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Göteborg, Sweden, 2021



Runaway-electron model development and validation in tokamaks
MATHIAS HOPPE
ISBN 978-91-7905-598-1

© MATHIAS HOPPE, 2021

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5065
ISSN 0346-718X

Department of Physics
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Cover:
Synchrotron radiation pattern from runaway electrons with energy
24 MeV and pitch angle 0.6 rad simulated with Soft.

Printed in Sweden by
Chalmers Digitaltryck
Chalmers Tekniska Högskola
Göteborg, Sweden, 2021



Runaway-electron model development and validation in tokamaks
MATHIAS HOPPE
Department of Physics
Chalmers University of Technology

Abstract

Magnetic confinement fusion (MCF), in which a hot plasma at more
than 100 million kelvin is confined using magnetic fields, is the most
successful fusion energy concept developed to date. After decades of
research, MCF devices designed to demonstrate a positive net energy
output are being constructed, completing a crucial milestone on the
path to making fusion a commercially viable energy source. Several
hurdles remain on this path, however, and one of the most pressing issues
concerns the sudden and rapid loss of confinement of the fusion plasma,
known as a disruption. An undesirable consequence of disruptions is the
acceleration of a fraction of the plasma electrons to relativistic energies
which—if the electrons were to strike the device wall—could deposit a
significant portion of the plasma energy on a small area, causing severe
and potentially irreparable damage.

The aim of this thesis is to develop a robust simulation tool capa-
ble of accurately predicting the number of runaway electrons produced
in different disruption scenarios. Since the evolution of the runaway
electrons affects the background plasma, it is important to also allow
quantities such as electron temperature, ion density, and electric field to
evolve self-consistently in the simulation. This leads to a tightly coupled
system of non-linear equations, and to solve it we have developed the
numerical tool Dream.

The complexity of the models used to simulate runaway electrons
demands that the validity of the models is carefully evaluated by com-
paring predictions with existing experimental data. One of the most
informative techniques for studying the dynamics of runaway electrons
in MCF experiments utilises synchrotron radiation, and to facilitate di-
rect comparison of runaway electron simulations with experiments we
have developed the synthetic diagnostic framework Soft. Using Soft,
we study runaway electrons in the ASDEX Upgrade and TCV fusion
devices, and develop powerful techniques for accurately extracting in-
formation about the location and momentum of runaway electrons.
Keywords: plasma physics, Fokker–Planck equation, magnetic confine-
ment fusion, tokamaks, runaway-electrons, synchrotron radiation
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Chapter 1

Introduction

The threat of global climate change is making itself more apparent by
the day at the same time as continued economic development and in-
dustrialisation increases the world’s demand for energy [1, 2]. It is clear
that the use of fossil fuels must be drastically reduced over the coming
years, but the debate remains open regarding which energy sources to
replace them with. Renewable energy sources, such as wind and so-
lar power, are able to produce electricity with minimal greenhouse gas
emissions, but their inherent dependence on local weather conditions
could lead to an unreliable supply of electricity on the grid [3, 4]. A
more predictable energy source is nuclear fission, which minimises the
emission of greenhouse gases while also providing the most energy per
unit area of all the energy sources today. Concerns have however been
raised about the safety of nuclear fission, both in terms of accidents,
which could spread highly radioactive material over large areas, and the
long-lived radioactive waste resulting from fission.

A technology which has the potential to offer both the reliability and
energy density of fission, while being free from greenhouse gas emissions
and only produces some intermediate level waste, is nuclear fusion [5].
Fusion combines two atomic nuclei into one heavier nucleus, releasing
a significant amount of energy in the process, and it is the mechanism
which powers all the stars of the universe. To achieve fusion on earth,
temperatures of more than 200 million kelvin and pressures of around ten
atmospheres must be attained. The currently most promising technology
for achieving fusion on earth is magnetic confinement fusion, whereby a
hot ionised gas known as a plasma is held in place in a toroidal shape
using strong magnetic fields of several teslas. Of the magnetic confine-
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Chapter 1. Introduction

Figure 1.1: An illustration of a tokamak geometry with nested flux sur-
faces (coloured inside torus). The green circle indicates the surface over
which to integrate to obtain the poloidal magnetic flux ψ at any given
distance R from the symmetry axis. The three coordinates used in this
thesis are also indicated: minor radius r, poloidal angle θ, and toroidal
angle ϕ.

ment fusion devices currently being researched, the tokamak has achieved
both the highest energy and power output to date [6]. The major in-
ternational fusion device ITER, which is currently under construction
in Cadarache, France, is a tokamak and aims to prove the feasibility of
fusion power as a large-scale source of energy [7, 8].

To successfully confine particles inside the fusion device, the mag-
netic field must be twisted. In the tokamak, this is achieved by driving a
strong current of several mega-amperes through the plasma. The mag-
netic field generated from the plasma current is in the poloidal direction,
as shown in figure 1.1, perpendicular to that generated by the external
coils and thus gives the total magnetic field a helical structure. Although
the plasma current is essential for providing adequate confinement of the
fusion fuel, as we shall see, it also comes with some risks.

On rare occasions, plasma instabilities may be triggered which spiral
out of control and cause the plasma to lose much of its thermal energy in
less than a millisecond [9], in an event known as a disruption. Much of
the heat may be lost through radiation emission, but a significant portion
of the heat may also be deposited on the plasma facing components of
the tokamak wall. As the plasma cools down, its conductivity falls,
and the plasma current is forced to decrease, which will both induce

2



currents in the tokamak wall leading to strong structural forces acting
on the device [10], as well as an electric field in the plasma. If this
electric field is sufficiently strong, it may accelerate a fraction of the
electron population to relativistic energies which—if they were to strike
the wall—may cause significant localised and deep burn damage to the
plasma facing components. This would both be costly to repair and,
more importantly, require extended shutdown of the device [11].

The acceleration of electrons to relativistic energies is made possi-
ble by a plasma phenomenon known as electron runaway [12]. It can
be shown that the friction force experienced by a fast electron due to
collisions with other particles in a plasma is approximately proportional
to the inverse of its velocity squared. Thus, if the electron was to also
experience an accelerating force, such as from an electric field induced
during a tokamak disruption, the net acceleration of the electron would
increase the faster it travels, causing the electron to “run away” until ra-
diation losses balance the acceleration, usually at energies on the order of
tens of MeV. What makes the production of runaway electrons in toka-
mak disruptions all the more concerning is the fact that collisions allow
runaway electrons to multiply exponentially once a few electrons have
become runaways [13]. This mechanism, known as avalanche multipli-
cation, is exponentially sensitive to the plasma current of the tokamak,
and will therefore be able to multiply the number of runaway electrons
by an astounding factor of 1020 in ITER [14], assuming all losses of
runaways are neglected.

In ITER, the first line of defence against disruptions will be to ac-
tively control the plasma in such a way as to avoid them [15]. By using
algorithms which are able to give warnings ahead of time when the
plasma is about to disrupt, plasma steering should be able to prevent
most disruptions [16]. Disruption avoidance will not be guaranteed to
work in all situations, and so a system for mitigating the effects of a
disruption is also under development, which could be triggered by the
disruption prediction algorithms. The system involves firing pellets of
hydrogen isotopes and noble gases, such as neon, into the plasma in order
to prematurely trigger or mitigate the disruption and uniformly radiate
away as much of the plasma energy as possible [15]. Allowing a natural
disruption to proceed without mitigation could lead to excessive energy
losses via radial transport onto the plasma facing components, as well
as large currents being induced in the wall and giving rise to devastating
structural forces. The injection of pellets into the plasma can also affect

3



Chapter 1. Introduction

the generation and survival of runaway electrons [17]. Initially, the high
charge of the injected noble gas was expected to provide increased colli-
sional friction and thereby quickly suppress the production of runaway
electrons [15]. Later studies have however nuanced this view and even
predict that the use of heavy atoms may result in enhanced avalanche
multiplication [18].

If the injection of heavy atoms in the plasma is not sufficient to miti-
gate the runaway electrons, other suppression mechanisms are required.
One such mechanism which provides an attractive route to runaway sup-
pression is radial transport of fast electrons. This transport is caused by
magnetic perturbations in the plasma which gradually deposit the rela-
tivistic electrons on the plasma facing components at a slow enough rate
and with a broad enough distribution as to avoid excessive heat loads. A
method to induce such perturbations is using active, so called resonant
magnetic perturbation (RMP), coils [19]. While initially successful in
mitigating runaway electrons in smaller devices, it is now generally be-
lieved that the perturbations produced by RMP coils will not be able to
penetrate deep enough into the plasmas of larger tokamaks to have suf-
ficient effect on the runaways [20, 21]. An alternative to the active RMP
coils—which have to be activated in time for runaways to be mitigated—
is to use passive coils [22], as has been proposed as a mitigation method
for the compact SPARC tokamak, currently under development [23].
The passive coils were predicted in Paper T to provide full suppression
of the runaway electrons in SPARC. Yet another method to cause radial
transport of runaway electrons, which is predicted to be effective also in
larger tokamaks, is to trigger an instability which benignly expels the
electrons [24].

More advanced pellet injection schemes have also been proposed to
provide robust suppression of runaway electrons. In Refs. [17, 25], a
two-stage injection scheme was considered theoretically in which the
temperature is first decreased by diluting the plasma with an injection
of only deuterium without causing the plasma to become unstable. This
is followed by a secondary injection of neon to trigger the final thermal
collapse. The first injection could prevent the survival of fast electrons,
minimising the number of runaway electrons available for avalanche mul-
tiplication.

In today’s tokamaks, runaway electrons are not of great concern as
their plasma currents are not sufficiently large to give appreciable ava-
lanche multiplication. However, in the next generation reactor scale
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tokamaks which are currently being designed and built, the avalanche
multiplication factor is expected to be orders of magnitude larger. This
gap in avalanche multiplication factor between current and future ex-
periments means that it is not possible to fully verify the robustness of
any runaway mitigation scheme before a reactor scale device is available.
If the mitigation system turns out not to be effective, however, even a
single disruption could be sufficient to cause devastating damage and
take the device out of operation for an unacceptably long time. It is
therefore crucial that the mitigation techniques are carefully evaluated
using theoretical models prior to commissioning. Further, it is important
that the models used have been validated against existing experiments
to ensure that they accurately represent reality. This thesis considers
both model development and validation in order to contribute to robust
runaway electron mitigation schemes for future tokamaks.

Reliable runaway electron model validation requires the comparison
of as many physical observables as possible with experimental measure-
ments. A problem during tokamak disruptions is however that detailed
experimental measurements can be incredibly difficult. While the the-
oretical models can give detailed information about the motion of par-
ticles, it is often difficult to obtain measurements other than spatially
and/or temporally integrated observables, such as the total plasma cur-
rent (rather than current density profile) or the total number of heavy
atoms injected in the plasma (rather than the density profile of such
atoms after injection). The large variation in plasma parameter values
occurring during disruptions further complicates measurements, as some
diagnostics are designed to operate in certain parameter regimes only or
do not have the time resolution required.

Radiation diagnostics, which measure electromagnetic radiation emit-
ted by runaway electrons, stand out from other diagnostics by being able
to provide detailed information about both the position and momentum
of the electrons. Any charged particle will emit electromagnetic radia-
tion when accelerated [26], and in a tokamak plasma, runaway electrons
emit radiation primarily due to two types of acceleration. The first type
of acceleration comes from the circular motion that all charged particles
execute around magnetic field lines, and the corresponding radiation
is referred to as cyclotron emission or, if the particle is moving at rela-
tivistic speeds, as synchrotron emission. The second type of acceleration
results from collisions with other particles and is called bremsstrahlung.
At relativistic particle speeds, both types of radiation are emitted pri-
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Chapter 1. Introduction

marily along the velocity vector of the particle. As such, if an observer
detects radiation from the relativistic particle, they can conclude that
the particle must be travelling directly towards them. Since the origin
of the radiation and its intensity provide information about the loca-
tion and energy of the particle, this means that bremsstrahlung and
synchrotron radiation can, in principle, be used to extract information
about the three main parameters for runaway electrons: their position,
energy and direction of motion.

In this thesis we present the two numerical frameworks Dream (for
Disruption Runaway Electron Analysis Model) and Soft (for Synchrotron-
detecting Orbit Following Toolkit), which can be used to run simulations
both of how runaway electrons are generated and evolve, as well as of
what signals they should give rise to in bremsstrahlung and synchrotron
radiation detectors. We begin in chapter 2 by describing the motion of
charged particles in tokamak magnetic fields and how it can be repre-
sented mathematically. The highlight of the chapter is the derivation
of the bounce-averaged Fokker–Planck equation, on which the Dream
code is based, as are many other runaway electron and plasma trans-
port models. In chapter 3, we turn our attention to runaway electrons
and review in detail the various physical mechanisms by which they are
generated and lost. The chapter ends with a description of the runaway
dynamics in the later stages of a tokamak disruption, which is usually
better diagnosed than the earlier stages. Chapter 4 first reviews the
theory underlying synthetic radiation diagnostics within the framework
established earlier in the thesis and then proceeds with summarising the
key properties of solutions to the radiation diagnostic integral. The ap-
pended papers are summarised in chapter 5, and the current state of the
research topic, along with its future prospects, are discussed.
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Chapter 2

Bounce-averaged
Fokker–Planck theory

Plasmas are complex physical systems that can exhibit a wide range
of phenomena under different circumstances. It should therefore be no
surprise that no single physical model can be efficiently applied to study
all imaginable properties observed in plasmas—the more comprehensive
models tend to be both analytically and computationally intractable
for certain phenomena, while the simpler models utilise approximations
which neglect details important to other phenomena. One of the most
fundamental equations in plasma theory is the kinetic equation which
governs the evolution of any plasma and, if solved, provides information
about the plasma in remarkable detail. Solving the kinetic equation in
its full glory for a tokamak is however a profoundly difficult task.

To make the kinetic equation more manageable, one can average it
over time scales which are short compared to the time scales on which the
dynamics of interest play out. One particular such averaging formalism
is the bounce-average, which assumes that the collisional time scale is
slower than the time scale for a particle to transit the tokamak and
return to the same poloidal angle, allowing averages over the periodic
motion to be carried out, effectively halving the dimensionality of the
problem. The bounce-average was first developed by Soviet scientists
in the 1950s, and numerical solvers utilising the technique were first
introduced in the 1970s, in order to study radio frequency heating and
current drive in magnetic mirror machines [27–29]. Towards the end
of the decade the technique had been adapted for tokamaks [30] and
can today be found in a number of different codes which study the
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dynamics of low-collisionality plasma populations, such as Cql3d [31]
or Luke [32].

In this thesis, the bounce-averaging theory plays an important role in
Paper G, where a solver of the bounce-averaged Fokker–Planck equation
is developed as part of the tokamak disruption simulation framework
Dream. To complete the presentation given in Paper G, we will in
this chapter review the background theory and derive the main results.
However, before outlining the bounce-average framework, we will briefly
introduce the reader to a number of concepts central to kinetic theory
for tokamaks.

