstudied. This is 

particularly true for activities from non-model organisms. Sometimes biological functions for 

an enzyme can be proposed by inferring them from other, better studied, organisms. This 

might be true for the archaeal LCAO characterised in Paper II, as a biological role for this 

enzyme in yeast is proposed to be involved in utilising fatty acids as an energy source [120]. 

It is possible that a similar pathway is present and utilised by marine archaea. However, the 
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biological function of the bacterial HexNAcO remains even more elusive, as no pathway 

directly utilising this enzyme has ever been described. Other peroxide-producing saccharide 

oxidoreductases are proposed to play a role in competing with other organisms through 

oxidative stress [121]. Since the closest homologues of HexNAcO from R. solanacearum are 

present in other soil and water inhabiting bacteria, it is possible that the enzyme plays a role 

in helping the host to thrive in those particular habitats.  

 

Investigating biological functions is rarely the main focus of studies looking for enzymes with 

industrial applications. More care is put towards precise characterisation of enzymes’ 

biochemical and biophysical properties or optimising them for industrial use. However, looking 

from the systems biology perspective, it is important to consider the biological questions as 

well. The majority of our current knowledge in biochemistry has been based on studying a 

handful of model organisms, yet the examples of enzymes from “niche” organisms revealed 

that the chemistry of life is much more diverse than expected [99]. In a similar manner, 

investigating novel activities from the biological perspective, although often very difficult, can 

perhaps change a lot about what we consider a “classical” biology. 



29 

Chapter 3. Investigating sequence space of 

engineered enzymes 

3.1. Protein design  

Discovery of novel enzymes is often guided by their potential for application. Enzymes as 

biocatalysts have become an important part of “green chemistry” - a design of more 

sustainable processes with minimized environmental impact [122]. They are being employed 

for plastic degradation [123], synthesis of pharmaceuticals [124], pest control [125], or 

processing plant biomass for biofuel, feed, food, and paper production [126]. However, as 

described in Chapter 2, looking for desired activities in nature is not an easy task. Even if an 

enzyme catalysing a reaction of choice is found in nature, it might lack properties necessary 

for an industrial setting, for example stability at high temperatures or low pH. Engineering 

enzymes for desired activities and properties seems like the most obvious solution for this 

problem, although not as straightforward as one can hope for. With the invention of site-

directed mutagenesis, it became possible to study protein variants with changed residues 

[127]. It was a particularly useful tool for investigating the importance of catalytic residues. 

However, the attempts to introduce desirable properties with this technique were not hugely 

successful, as the effects of mutations were often unpredictable. A shift towards a more 

random approach, site-saturation mutagenesis, proved more successful [128]. In this 

approach, targeted residues are changed for all possible amino acids, rather than a specific 

one. Both methods, however, require a lot of knowledge about the enzyme of interest, like 

structure or identified catalytically important residues. What turned out to be the most 

successful approach in enzyme engineering, involved taking one step further into 

randomness. Directed enzyme evolution subjects a protein of interest to rounds of random 

mutagenesis and selection for a desired feature in the “fitness landscape” (Figure 14). Frances 

Arnold applied this method for the first time in 1993 to design a protease active in a nonnatural 

environment: high concentrations of an organic solvent [129]. DNA shuffling was introduced 

one year later by Willem Stemmer, as a tool mimicking DNA recombination to gain improved 

features [130]. It proved particularly useful in combination with directed evolution, allowing the 

creation of chimeras of several mutants. Successful attempts of enzyme evolution followed, 

allowing the creation of enzymes with enhanced activities in low or high temperatures, pH, salt 

concentrations, as well as activity toward non-natural substrates [6]. Enzyme evolution 
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techniques allowed not only for optimization of existing activities, but also creation of enzymes 

catalysing reactions yet undiscovered in nature, using promiscuous activities as a starting 

point [131]. Being an undeniably powerful tool for engineering, direction evolution can also be 

applied for fundamental research; to test evolutionary theories and reproduce evolutionary 

scenarios [132]. 

 
Figure 14. Directed evolution of proteins resembles climbing a “fitness landscape” mountain of a 
sequence space. Each round of selection results in choosing the mutant with the highest fitness with 
the aim to reach a fitness optimum (red line), although the presence of local optima might restrict some 
of the mutational paths uphill (black line). Adapted from [133].  
 

