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Abstract—Considered as one of the ultimate energy storage
technologies for electrified transportation, the emerging all-solid-
state batteries (ASSBs) have attracted immense attention due
to their superior thermal stability, increased power and energy
densities, and prolonged cycle life. To achieve the expected
high performance, practical applications of ASSBs require ac-
curate and computationally efficient models for the design and
implementation of many onboard management algorithms, so
that the ASSB safety, health, and cycling performance can be
optimized under a wide range of operating conditions. A control-
oriented modeling framework is thus established in this work by
systematically simplifying a rigorous partial differential equation
(PDE) based model of the ASSBs developed from underlying
electrochemical principles. Specifically, partial fraction expansion
and moment matching are used to obtain ordinary differential
equation based reduced-order models (ROMs). By expressing the
models in a canonical circuit form, excellent properties for control
design such as structural simplicity and full observability are
revealed. Compared to the original PDE model, the developed
ROMs have demonstrated high fidelity at significantly improved
computational efficiency. Extensive comparisons have also been
conducted to verify its superiority to the prevailing models due
to the consideration of concentration-dependent diffusion and
migration. Such ROMs can thus be used for advanced control
design in future intelligent management systems of ASSBs.

Index Terms—All-solid-state battery, battery modeling, elec-
trochemical model, model order reduction, moment matching.

I. INTRODUCTION

RECHARGEABLE batteries have become ubiquitous en-
ergy storage devices in recent years for use in both

mobile applications, including electric vehicles (EVs) and
consumer devices, as well as stationary applications such as
to mitigate the impact of fluctuating renewable generation
to grid systems in the form of large-scale battery energy
storage systems [1], [2]. These modern applications require
safe, reliable, and efficient operation under a wide range of
operating conditions, currently being dominated by lithium-
ion (Li-ion) batteries. Li-ion batteries are experiencing rapid
development as one of the most important energy storage
technologies due to their relatively high cell voltage, low
self-discharge, and an excellent tradeoff between power and

This work was supported by EU-funded Marie Skłodowska-Curie Actions
Individual Fellowships under Grant 895337-BatCon-H2020-MSCA-IF-2019.

Yang Li, Torsten Wik, Yicun Huang, and Changfu Zou are with the
Department of Electrical Engineering, Chalmers University of Technology,
41296 Gothenburg, Sweden (e-mail: yangli@ieee.org; tw@chalmers.se; yi-
cun@chalmers.se; changfu.zou@chalmers.se).

Changjun Xie, Binyu Xiong, and Jinrui Tang are with the School of Au-
tomation, Wuhan University of Technology, Wuhan, Hubei 430070, China. (e-
mail: jackxie@whut.edu.cn; bxiong2@whut.edu.cn; tangjinrui@whut.edu.cn).

energy densities [3]. However, conventional Li-ion batteries
use organic electrolytes and porous electrodes, which poses
several challenges in battery safety and cycling performance.
First, the organic electrolytes, most of which are in liquid form,
are highly flammable and can cause fire hazards/explosions
during faulty conditions due to thermal runaway. Second, the
organic liquid electrolyte usually has low conductivity, which
places intrinsic technical limits on modern high-power appli-
cations such as fast charging for EVs. Furthermore, the porous
electrodes have almost reached their theoretical power density
limits, which makes the further increase of the power/energy
density in EVs difficult [4].

All-solid-state batteries (ASSBs) have thus received increas-
ing research attention in the last decade to sidestep the above-
mentioned problems of the conventional Li-ion batteries [5].
In ASSBs, the organic liquid or polymer electrolytes are
replaced with new types of inorganic electrolytes in solid
form, such as oxides with garnet structures, perovskites, and
sodium superionic conductors. The solid electrolytes are non-
flammable and highly thermal resistive, so to prevent the
problems of electrolyte leakage, internal short circuit, and
thermal runaway. In addition, the solid-state electrolytes have
better compatibility with metallic Li anodes by providing a
mechanical barrier to dendrite formation [6]. Also, the better
adaptability to high-voltage cathode materials and metallic Li
anodes will greatly increase the energy density of batteries.
Such a type of battery is believed to have the merits of longer
life, ensured safety, higher power and energy density, and
easier to be packed towards minimization and flexibility for
future applications [7].

Although there have been significant material and structural
breakthroughs in ASSBs, an ASSB system requires to be
properly monitored and controlled during practical operation
to fulfill the expectation of its longevity and high performance.
The information on the internal states can be used for es-
tablishing the charging/discharging strategies for the ASSB
to balance the requirements of high safety, long service life,
and fast load response. A suitable ASSB model with high
fidelity and low computational burden for online operation
is essential for most model-based management algorithms.
A general approach to battery modeling is to use equivalent
circuit models (ECMs) [8]. These have the advantage of ready
implementation in well-accepted circuit simulation and control
system design software packages such as MATLAB/Simulink.
In these packages, various numerical solvers have been in-
corporated and can be selected to solve the circuit model
to facilitate the design of the control system. Conventionally
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obtained from system identification, the parametric values of
such empirical models shall be adjusted regularly to fit the
measurement data from tests carried out on-site [9]. However,
this approach to battery modeling has limited applicability
for wider operating ranges and long-term battery performance
prediction under the ever-changing system dynamics. Battery
degradation and internal safety cannot be properly addressed
due to the lack of mechanistic insight regarding electrochem-
ical dynamics. Furthermore, modern applications of batter-
ies need to be designed for higher current rates, increased
load dynamics, and harsher operating environments. Under
these circumstances, model order, function complexity, and
workload for tests to identify parameters of ECM have to
be drastically increased to achieve sufficient extrapolability.
To address these shortcomings, the physics-based models
with the capability of describing the internal electrochemical
behaviors of Li-ion batteries under a wide range of operating
conditions have been developed [10]. For example, various
electrochemical models have been established to describe the
growth of solid-electrolyte interphase film and the lithium
deposition that lead to the increase of internal resistance and
the loss of battery capacity of the conventional Li-ion batteries
[11]–[13], while it is difficult to design a health-aware charging
strategy with empirically-derived ECMs. Proper reduced-order
models (ROMs) have been developed for various applications
in the emerging health- and safety-aware battery management
systems for online operation since the physical limitation can
be better predicted than the ECM-based algorithm [14].