2.1 Particle motion in tokamaks

A tokamak is a toroidal device which confines plasma using magnetic
fields. An externally generated toroidal magnetic field generates the
familiar torus shape, while a poloidal magnetic field, produced by an
electrical current running through the plasma, twists the magnetic field
to counteract loss of particles due to drifts in the non-uniform toroidal
magnetic field. The twist of the magnetic field causes magnetic field lines
to envelop torus-shaped surfaces as in figure 1.1, and these surfaces are
conveniently labelled using a magnetic flux. In this thesis we will use
the poloidal magnetic flux ψ, defined as the magnetic flux through the
green horizontal circle in figure 1.1, to label such surfaces, commonly
referred to as flux surfaces.

The tokamak magnetic field affects the motion of the charged parti-
cles comprising the plasma via the Lorentz force

F = q (E + v ×B) , (2.1)

where q is the particle charge, v is the particle velocity, E is the elec-
tric field and B is the magnetic field. This force guides the particles
into helical orbits around the magnetic field lines, which in turn wrap
around the torus as illustrated in figure 2.1. The circular motion around
magnetic field lines has an angular frequency Ω = qB/γm and radius
rL = v⊥/Ω = p⊥/qB, known as the cyclotron frequency and Larmor
radius respectively, with m the mass of the particle, γ = 1/

√
1− |v|2/c2

the relativistic factor, v⊥ the speed perpendicular to B, and p⊥ = γmv⊥.
The toroidal geometry causes the magnetic field to be stronger closer to
the centre of the torus, which has important implications for the charged
particle orbits.
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(a)

(b)

Figure 2.1: Charged particles follow helical orbits in a tokamak magnetic
field. The twisted magnetic field lines cause the particle to traverse the
device both toroidally and poloidally. (a) Magnification of the orbit,
revealing the helical motion around magnetic field lines. (b) Orbit pro-
jected into a poloidal plane, emphasising the poloidal motion of the
particle.

It can be shown that the magnetic moment µ ≡ p2
⊥/2mB of a charged

particle is an adiabatic invariant [33], which changes only slightly dur-
ing the course of many transits by the particle along its orbit and can
practically be taken as a constant of motion. If the kinetic energy of the
particle is conserved, the following relation holds (for simplicity taken
in the non-relativistic limit):

Wkin =
mv2
‖

2 + µB = const. (2.2)

When a particle travels from the outside of the tokamak to the inside
along its orbit, as in figure 2.1, the magnetic field strength increases.
As µ cannot change, the conservation of energy forces v‖ to decrease. If
a particle starts with initial speeds v‖ = v‖,0 and v⊥ = v⊥,0 at a point
with a magnetic field strength B = B0, equation (2.2) implies that v‖
will eventually be depleted if

v2
⊥,0

v2
‖,0 + v2

⊥,0
≥ B0
Bmax

, (2.3)

with Bmax denoting the maximum magnetic field strength experienced
by the particle along its orbit. If this happens, v‖ is forced to change sign,
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(a) Passing orbit (b) Trapped orbit

Figure 2.2: Particle orbits projected onto a poloidal cross section. (a)
Passing (or circulating) orbit, in which the particle can move unob-
structed through the magnetic field. (b) Trapped orbit, where the parti-
cle is eventually forced to bounce back when the magnetic field becomes
too strong, as a result of the adiabatic invariance of the magnetic mo-
ment.

causing the particle to bounce and travel back in the opposite direction.
This leads to an orbit which, when projected onto a poloidal cross-
section, takes the shape of a banana, as shown in figure 2.2b. Such orbits
are referred to as trapped orbits (or less formally as banana orbits in
tokamaks) since the particle is effectively trapped between two poloidal
angles in the magnetic field, forced to bounce back and forth. Particles
which start with smaller ratios v⊥,0/v‖,0 will be able to complete an orbit
without turning around and instead follow passing or circulating orbits,
shown in a poloidal cross-section in figure 2.2a. Later, when developing
the bounce-average in section 2.3 we will need to pay special attention
to which of these two types of orbits a particle is following.

Although the Lorentz force (2.1) locally confines a particle to the
vicinity of a magnetic field line, inhomogeneities in the magnetic field
and perpendicular forces will lead the particle to gradually deviate from
the path designated by the field line. Such gradual deviations are called
drifts and they arise in a number of situations. For tokamak plasmas,
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two of the most important drifts are curvature and ∇B drifts. The
curvature drift arises since a particle moving along a curved magnetic
field line experiences a centrifugal force Fc = mv2

‖Rc/Rc, where Rc
denotes the radius of curvature of the field line. The resulting drift
velocity will be perpendicular to this force, and to the magnetic field:

vcurv = mv2
‖

Rc ×B

qR2
cB

2 . (2.4)

The ∇B drift arises, as the name suggests, from variations in the mag-
netic field strength, and introduces a drift velocity

v∇B = sgn q v⊥rL
2

B ×∇B
B2 , (2.5)

where sgn q denotes the sign of the particle charge.
To counteract drifts and keep particles confined in the magnetic field,

tokamaks have a poloidal magnetic field component which twists the
field lines and causes the particles to circulate poloidally, in addition to
their toroidal circulation. Since the direction of the curvature and ∇B
drifts are roughly the same in all points of the tokamak (nearly vertical),
the poloidal circulation causes the particle to drift an equal distance into
and out from the centre of the plasma during a poloidal transit. This
effectively cancels the net displacement from the magnetic flux surface
caused by the drifts and keeps the particles confined.

The curvature and∇B drifts just described are responsible for giving
the banana its width in figure 2.2. On one side of the orbit, the particle
will drift either in towards or out from the centre of the plasma, and
then in the opposite direction after bouncing. Often in magnetic confine-
ment fusion devices the particle drifts are small compared to the typical
length scales of the system, allowing us to simplify our calculations by
neglecting them, as will be done in the next section.

2.2 Collisions and the Fokker–Planck equation

The magnetic field of a tokamak is essential for confining charged parti-
cles and preventing them from being lost to the walls, however it is far
from the only force influencing the particle motion. As for any plasma,
inter-particle collisions and electric fields play important roles in the
particle dynamics. Due to the large number of particles present in a
tokamak, it is not possible to solve the equations of motion for each
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individual particle separately, especially as these must be coupled to
Maxwell’s equations in order to determine the electric and magnetic
fields generated by each particle. Instead, the plasma can be studied
from the perspective of statistical physics, in which the individual parti-
cles of a given species are replaced with a continuous distribution func-
tion, here denoted f(x,p), representing the density of particles in the
phase space constituted by the position and momentum coordinates x
and p. In this thesis we normalise the distribution function such that

N =
∫
f(x,p) dxdp, (2.6)

is the total number of particles in the system.

2.2.1 Fokker–Planck equation

The distribution function of any plasma satisfies the Liouville equa-
tion [34, 35]

df
dt ≡

∂f

∂t
+ ẋ · ∂f

∂x
+ ṗ · ∂f

∂p
= 0, (2.7)

with ẋ ≡ dx/dt and ṗ ≡ dp/dt. The Liouville equation is a fundamental
equation in statistical physics which states that in a closed system with-
out external sources, the distribution function remains constant along
trajectories in phase space.

In a plasma, the force ṗ acting on particles is the Lorentz force (2.1).
It is important to note that the electric and magnetic fields included in
this force are comprised of both (macroscopic) fields governing the collec-
tive behaviour of the particles, as well as (microscopic) fields generated
by the charged particles themselves. By separating the macroscopic from
the microscopic fields, and gathering the latter into an operator C[f ],
we obtain the kinetic equation

∂f

∂t
+ ẋ · ∂f

∂x
+ q (E + v ×B) · ∂f

∂p
= C [f ] . (2.8)

The operator C[f ], which represents the effect of Coulomb interactions
between particles, i.e. collisions, is known as the collision operator. The
direct evaluation of C[f ] from the microscopic fields generated by all
particles is in most cases intractable, and instead various approximate
models for the collision operator are used. In this thesis we use a Fokker–
Planck collision operator, which is derived under the assumption that
collisions are dominated by long range Coulomb interactions, so that the
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momentum transfer in each collision is small. The collision operator can
then be written in an advection-diffusion form,

C[f ] = ∂

∂p
·
[
−Af + D · ∂f

∂p

]
, (2.9)

where the dynamical friction coefficient A =
∑
j Aij and diffusion coef-

ficient D =
∑
j Dij are given by [36, 37]

Aij (x,p) = −
q2
i q

2
j

8πε2
0mimj

ln Λij
∫
fj
(
x,p′

) ∂

∂p′
· U
(
p,p′

)
dp′,

Dij (x,p) =
q2
i q

2
j

8πε2
0m

2
i

ln Λij
∫
fj
(
x,p′

)
U
(
p,p′

)
dp′.

(2.10)

Here, indices denote the particle species (ij is for a particle of species
i colliding with particles of species j), ε0 the permittivity of free space,
and ln Λij is the Coulomb logarithm for collisions between species i and
j [38]. The integration kernel U(p,p′) is a matrix which in the relativistic
case is given by

U
(
p,p′

)
= r2/γγ′

(r2 − 1)3/2

[
m2c2

(
r2 − 1

)
I− pp− p′p′ + r

(
pp′ + p′p

)]
,

(2.11)
where I is the identity matrix, r = γγ′−p·p′/m2c2, γ =

√
1 + p · p/m2c2,

and γ′ =
√

1 + p′ · p′/m2c2. The form (2.10) of the collision coefficients
is known as the (relativistic) Landau form. Due to the appearance of
integrals over the distribution function, this particular formulation is
difficult to work with numerically. In order to solve the Fokker–Planck
equation numerically, it is instead more common to express the colli-
sion coefficients in terms of a set of potential functions, each satisfying
a Poisson-type differential equation [37, 39]. The various collision op-
erators implemented in the Dream code, described in Paper G, are all
based on the linearised coefficients derived by Pike and Rose [40], which
are in turn based on the non-linear differential formulation of the colli-
sion coefficients given by Braams and Karney [37].

2.2.2 Phase-space coordinates for tokamak plasmas

The key to efficiently solving equation sets describing complex systems is
to select an appropriate set of phase space coordinates which reveal any
underlying symmetries and enable simplifications and approximations.
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For the Fokker–Planck equation in a tokamak, a number of coordinate
sets may be suitable depending on which approximations are made. In
what follows here we will introduce the set of coordinates used in the
Dream code, described in Paper G, which is similar and for the most
part equivalent to that used in the Soft code, described in Paper A.
For brevity, we will here only mention the approximations used as the
coordinates are introduced and leave the motivation and details of the
approximations for section 2.3.

A desired quality of the set of coordinates to use for the tokamak
plasma is that they allow us to succinctly describe the motion of parti-
cles. We should therefore select a set of coordinates which parameterise
particle orbits. In the next section we will neglect orbit drifts and assume
that the Larmor radius is small, implying that the same set of spatial
coordinates which parameterise the particle orbits will also parameterise
magnetic field lines. Since the archetypal tokamak magnetic field takes
the shape of a circular cross-section torus, a set of toroidal coordinates
consisting of a minor radius, poloidal and toroidal angle may be suit-
able. Modern tokamaks however usually have advanced capabilities for
shaping the poloidal cross section of the magnetic field, requiring us to
define our coordinates with some care.

For configuration space, we can use the poloidal magnetic flux ψ,
poloidal angle θ and toroidal angle ϕ as coordinates. Since, in our ap-
proximation, particles follow magnetic field lines exactly, they move on
surfaces of constant ψ, meaning that ψ is a constant of motion. The
position along the flux surface in the poloidal plane is labelled with the
poloidal angle θ, which is defined as the angle in the poloidal plane be-
tween the outer midplane and the particle position, with the origin at
the magnetic axis. This is the definition used for numerically provided
magnetic fields in Dream. The toroidal angle is the angle between some
reference position in the tokamak and the position of the particle, in the
toroidal direction. Figure 2.3a indicates the definition of the configura-
tion space coordinates.

In momentum space, it is convenient to use a spherical coordinate
system, which separates the magnitude and direction of the momentum.
By aligning the z axis of the coordinate system locally with the magnetic
field, we can introduce the magnitude p = |p|, the pitch ξ = p ·B/(pB)
and the azimuthal angle ζ. Alternatively, we could replace p and ξ with
the momentum components p‖ = pξ and p⊥ = p

√
1− ξ2, parallel and

perpendicular to the magnetic field, respectively. Both these coordi-
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θ

ψ

ϕ

(out of paper)

Figure 2.3: Illustration of the three configuration space coordinates in a
shaped tokamak magnetic geometry. Any point in the plasma is param-
eterised by the poloidal magnetic flux ψ, the poloidal angle θ and the
toroidal angle ϕ (directed out of the paper).

nate systems have one disadvantage though: as described in section 2.1,
because of the adiabatic invariance of the magnetic moment, the pitch
varies along the orbit. It would be more desirable to associate the orbit
with a single set of momentum space coordinates which uniquely iden-
tifies it. One possibility is to replace ξ with the adiabatic invariant µ,
but in Dream (and Soft) we instead opt for using the value of the
pitch ξ at a clearly defined point along the orbit, and denote the pitch
at this point by ξ0. The point chosen is that at which the magnetic
field attains its minimum value along the orbit, Bmin, as this is the only
point which allows us to sample all possible orbits. If we were to instead
choose to give ξ0 at a point with B = B0 > Bmin, then our phase space
parameterisation would not allow us to describe those particles with
|ξ| <

√
1−Bmin/B0 when at Bmin, which due to the trapping effect will

bounce back before reaching the reference point.
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2.3 Bounce averaging

Our goal in this section is to derive a Fokker–Planck equation which can
describe the evolution of a distribution function due to collisions in a
typical tokamak plasma (exactly what “typical” means in this context
will be clarified shortly). It is important for the equation to account
for the geometry of the tokamak, not least the bounce motion executed
by trapped particles. In addition to these qualities, we would also like
the equation to be as simple as possible to solve numerically, in practice
meaning that it should be as far reduced in dimensionality as possible.
Our procedure will follow that of Killeen et al. [29].

To begin with, let us order the various time and length scales of the
system. In symbols, we assume for the time scales that

τΩ � τb � τc, τacc, τrad. (2.12)

The fastest time scale that we will be concerned with is the gyration
time scale τΩ = Ω−1, where Ω = qB/γm is the cyclotron frequency,
corresponding to the time it takes for a charged particle to circle a
magnetic field line. We assume that this time scale is much faster than
the transit or bounce time scale τb, which is the time it takes for a particle
to complete a poloidal transit of its orbit and return to its starting point
in the poloidal plane,

τb =
∮ ds
v‖
, (2.13)

where the path integral is taken over the particle orbit. This time scale
is in turn assumed to be much faster than the collision, acceleration and
energy loss (via radiation) time scales τc, τacc and τrad respectively. This
ensures that the energy of a particle is approximately constant during
the orbit and allows us to associate each orbit with exactly one set of
momentum coordinates.

For the length scales, we will work in the so-called zero orbit width
(ZOW) limit, where the Larmor radius and the orbit width due to the
magnetic drifts are much smaller than the length scale over which the
magnetic field varies significantly,

rL, ρdrift �
B

|∇B|
, (2.14)

where ρdrift denotes the gyro averaged distance by which the particle
deviates from the flux surface. In practice, this means that particles will
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follow a single field line throughout their orbit, so that the “banana”
orbit illustrated in figure 2.2 loses its width and the particle bounces
back and forth along the same path. The smallness of the Larmor radius
rL also implies that the particle does not experience any field variation
during a gyration around the magnetic field line which, as we shall see,
makes f isotropic in the gyro angle ζ.