3.2. Machine learning in protein design 

One of the things learned from directed evolution studies, was that the beneficial mutations 

are often found in unexpected parts of enzymes - not only in the catalytic core. This explains 

why the early attempts of rational design were not as successful as it was hoped for. If human 

intelligence still struggles to understand and outsmart nature, perhaps artificial intelligence 

can? Machine learning (ML) is a branch of artificial intelligence focusing on data analysis to 

learn distribution of the data, make predictions, or generate new data. It is currently used for 

such applications as image or speech recognition and medical diagnosis [134]. In enzyme 

research, ML tools use biological data, such as protein sequence or structure to extract 

patterns [94]. These patterns are then used to classify new enzymes, predict their features, 

and find new variants with better catalytic properties [135]. Algorithms predicting optimal 

catalytic temperatures or solubility enable narrowing down variants with desired properties or 

increased chances of producing proteins heterologously [95,136–138]. Enzyme class 

predictors and substrate identifiers can be of help with functional annotation efforts, as well as 

guiding experimental design [139,140]. Much of the existing work on ML-guided enzyme 
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design is focused on incorporating discriminative models which predict properties of a given 

sequence by training on labelled sequence/structure-fitness pairs [141]. In contrast, 

generative models have a different kind of approach, by taking advantage of unlabelled protein 

sequences. Such methods can learn the underlying data distribution and produce new 

samples from it [141]. Paper III describes the ProteinGAN generative model, a machine 

learning approach which enables generation of novel functional enzymes with natural-like 

biochemical properties [142].  

 

 
Figure 15. ProteinGAN mimics and expands the natural enzyme sequence space. Top: ProteinGAN 
training scheme. Given a random input vector, the Generator network produces a protein sequence, 
which is scored by the Discriminator network by comparing it to the natural protein sequences. The 
generator tries to fool the discriminator by generating sequences that will eventually look like real ones. 
Bottom, left: key conserved positions of natural MDH are also conserved in ProteinGAN-generated 
sequences. Bottom, right: CATH [143] domain diversity expanded throughout the evolution of 
ProteinGAN training, as opposed to a control of randomly mutated sequences from the training dataset. 
Insert: ProteinGAN generated novel domains that are not present in the existing MDH family, while 
random mutation causes decrease of diversity. Adapted from [142]. 
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3.3. ProteinGAN (Paper III) 
In order to mimic natural enzymes, the ProteinGAN method made use of generative 

adversarial networks (GAN) tailored to learn patterns from amino acid sequences. GAN is 

based on two neural networks, generator and discriminator, that compete with each other 

[144]. The generator network produces a protein sequence, which is then scored by the 

discriminator network by comparing it to known protein sequences from the training dataset 

(Figure 15). The neural network was trained on sequences of bacterial malate dehydrogenase 

(MDH, EC 1.1.1.37), a core enzyme of the tricarboxylic acid cycle, which catalyses the 

conversion of malate to oxaloacetate using NAD+ as a cofactor. Two phylogenetic groups of 

MDH are known, which display very low sequence similarity, but high structural similarity [145]. 

20000 MDH-like sequences were generated using ProteinGAN, which were used to evaluate 

its performance. We showed that ProteinGAN was able to learn the patterns of natural MDH: 

preserve the key substrate-binding and catalytic residues (Figure 15), or local amino acid 

relationships. Additionally, ProteinGAN managed to expand the known MDH sequence space, 

for instance by producing novel structural motifs that do not exist in the training data (Figure 

15). As a final verification step, the GAN-generated sequence space was experimentally 

tested for the MDH activity. 55 sequences with 45-98% sequence identity to natural MDH were 

sampled and synthesised. They were expressed and purified using the high-throughput 

experimental platform described in Chapter 2.1. The majority of the sequences expressed well 

but were not soluble (Figure 16). The enzymes with low sequence similarity to natural MDH 

were particularly prone to aggregation: no protein with less than 65% sequence identity to 

natural MDH was soluble. Out of the 19 soluble proteins, 13 displayed MDH activity, including 

one that shares only 66% identity with the closest existing enzyme.  