Health- and safety-aware battery management are also
achievable if relevant information can be accurately described
for ASSBs, such as the lithium plating during the charg-
ing process [15] and stress-induced damage that can lead
to mechanical degradation [16]. Since the physical structure
of ASSBs is fundamentally different from the conventional
liquid-electrolyte-based Li-ion batteries, attempts have been
made to establish rigorous models of ASSBs. Becker et al.
[17] presented a model for ASSBs that takes into account
detailed aspects of ion transport in solid solutions of crystalline
metal oxides. More precisely, the diffuse part of the double
layer is dynamically described via the Poisson equation,
while the Stern layer potential drop is modeled by a Robin
boundary condition. Electrochemical reactions on the elec-
trode/electrolyte interface (EEI) are modeled via non-linear
Neumann boundary conditions. After a detailed derivation
of the model equations and boundary conditions, numerical
results are presented and discussed. Danilov et al. [18] devel-
oped an isothermal ASSB model that considered the imperfect
dissociation of the ions in the electrolyte. This model consists
of two partial differential equations (PDEs) that describe the
diffusion processes in the solid electrolyte and in the positive
electrode. In view of this, model simplification is of significant
importance for many real-world applications such as charging
strategy evaluation, residual capacity/lifetime estimation, ther-
mal management, cell balancing, and fast charging control.
Battery management algorithms such as state estimation have
been developed recently based on this model [19], where the
PDEs are solved using the finite difference method. However,
this method shall create a high system order and the efficiency

of the algorithm has not been studied. In [20], a rigorous
PDE model has been reduced using a combination of Padé
approximation, polynomial profile approximation, and equal-
reaction-coefficient assumption, and the computational burden
was significantly reduced with high fidelity amenable for
online parameter estimation and state monitoring [21].

It is noticed that the PDE model [18] for developing
the ROMs in [19]–[21] was established for specific thin-
film ASSBs where many internal phenomena can be ignored.
However, most recent works [22], [23] have demonstrated
the importance of considering the effects of concentration-
dependent diffusion coefficient and ionic migration behavior
in the positive electrode, which can significantly influence the
charging/discharging capabilities of new ASSBs with wide
positive electrodes. For example, it shows in [18] that a thin-
film ASSB cell with a 0.32 µm positive electrode can readily
sustain 51C constant current discharge, whereas in [23], an
ASSB with a much wider electrode (8.08 µm) is shown to
be only suitable for up to 4C–6C discharge current rate, in
which condition significant nonuniformity can be observed in
the ionic diffusion properties in the positive electrode.

In the present investigation, aiming at increasing the applica-
bility of the physics-based ASSB model for control purposes,
we establish a framework of model order reduction for ASSBs
by simplifying a high-fidelity PDE-based model with the con-
sideration of concentration-dependent diffusion and migration
in the positive electrode. Consequently, the major contribution
in this paper is the development of this model simplification
framework for ASSBs, first expressed in a form of standard
state-space representation and reformed into an physics-based
equivalent circuit. The procedure is systematically presented
by using partial fraction expansion and moment matching
(PFE-MM). The proposed method for model reduction is
simple-to-derive and it removes the limitations on electrode
width. The assumptions imposed on the system’s physical and
dynamic characteristics are quantitatively justified by simu-
lation and compared with the experimentally-verified PDE
model in the literature. The simplified models are not only
well suited for analyzing the charging/discharging behaviors
of ASSBs but also beneficial for the development of model-
based controllers and optimization algorithms for ASSBs.

II. AN ELECTROCHEMICAL MODEL OF ASSBS

This section presents an overview of the high-fidelity PDE
model of the ASSBs under investigation. The purpose is to
provide a fundamental background of the ASSB structure and
relevant governing equations for the development of the model
simplification framework in latter sections. If not specifically
indicated, all the equations are based on the benchmark PDE
model developed in [23].

A. Description of ASSBs

A schematic of the one-dimensional model of a typical
ASSB cell is shown in Fig. 1. The cell is divided into
three physical domains along the horizontal axis, including
the porous positive electrode (denoted by “n”), the negative
electrode (a metallic Li foil, denoted by “p”), and the solid
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Fig. 1. Schematic of an ASSB cell during a discharge process. Li+: lithium
ion. e−: electron. n−: uncompensated negative charge in electrolyte.

electrolyte compartment in between (denoted by “e”). As
shown in Fig. 1, the inner and the outer physical boundaries
of the positive electrode domain are denoted by y = 0 and
y = Lp, respectively, where Lp is the width of the positive
electrode. The outer boundary of the positive electrode is
attached to a platinum (Pt) current collector. For the ease of
notation, superscripts “surf” and “Pt” are used next to denote
the local quantities at the boundary y = 0 and y = Lp,
respectively, i.e., for a spatiotemporal variable or parameter
X(y, t) in the positive electrode domain, Xsurf := X(y = 0, t)
and , XPt := X(y = Lp, t). The two boundaries of the
solid electrolyte domain are denoted by x = 0 and x = Le,
respectively, with Le being the width of the solid electrolyte.
The functionalities of the solid electrolyte are two-fold: it
allows the ionic conduction between the two electrodes, while
it separates the electrons and forces them to move via the
external circuit. Different from the conventional Li-ion bat-
teries in which the porous electrodes are immersed in liquid
or polymer electrolyte, here, the solid positive electrode is
attached to the solid electrolyte, forming a solid-solid contact
at the EEI (x = Le or y = 0). The Li ions will transport
from the negative electrode to the positive electrode via the
solid electrolyte by means of diffusion and migration during
the discharge process, and a reverse process occurs when the
battery is being charged. The current Iapp (defined as positive
during charging) flows between the Pt current collector and
the metallic Li electrode through the external circuit due to
the movement of electrons. This structure is much simpler
than the conventional Li-ion batteries, which facilitates the
package for manufacturing [24]. Note that the double-layer and
geometrical capacitances are not discussed in this work since
they have ignorable effects on battery performance at medium
and low-frequency (< 1 Hz) regions under investigation for
common battery management functionalities.

B. Diffusion in the Solid Electrolyte

In the solid electrolyte, the mobile Li ions exist in equilib-
rium with the immobile Li ions. The immobile Li ions can
undergo an ionization reaction to generate the mobile Li ions
and uncompensated negative charges during a charge process,
and a reverse reaction occurs during discharging. Under the

electroneutrality condition, the diffusion and migration of the
mobile Li ions can be described by

∂ce(x, t)

∂t
= Deff

e

∂2ce(x, t)

∂x2
+ r (1a)

where ce is the concentration of the mobile Li ions in the
solid electrolyte, Deff

e := 2D+
e D
−
e /(D

+
e +D−e ) is the effective

binary diffusion coefficient in the electrolyte, and D+
e and

D−e are the diffusion coefficients of the mobile Li ions and
the uncompensated negative charges in the electrolyte, respec-
tively. Note that the diffusion coefficients in the electrolyte
are considered independent of the electrolyte concentration ce
since the variation of electrolyte concentration is not signifi-
cant, and within a narrow range of concentration the diffusion
coefficients can be considered to be constant. Furthermore, r
is a charge carrier generation term, considering ignorable in
existing works [19], [20]. The boundary conditions and the
initial condition of (1a) are given by

D+
e

∂ce(x, t)

∂x

∣∣∣∣
x=0

= D+
e

∂ce(x, t)

∂x

∣∣∣∣
x=Le

=
iapp(t)

2F
(1b)

ce(x, t = 0) = ce0 = δc0 (1c)

where F is the Faraday constant and iapp = Iapp/A is
the applied current density with A being the cross-sectional
area of the cell. In addition, ce0 and c0 represent the initial
concentration of the mobile Li ions and the total Li ions in
the electrolyte, respectively, and δ is the fraction of Li ions in
the mobile states under the equilibrium condition.