2.3.1 Gyro average

Starting from the Fokker–Planck equation (2.8), which can also be writ-
ten

∂f

∂t
+ ẋ · ∂f

∂x
+ ṗ

∂f

∂p
+ ξ̇

∂f

∂ξ
+ ζ̇

∂f

∂ζ
= C [f ] , (2.15)

we will successively average over the fastest time scales of the system. As
assumed in (2.12), the fastest is the time it takes for a particle to travel
2π radians in the gyro angle ζ. We therefore proceed with an asymptotic
expansion of the distribution function in the small parameter εΩ which
corresponds to the ratio of the gyro to the transit time scale:

f = f̃0 + f̃1 + . . . (2.16)

where subsequent terms are smaller by a factor of εΩ. By substituting
equation (2.16) into the Fokker–Planck equation (2.15) and matching
the orders in εΩ, we first find that to lowest order

ζ̇
∂f̃0
∂ζ

= 0, (2.17a)

implying that f̃0 is independent of the gyro angle ζ. In the next order,
we obtain

∂f̃0
∂t

+ ẋ · ∂f̃0
∂x

+ ṗ
∂f̃0
∂p

+ ξ̇
∂f̃0
∂ξ

+ ∂f̃1
∂ζ

= C
[
f̃0
]
, (2.17b)

with the last term on the left hand side including a higher order com-
ponent of the distribution function since ζ̇ = Ω = τ−1

Ω ∼ O(ε−1
Ω τ−1

b ).
Equation (2.17b) can now be averaged over the gyro angle using

〈· · · 〉ζ = 1
2π

∫ 2π

0
· · · dζ. (2.18)

Since the first term of equation (2.17b) is independent of ζ, the gyro
average results in the identity operation. Further, since f̃1 must be 2π-
periodic in ζ, the term ∂f̃1/∂ζ must vanish. In the remaining terms, the
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only dependence on ζ is found in the coefficients. To evaluate their gyro
averages, let us first decompose the direction of motion v̂ of the particle
into

v̂ = b̂ξ +
√

1− ξ2 (ê1 cos ζ + ê2 sin ζ) , (2.19)

where the orientation of ê1 and ê2 is arbitrary, beyond the requirement
that they form an orthonormal basis together with the magnetic field
direction b̂. Since ẋ = v, we first have that

〈ẋ〉ζ = 〈vv̂〉ζ = v

〈
b̂ξ +

√
1− ξ2 (ê1 cos ζ + ê2 sin ζ)

〉
ζ

= v‖b̂. (2.20)

For 〈ṗ〉ζ we can similarly utilise (2.19) and find

〈ṗ〉ζ = 〈q (E + v ×B) · v̂〉ζ = qξE‖, (2.21)

where we introduced E‖ = E · b̂. The evaluation of the term involving
〈ξ̇〉ζ is lengthy, and we only state here the result:

〈
ξ̇
〉
ζ

=
(
1− ξ2

) [v∇ · b̂
2 +

qE‖
p

]
. (2.22)

The resulting equation, known as the gyro-averaged kinetic equation, is

∂f

∂t
+ v‖b̂ ·

∂f

∂x
+ qξE‖

∂f

∂p
+
(
1− ξ2

) [v∇ · b̂
2 +

qE‖
p

]
∂f

∂ξ
= 〈C [f ]〉ζ ,

(2.23)
where we have re-labelled the gyro angle independent f̃0 → f .

2.3.2 Poloidal angle average

The next fastest time scale, according to our ordering (2.12), is the
bounce time scale τb. This is the time scale on which particles transit
and return to their initial position in the poloidal plane, thus suggesting
that we should average over the poloidal angle θ. However, due to the
adiabatic invariance of the magnetic moment, there is an implicit cou-
pling between the poloidal angle θ and the pitch ξ. This significantly
complicates integration over the poloidal angle, requiring us to first in-
troduce an alternative to the pitch ξ which is constant during a poloidal
transit. A valid option is the magnetic moment µ = p2

⊥/2mB, although
in this work, as described in section 2.2.2 we prefer to use the value ξ0
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of the particle pitch at the point of minimum magnetic field B = Bmin
along the orbit. From the conservation of µ, we thus have that

p2 (1− ξ2)
2mB = p2 (1− ξ2

0
)

2mBmin
, (2.24)

allowing us to solve for ξ and obtain

ξ = σ

√
1− B

Bmin

(
1− ξ2

0
)
. (2.25)

Here, σ = ±1 is a parameter which indicates the direction along the
field line in which the particle is currently moving. An integration in
phase space will thus involve an integration over ξ0 and a sum over the
two possible values of σ. From equation (2.25) we can deduce that the
correct differential element to use when integrating over ξ0 is

dξ = ξ0B

ξBmin
dξ0. (2.26)

This also allows us to write the last term on the left hand side of equa-
tion (2.23) as

(
1− ξ2

) [v∇ · b̂
2 +

qE‖
p

]
∂f

∂ξ
=
(
1− ξ2

0

) [vB · ∇(1/B)
2 +

qE‖
p

]
ξ

ξ0

∂f

∂ξ0
,

(2.27)
where we also used that ∇ · b̂ = B−1∇ ·B + B · ∇(1/B) = B · ∇(1/B),
with the last equality resulting from the fact that ∇ · B = 0. The
operator B · ∇ also appears in the term v‖b̂ · ∂f/∂x and can be further
simplified. This operator can generally be written

b̂ · ∂f
∂x

= b̂ ·
(
∇ψ ∂f

∂ψ
+∇θ∂f

∂θ
+∇ϕ∂f

∂ϕ

)
. (2.28)

Since the magnetic field of a tokamak is symmetric in the toroidal angle
ϕ, and since we do not consider fluctuations in the toroidal direction,
it follows that ∂f/∂ϕ = 0. Since flux surfaces are nested and do not
intersect, it also follows from the definition of our coordinate system
that b̂ ·∇ψ = 0. The only remaining term in equation (2.28) is therefore
the one involving ∇θ:

b̂ · ∂f
∂x

= b̂ · ∇θ∂f
∂θ
. (2.29)
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This allows us to write the gyro-averaged kinetic equation (2.23) as

∂f

∂t
+ v‖b̂ · ∇θ

∂f

∂θ
+ qξE‖

∂f

∂p
+

ξ

ξ0

(
1− ξ2

0

) [vB · ∇θ
2

∂(1/B)
∂θ

+
qE‖
p

]
∂f

∂ξ0
= 〈C [f ]〉ζ .

(2.30)

Now, expanding f in a series f = f̄0 + f̄1 + . . ., using a parameter εb
corresponding to the ratio of transit to the collisional time scale, we
substitute this series into the gyro-averaged kinetic equation (2.30) and
group the terms by order. The definition of τb, as an integral over v−1

‖ ,
mandates that we order v‖ ∼ O(ε−1

b τ−1
c ). The leading order term in the

gyro-averaged kinetic equation after substitution is therefore

v‖b̂ · ∇θ
∂f̄0
∂θ

= 0, (2.31)

implying that f̄0 is independent of the poloidal angle. The next order
equation is

∂f̄0
∂t

+ v‖b̂ · ∇θ
∂f̄1
∂θ

+ qξE‖
∂f̄0
∂p

+

ξ

ξ0

(
1− ξ2

0

) [vB · ∇θ
2

∂B

∂θ
+
qE‖
p

]
∂f̄0
∂ξ0

=
〈
C
[
f̄0
]〉
ζ
.

(2.32)

This is the equation we will now average using the operator

〈· · · 〉θ = 4π2

V ′
∮
· · ·
∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dθ. (2.33)

with the factor p2 resulting from the spherical coordinate transformation
made in momentum space, dp = p2 dpdξdζ. Here we have introduced

V ′ = 4π2
∫ 2π

0

∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dθ. (2.34)

as well as the configuration space Jacobian J , which accounts for the
coordinate transformation x→ (ψ, θ, ϕ), and is generally given by

J = 1
|∇ψ · (∇θ ×∇ϕ)| . (2.35)

A toroidally symmetric magnetic field can be written as

B = G(ψ)∇ϕ+ 1
2π∇ϕ×∇ψ, (2.36)

20



2.3. Bounce averaging

for some function G(ψ) describing the toroidal magnetic field variation,
so the Jacobian takes the form

J = 1
2π |B · ∇θ| . (2.37)

The limits of integration in (2.33) depend on whether the particle
is trapped. If the particle follows a circulating orbit, then we integrate
between θ = 0 and θ = 2π, exactly one poloidal transit. If, however, the
particle is trapped, having

ξ2
0 ≤ 1− Bmin

B
, (2.38)

we instead let

〈· · · 〉θ = 4π2

V ′
∑
σ=±1

∫ θb

−θb
· · ·
∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dθ, (2.39)

where θb is the poloidal angle at which the particle bounces, charac-
terised by B(θb) = Bmin/(1− ξ2

0). The sum in equation (2.39) runs over
the two possible values of the parameter σ, introduced in equation (2.25).

Since f̄0 is independent of θ, the only terms with a non-trivial de-
pendence on θ in equation (2.32) are those involving b̂ · ∇, B · ∇ and ξ.
Starting with the ∂f̄1/∂θ term, we obtain the integral〈

v‖b̂ · ∇θ
∂f̄1
∂θ

〉
θ

= 2πσv |ξ0|
BminV ′

∮
B · ∇θ
|B · ∇θ|

∂f̄1
∂θ

dθ =

= 2πσv |ξ0|
BminV ′

sgn (B · ∇θ)
∮
∂f̄1
∂θ

dθ.
(2.40)

By definition, the poloidal flux is independent of θ, meaning that the
only θ dependence appearing in the integrand of equation (2.40) is in
f̄1. This component of the distribution function must however be 2π-
periodic in θ, causing the term to vanish by the fundamental theorem
of calculus.
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Chapter 2. Bounce-averaged Fokker–Planck theory

The ∂f̄0/∂ξ0 term also has a non-trivial θ dependence. Applying the
averaging operator to it, we obtain〈

ξ

ξ0

(
1− ξ2

0

) [vB · ∇θ
2

∂(1/B)
∂θ

+
qE‖
p

]
∂f̄0
∂ξ0

〉
θ

=

= 2π 1− ξ2
0

BminV ′

(∮
σvB

2
∂(1/B)
∂θ

∂f̄0
∂ξ0

B · ∇θ
|B · ∇θ|

dθ+
∮
σB

qE‖
p

∂f̄0
∂ξ0
J dθ

)
=

= −2π 1− ξ2
0

BminV ′
∂f̄0
∂ξ0

∮
σv
∂ lnB
∂θ

dθ + 1− ξ2
0

ξ0

〈
qξE‖
p

∂f̄0
∂ξ0

〉
θ

=

= q
1− ξ2

0
pξ0

〈
ξE‖

〉
θ

∂f̄0
∂ξ0

.

(2.41)
Finally, we must average the ∂f̄0/∂p term. This term contains a θ
dependence in ξ, as well as in E‖:〈
qξE‖

∂f̄0
∂p

〉
θ

= q
〈
ξE‖

〉
θ

∂f̄0
∂p

= 4π2q |ξ0|
V ′Bmin

∂f̄0
∂p

∮
σ (B ·E)J dθ. (2.42)

Here we should note two important things. Firstly, the same poloidal
angle average of ξE‖ appears in both equations (2.41) and (2.42). Sec-
ondly, the integrand in the resulting integral, given explicitly in equa-
tion (2.42), changes sign in the bounce points when ξ0 corresponds to
a trapped orbit, due to the sign σ = ξ/|ξ| which we sum over. This
average therefore vanishes for trapped orbits, representing the fact that
trapped particles will be accelerated in one direction along their orbit,
and equally decelerated when bouncing back in the other direction.

After averaging the gyro-averaged kinetic equation over the poloidal
angle we now arrive at the bounce averaged Fokker-Planck equation

∂f

∂t
+ q

〈
ξE‖

〉
θ

∂f

∂p
+ q

1− ξ2
0

pξ0

〈
ξE‖

〉
θ

∂f

∂ξ0
=
〈
〈C [f ]〉ζ

〉
θ

(2.43)

where, again, for convenience we have re-labelled f̄0 → f .

General procedure

The steps taken above illustrate in detail the assumptions needed to
reach a bounce-averaged Fokker–Planck equation. The essential steps
can now be summarised into a single operation which is needed whenever
a new term is to be introduced.
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2.3. Bounce averaging

Given an operatorX[f ], assumed to vary on a time scale much slower
than the bounce time scale τb, we define the bounce average of X as

{X[f ]} ≡ 1
V ′
∫ 2π

0

〈
〈X[f ]〉ζ

〉
θ

dϕ =

= 1
V ′
∫ 2π

0

∮ ∫ 2π

0
X[f ]

∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dζdθdϕ
(2.44)

with V ′ defined in equation (2.34). The integral over the poloidal angle
θ is different depending on whether or not the ξ0 considered represents
a passing or trapped orbit. Specifically,∮

X dθ =
{∫ 2π

0 X dθ, if |ξ0| > ξT ,∑
σ=±1

∫ θb
−θb

X dθ, if |ξ0| ≤ ξT ,
(2.45)

where the trapped-passing boundary ξT =
√

1−Bmin/Bmax and θb was
defined along with the poloidal angle average in equation (2.39)

An average which is closely related to the bounce average is the
flux-surface average, which is analogous to the bounce average but for
quantities which vary only spatially (i.e. independent of momentum co-
ordinates). The average value of such a quantity on a given flux surface
is

〈X〉 = 1
V ′

∫ 2π

0

∫ 2π

0
X J dθdϕ, (2.46)

with
V ′ =

∫ 2π

0

∫ 2π

0
J dθdϕ, (2.47)

which, along passing orbits, can be related to V ′ via

V ′ = 2πp2
〈
ξ0B

ξBmin

〉
V ′. (2.48)

Such averages often appear when bounce averaging operators for the
Fokker–Planck equation. In fact, equation (2.42) can be written in terms
of the flux-surface average of the electric field as

q
〈
ξE‖

〉
θ

∂f

∂p
= qΘ(ξ0) 〈E ·B〉

〈ξ0B/ξBmin〉
∂f

∂p
, (2.49)

where the step function Θ(ξ0) is

Θ (ξ0) =
{

1, if |ξ0| > ξT ,

0, otherwise.
(2.50)
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Chapter 2. Bounce-averaged Fokker–Planck theory

2.3.3 Validity of bounce average in tokamak disruptions

The validity of the bounce average hinges on the time scale order-
ing (2.12). Disruptions are however characterised by a wide variation in
many plasma parameters, which will also affect the time scales of various
phenomena. In particular, one could question the ordering

τb � τc, τacc, (2.51)

i.e. that the poloidal transit time τb is much shorter than the collision
and acceleration times. The transit time is longer for trapped particles,
and so for τb we consider the transit time of a trapped particle with
speed v travelling along a flux surface with radius r [41]:

τb = qR

v
√
r/R

, (2.52)

where q is the safety factor and R is the plasma major radius.
The shortest collisional time scale is that for electrons to deflect off

of ions, and it is given by [40, 42]

τc ≈ 200 s p3 [MeV/c]
γZeff

(
ne [1020 m−3]

) (2.53)

where ne is the density of electrons and Zeff the effective charge number
of the plasma. In a disruption, the temperature drops by several orders
of magnitude while a large amount of highly charged ions are injected.
Both lead to a dramatic drop in the collision time, and for Te = 5 eV
and Zeff = 2, the collision time for a thermal particle is only τc ∼ 10−6 s.
If the collision time is shorter, or even comparable to the transit time,
particles will deviate from their orbit before they can return to their
original point in the poloidal plane, invalidating the assumption that
f depends weakly on the poloidal angle θ made in the bounce-average
theory.