 

The lack of activity of the remaining GAN-generated proteins might be partially explained by 

incorrect folding of the proteins, since it is known that even natural enzymes might be 

problematic to express and/or fold while heterologously produced in E. coli [146]. One example 

of issues with folding correctly comes from the GAN56 sequence, the only inactive enzyme 

that was both highly expressed and soluble. Melting profiles of the GAN-MDH proteins were 

investigated after publication of the Paper III results, and revealed that GAN56 profile is 

atypical - elongated, with two humps - overall very different from the melting profiles of the 

active GAN sequences or natural MDH (Figure 16). This might indicate that inactivity of 

GAN56 is caused by issues with folding, and it is hard to establish whether these are caused 

by the design or heterologous production. The melting profile screen of the GAN-generated 
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enzymes also revealed their wide range of thermal stability (Figure 16). Interestingly, 

ProteinGAN proved able to cause acquisition of thermostable features, which is visible on the 

example of the sequences GAN35 and GAN29. They share a 90% sequence identity, and a 

common closest natural sequence, from a mesophile Brucella ceti, yet they display a 12°C 

difference in the melting temperatures (Figure 16).  

   

 
Figure 16. Experimental characterisation of ProteinGAN-generated MDH sequences. Top, left: 
summary of experimental results of the 56 generated MDH sequences. Top, right: melting profiles of 
selected ProteinGAN-generated MDHs obtained by a thermal shift assay. Bottom: melting temperatures 
of selected ProteinGAN-generated MDHs. 
 

Despite the growing number of theoretical approaches for biological sequence generation, 

until recently their ability to generate novel functional proteins was limited. The results of the 

Paper III prove that it is possible to mimic nature by generating enzymes that behave like 

natural ones. In the study, ProteinGAN was able to produce functional proteins with up to 106 

amino acid substitutions in comparison to the closest natural enzyme - not a trivial number, 

considering that around a third of single amino-acid substitutions result in a loss of protein’s 

function [147]. Rational design of proteins has no such comparable success, simply because 

we still struggle to understand the sequence-function relationship of proteins. The ProteinGAN 

model, by learning the underlying sequence data distribution, was able to bypass this gap in 

our knowledge. Around the same time as Paper III, other studies also confirmed protein design 

capabilities of machine learning, using different deep generative algorithms and model 

proteins [148,149], although like our study, they mostly focus on generation of natural-like 

sequences. However, the ultimate goal of a protein engineer is to improve, not reproduce. 

ProteinGAN was able to introduce thermal stability to sequences (Figure 16), thus acquisition 
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of a desired function is viable. Additionally, the GAN-designed sequence space expanded into 

novel structural domains (Figure 15). Although these were not included in the experimentally 

tested set, it shows that expansion of structural (and potentially functional) diversity is possible.  

 

3.4. ML-enabled protein design: promises and challenges 

Several studies have already shown promising results of protein optimization by generative 

models, although this direction is still in its infancy [141]. As work on engineering enzymes by 

generative models progresses, successful attempts of ML enzyme design have been made 

using mostly discriminative approaches [141]. In ML-guided directed evolution, mutant 

sequence space is sampled by an algorithm to choose promising candidates for screening, 

thus minimizing the experimental part [150]. ML algorithms can screen much larger swaths of 

sequence space than any ultrahigh-throughput assay and are additionally able to escape local 

activity optima by learning about the entire functional landscape. However, when planning a 

ML-guided directed evolution project, one must take into consideration the costs and time 

involved in analysis and sequencing of the training dataset, and synthesis of the predicted 

high performing variants. It might be a particularly good option for proteins with an expensive 

or low-throughput activity screen, as shown for a light-gated channelrhodopsin, for which a 

high light sensitivity variant was obtained using only 102 proteins in a training dataset [151]. 

In addition to optimizing single proteins, discriminative ML algorithms have been used to 

engineer whole biosynthetic pathways. Combined with genome scale models, ML allows to 

pinpoint engineering targets and can result in flux optimisation [152] or improved production 

of desired metabolites [153,154]. 