C. Mass-Transfer Overpotential of the Solid Electrolyte

Diffusion and migration in the solid electrolyte induce the
mass-transfer overpotential ηmt

e , which is expressed by

ηmt
e (t) =

RT

F
ln

(
ce(Le, t)

ce(0, t)

)
−
∫ Le

0

Ee(x, t)dx (2)

where the first and the second terms on the RHS are due to
diffusion and migration, respectively. Here, R is the universal
gas constant, T is the cell temperature, and Ee is the electric
field in the electrolyte given by

Ee(x, t) =
RT

F

1

ce(x, t)

×
[
−iapp(t)

2FD+
e

+
D+

e −D−e
D+

e +D−e

(
∂ce(x, t)

∂x
+
−iapp(t)

2FD+
e

)]
. (3)

The reader is referred to [25] for details of the derivation
and more explanations of (2) and (3).

D. Concentration-Dependent Diffusion of Positive Electrode

Assuming the effect of phase transition can be ignored
and considering the limited diffusion rate of electrons in the
positive electrode of an ASSB, the diffusion of Li ions in the
positive electrode can be described by,

∂cp(y, t)

∂t
=

∂

∂y

(
Deff

p

∂cp(y, t)

∂y

)
(4a)
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with the boundary and initial conditions

D+
p

∂cp(y, t)

∂y

∣∣∣∣
y=0

= −D−p
∂cp(y, t)

∂y

∣∣∣∣
y=Lp

=
iapp(t)

2F
(4b)

cp(y, t = 0) = cp0 (4c)

where cp is the concentration of the Li ions in the positive
electrode, Deff

p := 2D+
p D
−
p /(D

+
p +D−p ) is the effective binary

diffusion coefficient in the positive electrode, and D+
p and D−p

are the diffusion coefficients of Li ions and the electrons in the
positive electrode, respectively. In contrast to the electrolyte,
the concentration in the positive electrode can vary within
a much wider range. Hence, D+

p and D−p are considered
concentration-dependent, denoted by D+

p (cp) = fD+(cp) and
D−p (cp) = fD−(cp), respectively.

The state-of-charge (SOC) of the ASSB is determined by
the volumed-average concentration cavg

p , i.e.,

SOC(t) =
c100%
p − cavg

p (t)
c100%
p − c0%

p

=
c100%
p − 1

Lp

∫ Lp

0
cp(y, t)dy

c100%
p − c0%

p

, (5)

where c100%
p and c0%

p are the concentrations of Li ions corre-
spond to SOC = 100% and SOC = 0%, respectively.

E. Equilibrium Potential and Mass-Transfer Overpotential of
the Electrodes

Concentrations csurf
p (t) := cp(0, t) and cPt

p (t) := cp(Lp, t)
at the two boundaries of the positive electrode are needed
to calculate the positive electrode potential Up = U eq

p + ηmt
p ,

consisting of the thermodynamic equilibrium potential U eq
p and

the overpotential ηmt
p due to mass transfer in the electrode, i.e.,

U eq
p (t) = h1(csurf

p (t)) (6)

ηmt
p (t) =

RT

F
ln

(
cPt
p (t)

csurf
p (t)

)
−
∫ Lp

0

Ep(y, t)dy, (7)

where h1(·) is a nonlinear function determined by the ma-
terials of the positive electrode. Similar to (2), the first and
the second terms on the RHS of (7) are due to diffusion
and migration in the positive electrode, respectively, while the
electric field Ep is given by

Ep(y, t) =
RT

F

1

cp(y, t)

×
[
−iapp(t)

2FD+
p

+
D+

p −D−p
D+

p +D−p

(
∂cp(y, t)

∂y
+
−iapp(t)

2FD+
p

)]
. (8)

Note that the overpotential ηmt
p cannot be ignored unless the

diffusion process of electrons is much faster than that of the Li
ions. The reader is referred to [23] for a detailed discussion on
the effect of the diffusion coefficients in the positive electrode.

Furthermore, since the negative electrode is a metallic Li
foil, the Li concentration cn in this electrode is considered a
constant and equal to the average bulk concentration of the
negative electrode cavg

n . The potential of the negative electrode
Un is assumed to be zero due to the high conductivity of the
Li metal [22], [23].

F. Charge-Transfer Overpotentials

The intercalation/de-intercalation reaction kinetics are de-
scribed by the Butler-Volmer equation and the charge-transfer
coefficients for both electrodes are assumed to be 0.5 in this
work [19]. The expressions of the charge-transfer overpotential
for both electrodes are thus given by

ηct
p (t) =

2RT

F
sinh−1

(
iapp(t)

2i0,p(t)

)
(9a)

ηct
n(t) =

2RT

F
sinh−1

(
−iapp(t)

2i0,n(t)

)
(9b)

where i0 represents the average exchange current density for
intercalation defined under equilibrium conditions, given by

i0,p(t) = Fk0,p
[
ce0c

surf
p (t)

]0.5[
cmax
p − csurf

p (t)
]0.5

(10a)

i0,n(t) = Fk0,n(ce0)
0.5

(cavg
n )

0.5 (10b)

where cmax
p is the theoretical maximum concentration in the

positive electrode. k0,p and k0,n are the reaction constants of
the two electrodes.

G. Terminal Voltage

The ASSB voltage is the sum of the equilibrium potential
of the positive electrode and various overpotentials, i.e.,

Vbat(t) = U eq
p (t) + ηmt

p (t) + ηmt
e (t) + ηct

p (t)− ηct
n(t), (11)

where the contact resistance at the EEI and the current
collector resistance are ignored.

III. A MODEL REDUCTION FRAMEWORK FOR ASSBS

The PDE-based ASSB model (1)–(11) is considered accu-
rate but difficult for both control system design and online
implementation. For the purpose of overcoming this, in this
section, a model order reduction framework is established.

A. Simplified Solid Electrolyte Diffusion Equation

Defining t+e := D+
e /(D

+
e +D−e ) as the transference number

of the electrolyte and t−e := D−e /(D
+
e + D−e ) = 1 − t+e , the

boundary conditions (1b) can be reformulated into

Deff
e

∂ce(x, t)

∂x

∣∣∣∣
x=0

= Deff
e

∂ce(x, t)

∂x

∣∣∣∣
x=Le

=
t−e
F
iapp(t). (12)

Taking the Laplace transform of (1) with the boundary
conditions (12), one can obtain the following transcendental
transfer function,

ce(x, s)

iapp(s)
= − t−e τe

2FLe

1
1
2

√
τes

sinh
((

2x
Le
− 1
)
· 12
√
τes
)

cosh
(
1
2

√
τes
) , (13)

where τe = L2
e/D

eff
e is the time constant for the electrolyte

diffusion. The derivation is detailed in the Appendix.
Note that (13) has an anti-symmetrical property about the

middle point x = Le/2 of the solid-electrolyte domain,
rendering ce(x, s)/iapp(s) = −ce(Le − x, s)/iapp(s), and this
gives ce(x, t) + ce(Le − x, t) = 2ce0 in the time domain. As
seen in (2), we are particularly interested in the electrolyte
concentrations at the domain boundaries. Hence, denoting the
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TABLE I
PFE COEFFICIENTS FOR ELECTROLYTE DIFFUSION EQUATION

ae,1 be,1 ae,2 be,2 ae,3 be,3 ae,4 be,4 ae,5 be,5
Ne = 1 12 12 – – – – – – – –
Ne = 2 9.88 8.02 170.12 31.98 – – – – – –
Ne = 3 9.87 8.00 91.22 9.01 738.9 66.99 – – – –
Ne = 4 9.87 8.00 88.86 8.02 275.77 12.5 2145.5 115.48 – –
Ne = 5 9.87 8.00 88.83 8.00 248.45 8.39 618.84 18.57 4974.02 177.04

concentration at the EEI csurf
e (t) := ce(Le, t) and using (13),

the following transcendental transfer function can be obtained:

csurf
e (s)

iapp(s)
= − t−e τe

2FLe
Ge(s), (14)

where

Ge(s) =
tanh

(
1
2

√
τes
)