Similarly, the relevant electric field acceleration time scale can be
estimated by considering the time it takes for a fast electron to double
its momentum from p = p0 to p = 2p0. Using results which will be
derived in section 3.1, the force balance for an electron with momentum
p can be written

dp
dt = eE‖ − eEc

m2
ec

2 + p2

p2 , (2.54)

where Ec is the threshold electric field required for runaway, derived in
section 3.1, and p� pth was assumed in order to simplify the collisional
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2.3. Bounce averaging

friction force. By integrating equation (2.54) in time, we can solve for
the acceleration time and find

τacc = p3
c

m2
ec

2eEc

p0
pc
− 1

2 ln

1− 2p0/pc
2p2

0
p2

c
+ p0

pc
− 1


 , (2.55)

where the critical momentum for runaway pc = mec/
√
E‖/Ec − 1, as de-

rived in section 3.1. In strong electric fields (E‖ � Ec), the acceleration
time for fast particles (p0 & mec� pc) scales with electron momentum
and electric field strength as

τacc ∝
p0
E‖
. (2.56)

Close to p0 = pc, the acceleration time approaches infinity logarithmi-
cally, meaning that τacc must attain a minimum for some p0 > pc. An
approximate analysis yields that the minimum acceleration time is

τmin
acc ≈

√√√√√ne [1020 m−3](
E‖ [V/m]

)3 ms, (2.57)

which is the acceleration time of an electron with p0 ≈ mec
√

3Ec/E‖.
The dependence of the various time scales on the particle energy

requires examination of the time scales at the relevant energies for the
validity of the theory to be established. The three time scales discussed
here are plotted in figure 2.4 for typical ITER-like plasma parameters.
To reconcile the effects captured by the bounce-average theory on some
energy scales with the lack of these effects on other time scales, the
Dream code, introduced in Paper G, separates electrons into three sub-
populations based on their energies, allowing different methods to be
applied to electrons in different energy ranges.

As shown in figure 2.4, the slowest electrons, with momentum p ∼
pth, have transit times τb ∼ 10−4 s after the TQ, while the collision time
may be as low as 10−6 s. The dynamics of these particles will therefore
be dominated by collisions and the bounce-average theory is not valid.
Collisions will however quickly drive the particles to thermal equilibrium
and cause them to be distributed according to a Maxwellian. In Dream,
the thermal particles can therefore be modelled as a fluid.
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Figure 2.4: Comparison of the important time scales for the bounce
average theory at different electron energies. The plasma parameters
assumed are ne = 1020 m−3, Te = 5 eV, Zeff = 2, E‖ = 20 V/m, R = 6 m,
r = 0.5 m and q = 5.

For the faster electrons, collisions are not as important and the as-
sumption τb � τc will generally be satisfied. However, the rapid acceler-
ation by the electric field may void the result (2.49) and detrap bouncing
particles. The fastest electrons will have acceleration times on the or-
der of milliseconds, while their transit times are counted in nanoseconds
in ITER, satisfying the bounce-average assumptions by a clear margin.
Of more concern are the moderately energetic particles with the short-
est acceleration times. For these particles, the acceleration time in the
ITER disruption considered in figure 2.4 is approximately 10−5 s, only
slightly longer than the transit time for the trapped electrons. In this
momentum region, the assumption τb � τacc may therefore break down,
invalidating the bounce average theory, as demonstrated in Ref. [41].

It is important to point out that the discussion of this section has
concerned the validity of the bounce average for studying the generation
of runaway electrons in tokamak disruptions. Runaway electrons may
however be generated in other scenarios, such as during tokamak startup
or during the quiescent phase of operation (if a sufficiently strong electric
field is applied), in which the assumptions of the bounce average theory
are typically well satisfied.
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Chapter 3

Theory of runaway electrons

A peculiar feature of a plasma, first pointed out by Wilson in 1924 [43],
is that the friction force due to collisions felt by the fastest electrons
is inversely proportional to the square of the electrons’ speeds. Since
collisional friction is often the dominant braking force felt by most elec-
trons, a constant accelerating force of sufficient strength would increase
the energy of the electrons indefinitely and cause them to “run away”.
Such runaway electrons are however far from a peripheral curiosity in
plasma physics—their presence is of crucial importance in the initia-
tion of thunderstorms [44], and they occur in solar flares [45] as well as
during startup [46] and shut-down [13] of tokamak discharges. In this
thesis we are primarily concerned with circumstances pertaining to the
latter, making many of our results specific to the conditions of a toka-
mak. Nonetheless, most of the fundamental principles outlined in this
chapter apply to runaway generation in any plasma.

Over recent years, runaway electrons occurring in tokamaks have
received much attention due to the potentially devastating impact they
may have on future reactor-scale tokamaks [47]. If a plasma instability
grows too large, a so-called disruptionmay occur, converting a significant
fraction of the plasma magnetic energy into kinetic energy of runaway
electrons. The resulting beam of relativistic electrons can be difficult to
control and may itself trigger further plasma instabilities which deform
the toroidal plasma column [11]. If the beam comes in contact with the
tokamak wall, or any of its plasma facing components, significant energy
can be deposited in a localised region, leading to severe damage to the
device.

27



Chapter 3. Theory of runaway electrons

In this chapter we will review the theory of runaway electrons in
tokamaks. We begin by introducing some fundamental considerations,
such as what a runaway electron is and what circumstances are necessary
for an electron to run away. We then proceed to discuss the topic of
tokamak disruptions, which is the main type of runaway generation event
we are concerned with in this thesis. After giving an overview of tokamak
disruptions, we discuss specifically the runaway generation during the
disruption and the subsequent evolution of the electrons.

3.1 Criteria for runaway

Runaway acceleration occurs whenever the force exerted on an electron
by a macroscopic electric field is stronger than the braking force resulting
from collisions with other particles in the plasma. The first detailed ac-
count of electron runaway was given by Dreicer [12, 48], who considered
a uniform plasma in which electrons and ions are in thermal equilibrium.
By multiplying the Fokker–Planck equation (2.43) with the parallel mo-
mentum p‖ and integrating over all of momentum space, he obtained
the parallel force balance equation

∂p‖
∂t

+ eE‖ = −pthνeeΨ(p), (3.1)

with the thermal electron-electron collision frequency

νee = e4mene ln Λ
4πε2

0p
3
th

, (3.2)

me the electron rest mass, ne the electron density, ln Λ the Coulomb
logarithm, and pth =

√
2meTe the thermal momentum, with Te the elec-

tron temperature. Equation (3.1) describes the evolution of the mean
momentum of the plasma electrons when influenced by an applied elec-
tric field E‖ and collisions. The right hand side of equation (3.1) results
from the integration of a linearised version of the collision operator,
specifically from the dynamic friction component p ·A in equation (2.9),
where the function Ψ(p) describes the energy-dependence of the colli-
sional friction, plotted in figure 3.1. The function Ψ(p) grows with p
until the thermal momentum pth, after which it decreases. As p → ∞,
Ψ(p) ≈ p2

th/(mv)2, thus decreasing with the inverse square of the speed
v and approaching a small but finite value in the limit.

It is customary to normalise all terms in equation (3.1) to 2pthνee.
Doing so allows us to write the electric field term as E‖/ED, with
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Figure 3.1: Plot of the dimensionless function Ψ(p) describing the mo-
mentum dependence of the collisional friction force experienced by an
electron in a plasma.

ED = 2pthνee/e. The Dreicer field ED is one of the essential refer-
ence parameters in the theory of runaway electrons which shows up
frequently.

Equation (3.1) allows us to draw a number of important conclusions
about what will happen to electrons when a sufficiently strong electric
field E‖ is applied. Due to the decreasing behaviour of Ψ(p) for p > pth,
any electron which is sufficiently fast for the electric field to overcome the
collisional friction will continue to accelerate indefinitely. An electron
with v � vth = pth/me will thus run away if the electric field is

eE‖ ≥ pthνeeΨ(p) ≈ νee
p3

th
m2

ev
2 = e4ne ln Λ

4πε2
0mev2 . (3.3)

Notably, since no electron can move faster than the speed of light c,
no electrons will run away if the electric field is below the threshold
value [49]

Ec = e3ne ln Λ
4πε2

0mec2 = Te
mc2ED. (3.4)

For a given electric field E‖, equation (3.3) can be solved for the speed vc
of the slowest electrons to run away. This critical speed can be expressed
succinctly as

vc
c

=
√
Ec
E‖

⇔ pc
mec

= 1√
E‖/Ec − 1

, (3.5)
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where the relativistic relation between velocity and momentum was used.
The maximum of Ψ(p) also yields a value of E‖ above which all

electrons will immediately run away:

eE‖ ≥ pthνee max
p

Ψ(p) ≈ 0.428pthνee = 0.214eED. (3.6)

For any values of E‖ between Ec and 0.214ED, only a fraction of electrons
will be immediately runaway accelerated.

Collisions will however strive to maintain the electron distribution
at thermal equilibrium, meaning that collisional diffusion processes will
fill in any “gaps” in the electron distribution left by runaway electrons,
and thus refill the velocity space region above vc. This will lead to a
diffusive leaking of particles into the v > vc region, and the thermal bulk
component of the distribution will gradually be drained of particles. It is
therefore possible to convert all electrons to runaways even at values of
E lower than that in equation (3.6); one just has to wait for sufficiently
many collision times.

The diffusive leaking of particles into the runaway region is now com-
monly referred to as the Dreicer runaway generation mechanism [12, 48].
It is however far from the only mechanism by which new runaway elec-
trons can be generated. By the nature of the runaway region, any parti-
cle that finds itself with v > vc will be continuously accelerated and run
away, regardless of its past. Any interaction leading to an electron gain-
ing sufficient energy—or, as we shall see, not losing too much energy—to
enter the runaway region will gain net energy from the electric field and
run away. This includes electron-electron knock-on collisions, radioac-
tive β-decay of elements producing sufficiently energetic electrons, and
collisions with cosmic radiation. In the next section we will consider
runaway acceleration in tokamaks specifically and will then become ac-
quainted with some of these alternative runaway generation mechanisms
which are the cause of much concern for future reactor-scale tokamaks.

Runaway threshold in experiment

The theoretically predicted threshold field (3.3) was derived by consid-
ering only a balance between the electric field and collisional friction. In
an experimental setting, several other effects also play a role, effectively
enhancing the threshold. Several experiments [50–53] have measured
the “effective” threshold field Ec,eff and have found that it sometimes
differs from the theoretical value (3.3) by as much as an order of magni-
tude. This difference is usually accredited to a number of effects which
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3.2. Tokamak disruptions

enhance the braking force acting on the electron. In particular, syn-
chrotron radiation [54, 55], bremsstrahlung and collisions with partially
ionised atoms [56] have been shown to significantly influence the thresh-
old field.

3.2 Tokamak disruptions

Tokamak plasmas are inherently very sensitive to a number of operating
conditions. For example, if the electron density or plasma current is too
high, or if too many heavy impurity atoms accumulate in the plasma, the
energy confinement may decline drastically, leading to a disruption [9,
57]. The exact cause of a tokamak disruption may differ between dif-
ferent discharges and devices, but the evolution of the disruption, af-
ter being triggered, generally follows the same overall steps. First, the
plasma temperature decreases significantly on a short (typically . 1 ms)
time scale, during what is known as the thermal quench (TQ). This tem-
perature drop is usually due to excessive radiation by impurities, heat
transport resulting from magnetic perturbations, or, perhaps most com-
monly, a combination of both. The resulting low temperature causes
inter-particle collisions to increase, leading to a significantly increased
plasma resistivity which severely limits the ability of the plasma to carry
a toroidal current.

In the second step, called the current quench (CQ), the plasma cur-
rent then decays, typically on a time scale which is much longer than
that of the TQ (∼ 10 ms). According to Faraday’s law, the decaying
plasma current must induce an electric field which is proportional to the
current decay rate. Due to the usually fast current decay rate, often on
the order of a few milliseconds, the induced electric field reaches val-
ues well above the threshold field Ec, allowing for significant runaway
acceleration of electrons. During the CQ, a significant fraction of the
pre-disruption plasma current may therefore be converted into current
carried by runaway electrons, leading into the third and final phase of the
disruption, known as the runaway plateau. Figure 3.2 gives a schematic
overview of the major phases of a typical tokamak disruption.

As illustrated by figure 3.2, tokamak disruptions involve large vari-
ations in several physical quantities, with the exact behaviour of each
depending on the variation of the others. To reliably calculate how many
runaway electrons are generated in a disruption, and thus guide the de-
sign of any disruption avoidance or mitigation scheme, one must there-

31



Chapter 3. Theory of runaway electrons
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Figure 3.2: In the first phase of a disruption, the thermal quench (TQ),
the temperature Te rapidly drops. As a result of the increased electrical
resistivity of the plasma, the ohmically driven current IΩ is forced to
decay in the current quench (CQ) phase. This induces a parallel electric
field E‖ which generates a current Ire carried by runaway electrons and
eventually leads to the runaway plateau, where all remaining plasma
current is carried by runaway electrons.

fore use a self-consistent model which evolves the background plasma as
well as the runaway electrons simultaneously. Such a model was first de-
veloped for a cylindrical plasma in Ref. [58], which considered the effect
of injecting large amounts of noble gases into the plasma on the runaway
electron generation. Similar models have been used later [59–63], and
in Paper G a generalised model was introduced, accounting for toroidal
geometry and using the most recent and accurate generation rates for
runaway electrons.

At the core of the aforementioned models for disruption-generated
runaway electrons is the combined Ampère-Faraday equation, which de-
scribes the diffusion of the electric field E through the plasma and its
interaction with the plasma current density j:

∇2E = µ0
∂j

∂t
. (3.7)

The current density is assumed to consist of an ohmic and a runaway
component, jΩ and jre respectively, and we neglect the plasma pressure,

j = b̂j‖ = b̂ (jΩ + jre) , (3.8)
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where b̂ denotes the magnetic field direction. The ohmic current density
is calculated from the generalised Ohm’s law jΩ/B = σ〈E · B〉/〈B2〉,
with σ = σ(ne, Te, Zeff) denoting the plasma conductivity [64, 65], while
the runaway current density is obtained by assuming that runaway elec-
trons travel at the speed of light parallel to the magnetic field

jre = ecnreb̂, (3.9)

where nre is the density of runaway electrons. The runaway density nre
is in turn determined either from known formulas for the generation
rate ∂nre/∂t, or by solving the Fokker–Planck equation (2.43), both of
which depend sensitively on the parallel electric field E‖. If the runaway
electron distribution function fre is known, the current density (3.9) may
also be obtained as the ev moment of fre.