 

All ML algorithms, regardless of the type, rely on data to perform predictions or generate new 

variants. In case of ML-enabled enzyme design, this data is usually protein sequence, 

structure, and information connecting sequences to their properties. For the best results, this 

data needs to be of good quality, plentiful, and unbiased. This, however, is not the reality 

scientists working with ML are facing at the moment. Available protein databases provide 

invaluable resources for training ML algorithms, however each of them comes with certain 

caveats [94]. Sequence databases, such as TrEMBL, contain a large number of entries, 

although the majority is not connected to a known function or feature. Additionally, as 

described in Chapter 2.2. of the thesis, some annotations in such databases are far from 

trustworthy. In Paper III, the training dataset consisted of bacterial sequences annotated as 
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MDH in UniProt, without pre-filtering them for their similarity to characterised sequences. 

Fortunately, the vast majority of the sequences displayed high sequence identity to the curated 

sequences (Figure 17), but as discussed in Paper I, this is not the case for many enzyme 

classes. Curated databases, like Swiss-Prot, offer high quality datasets, although their size is 

limited. Functional databases, like BRENDA, contain a comprehensive overview of enzyme 

literature, but as the data come from many different sources, they are inevitably 

inhomogeneous. Overall, the majority of data containing enzyme characterisation are not 

collected with a ML application in mind. As already discussed in Chapter 2.2 of the thesis, 

systematic registration of experimental data is a big issue, and a lot of effort in collecting 

training data might be put into their extraction and cleaning. A set of “FAIR” guiding principles 

for scientific data management and stewardship was recently published to improve data 

Findability, Accessibility, Interoperability, and Reuse [155]. Initiatives such as STRENDA, 

aiming to provide guidelines of standards for reporting enzymology data, could help to solve 

the problem of inhomogeneous enzyme data, but only if the whole scientific community 

complies [156]. 

 

 

Figure 17. Distribution of sequence identities of the ProteinGAN training dataset to the closest curated 

natural sequence (present in Swiss-Prot). 

 

The issues with experimental data compatibility with ML do not only concern the quality or 

reporting. As discussed at the beginning of Chapter 2 of the thesis, experimental 

characterisation is often heavily biased towards model organisms, or organisms with industrial 

or medical relevance. Additionally, negative results are very rarely reported. As the ML-based 

predictors usually require uniform sampling of data, these biases inevitably affect performance 

of the models. Advances in next generation sequencing are helping to alleviate this bias, as 

more and more sequences are being deposited to public databases, including those from 
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uncultured microbial species (Figure 4). Experimental platforms focusing on uniform 

investigation of sequence space might help to resolve the problems of biased selection of 

sequences for characterisation, as well as the lack of negative data reporting. Ultrahigh-

throughput methods for enzyme screening applied in directed evolution or protein discovery 

can enable investigation of even larger sequence spaces and provide more data for the ML 

training sets. 
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Chapter 4. Enzyme assays for sequence space 

investigation 

4.1. Enzyme assays 

To get a full understanding of how an enzyme works, it is necessary to study the reaction it 

catalyses. Enzyme assays are laboratory tools that enable investigation of enzymatic 

reactions by measuring either the consumption of substrates or production of products. The 

first ever studies on enzymatic activities were conducted on digestive enzymes, as it was 

possible to observe the results of the enzyme action with the naked eye: breakdown of grains 

or post-mortem lesions of stomach walls [10]. With time, more advanced methods appeared 

that enabled identification, as well as quantification of substrates and products of enzymatic 

reactions [157]. These methods can be divided into direct and indirect. Direct methods 

measure change in properties of a reaction mixture, such as change in viscosity, colour, light 

polarization, absorbance, fluorescence, or chemiluminescence. For example, Menten and 

Michaelis when investigating the kinetics of enzyme invertase, which digests sucrose to 

glucose and fructose, relied on a difference in light polarisation properties between the product 

and substrates [15]. Another classical example of a direct enzyme assay is applied when 

studying NAD-dependent enzymes, as NADH displays an absorbance peak at 340 nm, while 

its oxidised form, NAD+, has virtually no absorbance at this wavelength. A different approach 

for a direct detection of products can also be performed based on analysis of their absorption 

and mass spectra using high-performance liquid chromatography or mass spectrometry 