1
2

√
τes

. (15)

The transcendental transfer function (14) represents an
infinite-dimensional system. For the purpose of control sys-
tem design and implementation, a low-order rational transfer
function describing a practically realizable system is needed.
Since all singularities of Ge(s) are of first order [26], and
located on the negative real axis, it can be approximated by a
series of first order transfer functions, i.e., we may assume a
partial fraction expansion (PFE),

Ge(s) ≈ Pe(s) =

Ne∑
i=1

be,i
τes+ ae,i

, (16)

where Ne is the order of the approximation and ae,i and be,i
are the PFE coefficients for the electrolyte diffusion equation.
With this approximation, the transfer function (16) can be
readily realized as

dc̃e,i(t)

dt
= −ae,i

τe
c̃e,i(t)−

be,it
−
e

2FLe
iapp(t) ∀i ∈ Ne (17a)

csurf
e (t) = ce0 +

Ne∑
i=1

c̃e,i(t) (17b)

where Ne = {1, 2, · · · , Ne}.

To determine the 2Ne PFE coefficients ae,i and be,i, i ∈ Ne,
moment matching (MM) is adopted here [27]. Specifically, we
set Pe(0) = Ge(0) and do the same for the first (2Ne − 1)
derivatives of Pe(0) = Ge(0) for s = 0, establishing 2Ne e-
quations that uniquely determines the values of all coefficients
ae,i and be,i. The results up to Ne = 5 are provided in Table I.
In Fig. 2, Bode diagrams of the proposed ROMs of (13) are
compared with several other methods, using the parameters
given in Section IV, including the ideal PDE model, the FVM,
and an analytical method to determine the coefficients ae,i and
be,i based on the residue theory [26]. It can be seen that the
frequency-domain approximation with the proposed method
generally outperforms the other methods: With the same order,
the proposed ROM is more accurate than the ROM based on
residue theory, and a 5th-order proposed ROM is comparable
to 100th-order FVM model.

-100

-50

0

50

M
ag
n
it
u
d
e
(d
B
)

FVM (100th-order)

PFE-MM (Ne = 1)

PFE-MM (Ne = 3)

PFE-MM (Ne = 5)

Res. Method (5th-order)

csurfe (s)=iapp(s)

10!4 10!2 100 102

Frequency (Hz)

-100

-50

0

P
h
as
e
(d
eg
)

(a)

(b)

Fig. 2. Bode diagram for the solid electrolyte diffusion equation at x = Le

using different model order reduction methods. (a) Magnitude response. (b)
Phase response.

B. Simplified Positive Electrode Diffusion Equation Under
Constant Diffusion Coefficients

Similar to the solid electrolyte, the boundary conditions (4b)
of the diffusion equation (4a) of the positive electrode can be
rewritten as

Deff
p

t−p

∂cp(y, t)

∂y

∣∣∣∣∣
y=0

= −
Deff

p

t+p

∂cp(y, t)

∂y

∣∣∣∣∣
y=Lp

=
1

F
iapp(t),

(18)
where t+p := D+

p /(D
+
p +D−p ) is the transference number of the

positive electrode and t−p = 1− t+p . Note that D+
p , D−p , Deff

p ,
t+p , and t−p are all concentration-dependent and nonuniform
in the positive electrode domain. In order to obtain a transfer
function, we assume the values of these parameters are equal
at the two boundaries, e.g., D+,surf

p = D+,Pt
p , D−,surf

p = D−,Pt
p ,

etc. Applied to (18), a transcendental transfer function for (4a)
can then be obtained by applying the Laplace transform, i.e.,

cp(y, s)

iapp(s)
= − 1

FLps
− τp
FLp

×

 1
√
τps

cosh
(

(1− y
Lp

)
√
τps
)

sinh
(√
τps
) − 1

τps


−

t+p τp

2FLp

1
1
2

√
τps

sinh
((

2y
Lp
− 1
)

1
2

√
τps
)

cosh
(
1
2

√
τps
) , (19)



6 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

where τp = L2
p/D

eff
p is the time constant for the diffusion

process in the positive electrode. According to (6) and (7), the
positions of interest are the boundaries y = 0 and y = Lp.
Unlike the electrolyte diffusion equation (1), there is no gen-
eral (anti-)symmetrical relationships in the positive electrode
domain, and thus the transfer functions for these two positions
have to be approximated individually. The procedures are
described as follows.

At y = 0, we have

csurf
p (s)

iapp(s)
= − 1

FLps
−
τ surf
p

FLp
Gsurf

p (s), (20)

where

Gsurf
p (s) =

 1√
τ surf
p s

1

tanh
(√

τ surf
p s

) − 1

τ surf
p s


−
t+,surf
p

2

tanh
(

1
2

√
τ surf
p s

)
1
2

√
τ surf
p s

. (21)

The first term on the RHS of (20) contributes to the change
of bulk concentration, and the second term is associated
with the overpotentials caused by uneven distribution of the
concentration. Also, Gsurf

p (s) can be shown to have only
countable first order singularities on the negative real axis.
We can therefore adopt a similar PFE method as described in
Section III-A, to convert Gsurf

p (s) to a rational form

Gsurf
p (s) ≈

Np1∑
i=1

bp1,i
τ surf
p s+ ap1,i

+
t+,surf
p

2

Np2∑
i=1

bp2,i
τ surf
p s+ ap2,i

(22)

Thus, (20) can be realized by

dcavg
p (t)

dt
= − 1

FLp
iapp(t) (23a)

dc̃p1,i(t)

dt
= −ap1,i

τ surf
p

c̃p1,i(t)−
bp1,i
FLp

iapp(t) ∀i ∈ Np1 (23b)

dc̃p2,i(t)

dt
= −ap2,i

τ surf
p

c̃p2,i(t)−
t+,surf
p

2

bp2,i
FLp

iapp(t) ∀i ∈ Np2

(23c)

csurf
p (t) = cavg

p (t) +

Np1∑
i=1

c̃p1,i(t) +

Np2∑
i=1

c̃p2,i(t) (23d)

where Np1 = {1, · · · , Np1} and Np2 = {1, · · · , Np2}.
Similarly, at the other boundary y = Lp, the corresponding

approximated transfer function can be derived by

cPt
p (s)

iapp(s)
:=

cp(Lp, s)

iapp(s)
= − 1

FLps
−

τPt
p

FLp
GPt

p (s) (24)

where

GPt
p (s) =

 1√
τPt
p s

1

sinh
(√

τPt
p s
) − 1

τPt
p s


+
t+,Pt
p

2

tanh
(

1
2

√
τPt
p s
)

1
2

√
τPt
p s
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response.
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response.