In addition to E‖, j‖ and nre, a self-consistent disruption model must
also account for the evolution of the plasma temperature and ion den-
sities [66]. At the onset of the TQ, the temperature evolution is mainly
determined by the diluting effect of adding cold electrons to the plasma,
as well as the rate at which atoms radiate when they are excited, ionised
and collide with each other and electrons to produce bremsstrahlung.
Turbulent transport due to magnetic field stochastization can also play
a prominent role in reducing the heat content of the plasma. Towards
the end of the TQ, heating provided by the induced electric field becomes
sufficient to balance the heat losses, leading to a stable final temperature
of typically a few electronvolts. The energy balance during a disruption
can therefore be modelled with

∂We

∂t
= jΩ ·E − Prad + 1

V ′
∂

∂r

[
V ′D

∂We

∂r

]
, (3.10)

where the radiated power Prad depends on the electron temperature and
density. The purely diffusive form of the heat transport operator given
here does not necessarily represent the circumstances in a disruption
perfectly, but is adequate for the case of a fully stochastic magnetic
field.

For the ions, we are interested not only in the densities of the various
species, but also in the density of ions in the various charge states of dif-
ferent species. This is for two main reasons: firstly, the power radiated
by an ion depends sensitively on how many electrons remain bound to
its nucleus, leading to a sensitive dependence in Prad of equation (3.10)
on the ion charge state densities. Secondly, collisions between ions and
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thermal electrons depend on the net charge of the ions, but fast elec-
trons may be able to penetrate the electron cloud and probe the internal
structure of the atom [67]. Assuming that electrons are in thermal equi-
librium at a density ne and temperature Te, the rate of change of the
density n(j)

i for ions in charge state j of species i evolves in the collisional
radiative model as

∂n
(j)
i

∂t
= I

(j−1)
i nen

(j−1)
i −I(j)

i nen
(j)
i +R(j+1)

i nen
(j+1)
i −R(j)

i nen
(j)
i , (3.11)

where I(j)
i = I

(j)
i (ne, Te) is the rate of ionisation from the charge state

j → j + 1, and R(j)
i = R

(j)
i (ne, Te) is the rate of recombination from the

charge state j → j − 1, both of which can be evaluated using numerical
tables. It has been shown that the ionisation cross-section is enhanced
for relativistic electrons [68], and so if the electron population contains
a relativistic component it may significantly alter the ionisation rate
calculated for thermal equilibrium. In such cases where runaways are
present it may therefore be advisable to either replace or complement
the ionisation rates in equation (3.11) with rate coefficients accounting
for the non-thermal component of the distribution function, as described
in Ref. [68].

3.2.1 Runaway generation mechanisms

Runaway electron generation in tokamak disruptions generally occurs in
two phases. First, a population of fast “seed” electrons are generated,
typically at the onset of the CQ, during the TQ, or in some cases even
before the disruption initiates. In the second phase, knock-on collisions
between runaway and thermal electrons transfer a significant amount
of energy to the slow electrons and kick them into the runaway region,
where they can be further accelerated. Denoted as “primary” are the
generation mechanisms that do not require any runaway electrons to
be present for more runaways to be produced. The primary genera-
tion mechanisms do however tend to only generate a small number of
runaways. It is when the primary generation mechanisms are combined
with the “secondary” mechanism of the second phase—which will ex-
ponentially multiply the number of runaway electrons in the plasma—
that the great threat runaway electrons pose to future tokamak reactors
is fully realised.
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3.2. Tokamak disruptions

Primary generation

Among the primary runaway generation mechanisms we find the Dreicer
mechanism, described in section 3.1, by which electrons diffusively leak
into the runaway region. We also count in this category the production of
fast electrons via tritium β-decay and Compton scattering with photons
from the neutron-activated wall [59]. Of particular concern is however
the generation of fast electrons occurring when the plasma cools during
the TQ, known as “hot-tail” generation [69, 70]. Since fast electrons
are less affected by collisions than slow electrons, they will form a high-
energy (or hot) “tail” in the electron distribution function, and take
longer to cool down. If the electric field rises before the fast electrons
have been able to lose their energy through collisions, the fast electrons
may suddenly find themselves in the runaway region.

In contrast to the other primary generation mechanisms, for which
accurate analytical expressions exist, the transient nature of the hot-tail
mechanism has made it difficult to model both accurately and efficiently.
The first analytical expressions describing hot-tail generation assumed
that the collision rate is faster than the plasma cooling rate [71, 72], so
that the bulk of the electrons remain in thermal equilibrium throughout
the cooling. This is however not necessarily appropriate for a disrupting
tokamak plasma, for which the cooling can occur very rapidly when a
large amount of cold impurities are deposited in the plasma [73]. When
the impurities ionise, the electrons they contribute will almost instan-
taneously form a cold background population with which the hotter
electrons can interact, as illustrated in figure 3.3. The sudden appear-
ance of a cold electron population implies two things which makes even a
traditional [70, 74] linearised kinetic model inappropriate: (i) the great
separation in energy between the particles of the cold and hot popula-
tions (typically three or four orders of magnitude) causes the physics
of interest to play out on two separate energy scales, putting greater
demand on the simulation resolution; (ii) the occurrence of two electron
populations may violate the linearisation of the collision operator.

A possible remedy addressing both issues was developed in Ref. [63].
The model presented there makes a number of key assumptions, gener-
ally thought to hold during tokamak disruptions:

• The initial (hot) plasma electrons make up a population of their
own, initially in thermal equilibrium at the high pre-disruption
temperature.

35



Chapter 3. Theory of runaway electrons

Momentum p/mc

D
is

tr
ib

u
ti

on
fu

n
ct

io
n
f

Impurity
injection

C
old

electron
s

Cooling

AccelerationHot electrons
R

u
n

aw
ay

region

Figure 3.3: Illustration of the typical situation in the early phases of a
tokamak disruption where a population of “cold”, injected electrons col-
lide with the original “hot” electrons of the plasma, momentarily giving
rise to two distinct near-Maxwellian electron populations. As the hot
electrons cool down, an electric field is induced which can accelerate the
fastest electrons into the runaway region.

• A large number of (cold) impurities are deposited in the plasma.

• The ionising impurities rapidly release a large number of electrons
which form their own low-temperature population. Due to the
short collision time of the cold electrons, they will almost instan-
taneously reach thermal equilibrium amongst themselves.

• The injected impurities are assumed to rapidly release a sufficient
number of electrons for the condition ncold � nhot to be satisfied.
This allows the hot electron population to be treated as a pertur-
bation to the otherwise Maxwellian cold electron population.

The cold population is subsequently treated as a fluid, with temperature
determined by equation (3.10). The hot population, on the other hand,
is treated kinetically by solving the Fokker–Planck equation. Since the
cold population is in thermal equilibrium throughout the disruption,
and since the cold electrons are significantly less energetic than the hot
electrons, one can linearise the collision operator around the cold elec-
tron Maxwellian and assume that all hot electrons move at speeds much
greater than the cold electron thermal speed, i.e. taking the electron-
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3.2. Tokamak disruptions

electron collision operator in the superthermal limit. This avoids having
to resolve the cold electron population kinetically and can significantly
reduce the computational expense.

A further simplification of the hot-tail model was introduced in Pa-
per G. There, it is also assumed that collisions dominate the hot electron
dynamics, or specifically that the electric field is relatively weak com-
pared to the pitch angle-scattering term in the collision operator. With
this assumption, the hot electron distribution function becomes isotropic
to leading order, allowing the corresponding Fokker–Planck equation to
be averaged over ξ0 using the same techniques originally developed to
account for knock-on collisions in Ref. [14]. The reduced dimensionality
in this model makes it computationally an even more efficient option
than just taking the superthermal limit of the collision operator.

Secondary generation

Once a seed of runaway electrons has been established through the
primary generation mechanisms, the runaway population can multiply
through large-angle, or knock-on, collisions [75, 76]. Large-angle colli-
sions are typically rare in tokamak plasmas, and are in fact altogether
neglected in the usual Fokker–Planck collisional theory. Nonetheless,
they turn out to play a dominant role when the electrons occupy a wide
range of energies. Since the condition for runaway is that an electron
has p > pc, a highly energetic electron colliding with a thermal electron
may transfer sufficient energy for the thermal electron to cross this en-
ergy threshold, while still retaining a significant portion of its energy.
The rate of large-angle collisions is proportional to the number of highly
energetic electrons that are present,

dnre
dt = Γnre. (3.12)

This leads to an exponential growth in the number of runaway electrons,
with an e-folding time of Γ−1, and in a uniform and fully ionised plasma,
the growth rate Γ is given by [14]

Γ = e

mec ln Λ
E‖ − Ec√
5 + Zeff

, (3.13)

where Zeff denotes the effective charge of the plasma. By assuming that
E‖ � Ec, integrating equation (3.12) in time, and utilising the relation
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2πRE‖ = ∂ψ/∂t between the electric field and the poloidal magnetic
flux, with R denoting the major radius, one obtains

ln nre
nseed

= e

mec ln Λ
∆ψ/(2πR)√

5 + Zeff
, (3.14)

where ∆ψ is the change in poloidal flux during the disruption. The
change in poloidal flux is proportional to the plasma current Ip, mean-
ing that the gain factor (3.14) is also proportional to the plasma current.
In future reactor-scale tokamaks, which are foreseen to have about ten
times as large plasma currents as the medium-size tokamaks of today,
the avalanche gain will be roughly e10 times stronger than in experi-
ments today. Estimates put the total amplification of a population of
seed electrons (neglecting any losses) in ITER to around 1020 [14]. In
other words, if even a single runaway electron was to be present at the
beginning of the CQ, this would be sufficient to convert a significant
fraction of the plasma current to runaway current.

As previously mentioned, the Fokker–Planck theory explicitly ne-
glects large-angle collisions, causing the avalanche effect to be absent
from the usual Fokker–Planck equation (2.43). The first avalanche op-
erator introduced in the Fokker–Planck equation was therefore a source
term, taking the form [14]

S(p, ξ0, ζ) = nre
4πτc ln Λδ (ξ0 − ξ?)

m3
ec

3

p2
∂

∂p

( 1
1− γ

)
, (3.15)

where τc = v2
th/(c2νee) is the relativistic electron collision time, γ =√

p2 + 1, and ξ? =
√

(γ − 1)/(γ + 1). While being convenient to work
with, this operator assumes infinite runaway energies, zero pitch angle,
and creates electrons in the runaway region, rather than accelerating
already existing electrons. An improved operator, which accounts for
the finite energy of runaways, was presented in Ref. [69], but it still
treated the avalanche operator as a source term, rather than as a true
collision operator. This was finally remedied in Ref. [77], where a fully
conservative large-angle collision operator was derived from the Boltz-
mann collision integral. The collision operator of Ref. [77] has a num-
ber of attractive properties, and was shown to behave differently from
the operator (3.15) when E‖ ≈ Ec, leading to fewer runaways. In a
self-consistent disruption simulation, the difference between the two op-
erators is expected to be small, motivating the implementation of the
numerically simpler operator (3.15) in Dream.
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3.2. Tokamak disruptions

Although large-angle collisions can transfer much of the runaway en-
ergy to the target electron, most such collisions only result in sufficient
energy being transferred to the target electron for it to enter the runaway
region. Once in the runaway region, the target electron will be further
accelerated by the electric field and will be able to transfer a fraction
of its energy to another slow electron. As a result, most runaways pro-
duced via the avalanche mechanism are found at relatively low energies,
close to the critical momentum for runaway pc, and the runaway energy
distribution will therefore take the shape of an exponential function.
In Ref. [78], an analytical expression for the distribution function of
runaway electrons produced via the avalanche mechanism was derived,
assuming E‖ � Ec and a quasi-steady state. The formula obtained
there was later generalised in Paper K to also capture the near-critical
limit E‖ → Ec, which is often relevant in the runaway plateau, taking
the form

fre(t, p, ξ0) = nre(t)A(p)
2πmecγ0p2

exp
[
− γ
γ0
−A(p) (1 + ξ)

]
1− e−2A , (3.16)

with
A(p) = E/Ec + 1

Ztot + 1 γ,

nre(t) = nseedeΓt =
∫
fre(t, p, ξ0) p2dξ0dp,

γ0 =
√

5 + Zeff ln Λ

Ztot = 1
ntot

∑
i

niZ
2
i .

The total plasma charge Ztot accounts for the density of both free and
bound electrons, ntot = ne,free + ne,bound, and is therefore independent
of the charge state of the ions of the plasma. Equation (3.16) exhibits
the anticipated exponential dependence on the electron energy (∼ γ in
the relativistic limit), with a characteristic energy scale γ0 which is set
entirely by the collisional properties of the plasma. The electric field
sets the shape of the pitch distribution as well as the rate at which new
runaways are produced.

3.2.2 Runaway electron losses

A number of physical mechanisms act to reduce the energy of runaway
electrons, or even remove them from the plasma altogether. In addition
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to elastic collisions, which only redistribute some of the energy from the
runaway electrons to thermal electrons, inelastic collisions also result in
the production of bremsstrahlung photons [79, 80].

The helical motion around magnetic field lines results in radiation
emission by all particles in the plasma. For non-relativistic particles,
this radiation is known as cyclotron emission, whereas for relativistic
particles such as runaway electrons, it is referred to as synchrotron ra-
diation. Much of the cyclotron radiation emitted by thermal electrons
is reabsorbed by the plasma, preventing all heat from rapidly being ra-
diated away during normal operation [81]. Synchrotron radiation, how-
ever, shines through the plasma without any appreciable reabsorption
occurring, making it an effective energy loss channel for runaways. The
synchrotron radiation loss can be modelled via a radiation reaction force,
taking the form [82, 83]

Fsynch = − 1
γτsynch

(
p⊥ + p2

⊥p
)
, (3.17)

with the radiation reaction time scale

1
τsynch

= e4B2

6πε0m3
ec

3 . (3.18)

The magnitude of the force is mainly set by the perpendicular momen-
tum of the electron, p⊥, as well as the magnetic field strength B, both
of which determine the acceleration of the particle due to the gyration.
Due to the strong dependence on p⊥, the synchrotron radiation force
has a considerably larger impact on runaways with large pitch angles,
causing those electrons to lose their energy faster and leading to a more
beam-like distribution function.