[158,159]. In indirect methods, one of the products of the reaction of interest is used as a 

substrate of another, easily detectable reaction. The second reaction can be either enzymatic, 

or non-enzymatic. Such coupled enzyme assay was for instance used in Paper I to study S-

2-hydroxyacid oxidase activity: hydrogen peroxide, a reaction product, is used as a substrate 

of horseradish peroxidase which oxidises a non-fluorescent substrate into a fluorescent 

product (Figure 8). Labelling of substrates, either with radiolabelling or using fluorescent 

probes, is also used to investigate enzymatic reactions that cannot be easily measured directly 

or via coupled assays. Detection of ligand binding to an enzyme can also be another method 

of studying enzymes, without the direct detection of substrates or products. 
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Selection and optimisation of an enzyme assay is a crucial step in enzyme research [157,160]. 

The choice of an assay depends not only on the type of the reaction catalysed, but also on 

the final goal of the enzyme study, costs, levels of details and throughput required. Enzyme 

discovery and directed evolution approaches require a particularly high throughput screening 

setup. In the original article describing the first attempt of directed evolution, only 300 mutated 

variants were screened [161]. Nowadays, screening of thousands to millions of variants is 

performed in search of the best performers. The ultrahigh-throughput platforms (up to 108 

screened variants per day) rely on compartmentalization of reaction components in cells, 

synthetic droplets, or microchambers, screening for the desired activity, and library sorting 

[162,163]. In such setups, fluorescence-based assays are applied, and screening is performed 

using fluorescent-activated cell sorting, microfluidics, or fluorescent microscopy [163]. 

Oftentimes availability of a high-throughput screening method is a bottleneck for engineering 

a specific enzyme, although new methods for fluorescent and non-fluorescent screening and 

sorting are being developed [164,165]. Microplate-based assays are commonly used for drug 

screening, sequence-space investigations of enzyme families, and can also be applied in 

directed evolution. They rely on assays performed in multiwell plates (96 -1536 wells), in which 

both fluorescence and absorbance of the reaction mixture can be screened. Although their 

throughput is much lower than the ultrahigh-throughput platforms, it can be improved using 

liquid handling robots, up to the 106 variants screened per day [94,166].   

 

4.2. Kinetic enzyme assays 

High-throughput platforms for enzyme discovery, engineering, and sequence space screening 

usually produce a single readout per variant, providing only the information on increased or 

decreased activity. For more thorough characterisation, kinetic assays are used. In such 

setups, reaction rate is the crucial value being measured - a concentration of substrate 

disappearing, or product produced as a function of time. Enzyme kinetic studies enable 

investigation of the catalytic mechanism of an enzyme, inhibition and activation, or comparison 

of its activity profile to similar enzymes. Most commonly, enzyme kinetic analysis is performed 

in the steady-state, where concentration of the enzyme-substrate complex remains constant. 

Historically, the discontinuous assays were used for enzyme kinetic studies: the samples are 

removed at intervals from the reaction mixture, and the amount of product formed, or substrate 

consumed, is calculated. Nowadays, the most prevalent routines adopt continuous assays, in 

which a signal can be recorded periodically over time. Although many improvements have 
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been made over time, traditional kinetic assays remain time- and reagent-consuming, as well 

as low-throughput, which usually results in testing a limited number of substrates and 

conditions. As already stated in previous chapters of the thesis, there is a great need for more 

enzyme-related data. While most high-throughput screening platforms focus on providing 

endpoint measurements, development of high-throughput platforms providing kinetic data is 

still in its infancy. In Paper IV we adapted a qPCR microfluidic system to perform enzyme 

kinetic measurements with improved throughput and decreased sample usage compared to 

classical multi-well assays [167].  

 

4.3. Adaptation of a commercial qPCR platform for enzyme 

kinetic studies (Paper IV) 

Commercial microfluidic qPCR platforms enable automated gene expression analysis at the 

nanoliter scale. One such platform was developed by Fluidigm Corporation and relies on using 

integrated fluidic circuit chips [168]. Samples and reagents are first pippeted on a chip and 

pressure-loaded into its reaction chambers. The chip is then transferred to a real-time PCR 

machine which performs thermal cycling and images the chip in real time. The Fluidigm system 

offers a wide range of chips with different reaction chamber setups, numbers, and volumes. 