≈
Np3∑
i=1

bp3,i
τPt
p s+ ap3,i

+
t+,Pt
p

2

Np4∑
i=1

bp4,i
τPt
p s+ ap4,i

. (25)

The corresponding realization of (24) is

dc̃p3,i(t)

dt
= −ap3,i

τPt
p

c̃p3,i(t)−
bp3,i
FLp

iapp(t) ∀i ∈ Np3 (26a)

dc̃p4,i(t)

dt
= −ap4,i

τPt
p

c̃p4,i(t)−
t+,Pt
p

2

bp4,i
FLp

iapp(t) ∀i ∈ Np4

(26b)

cPt
p (t) = cavg

p (t) +

Np3∑
i=1

c̃p3,i(t) +

Np4∑
i=1

c̃p4,i(t) (26c)
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TABLE II
PFE COEFFICIENTS FOR POSITIVE ELECTRODE DIFFUSION EQUATION

ap1,1 bp1,1 ap1,2 bp1,2 ap1,3 bp1,3 ap3,1 bp3,1 ap3,2 bp3,2 ap3,3 bp3,3
Np1 = 1 15 5 – – – – Np3 = 1 8.57 –1.43 – – – –
Np1 = 2 9.94 2.07 95.06 11.93 – – Np3 = 2 9.9 –2.026 30.50 1.163 – –
Np1 = 3 9.87 2 41.98 2.6 326.15 22.4 Np3 = 3 9.87 –2 41.2 2.68 59.08 –1.718

where Np3 = {1, · · · , Np3} and Np4 = {1, · · · , Np4}.
Applying the MM method as described in the previous

subsection, the PFE coefficients can be obtained. The PFE
coefficients ap1,i, bp1,i, ap3,i, and bp3,i up to Np1 = 3 and
Np3 = 3 are given in Table II. Note that by comparing
(21) and (25) with (15), we have ap2,i = ap4,i = ae,i and
bp2,i = −bp4,i = −be,i, since they share the same transfer
function up to a scaling of s.

Fig. 3 and Fig. 4 compare the Bode diagrams for the positive
electrode diffusion equation with different order reduction
methods at the two boundaries using the parameters given
in Section IV. Again, it is shown the MM method is more
accurate than the method based on residue theory and it can
generate a much lower order system than the FVM to achieve
a similar frequency response.

C. Simplified Positive Electrode Diffusion Equation Under
Concentration-Dependent Diffusion Coefficients

Note that the results in Section III-B are only valid under the
assumption of constant D+

p and D−p . When D+
p and D−p are

weakly concentration-dependent, by updating the coefficients
in each time step, the linear-time varying system can capture
the dynamics. However, if the coefficients vary significantly,
the linear approximated equations can lead to considerable
accumulated error in the results over time. We therefore
introduce a factor λ to correct the time constant τ surf

p , i.e.,

τ surf*
p = λτ surf

p =
(
D+,surf

p /D+,Pt
p

)k
τ surf
p , (27)

where k is a correction coefficient tuned by trial-and-error.
It can be seen that λ equals 1 either when the diffusion
coefficients are uniform along the y direction, or when k = 0.

D. Simplified Mass- and Charge-Transfer Overpotentials

Equations (2) and (7) share the same form and they contain
integrals. A numerical integration method is used to solve the
equation [20], which increases the complexity of the model
implementation and analysis. In this regard, we derive and
use the following simplified expressions of the mass-transfer
overpotentials, given by

ηmt
e (t) =

2RTt−e
F

ln

(
csurf
e (t)

2ce0 − csurf
e (t)

)
+Ravg

e Iapp(t)

:=h2(csurf
e (t)) +Ravg

e Iapp(t) (28)

ηmt
p (t) =

2RTt−p
F

ln

(
cPt
p (t)

csurf
p (t)

)
+Ravg

p Iapp(t)

:=h3(csurf
p (t), cPt

p (t)) +Ravg
p Iapp(t) (29)

where Ravg
e = Le/[(D

+
e +D−e )

(
F 2A
RT

)
ce0] and Ravg

p =

Lp/[
(
D+

p +D−p
) (

F 2A
RT

)
cavg
p ] are the volume-averaged resis-

tances of the electrolyte and the positive electrode, respective-
ly. The detail of the derivation procedure is given in Appendix.

The charge-transfer overpotentials in (9) are rewritten by

ηct
p (t) = Rct

p Iapp(t) (30a)

ηct
n(t) = −Rct

nIapp(t) (30b)

where the charge-transfer resistances Rct
p and Rct

n are given by

Rct
p =

{
RT

FAi0,p
sinh

(
Iapp

2Ai0,p

)
/
(

Iapp

2Ai0,p

)
, Iapp 6= 0

RT
FAi0,p

, iapp = 0
(31a)

Rct
n =

{
RT

FAi0,n
sinh

(
Iapp

2Ai0,n

)
/
(

Iapp

2Ai0,n

)
, Iapp 6= 0

RT
FAi0,n

, iapp = 0
(31b)

E. Summary of the Reduced-Order Model

By now, we have obtained a ROM of ASSBs, and the model
can be summarized in a compact continuous-time state-space
form as follows:

ẋ(t) = f(x(t), u(t)) = A(t)x(t) + B(t)u(t) (32a)
z(t) = h(x(t), u(t)) (32b)

where the input variable is the current u = Iapp, the output
variable is voltage z = Vbat, and the state vector is x =[
cavg
p , c̃>p1, c̃

>
p2, c̃

>
p3, c̃

>
p4, c̃e

]> ∈ R1+Np1+Np2+Np3+Np4+Ne ,
where c̃p1 =

[
c̃p1,1, · · · , c̃p1,Np1

]>
, c̃p2 =

[c̃p2,1, · · · , c̃p2,Np2
]>, c̃p3 = [c̃p3,1, · · · , c̃p3,Np3

]>,
c̃p4 = [c̃p4,1, · · · , c̃p4,Np4 ]>, and c̃e = [c̃e,1, · · · , c̃e,Ne ]

>.
Note that the state equation (32a) is expressed in linear
time-varying form, where the system matrix A and the input
matrix B are given in (33) and (34). A and B are affected
by the time constants and the transference numbers in the
positive electrode, and these parameters are functions of the
concentration-dependent diffusion coefficients.

On the other hand, the operator h(·) in the output equation
(32b) is a nonlinear function of csurf

p (t), cPt
p (t), and csurf

e (t), i.e.

h(·) = h1(csurf
p ) + h2(csurf

e ) + h3(csurf
p , cPt

p ) (35)

+ (Ravg
e +Ravg

p +Rct
p +Rct

n)Iapp(t)

with the nonlinear functions h1(·), h2(·), and h3(·) are pro-
vided in (6), (28), and (29), respectively, and csurf

p , cPt
p , and

csurf
e are calculated using (17b), (23d), and (26c), respectively.