In addition to radiation losses, runaway electrons can also lose their
energy when colliding with the wall. While loss of runaway confinement
may occur in a number of different ways, the mechanism that is of
most interest in models of runaway dynamics is radial transport due
to magnetic field stochastisation. For example, during the TQ of a
disruption, the magnetic flux surfaces break up and magnetic field lines
fluctuate turbulently. An electron travelling along such a magnetic field
line will therefore eventually be led out of the plasma and onto the
surrounding wall. Since the magnetic field line fluctuation is effectively
random, the electrons undergo a random walk process. The drift velocity
of the random walk will be approximately vr ∼ (δB/B)v‖, where δB/B
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denotes the relative magnitude of the magnetic perturbation, and the
decorrelation time can be estimated as τ‖ = L‖/v‖, with decorrelation
length L‖ ∼ πqRm, i.e. on the order of a poloidal transit scale length.
The resulting diffusion coefficient takes the form [84]

D‖ ∼ v2
rτ‖ = πqRm

(
δB

B

)2
v‖. (3.19)

Experimentally, it is found that this coefficient overestimates the trans-
port of runaway electrons, and that the transport can decrease with
energy [85, 86]. To address this possibly non-trivial energy dependence,
a method to evaluate advection and diffusion coefficients was devel-
oped in Ref. [87] for use in integrated runaway modelling tools, such
as Dream. Knowing that the runaway electron distribution function
is well described by equation (3.16) whenever the avalanche mechanism
dominates runaway generation, a reduced fluid transport model can be
derived with the help of these advection and diffusion coefficients [88],
as was done in Paper T.

3.3 Electron kinetics in the plateau phase

After the runaway electrons have been generated in the TQ and CQ
phases of the disruption, they will gradually slow down during the
plateau phase. As the runaways are only weakly collisional, the slowing
down occurs over a much longer time than the generation, leading to a
phase in which the plasma current appears to be almost constant, hence
the name “plateau phase”. Understanding the electron dynamics during
the plateau phase is crucial, both for predicting the dissipation of run-
away electrons, but also the duration and relative stability of the phase
makes it easier to conduct measurements on the runaway electrons in
current experiments, therefore allowing our models of runaway electrons
to be tested and validated.

The strong dependence of the avalanche growth rate (3.13) on the
electric field implies that the electric field must rapidly decrease during
the CQ to keep the runaways from overtaking more energy than what
is available in the system. At the same time, the electric field cannot
settle at exactly zero since collisions and radiation losses will gradually
dissipate the runaway current, leading the current decay to induce a
compensating electric field. The electric field therefore settles close to
the effective threshold value, Ec,eff , which allows for a sufficiently slow
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decay of the runaway current, and remains near this value throughout
the plateau [89].

Due to the relatively weak electric field E ∼ Ec,eff during the plateau,
the runaway electron distribution function is primarily evolving via pitch
angle relaxation, the rate of which is set by the balance of the collisional
pitch angle scattering and electric field acceleration. The pitch distribu-
tion of the runaways can therefore be described by the Fokker–Planck
equation [55]

∂fre
∂t

= ∂

∂ξ0

[(
1− ξ2

0

)(
−
mecE‖
p

fre + νD(p)
2

∂fre
∂ξ0

)]
, (3.20)

where νD is the pitch angle deflection frequency. In the steady-state
limit, this equation reduces to

∂fre
∂ξ0

=
2mecE‖
pνD

fre, (3.21)

which is solved by an exponential function

fre(t, r, p, ξ0) = Fre(t, r, p)
A

2 sinhAeAξ, (3.22)

where Fre(t, p) is the (undetermined) energy distribution of the runaways
and A = 2mecE‖/(pνD). From numerical solutions of the Fokker–Planck
equation, it is found that the pitch distribution of the runaways often
follows the form (3.22) even before a steady state is reached. As shown
in appendix B of Paper E, the coefficient A is in that case not a simple
function of the electric field and collision frequency, but approximately
approaches its steady state value as t−1.

This result has proven highly useful in the interpretation of experi-
mental synchrotron radiation measurements, both in ASDEX Upgrade
(see Paper E) and JET [90, 91]. The reason for this is that synchrotron
radiation is particularly sensitive to the runaway pitch distribution,
while it depends to only a lesser extent on the energy distribution.
Equation (3.22) is therefore in effect a theoretically well-motivated one-
parameter model for the runaway pitch distribution, making it feasible
to infer both the pitch and radial distributions of the runaways from
experimental measurements.

A special case for which the distribution function (3.22) appears par-
ticularly well-motivated was studied in Paper E. There, a deliberately
induced disruption on ASDEX Upgrade was considered, and the sub-
sequent runaway electron beam analysed using synchrotron radiation
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camera images. From self-consistent simulations of the disruption, it
was found that the runaway electron energy distribution function con-
sisted of two components. Most electrons, and thus most of the runaway
current, was carried by electrons in an exponentially decaying avalanche
distribution. However, many of the seed runaways were merely acceler-
ated to high energies by the induced electric field, forming a narrow and
nearly Gaussian distribution at the highest electron energies. Because
of their high energies, these electrons dominated the synchrotron emis-
sion, motivating the approximation of the energy distribution as a delta
function in momentum, and the coefficient A as independent of energy.
With this particularly simple model for the distribution function, the ra-
dial distribution of runaways could then be inferred from experimental
measurements and its evolution in time studied.
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Chapter 4

Radiation from runaway
electrons

In present-day tokamaks, runaway electrons are usually not a major
concern. In fact, the smaller plasma currents of today’s tokamaks often
demand significant effort if runaway electrons are to be generated and
studied. However, all evidence points to the fact that runaways will be
far more prevalent—and carry far greater risk—in future tokamaks. A
key purpose of the mathematical models of runaway electrons is there-
fore to allow for predictions of their generation in future, reactor-scale
tokamaks. Before the models can be applied with any confidence, they
must however be thoroughly tested and validated against today’s exper-
iments to ensure that the underlying physics is adequately understood.
Validation is complicated by the fact that the orders-of-magnitude vari-
ation in many observables during a disruption makes their measurement
very difficult, if at all possible. Often, only a few diagnostic signals
for integrated plasma parameters, such as the total plasma current, are
available for comparison to the far more detailed models.

One way of obtaining more detailed information about the dynamics
of runaway electrons is to measure the radiation that they emit. For ex-
ample, when a runaway electron interacts with other electrons and ions,
there is a chance that bremsstrahlung is emitted in the form of a highly
energetic photon [92]. The measurement of hard X-rays are routinely
used as an indicator of the presence of runaway electrons, as well as for
probing the spatial [93, 94] and energy [95–97] distributions of the run-
aways. Charged particles gyrating around magnetic field lines also emit
radiation, and if the particle is travelling at relativistic speeds, as run-
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Figure 4.1: Illustration of the synthetic diagnostic setup described in
Section 4.1. The synthetic diagnostic sums up the radiation coming
from all volume elements dV in the plasma

away electrons usually are, this radiation is referred to as synchrotron
radiation. Such radiation is routinely measured using visible- and in-
frared light cameras and spectrometers on tokamaks, giving information
about the spatial, pitch and energy distributions of the runaways [98,
99].

The radiation emitted by runaway electrons therefore contains a
wealth of information which can be used to validate models of the run-
away dynamics. In this chapter we will describe the model used to simu-
late a bremsstrahlung or synchrotron radiation detector in the synthetic
diagnostic framework Soft, which was introduced in Paper A. We be-
gin with a derivation of the radiation diagnostic integral, which describes
the power received by a detector from a distribution of electrons, and
follow this with a description of the cone approximation, which is useful
for directed radiation such as bremsstrahlung and synchrotron radiation
from runaway electrons. The remainder of the chapter reviews impor-
tant implications of the radiation diagnostic integral, first by analysing
the Green’s function of a representative system, and then by studying
typical radiation patterns which could be observed and their dependence
on the runaway electron parameters.
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4.1 Radiation diagnostic integral

The principle of a general radiation diagnostic, measuring some quantity
I (which can be, for example, radiated power or number of photons),
is illustrated in Fig. 4.1. Assuming that the plasma is optically thin to
the radiation, we can write the total received radiation from the plasma
volume V , along the line-of-sight specified by the unit vector n, as

In(x0, t) =
∫
V
δ2
(

r̄

r̄
− n

) dI(x,n, t)
dV dV, (4.1)

where δ2(x) is a two-dimensional Dirac delta function, and r̄ = x0 − x
is a vector between the detector at x0 and the point x in space where
radiation originates.

Typically, we are interested in the radiation seen in the entire field-
of-view of the detector, or the field-of-view corresponding to a particular
camera pixel, and then we must integrate over the set Ωn of all line-of-
sight directions n in the field-of-view. If we integrate Eq. (4.1) over Ωn

we find that

I =
∫
In dΩn =

∫
V

Θ
(

r̄

r̄

) dI (x, r̄, t)
dV dV, (4.2)

where the delta function has substituted r̄/r̄ for n and given rise to a
function Θ(r̄/r̄) that is one when r̄/r̄ ∈ Ωn, and zero otherwise. In
other words, the integration over Ωn makes explicit the fact that only
particles situated in the detector’s field-of-view can contribute to the
measurement.

The amount of radiation received from an infinitesimal volume ele-
ment dV in the plasma, by a detector with area A, occupying a solid
angle Ω as seen from the emitter, is

dI
dV =

∫
Ω

d2I

dV dΩ dΩ. (4.3a)

Often, it is more convenient to express Eq. (4.3a) as an integral over the
detector surface instead of the solid angle subtended by the detector.
The surface area taken up by the solid angle dΩ a distance r̄ from the
emission source is dS = r̄2dΩ, and the normal vector of this surface is
r̄/r̄. If we let dA be the corresponding area of dS when projected onto
the detector surface, with normal n̂, then dS = (n̂ · r̄/r̄)dA and

dI
dV =

∫
A

n̂ · r̄
r̄3

d2I

dV dΩ dA. (4.3b)
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The radiation emitted from the volume element dV , into the infinitesi-
mal solid angle dΩ, is now given by the number of particles in dV , times
the amount of radiation emitted by each particle into dΩ:

d2I

dV dΩ =
∫ dI(x,p, r̄)

dΩ f (x,p) dp. (4.4)

Here, f(x,p) is the electron distribution function and dI/dΩ describes
the angular distribution of radiation emitted by each particle. Depend-
ing on which type of radiation we would like to model, we pick a suitable
form for the angular distribution of radiation. For synchrotron radia-
tion we would take it to be the total received power per unit solid angle
dP/dΩ, while for bremsstrahlung we would take it to be the differential
cross-section of photon production, multiplied by the electron speed and
local plasma density, to get the number of detected photons.

For completeness, we also give the combined form of the radiation
diagnostic integral. Combining Eqs. (4.1)-(4.4), we obtain

I =
∫

Θ
(

r̄

r̄

)
r̄ · n̂
r̄3

dI(x,p, r̄)
dΩ f(x,p) dp dV dA. (4.5)

This is, in essence, the integral that the simulation tool Soft evaluates.
It serves as the starting point of the theory developed in Paper A, which
transforms the set of coordinates used in Eq. (4.5) to a set more suitable
for integrating along runaway orbits.

4.1.1 Tokamak geometry

Evaluation of the radiation integral (4.5) can be greatly simplified by
an appropriate choice of coordinates. In this thesis, we are interested in
evaluating equation (4.5) with a distribution function f(x,p) satisfying
the bounce-averaged Fokker–Planck equation (2.43), and the “appropri-
ate” set of coordinates to use is therefore the same set used in chapter 2,
since this will allow us to keep the approximations consistent between
both equations. Just as when deriving the bounce-averaged Fokker–
Planck equation in chapter 2, we therefore make three key assumptions,
each of which makes the distribution function independent of one coor-
dinate:

(i) the gyration time τΩ is much shorter than the transit time τb,

(ii) the transit time τb is much shorter than all other time scales over
which the electron distribution evolves,
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4.2. Cone approximation

(iii) the magnetic field is axisymmetric.

In addition to these assumptions, the derivation of the bounce-averaged
Fokker–Planck equation was made in the zero orbit width (ZOW) limit,
assuming negligible orbit drifts and gyro radius, which we will also make
here for simplicity. The ZOW limit is usually a good approximation
for kinetic calculations, since the deviations from magnetic field lines
are usually small, so that the errors incurred by averaging background
plasma parameters over flux surfaces rather than orbits are also small.
For radiation measurements, the situation may however be different. If
the field-of-view of a radiation detector is small compared to the solid
angle subtended by a particle orbit for the detector, even small displace-
ments of the particles due to drifts could lead to significantly different
radiation signals. For example, the radial distribution of runaways of-
ten features sharp variations, not least near the edge of the plasma.
In a camera image, if the particle location is shifted due to drifts, this
could cause the observed radiation pattern to be shifted by many pixels
compared to the ZOW prediction, making direct comparisons between
theory and experiment difficult. The fact that drifts are generally negli-
gible in kinetic simulations, but not in radiation simulations, motivates
the use of ZOW calculations of the distribution function f together with
finite orbit width (FOW) calculations of the radiation the electrons emit.
In the remainder of this chapter we will mainly consider the ZOW limit
for the radiation, and only briefly discuss the implications of the FOW
limit.

After substitution of the appropriate coordinates, equation (4.5)
takes the form

I =
∫

Θ
(

r̄

r̄

)
r̄ · n̂
r̄3

〈dI (x,p, r̄)
dΩ

〉
ζ
f (r, p, ξ0)

×
∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dp dξ0 dr dθ dϕ dA,
(4.6)

where the gyro average 〈·〉ζ was defined in equation (2.18) and the con-
figuration space Jacobian J in equation (2.35).

4.2 Cone approximation

One particular form of the radiation function dI/dΩ in equation (4.4) is
found to be especially useful for the radiation emitted by relativistic run-
away electrons. As illustrated in figure 4.2(a), the relativistic beaming

49



Chapter 4. Radiation from runaway electrons

effect will direct radiation along the velocity vector of the particle, with
an angular spread that is ∼ γ−1, i.e. the inverse of the relativistic factor
of the particle. For highly relativistic particles, which runaways often
are, this means that the radiation is emitted almost exclusively along
the velocity vector, motivating us to take this as an approximation. The
corresponding radiation function is

dP
dΩ = P (p, ξ)

2π δ (v̂ · n− 1) , (4.7)

where P (p, ξ) represents the total radiation emitted by the particle.
The delta function in equation (4.7) ensures that radiation will only

be emitted exactly along the direction of motion v̂ of the particle, which
must be aligned with the line-of-sight n under consideration. After ap-
plying a coordinate transformation to equation (4.7) and integrating over
the gyro angle, a corresponding expression is obtained which describes
the emission of the so-called guiding-centre, i.e. the centre of gyration
of the particle: ∫ 2π

0

dP
dΩ dζ = P (p, ξ) δ

(
V̂ · n− cos θp

)
, (4.8)

where V̂ denotes a unit vector in the direction of motion of the guiding-
centre and θp ≡ arccos ξ. The geometric interpretation of equation (4.8)
is illustrated in figure 4.2(b): the guiding-centre emits radiation along
the surface of a circular cone with half opening angle θp, centred on its
direction of motion V̂ ; hence the name “cone approximation.”

As a result of the forward-beaming of the radiation, radiation emit-
ted by relativistic runaway electrons tends to form light patterns or spots
in camera images. Equation (4.8) enables us to build some physical intu-
ition about the shapes of these radiation spots. It asserts that radiation
will be detected whenever

V̂ · x− x0
|x− x0|

= cos θp. (4.9)

where x denotes the particle position and x0 the observer’s position. In
the ZOW limit, V̂ is directed along the magnetic field unit vector b̂, and
hence the cone will sweep past the detector, roughly following magnetic
field lines. Whenever the cone overlaps with the detector, radiation is
registered.