To test the usability of the Fluidigm platform for enzyme screening, we used the most basic 

chip, FlexSix, containing six partitions, each with 12 wells on the assay and sample sides 

(Figure 18). It offers a medium-throughput range, from 144 up to 864 reactions per chip. We 

used lactate oxidase as a model enzyme, and a hydrogen peroxide detecting fluorescent 

assay, which is based on a principle described in Chapter 2.1 (Figure 8). Preliminary results 

showed that activity of the enzyme can be detected in the microfluidic system, and its initial 

reaction rate was successfully recorded (Figure 18). To evaluate if the system is suitable for 

obtaining kinetic parameters of enzymes, we measured initial reaction rates at different 

substrate concentrations for three peroxide-producing oxidases: lactate oxidase, glucose 

oxidase, and glutamate oxidase. The obtained kinetic values were reproducible, and 

comparable to those obtained using a standard setup in a 384-well plate (Table 2). In 

comparison to the standard method, the Fluidigm platform offered a 2000-fold decrease of 

reaction volumes - from 20 µl to 8.9 nl. It also involved less manual handling, as the mixing of 

enzyme and substrate happened on the chip. Using only half the capacity of the most basic 
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chip, the tested setup allowed for establishing kinetic parameters for three different enzymes 

in one run (432 reactions), while three separate runs had to be performed using microplates. 

 

 
Figure 18. Fluidigm qPCR platform for enzyme assays. Left: schematic representation of a FlexSix 
microfluidic chip. Solutions from 12 assay inlets are mixed with solutions from 12 sample inlets in a 1:9 
ratio. The final reaction volume is 8.9 nl. Right: example of the obtained initial reaction rates of lactate 
oxidase in reaction with lactate. [167] 
 

 

Table 2. Comparison of kinetic values of three oxidases obtained in the Fluidigm system and a 
microplate reader. [167] 
 
Enzyme System KM [mM]a Vmax [µmol mg-1 min-1]a 

Lactate oxidase microplate 1.62 ± 0.48 22.00 ± 1.15 
chip 1.23 ± 0.12 23.67 ± 2.73 

  literatureb 0.5 - 1 114 - 270  

Glutamate oxidase microplate 0.20 ± 0.01 6.30 ± 0.25 
chip 0.29 ± 0.08 7.30 ± 1.00 

  literatureb 0.17 - 0.3 6 - 55  

Glucose oxidase microplate 20.67 ± 2.72 2.40 ± 0.00 
chip 16.33 ± 1.76 23.00 ± 4.58 

  literatureb 22 - 32  6 - 170  
a a - Values for microplate and chip represent mean average (± standard error of mean; n = 3). 
a b - Literature values range as reported for wild type enzymes in BRENDA DB [169]. 
 
 

The use of microfluidic devices for enzyme kinetic studies is not a novel idea; development of 

such systems is becoming increasingly common [170]. One of the most rapidly evolving 

systems are droplet-based microfluidics devices, which rely on a substrate being mixed with 

an enzyme into nanoliter droplets. Such droplets can later be tracked, and activity signals can 

be recorded over time. A great advantage of the approach is a possibility of very rapid mixing 

of reagents, allowing to probe pre-steady states of enzymes. Additionally, the setup allows for 
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the creation of concentration gradients, resulting in greater precision than in the standard plate 

methods or the Fluidigm system. Recently one such platform has been used to gain more 

insight into kinetics and thermodynamics of native and engineered enzyme variants of 

haloalkane dehalogenase [171]. However, the vast majority of published microfluidic methods 

for studying enzyme kinetics are proof-of-concept, displaying new methodologies, rather than 

being applied for answering real-life scientific questions [170]. The lack of easy to use, 

standardised systems has been discussed as a major cause of low adaptation of microfluidics 

by nonspecialists such as biochemists [172]. The Fluidigm system offers a commercial 

alternative for high-throughput kinetic screening of enzymes, requiring no knowledge of how 

to run and collect data with a microfluidic device. Its components are easy to operate, and 