The derived ROM can readily be reformulated with the
equivalent circuit representation as shown in Fig. 5, where the
equivalent resistances and capacitances are expressed as the
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A = −diag
(

0,
ap1,1
τ surf
p

, · · · ,
ap1,Np1

τ surf
p

,
ap2,1
τ surf
p

, · · · ,
ap2,Np2

τ surf
p

,
ap3,1
τPt
p

, · · · ,
ap3,Np3

τPt
p

,
ap4,1
τPt
p

, · · · ,
ap4,Np4

τPt
p

,
ae,1
τe

, · · · , ae,Ne

τe

)
(33)

B = − 1

FA

(
1

Lp
,
bp1,1
Lp

, · · · ,
bp1,Np1

Lp
,
t+,surf
p

2

bp2,1
Lp

, · · · ,
t+,surf
p

2

bp2,Np2

Lp
,
bp3,1
Lp

, · · · ,
bp3,Np3

Lp
,

t+,Pt
p

2

bp4,1
Lp

, · · · ,
t+,Pt
p

2

bp4,Np4

Lp
,
t−e be,1
2Le

, · · · , t
−
e be,Ne

2Le

)>
(34)

cpcp

Iapp

surfavg

Cp1,1

Rp1,1

Cp2,Np2

Rp2,Np2

ce
surf

ce,1 ce,Ne
~ ~

Re,1

Ce,1

Re,Ne
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+− ~
~ +− 

+− +− 
Iapp

+
− 

+
− 

Vbat
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avg

cp3,1

Cp3,1

Rp3,1

Cp4,Np4
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Pt

+
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surf
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+
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cp1,1 cp2,Np2

+− +− 

Fig. 5. Physics-based equivalent circuits for the developed ROM of ASSBs.

functions of the electrochemical parameters, cell dimension,
and the PFE coefficients, i.e.,

Cp0 = FALp,

Cp1,i =
FALp

bp1,i
, Rp1,i =

bp1,iτ
surf
p

ap1,iFALp
∀i ∈ Np1

Cp2,i =
2FALp

t+,surf
p bp2,i

, Rp2,i =
t+,surf
p bp2,iτ

surf
p

2ap2,iFALp
∀i ∈ Np2

Cp3,i =
FALp

bp3,i
, Rp3,i =

bp3,iτ
Pt
p

ap3,iFALp
∀i ∈ Np3

Cp4,i =
2FALp

t+,Pt
p bp4,i

, Rp4,i =
t+,Pt
p bp4,iτ

Pt
p

2ap4,iFALp
∀i ∈ Np4

Ce,i =
2FALe

t−e be,i
, Re,i =

t−e be,iτe
2ae,iFALe

∀i ∈ Ne

R0 = Ravg
e +Ravg

p +Rct
p +Rct

n

where τ surf
p , τPt

p , τe, t+,surf
p , t+,Pt

p , t−e , Ravg
e , Ravg

p , Rct
p , and Rct

n

are parameters that have been defined previously.

F. Observability Analysis

One of the major use for the ROM is for state observer
design. An observability analysis is necessary before any
reliable design of a state observer. The general procedure to
check the observability of a nonlinear battery model from the
voltage measurements in the linear sense is as follows.

1) Linearize the ODEs about the states at the equilibrium
to produce the system matrix A.

2) Linearize the nonlinear output equation at the equilibrium
to produce the output matrix C.

3) Compute the observability matrix for the pair (A,C) and
check the rank.

Since the state equation is already in a linear form and the
system matrix is in a diagonal form, one only has to check the
linearized output equation, characterized by the output matrix
C given as

C =

 ∂h

∂cavg
p
,

Np1+Np2︷ ︸︸ ︷
∂h

∂c̃p1,1
, · · · , ∂h

∂c̃p2,Np2

,

Np3+Np4︷ ︸︸ ︷
∂h

∂c̃p3,1
, · · · , ∂h

∂c̃p4,Np4

,

Ne︷ ︸︸ ︷
∂h

∂c̃e,1
, · · · , ∂h

∂c̃e,Ne

 (36)

For such a linearized system in the modal canonical form,
the condition when the system is fully observable from the
output measurement are reduced to [28]:

1) the elements in A (eigenvalues) are not repeated, and
2) none of the elements in C are zero.
Regarding the first condition, from (33), it can be seen

that the elements in the diagonal are determined by the PFE
coefficients (ap1,i, ap2,i, ap3,i, ap4,i, and ae,i) and the time
constants (τ surf

p , τPt
p , and τe). Usually, the PFE coefficients

are not the same, and only when Np2 = Np4 = Ne, the
coefficients ap2,i = ap4,i = ae,i are equal for the same i.
Even in this condition, the different time constants τ surf

p , τPt
p ,

and τe determined by different local diffusion coefficients will
in practice prevent the presence of repeated elements in A.

For the second condition, considering ∂Ueq/∂cp < 0, csurf
p >

0, cPt
p > 0, and 2ce0 > csurf

e > 0, the following relationships
hold

∂h

∂cavg
p

=
∂h

∂c̃p1,1
= · · · = ∂h

∂c̃p1,Np1

=
∂h1
∂csurf

p

+
∂h3
∂csurf

p
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=
∂Ueq

∂cp
−

2RTt−p
Fcsurf

p

< 0 (37a)

∂h

∂c̃p3,1
= · · · = ∂h

∂c̃p4,Np4

=
∂h3
∂cPt

p

=
2RTt−p
FcPt

p

> 0 (37b)

∂h

∂c̃e,1
= · · · = ∂h

∂c̃e,Ne

=
∂h2
∂csurf

p

=
2RTt−e
F

2ce0
csurf
e (2ce0 − csurf

e )
> 0. (37c)

With (36) and (37), it can be seen that the elements in C
are non-zero, and thus we conclude that the ROM (32) is fully
observable from the voltage measurement in the linear sense.

IV. ILLUSTRATIVE EXAMPLES

A. System Configuration and Model Validation

The PDE-based ASSB model (1)–(11) will be used as a
benchmark for verification of the accuracy of the proposed
ROMs. The model parameters used in this work are given in
Table III. The parameters are identified with a commercial
0.7 mAh ASSB cell based on the experimental results given
in [23]. The active material of the positive electrode is lithi-
um cobalt oxide (LCO) and the solid electrolyte is lithium
phosphorus oxynitride (LiPON). Most of the cell parameters
are directly obtained from [23]. Three nonlinear functions,
including the equilibrium potential curve h1(·) in (6) and
two diffusion coefficient curves, i.e., fD+(·) and fD−(·), are
fitted using the experimental results presented in [23]. These
functions are given as (38)–(40), where θ = cp/c

max
p is the

normalized concentration in the LCO electrode. The fitted
curves are compared with the experimental data in Fig. 6. On
the other hand, we notice that the parameters regarding the
LiPON solid electrolyte in [23] were identified by assuming
that a strong charge generation effect exist so that r in (1a)
is not negligible. However, in the present work, the relevant
electrolyte parameters are taken from [22] where a weak
charge generation effect is considered in agreement with the
assumption made in Section II. In addition, the diffusion
coefficient D+

e is the only parameter tuned manually to fit
the experimental data. All models including the benchmark
model and different ROMs were implemented in MATLAB
R2016b, discretized in the time domain with the backward
Euler method and sampled with 1 s, and the simulated results
were obtained on a 64-bit Windows 10 on a PC, with Intel
Core i7-4790 CPU@ 3.60 Hz and 16GB RAM.