If we consider a mono-velocity distribution function, with particles
distributed uniformly in the radius coordinate r, then the points of space
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4.2. Cone approximation

(a)

(b)

Figure 4.2: Illustration of relativistic (a) particle emission versus (b)
guiding-centre emission. Several particles can share the same guiding-
centre, and when the radiation of all of those particles is considered,
that guiding-centre can be considered as emitting radiation in a larger
cone with opening angle θp (the pitch angle of the particles). In gen-
eral, the guiding-centre cone of radiation is hollow with a side thickness
corresponding to the ∼ γ−1 angular spread of the radiation from the
particle. In the cone approximation, we assume γ−1 � 1 so that the
particle radiation in (a) becomes a line and the guiding-centre radiation
in (b) a conical shell.
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(a) (b)

Figure 4.3: (a) Sketch of a surface-of-visibility, emphasising how it takes
the shape of a twisted, hollow cylindrical shell. (b) Camera image pro-
jection of a simulated SoV. The projection shows how the edges of the
observed radiation spot tend to appear brighter to an observer than the
rest of the spot. This is due to the cylindrical shape of the SoV which
causes lines-of-sight that are tangential to the SoV to receive much more
radiation than other lines-of-sight.

satisfying equation (4.9) form a surface. This surface, which we refer
to as a surface-of-visibility or SoV, usually takes the shape of a bent
and twisted cylinder at small θp, and splits into two parts at larger θp.
Figure 4.3 illustrates the appearance of a hollow, cylinder-shaped SoV.
Note that it is only possible to look at the SoV from different perspectives
in simulation, due to the dependence on the detector position x0 in
equation (4.9). Using a camera in an experiment, it is only possible to
observe the projection in figure 4.3(b).

Although a camera will always see a two-dimensional projection of
the SoV, the fact that it has a three-dimensional structure has important
consequences for the observed radiation pattern. In particular, this can
be observed in figure 4.3(b), which shows the projection of a SoV. As is
shown there, the upper and lower edges of the projection have brighter
colours, corresponding to higher radiation intensity. In these points,
the lines-of-sight are tangential to the cylindrical shell that constitutes
the SoV, and it can be shown that if the shell is thin, those lines-of-
sight will receive the most radiation. From a single point of momentum
space—that is, from particles with the same energy and pitch angle—it
is therefore primarily the edges of the SoV that contribute to the total
detected radiation.
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4.3. Properties of the radiation integral

The basic idea behind the cone approximation—that all radiation
is emitted exactly along the velocity vector of the particle—has been
known and utilised since the early days of runaway synchrotron measure-
ments. It has served as, arguably, the most important approximation
for synchrotron radiation, and is the source of many of the fundamen-
tal results within the topic [100–102]. In simulations, use of the cone
approximation can substantially reduce computation times, while main-
taining good agreement with more complete models of the radiation, as
we demonstrate in Paper A. For this reason, the cone approximation has
been used in most synchrotron simulations of this thesis.

As mentioned in section 4.1.1, finite orbit width (FOW) effects are
generally not negligible in synchrotron diagnostic calculations. This
could be concerning for the validity of the cone approximation at higher
electron energies, since, as we demonstrate in Paper E, the higher-order
corrections introduced in the FOW limit can cause the gyro orbit to
deviate from a perfect circle, which should similarly cause the emission
cone to deviate from perfectly circular. Fortunately, the deviation of
the gyro orbit from circular is small in the limit p‖ � p⊥, which is typ-
ically satisfied by runaway electrons [103]. In the FOW limit, the cone
approximation is therefore still valid, with the cone of emission being
directed around the guiding-centre velocity (rather than the magnetic
field line as in the zero orbit width limit). A test for the validity of
the cone approximation in the FOW limit was devised and presented in
Appendix A of Paper E, showing good agreement for typical values of
the runaway electron momentum.

4.3 Properties of the radiation integral

In the integrand of the radiation integral (4.6), the distribution function
f(r, p, ξ0) can be seen as a “source” function which describes a population
that emits radiation, and which only depends on three of the seven
variables to be integrated over. The other terms of the integrand may
therefore be collected into a Green’s function

G(r, p, ξ0) =
∫

Θ
(

r̄

r̄

)
r̄ · n̂
r̄3

〈dI (x,p, r̄)
dΩ

〉
ζ

∣∣∣∣p2 ξ0B

ξBmin

∣∣∣∣J dθdϕdA,

(4.10)
so that equation (4.6) may be written

I =
∫
G(r, p, ξ0)f(r, p, ξ0) drdpdξ0. (4.11)
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Table 4.1: Simulation parameters used to generate figure 4.4 using the
Soft code.

Parameter Value

Magnetic field strength (on-axis) 5 T
Tokamak major (Rm) / minor (rm) radius 1.7 m / 0.5 m

Radial distribution of runaways Uniform, f(r) = const
Safety factor Constant, q = 1

Detector vertical position Z = 0

The Green’s function encodes the momentum dependence of the emit-
ted radiation, as well as the geometry of the tokamak, and is a useful
tool for studying the sensitivity of the measured radiation to variations
in the distribution function. It is also a powerful computational tool
as G(r, p, ξ0), which typically involves a series of complicated and ex-
pensive computations, can be evaluated once and then repeatedly used
with (4.11) to calculate the radiation obtained from different electron
populations. Such repeated evaluations of equation (4.11) arise, for ex-
ample, when f rather than I is considered as the unknown. This leads
to an inverse problem for which measured values of I, along with calcu-
lations of G, can be used to solve for the distribution function f [104,
105]. This technique was utilised in Papers E and I.

4.3.1 Dominant particles

For bremsstrahlung and synchrotron radiation, the Green’s function
G(r, p, ξ0) tends to grow rapidly with both p and ξ0, while the distribu-
tion function f(r, p, ξ0) generally shows an opposite rapidly decreasing
behaviour. The integrand in equation (4.6) is therefore usually peaked in
a relatively small region in momentum space, and not necessarily where
most of the particles are located. To determine which particles of a given
distribution function f contribute most to a radiation measurement, we
maximise the product G(r, p, ξ0)f(r, p, ξ0), and refer to this maximum
as the dominant particle of the system.

Figure 4.4(a) shows an example avalanche distribution function, as
in equation (3.16) with (E/Ec + 1)/(Ztot + 1) = 4 and γ0 = 18

√
8 ≈ 51.

In panels (b) and (c), the amount of radiation

F (p, ξ0) =
∫
G(r, p, ξ0)f(p, ξ0) dr, (4.12)
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Figure 4.4: (a) A runaway electron distribution function dominated by
avalanche generation and contributions to detected (b) bremsstrahlung
and (c) synchrotron emission F of equation (4.12).
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originating from a given region in momentum space and seen by the
detector is shown for bremsstrahlung and synchrotron respectively. Fig-
ure 4.4(b) uses a Green’s function G corresponding to a bremsstrahlung
detector measuring photon energies in the range 511 keV-10 MeV, while
figure 4.4(c) uses that of a synchrotron radiation detector measuring
radiation in the wavelength range 400-800 nm. Both Green’s functions
have been integrated over all radii. The physical simulation parameters
used to generate figure 4.4 are presented in Table 4.1.

The maxima in figures 4.4(b) and 4.4(c) correspond to the domi-
nant particles of the distribution function. Images, spectra and other
measured radiation signals from the distribution in figure 4.4(a) will
have features reminiscent of signals originating purely from the domi-
nant point of momentum space. Often, it is therefore sufficient to assume
that all runaways have the same energy and pitch angle to reproduce the
main features of a diagnostic signal. The particular energy and pitch
angle that best matches the signal is in general, however, not represen-
tative of the actual runaway electron population. It is merely the point
of momentum space that is best resolved by the diagnostic.

The location of the dominant particle in momentum space depends
on both the runaway electron distribution function and the Green’s func-
tion. This means that different types of radiation will be associated
with different dominant particles, as evidenced in figure 4.4. It however
also means that the same type of radiation, from the same distribution
function, but measured at a different wavelength or originating from a
different position in the device, will be associated with a different domi-
nant particle. Therefore, multiple detectors viewing the runaways from
different positions and at different radiation wavelengths may be able to
probe complementary parts of the distribution function, and provide a
more complete picture of the runaway dynamics.

4.4 Radiation spot shape taxonomy

Directed radiation such as bremsstrahlung and synchrotron radiation
gives rise to radiation spots that can be observed using cameras. What
shape the radiation spot takes depends on several parameters: the mag-
netic field geometry, detector properties and runaway distribution. While
the relation between the radiation spot shape and the runaway pitch an-
gle was identified already in Ref. [106], the first model for the radiation
spot shape taking the magnetic field geometry into account was pre-
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4.4. Radiation spot shape taxonomy

sented in Ref. [101]. That model accurately describes the shape of the
synchrotron radiation spot from runaways with small pitch angles, but
does not consider the distribution of radiation across the spot. As we
show in Papers A and B, the distribution of radiation across the spot
can be of great importance, particularly when the electron distribution
function is taken into account and when the magnetic field is weak.

In this section we will consider Soft simulations of camera images
where the intensity recorded by each pixel corresponds to a radially
integrated Green’s function

Fij(p, ξ0) =
∫
G(r, p, ξ0)f(r, p, ξ0) dr. (4.13)

All simulations in this section use the simulation parameters listed in Ta-
ble 4.2. Since we are concerned with the spot shapes due to the directed
nature of bremsstrahlung and synchrotron radiation in this section, we
primarily consider bremsstrahlung radiation in the cone approximation
equation (4.8). This is because bremsstrahlung is independent of the
magnetic field strength and particle pitch angle, meaning that for a
mono-energetic population of runaways, the amount of radiation emit-
ted from different parts of the surface-of-visibility (SoV) will be constant
in a homogeneous plasma. Hence, the extent of the SoV and associated
shape of the radiation spot become more apparent. In the cases where
the magnetic field strength and particle pitch angle strongly influence
the synchrotron radiation spot shape, this will be noted. The detector
position and viewing direction is indicated in figure 4.5.

In most simulations, we use a mono-energetic and mono pitch-angle
distribution function, with a uniform radial profile. This distribution
function is mathematically described by

f(r, p, θp) = nreδ (p− p0) δ (θp − θp,0) , (4.14)

where nre is the radial density of runaway electrons, and p0 and θp,0
denote the momentum and pitch-angle of all the runaways. Note that
we suppress the label “(0)” on all parameters in this section for brevity.
It is understood that all particle parameters are specified at the point of
minimum magnetic field along the particle’s orbit. Since the density of
runaway electrons appears multiplicatively in the distribution function,
and hence also in all radiation quantities, we normalise the simulated
radiation quantities so that they do not depend on nre.
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Table 4.2: Simulation parameters used in section 4.4, unless otherwise
noted.

Parameter Value

Magnetic field strength (on-axis) 2 T
Tokamak major (Rm) / minor (rm) radius 1.7 m / 0.5 m

Safety factor Constant, q = 1
Detector vertical position Z = 0
Runaway electron energy 50mec

2 ≈ 25 MeV
Runaway electron pitch angle 0.15 rad

−y

x

(Rm,−Rm)

Figure 4.5: Detector setup in the simulations of this section. The de-
tector, denoted by the red square, is located at (x, y) = (Rm,−Rm) in
the midplane, where Rm is the tokamak major radius (see Table 4.2 for
numerical value). It is viewing the plasma tangentially, as indicated by
the red arrow.

(a) q(r) = 1 (b) q(r) = 4 (c) q(r) = r + 1 (d) q(r) = 3r2 + 1

0% 20% 40% 60% 80%
I/max I

Figure 4.6: Safety factor. Simulated radiation images in four magnetic
fields with different forms for the safety factor q(r), where r is the minor
radius normalised to the edge minor radius value. To emphasise the
shape of the spot, the colour scale has been chosen such that white
corresponds to 80% of the maximum value in any pixel of each image.
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4.4.1 Magnetic field and detector placement

Both the magnetic field and detector position strongly influence the ob-
served radiation spot shape. For the magnetic field, there is primarily
one parameter influencing the spot shape. This parameter is the mag-
netic field safety factor q, which is a measure of how twisted the tokamak
magnetic field is—it is defined as the number of toroidal turns a mag-
netic field line makes per poloidal turn. The safety factor determines the
inclination of the radiation spot against the horizontal, as illustrated in
figure 4.6. As a consequence, non-uniform safety factors cause the incli-
nation of the radiation spot to vary, as is apparent in figures 4.6(c) &
(d). In Ref. [107], the inclination angle βinc between the synchrotron spot
and the horizontal was related to the safety factor q, particle-detector
distance D and tokamak major radius Rm through

tan βinc ≈
D

q(r)Rm
, (4.15)

in the small pitch angle limit. Note that the radial dependence of the
safety factor appears here, giving the inclination angle βinc a radial de-
pendence as well.

The magnetic field strength can also indirectly influence the observed
radiation spot shape by affecting the amount of radiation emitted at
different major radii. Therefore, the effect of magnetic field strength on
synchrotron radiation spots can be significant, while it does not affect
bremsstrahlung spots. In contrast to the safety factor, the magnetic
field strength alone does not alter the geometric condition for which
radiation is detected, but rather changes the distribution of radiation
intensity across the radiation spot. The intensity distribution however
also depends on the detector spectral range and particle momentum,
and hence we postpone a discussion of this effect to the next section,
where the spot shape dependence on particle parameters is discussed.

The detector properties which primarily influence the radiation spot
shape are the vertical position of the detector as well as its radial distance
to the plasma. The toroidal symmetry of the tokamak means that a
rotation of the detector in the toroidal direction around the device will
not affect the radiation spot shape. Also, since the orientation of the
detector only enters through the geometric factor n ·n̂ in equation (4.5),
the orientation will be unimportant as long as the detector is not nearly-
perpendicular to the incoming radiation.
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(a) Z = 0 (b) Z = –rm/3 (c) Z = –2rm/3 (d) Z = –rm

0% 20% 40% 60% 80%
I/max I

Figure 4.7: Camera vertical placement. Simulated radiation images
with the camera located at four different heights. The height Z = 0
corresponds to the midplane, and rm denotes the tokamak minor radius.
The spot changes similarly when the detector is moved in the opposite
vertical direction. To emphasise the shape of the spot, the colour scale
is chosen such that white corresponds to 80% of the maximum value in
any pixel.

Moving the detector along the vertical direction will alter the spot
shape as shown in figure 4.7. Positioning the detector in the midplane
will ensure that all particles within the detector field-of-view are visible
to the detector, regardless of which flux surface they are on, or what their
pitch angles are. If the detector is offset from the midplane, however,
particles with small pitch angles located close to the magnetic axis will no
longer radiate towards the detector. This is because radiation is emitted
with an angle approximately equal to the pitch angle θp to the magnetic
field lines. Close to the magnetic axis, magnetic field lines are directed
almost entirely in the toroidal direction, meaning that at a distance D
from the particle, radiation will be spread ∼ Dθp from the midplane in
both vertical directions. Particles with θp < Z/D, located close to the
magnetic axis, can therefore not be observed by a detector that is offset
from the midplane. The vertical dependence of the synchrotron spot
shape was experimentally validated in Paper D.