data can be collected using intuitive software. Data analysis can be performed by the R scripts 

developed by us or with the use of other available tools [173]. A big potential of the Fluidigm 

system is the possibility of parallelization of many different kinetic measurements and testing 

of different enzymes, substrates and conditions in a single run. With many different chips 

available, users can adapt the layout and throughput to their needs: from smaller scale pilot 

studies to large scale, all-vs-all type of studies, where 9216 reactions can be run 

simultaneously. Certainly, the setup has its downsides too. Unlike some current microfluidic 

platforms, the Fluidigm system does not allow rapid probing of reactions, and manual 

preparation of substrate concentrations is still necessary. As such, it resembles more of a 

standard plate-based assay in a miniaturised version. Additionally, like many high-throughput 

commercial systems, its acquisition requires considerable investments. However, high-

throughput qPCR systems are becoming increasingly popular, and many genomics core 

facilities are being equipped with such devices, offering access to them for the scientific 

community. 

 

Novel methods and platforms for enzyme research are constantly being developed. By 

adapting a microfluidic qPCR device for enzyme research, we showed an alternative path of 

method development: repurposing an already developed scientific methodology to a different 

use. Such an approach has been a crucial part of science for many years. Early enzyme 

scientists adapted methods for measurements of biophysical and chemical properties of 

solutions to develop enzyme assays. A setup of a standard qPCR machine was used to 

develop a thermofluor assay for measuring protein melting temperature [174]. The Fluidigm 

device itself was adopted to develop a successful commercial protein biomarker discovery 

platform [175]. Although the development of new scientific tools shall not (and certainly will 



42 

not) cease, repurposing of already existing methods should also be considered as a potential 

option in method development. 

 

Experimental methods for investigating the activity of enzymes are crucial for discovery of new 

proteins, engineering novel variants, improving functional annotations, understanding 

functions on molecular levels, and many others. No single approach will cover all the needs, 

and development of many different types of methods for enzyme investigation is necessary: 

those allowing for precise kinetic investigations, those for ultrahigh-throughput screening, and 

all the methods in between. Applied together with other methods for studying proteins, as well 

as bioinformatic approaches, they will allow us to learn more about the sequence space of 

enzymes. 

 
 
 



43 

Chapter 5. Outlook 
 

In 1955 in his “crystal ball” lecture about the future of enzyme research, Linus Pauling said 

that “when we understand enzymes - their structure, the mechanism of their synthesis, the 

mechanism of their action - we shall understand life” [176]. With time we found (at least some) 

answers to those questions, yet it would be bold to state we understand life. Rather, we 

managed to unveil a tiny bit of the mystery, only to see there is much more to understand. And 

yet, undoubtedly, enzymes are one of the central molecules that make up life. That is one of 

the reasons why they remain a critical subject of scientific studies: as a driving force of 

metabolism, focal points of genetic disorders, or drug targets. At the same time, their catalytic 

potential is being explored for industrial applications and processes.  

 

There are many layers to the study of enzymes: finding new activities, investigating their 

mechanisms, properties, interactions, side activities. A crucial part of protein studies is also 

the development of new scientific tools. All these layers are connected and influence each 

other greatly. Similarly, basic research is a constant source of inspiration for more industrially 

aimed research, and vice versa. The work presented in the four papers and discussed by me 

in this thesis focused on investigations of larger swaths of enzymatic sequence space. The 

starting point of my work was to explore the natural diversity of enzymes, and with time it has 

meandered across the topics of enzyme discovery, annotation, design, as well as assay 

platform development. Taking its inspiration from both basic and applied research, hopefully 

my work contributed on some level to both areas. Similar large-scale protein profiling attempts 

will most likely become ever more common. Although it is hard to predict what the future of 

protein research holds, the developments of novel experimental and modelling approaches 

will undoubtedly continue to move the field forward. 

 

The advancement of investigative methods and tools have been crucial for modern science. 