The benchmark PDE model was spatially discretized using
the FVM [29] and both the electrolyte and the electrode
domains were evenly divided into 100 and 30 control volumes,
respectively.The simulated discharge curves of the terminal
voltage under various constant current rates are plotted in
Fig. 7 against the experimental data extracted from [23], for
comparison. It is shown that the model can accurately capture
the dynamics up to until 6C with increasing model errors with
increasing current rate. The model accuracy can be further
improved by global optimization of more tunable parameters,
but we leave that relevant investigation to our future work.

In the next two subsections, the system orders of the
proposed ROMs are first selected empirically as Ne = 5 and

TABLE III
ASSB MODEL PARAMETERS

Symbol Unit Value
F [C · mol−1] 96, 485
R [J · K−1 · mol−1] 8.314
T [K] 293 a

A [m2] 3.36× 10−4

Qmax0 [mAh] 0.7× 10−4

Le [m] 3.62× 10−6

Lp [m] 8.08× 10−6

D+
e [m2 · s−1] 1.8× 10−14 a

D−
e [m2 · s−1] 2.2× 10−16 b

c0 [mol · m−3] 62, 000 b

δ – 0.04 b

cmax
p [mol · m−3] 32, 200
c

avg
n [mol · m−3] 76, 400

c0%p [mol · m−3] 26, 404

c100%p [mol · m−3] 16, 744

k0,p [m2.5 · mol−0.5 · s−1] 1.53× 10−11

k0,n [m · s−1] 1.09× 10−9

a Adjusted from [22]
b Obtained from [22]

Other parameters are obtained from [23]
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Fig. 6. Experimental and fitted curves of (a) equilibrium potential and (b)
diffusion coefficients of the positive electrode.

Np1 = Np2 = Np3 = Np4 = 3 based on the observation of
Fig. 2 to Fig. 4. Since the sampling rate and discrete time
step is 1 s, it is not motivated to approximate much higher
frequency components than 1 Hz by increasing the model
orders and detailed investigation on the effects of model order
will be provided in Section IV-D.

B. Comparison Under Constant Discharge Current

Fig. 8 shows a comparison of the results under a 1C
constant current discharge with different models, including
the benchmark PDE (FVM) model, the proposed PFE-MM
model with and without the correction, as well as a ROM
proposed in [20], where the diffusion equations are reduced
with Padé approximation and the mass-transfer overpotential
is solved with a polynomial approximation. The simulated
cells were initially fully charged at 4.2 V and discharge was
stopped at 3.0 V. As seen in Fig. 8(a), at t = 0, there is an



10 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

U eq
p = h1(θ) =

245.67− 909.73θ + 1370.02θ2 − 1109.36θ3 + 519.2θ4 − 115.81θ5

42.317− 122.12θ + 112.28θ2 − 27.473θ3 − 5.02θ4
(38)

D+
p = fD+(θ) =

 7.76× 10−14, θ < 0.6
3.7315× 10−14 cos(10.472θ) + 4.0285× 10−14, 0.6 ≤ θ ≤ 0.9
2.97× 10−15, θ > 0.9

(39)

D−p = fD−(θ) =

 3.19× 10−13, θ < 0.6
1.4330× 10−13 cos(10.472θ) + 1.6570× 10−13, 0.6 ≤ θ ≤ 0.9
1.24× 10−14, θ > 0.9

(40)
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Fig. 7. Comparison of simulated terminal voltages (Sim) and experimental
data (Exp) for an ASSB cell under various discharge current rates.

0 1000 2000 3000 4000

Time (s)

3

3.5

4

V
b
a
t
(V

)

PDE

Pad4e + Poly. Approx.

PFE-MM (Uncorrected)

PFE-MM (Corrected)

(a)

0 1000 2000 3000 4000

Time (s)

1.5

2

2.5

3

cs
u
rf

p
(m

ol
/m

3
)

#104

(b)

0 1000 2000 3000 4000

Time (s)

-8

-6

-4

-2

0

2
d
i,

p
;m

t
(V

)

#10!3

(c)

0 1000 2000 3000 4000

Time (s)

0

2

4

6

8

D
+ p
(y

=
0)

#10!14

(d)

Fig. 8. Simulated results under 1C constant current discharge profile. (a)
Voltage. (b) Surface concentration at y = 0. (c) Mass-transfer diffusion
overpotential in the positive electrode. (d) Diffusion coefficient.

immediate voltage drop of 0.07 V due to the presence of the
series-connected resistance R0, as shown in Fig. 5. It can be
observed in Fig. 8 that by setting the correction coefficient
k = 0.31 in (27), the proposed PFE-MM model compares
very favorably to that of the PDE model implementations. As
seen in Fig. 8(d), the reduction in the diffusion coefficient
is accurately captured, and this results in accurate prediction

of the voltage, concentration, as well as the overpotential in
Fig. 8(a) to Fig. 8(c). On the contrary, when there is no
correction, there is an accumulated error on the diffusion
coefficient and the drop at the end of discharge, which lead
to considerable prediction error for the knee point, as seen
in Fig. 8(a): The end of discharge is 338 s earlier than
the benchmark. Furthermore, the ROM in [20] exhibits even
larger errors in predicting the knee point (683 s earlier)
due to its ignorance of the effect of ionic migration in the
positive electrode, i.e., the mass-transfer overpotential ηmt

p of
the positive electrode in (29) is considered zero in [20]. Note
that the discharge time under 1C current is longer than 1 h,
since the 0% SOC is defined at c0%p /cmax

p = 0.82 rather than
θ = 1, and the corresponding equilibrium voltage is about
3.86 V [23].

TABLE IV
CPU TIME AND ACCURACY OF ASSB CELL VOLTAGE WITH DIFFERENT

MODELS

Model 1C 4C Modified FUDS
Time Time Time RMSE MAX

PDE (FVM) 17.5 s 4.3 s 36.3 s – –
Padé + Poly. 0.9 s 0.2 s 2.1 s 4.9 mV 2.26 V
PFE-MM (Uncorr.) 1.1 s 0.3 s 2.7 s 2.2 mV 0.61 V
PFE-MM (Corr.) 1.1 s 0.3 s 2.8 s 0.7 mV 0.05 V

Fig. 9 shows a similar comparison to Fig. 8, except that
a 4C discharge current was applied. Indeed, at a higher
current rate, the simulated error increases: The root-mean-
square error (RMSE) of the voltage increases from 1.9 mV
for 1C discharge to 7.6 mV, but the accuracy of the proposed
model still compares favorably to the PDE model, and terminal
voltages, surface concentration, and diffusion overpotentials
are all adequately predicted.