Their development not only provided answers for existing questions, but most importantly 

opened doors for new discoveries. Methods developed throughout the 20th century, like 

protein purification and crystallization, molecular cloning, or PCR, allowed many scientific 

fields to move forward, including the field of enzyme research. We were able to take a closer 

look at how enzymes are built and how they work. In the 21st century, with the development 

of affordable DNA sequencing and synthesis methods, high-throughput approaches 

appeared, allowing for investigating many sequences at the same time, including those from 
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unculturable organisms, or the ones not present in nature at all. Would the next step in enzyme 

research be to marry high-throughput with high-depth? Promising methods are already 

appearing, for instance a platform developed by the groups of Polly Fordyce and Dan 

Herschlag, which does the incredible work of expression, purification, and biochemical 

characterisation of over one thousand enzyme variants, all in a one small chip. [177] Originally 

used to study the effects of single mutations, the platform could easily be applied for large-

scale activity profiling of enzyme families or AI-designed sequences. With the use of such 

platforms, mechanistic investigations of enzymes, their phylogenetic analysis, characterization 

of allelic variants, or side activities could soon be performed in a high-throughput manner, at 

the same time with much more depth than ever. 

 

Novel high-throughput tools to study enzyme activity generate a novel type of data. Right now, 

they are primarily used as an intermediate step for discoveries, such as novel activities or 

better performing variants, where at the end only selected candidates are comprehensively 

characterised. Yet, the “intermediate” data could deliver a lot more information apart from 

being a stepping stone to answering the original questions. For instance, large scale activity 

profiling could not only lead to discovery of novel enzyme families, but also be used as a 

starting point of evolutionary investigations or to guide functional annotations. As negative 

data make up a vital part in such datasets, they could also be reused for machine learning 

training purposes. However, for such data to be reused, a structured way of reporting and 

storing them is necessary. When asked about integrating results from medium/high-

throughput enzyme characterisation studies into their database, UniProt representatives 

admitted that such studies provide meaningful biological insights, however, the database 

currently does not operate a systematic pipeline to specifically search for or integrate them. 

Would standards and databases for reporting such data be set up, similarly to those 

functioning for omics or compound screening datasets? [178,179] They most certainly should, 

although it would be far from trivial, considering we still struggle to report data from “low-

throughput” experiments. Many articles discussing protein discovery, annotation or design 

conclude with a call for more data. However, if the data is not easily available and recorded in 

public databases, what is the point of producing it? 

 

One of the most “data hungry” tools showing great promise in biology is machine learning. 

Currently trained mostly on the abundant protein sequence data, it could only improve with 

the addition of the extra layer of good quality biological information. A great example of how 
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powerful machine learning can be when applied to biological data, is a recent breakthrough in 

protein structure prediction: the AlphaFold 2 model developed by Google’s DeepMind. 

[118,180] In November 2020 the team behind AlphaFold 2 won the 14th Critical Assessment 

of Structural Prediction competition, providing structural models with the accuracy that has 

never been seen before. Not long after, DeepMind launched a database with predictions of 

over 350000 structures from human and 20 model organisms, promising to release structures 

for many more proteins in the future. What is more, AlphaFold's code has been made open 

source, allowing scientists around the world to obtain structural models of any protein 

sequence. While its full potential and limitations are yet to be unraveled, AlphaFold would 

certainly be a crucial tool in many fields, including those of drug discovery, protein design, and 

structure-based functional annotation. 

 

The progress of molecular biology, including the study of enzymes, has been enormous over 

the past decades; to think that a mere one hundred years ago we still did not know that DNA 

is the carrier of genetic information, or that enzymes are proteins. Although groundbreaking 

discoveries have been made since that time, many more questions are still waiting to be 

answered (and, perhaps more importantly, to be asked). One thing that can certainly be 

learned from the history of science, is to be mindful of and accept the biases in our knowledge, 

which have their roots in the available technologies, values or interests of current societies. 

The direction of enzyme research will certainly be shaped by those factors, most likely 

focusing on discovery and design of novel biocatalysts for industrial applications. Hopefully, 

new technologies will also bring benefit to fundamental research, perhaps shifting our human-

centric view of biochemistry. For a long time, such fundamental questions have been 

conceived and answered in the minds of academics. However, some of the cutting-edge basic 

research is starting to emerge from industrial R&D teams. What would it mean for academia? 

Certainly big changes, the direction of which only time will show. 
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