The recorded CPU times for the constant current discharge
examples are summarized in Table IV. It can be seen that
the proposed ROMs are much more computationally efficient
than the benchmark PDE model solved using the FVM.
Compared to the ROM developed in [20], the accuracy of the
proposed ROMs were significantly improved at the expense
of slightly increased computation time to solve the enhanced
electrode diffusion and migration equations, while the need
for numerical integration is avoided to solve the mass-transfer
overpotentials.

C. Comparison Under Dynamic Driving Cycling Test
Next, in order to test the model performance under dynamic

operating conditions, a modified Federal Urban Driving Sched-
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Fig. 9. Simulated results under 4C constant current discharge profile. (a)
Voltage. (b) Surface concentration at y = 0. (c) Mass-transfer diffusion
overpotential in the positive electrode. (d) Diffusion coefficient.
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Fig. 10. Simulated results under a modified FUDS current profile. (a) Cell
voltage. (b) Distributions of the concentration in the positive electrode.

ule (FUDS) test profile was chosen as the input current. The
original maximum current rate is 1C and the magnitude of
the profile is amplified by a factor of 4. The simulated ASSB
voltage and surface concentration are shown in Fig. 10. Again,
the proposed ROM can accurately reproduce the PDE results
after introducing the correction factor and from Table IV, it can
be seen the RMSE of the predicted voltage using the corrected
ROM is lower than 1 mV, while the maximum error (MAX)
is about 50 mV. In contrast, from Fig. 10(a), it can be seen
that the simulations of both the ROM based on [20] and the
uncorrected PFE model terminated at about t = 7130 s since
the voltage erroneously hits the preset cutoff voltage of 3.0 V,
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Fig. 11. Model errors under a modified FUDS profile with different model
orders. (a) Voltage error. (b) Voltage error between 2000 and 2100 s. In the
legend, the numbers in the bracket indicate (Np1,Np2,Np3,Np4,Ne).

leading to high MAX. In addition, Fig. 10(b) shows that the
proposed method is superior in the avoidance of approximating
the entire concentration distribution in the positive electrode,
while the boundary values are accurately predicted.

D. Effect of Model Order

Fig. 11 compares the model accuracy using different model
orders under a similar modified FUDS current profile. In
general, increasing the system order of the PFE model can
improve the high-frequency response, as indicated in the Bode
diagrams in Fig. 2 to Fig. 4. However, there is no need
to adopt very high-order approximations, since usually the
energy contained in the high-frequency components of the
input current is not very high for most battery management
applications. For example, most dynamic current test profiles
are given with a sampling time interval of 1 s, which means
that 1 Hz can be considered the highest frequency to be
complied with by a reduced model. As can be seen from
Fig. 11, under the same enhanced FUDS profile with the
maximum current rate of 4C, compared to the high-order PFE
model (Np1 = Np2 = Np3 = Np4 = 3 and Ne = 5) with an
RMSE of 0.7 mV (as given in Table IV), a much low-order
PFE model with Np1 = 2,Np2 = 1,Np3 = 1,Np4 = 0,Ne = 1
is less accurate but can still regenerate the battery behaviors
sufficiently well with an RMSE of 2.5 mV. Note that Np3 and
Np4 are used to model the effect of the concentrations on the
current collector side of the positive electrode, and in many
cases they are ignorable for light load applications. Hence, it
is seen that a 5th-order model might be sufficiently accurate
for battery management.

V. CONCLUSIONS

An order reduction method is proposed to simplify the
PDE-based all solid-phase battery model into an ODE model.
The specific contributions include: 1) a generic reduced-
order model based on partial fraction expansion and moment
matching is proposed for control system design, and it is
also formulated into an equivalent circuit form; 2) Important
nonlinear phenomena under high rate operation, including
the concentration-dependent diffusion and the ionic migration
processes in the positive electrode, are properly addressed. The
simplified model is linear time-varying in terms of its state
equation but nonlinear in its output equation, and we show



12 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

that in practice the reduced-order model is fully observable
in the linear sense. The model can be readily implemented
for online management functionalities to achieve model-based
state estimation, parameter identification, and optimal control.

APPENDIX

A. Derivation of Electrolyte Diffusion Transfer Function

The general form of the Laplace transform of (1a) is

ce(x, s) = A sinh
(√
sx/α

)
+B cosh

(√
sx/α

)
(41)

where A and B are two coefficients, α =
√
Deff

e , and the term
r in (1a) is ignored. The gradient of (41) is

∂ce(x, s)

∂x
=
A
√
s

α
cosh

(√
sx

α

)
+
B
√
s

α
sinh

(√
sx

α

)
(42)

Using (42) and the boundary conditions (12), one can solve
for the coefficients A and B, both of which are proportional
to the current density iapp, i.e,

A

iapp(s)
=

αt−e
Deff

e

√
s
,

B

iapp(s)
= − αt−e

Deff
e

√
s

tanh

(√
sLe

2α

)
(43)

Substituting (43) into (41) and reorganizing the equation,
we obtain the transcendental transfer function (13) for the
electrolyte diffusion equation.

B. Derivation of the Simplified Mass-Transfer Overpotential

Considering two identities

∂ce(x, t)

∂x
= ce(x, t)

∂ ln ce(x, t)

∂x
(44)∫ Le

0

(
∂ ln ce(x, t)

∂x

)
dx = ln

(
ce(Le, t)

ce(0, t)

)
(45)

First, substituting (44) into (3), one yields

E(x, t) = −
iapp(t)

κeff
e (x, t)

+
RT

F

(
D+

e −D−e
D+

e +D−e

)
∂ ln ce(x, t)

∂x
(46)

where κeff
e := (D+

e +D−e )
(

F 2

RT

)
ce represents the local con-

ductivity in the solid electrolyte.
Substituting (46) into (2) yields

ηmt
e (t) =

RT

F
ln

(
ce(Le, t)

ce(0, t)

)
+

∫ Le

0

(
iapp(t)

κeff
e (x, t)

)
dx+

RT

F

(
D+

e −D−e
D+

e +D−e

)∫ Le

0

(
∂ ln ce(x, t)

∂x

)
dx (47)

We define the volume-averaged electrolyte resistance as

Ravg
e :=

1

A

∫ Le

0

(
1

κeff
e (x, t)

)
dx ≈ Le

Aκ̄eff
e

(48)

where κ̄eff
e := (D+

e +D−e )
(

F 2A
RT

)
ce0 is the average elec-

trolyte conductivity and A is the cross-sectional area of the
electrode. Substituting (48) and (45) into (47), thus

ηmt
e (t) ≈ 2RTt−e

F
ln

(
ce(Le, t)

ce(0, t)

)
+Ravg

e Iapp(t) (49)

where t−e = D−e /(D
+
e +D−e ) and Iapp = Aiapp.

Finally, with ce(Le, t) = csurf
e (t) and ce(0, t) = 2ce0 −

csurf
e (t), the expression of the mass-transfer overpotential (28)

is obtained. Based on a similar procedure, the simplified
expression of the mass-transfer overpotential (29) can be
derived from (7) and (8) for the positive electrode.
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