The same argument can be used to reason about how the spot shape
is affected when the detector is moved radially away from or towards the
plasma. Let Z now instead denote the vertical position of the particle.
The largest value of Z such that the particle emits at and is visible to
the detector is then Z ≈ Dθp. Since the surface-of-visibility is made up
of the particles that emit towards the detector, the vertical extent ∆z
of the radiation spot must therefore be ∆z ∝ Dθp. Consequently, the
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vertical extent of the radiation spot must increase when the detector is
moved further away from the plasma, similar to how it is affected by
larger particle pitch angles. As is revealed by equation (4.15) however,
increasing the distance D between the detector and plasma also affects
the inclination of the radiation spot relative to the horizontal, since the
angles between the lines-of-sight of the detector and the magnetic field
change.

4.4.2 Runaway electron properties

Although the magnetic field and detector setup are important for the
shape of the radiation spot, the question of primary interest to anyone
studying the radiation from runaway electrons is how the motion and
location of the runaways are reflected in the radiation spot. The position
and velocity of an electron are fully specified by six parameters, but as
discussed in Paper A and section 4.1.1, these can be reduced to a set of
just three parameters in a tokamak: the outermost major radius visited
by the particle along its orbit r, the electron pitch angle θp and the
electron momentum p. For a given observation setup, the radiation spot
characteristics can therefore at most depend on these three parameters.

Pitch angle

The first runaway parameter we consider is the pitch angle, θp = arccos ξ0.
The effect of this parameter on the synchrotron spot shape has been dis-
cussed extensively in the runaway synchrotron literature [101, 102, 107],
precisely because the spot shapes observed in synchrotron images are
particularly sensitive to the pitch angle. As is shown in figure 4.8, at
small pitch angles, the radiation spot is a thin stripe. As the pitch angle
grows, the line becomes thicker and the spot grows in size in the verti-
cal direction. The surface-of-visibility, described in section 4.2, roughly
takes the shape of a cylinder in figures 4.8(a)-(e). At larger pitch an-
gles, the vertical expansion of the spot with pitch angle slows down,
and the surface-of-visibility begins to open up into two separate oval
surfaces, which is best illustrated by figure 4.8(h). At pitch angles be-
yond θp = 0.46 rad, the shapes of the two oval surfaces change little,
but rather they move away from each other. In the view from above
the tokamak in figure 4.9, we see that the two surfaces move in oppo-
site toroidal directions. If this behaviour continues as the pitch angle
increases, we would expect one of the surfaces to eventually disappear

61



Chapter 4. Radiation from runaway electrons

(a) θp = 0.04 rad (b) θp = 0.10 rad (c) θp = 0.16 rad (d) θp = 0.22 rad

(e) θp = 0.28 rad (f) θp = 0.34 rad (g) θp = 0.40 rad (h) θp = 0.46 rad

0% 20% 40% 60% 80%
I/max I

Figure 4.8: Pitch angle. Simulated radiation images showing how the
pitch angle affects the radiation spot shape. A larger pitch angle roughly
corresponds to a larger vertical extent up until some threshold pitch
angle, at which point two separate spots appear and move away from
each other. The dashed white lines in (g) and (h) indicate the inner part
of the tokamak wall, which blocks out part of the spot. To emphasise
the shape of the spot, the colour scale has been chosen such that white
corresponds to 80% of the maximum value in any pixel.

behind the central column of the tokamak, and this is indeed what hap-
pens. In fact, this effect is already visible in figures 4.8(h) and 4.9(b),
where the central column hides the leftmost part of the smaller spot
(corresponding to the upper spot in figure 4.9(b)).

Radial location

The next parameter we consider is the maximum radial location of the
particle along its orbit. If we only launch particles from a discrete set
of radii, we obtain images such as those in figure 4.10. Since guiding-
centres approximately follow magnetic field lines, each band of radia-
tion in each of figures 4.10(a)-(h) originates from particles on the same
flux surface. At small pitch angles, each flux surface gives rise to two
bands of radiation—one to the right of the magnetic axis, and one to
the left. The magnetic axis is located at the point which all bands of
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(a) θp = 0.22 rad (b) θp = 0.46 rad

Figure 4.9: Top view of the tokamak, showing the origin of the ra-
diation at (a) θp = 0.22 rad (corresponding to figure 4.8(d)) and (b)
θp = 0.46 rad (corresponding to figure 4.8(h)). The camera position is
indicated by the red cross, with its viewing direction designated by the
red arrow. At larger pitch angles, the radiation originates from two dis-
tinct regions of space which gradually move away from each other, as
exemplified in (b).
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(a) θp = 0.04 rad (b) θp = 0.10 rad (c) θp = 0.16 rad (d) θp = 0.22 rad

(e) θp = 0.28 rad (f) θp = 0.34 rad (g) θp = 0.40 rad (h) θp = 0.46 rad

0% 1% 2% 3% 4% 5%
I/max I

Figure 4.10: Radial location. Each ribbon in these images consists of ra-
diation corresponding to a single point of the Green’s function G(r, p, ξ0)
of equation (4.10), for all of the pixels considered. The radii r in which
these ribbons have been evaluated are distributed uniformly between 6
and 48 cm. For comparison with the spots of figure 4.8, the pitch angle
is varied in each of subfigures (a)-(h). To emphasise the shape of the
spot, the colour scale has been chosen such that white corresponds to
5% of the maximum value in any pixel.

radiation appear to encircle, something which is particularly noticeable
in figures 4.10(b)-(d). At larger pitch angles, the bands of radiation
split up and join with the corresponding bands at the same radius on
the other side of the magnetic axis, as is particularly apparent in the
transition between figures 4.10(c)-(g).

It is also interesting to note that each pair of radiation bands in fig-
ure 4.10 corresponds to a single point of the Green’s function G(r, p, ξ0).
As implied by equation (4.11), any radiation image will therefore be a
linear superposition of such bands, each weighted with the corresponding
value of the runaway electron distribution function.

Energy

The final phase space parameter which the radiation spot may depend
on is the energy of the particle, or equivalently, its momentum p. As
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(a) p = 60mec

Synchrotron

(b) p = 120mec

Synchrotron

(c) p = 60mec

Bremsstrahlung

(d) p = 120mec

Bremsstrahlung

0% 20% 40% 60% 80%
I/max I

Figure 4.11: Energy. While the overall spot shape is not affected by
the energy of the particle, the amount of emitted synchrotron radiation
becomes more strongly dependent on magnetic field strength at low en-
ergies. Since bremsstrahlung is independent of the magnetic field, its
radiation spot shape shows no energy dependence. All images were gen-
erated in a magnetic field with B = 5 T on-axis. The camera spectral
range was λ ∈ [400, 800] nm in the synchrotron case. To emphasise the
shape of the spot, the colour scale has been chosen such that white cor-
responds to 80% of the maximum value in any pixel.

it turns out, the radiation spot shape does not in general depend on p
in the ZOW limit. This is evidenced by the condition for radiation to
reach the detector in the ZOW limit, equation (4.9), which is completely
independent of the energy of the particle.

Despite this, the synchrotron spot shape can depend sensitively on
the particle energy, something which was noted in Paper B. There, it
was shown that due to the strong magnetic field dependence of the syn-
chrotron radiation, combined with the necessarily finite spectral range of
all synchrotron cameras, the amount of synchrotron radiation received
from a particle at major radius R is

Psynch ∝ exp
[
−
(
R

Rc

)3/2
]
. (4.16)

The critical radius Rc can be interpreted as the major radius length scale
over which the synchrotron intensity varies significantly, and it scales
as Rc ∝ 3

√
p2(1 + p2), where p is normalised to the electron rest mass

mec. It corresponds to the location in the tokamak where, for a given
particle energy and pitch angle, the magnetic field is sufficiently strong
for the synchrotron radiation spectrum peak to lie within the observing
camera’s spectral range. Note that equation (4.16) is valid only in the
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limit where the peak of the synchrotron spectrum lies at much longer
wavelengths than the camera’s spectral range, which is generally the
case for visible-light cameras in today’s tokamaks.

Due to the strong exponential dependence on R when Rc � Rm
in equation (4.16), synchrotron radiation is often mainly observed on
the high field side in typical scenarios (such as in DIII-D, which has
B = 2.2 T on-axis under typical operating conditions). The character-
istic radius Rc determines the sensitivity to R—the larger Rc is (corre-
sponding to higher particle energies), the more evenly the radiation is
distributed between the low- and high field sides of the tokamak. An
example of this is shown in figures 4.11, where in figure 4.11(a) only
some radiation is seen on the left side of the image, corresponding to
the high field side. At twice the particle energy, in figure 4.11(b), most of
the radiation spot is visible. For comparison, the corresponding brems-
strahlung emission is also given in figures 4.11(c)-(d), showing that the
bremsstrahlung spot shape is independent of p.

The energy dependence can give rise to synchrotron radiation spot
shapes that are vastly different from the cylindrical and oval spot shapes
exemplified in figures 4.6-4.11 when the runaway electron distribution
function is taken into account. When the energy of the runaways is low,
so that most radiation is emitted at wavelengths that are much longer
than the camera’s spectral range, contributions from the high field side
dominate. When the pitch angle distribution of the particles is taken
into consideration, the radiation spot will have a more diffuse pattern.
One example of this is shown in figure 4.12, where all particles have the
same energy, but are distributed in pitch angle according to

f(θp) ∝ eC cos θp , (4.17)

with C = 70. As is shown in figure 4.12(a), the synchrotron spot takes a
crescent-like shape at low energies, while at higher energies it is possible
to identify the spot shape as similar to the cylindrical shape seen in, for
example, figure 4.8.

It should be mentioned that for bremsstrahlung, even though the
energy does not affect the radiation spot shape, the amount of emit-
ted radiation does depend on energy. Since the runaway pitch-angle
distribution typically varies with energy, the runaway electron energy
distribution will always matter for the resulting radiation spot.
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(a)

Rc � Rm

p = 60mec

(b)

Rc ∼ Rm

p = 120mec

0% 20% 40% 60% 80% 100%
I/max I

Figure 4.12: Energy. Synchrotron radiation images at two different
energies, with particles distributed in pitch angle according to equa-
tion (4.17). In such scenarios, the synchrotron radiation spot can take
a crescent-like spot shape as in (a). At higher energies, such as in (b),
the radiation is distributed more evenly across the spot, and it again
resembles a cylinder, as in for example, figure 4.8. The white contour
lines indicate the location of the circular tokamak wall. Note that the
on-axis magnetic field strength was set to B = 5 T for this simulation.
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Chapter 5

Concluding remarks

Runaway electrons pose a severe threat to future tokamak reactors and
it is essential that their potential to do harm is mitigated or, if pos-
sible, altogether avoided. Current research efforts are geared towards
developing robust avoidance and mitigation schemes for upcoming next-
generation experiments such as ITER and SPARC, and this requires
accurate models of the runaway dynamics. The intricate dependence
and rapid variation of many background plasma parameters during a
disruption, such as temperature and electric field, means that any re-
liable model of the runaway generation must account for the evolution
of the background plasma. It is also crucial that the model gives clear
predictions for already existing experiments, and that these predictions
be validated against experimental measurements.

The aim of this thesis has been to develop a framework for the im-
plementation and validation of runaway electron models. It has resulted
in two numerical codes which enable simulations of the generation and
observation of runaway electrons: the Dream code provides a range of
models for simulating the generation and evolution of runaway electrons
in dynamic tokamak scenarios, while the Soft code facilitates the sim-
ulation of the response of various radiation diagnostics to the runaway
electron population calculated with the former code. In what follows, a
brief summary of the appended papers is given, followed by a discussion
about the broader context of the work and its implications for future
research on the topic.
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5.1 Summary of papers

The papers included in this thesis can broadly be placed into two cat-
egories, namely development of modelling tools (to which Papers A, B
and G belong) and model application and validation (to which Papers C,
D, E and F belong). The former three introduce the synthetic diagnos-
tic framework Soft and the runaway electron generation framework
Dream, while the latter papers use these codes to analyse experimental
and theoretical scenarios.

In Paper A, the synthetic diagnostic framework Soft was first in-
troduced. It arose from a need to quantitatively study camera images of
synchrotron radiation obtained in experiments, although as exemplified
in the paper, the framework could also be used to study signals from
other radiation diagnostics, such as spectrometers. The paper starts
from the radiation diagnostic integral and reformulates it in terms of
guiding-centre orbits, allowing simulations to be run for any axisymmet-
ric magnetic field geometry, and in a computationally efficient manner.
With the general framework established, a number of numerical studies
proceeded, leading to the following key findings:

(i) The cone model is a good approximation to use for highly directed
radiation, such as synchrotron radiation.

(ii) Camera images from Soft agree qualitatively with previous, more
approximate analytical results [101, 107] when the particle pitch
angle is small.

(iii) The radial distribution of the runaways greatly impacts synchrotron
radiation camera images.

This study was later followed up in Paper B, which extended the Soft
framework with a bremsstrahlung model and provided further details on
the nature of directed radiation in general, and synchrotron radiation in
particular. It was in Paper B that the concept of surface-of-visibility was
introduced, providing an explanation for the separation of a synchrotron
radiation spot into two spots when the particle pitch angle is large.
The paper also provided a detailed explanation of the strong scaling
of the measured radiation power with magnetic field strength found in
experimental synchrotron images, which is enhanced by the fact that
detectors only observe a finite range of wavelengths. Simulations of
synchrotron and bremsstrahlung diagnostics in the DIII-D tokamak were
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considered in the paper, using a distribution function calculated with
Code [108, 109].

The Soft code was subsequently applied in a series of papers, start-
ing with Paper H and Paper I, eventually leading up to Paper C in which
it was used to simulate the Motional Stark Effect (MSE) diagnostic of
the Alcator C-Mod tokamak. The MSE diagnostic is typically used to-
gether with a perpendicular beam of injected neutrals to measure the
plasma current density during normal operation, but as demonstrated
experimentally in Paper C, it can also be used to directly measure the
polarisation of synchrotron emission from runaway electrons. A model
for a polarisation filter capable of separating light into its constituent
Stokes parameters [110] was derived and implemented in Soft. Ana-
lysis of polarised synchrotron emission subsequently conducted revealed
a bifurcation in the measured polarisation angle as the runaway electron
pitch angle was varied in simulations, suggesting a method for measuring
the pitch angle of the runaways.

Paper D reported on observations of synchrotron radiation in the
TCV tokamak while the plasma was intentionally translated vertically
across the camera view. The measurements obtained validated predic-
tions made in Paper A with the Soft code for the dependence of the
observed synchrotron spot on the camera vertical position. Additionally,
the energy and pitch angle of the dominant particle were estimated and
compared to predictions from a kinetic model accounting for collisions
and electric field acceleration. Remarkably, the estimated parameters
differed greatly from the calculated ones, corresponding to orders of
magnitude differences in some plasma parameters, with the pitch angle
estimated at an unusually high value of 0.5 rad. Fast radial transport
was suggested to explain the differences in estimated and calculated run-
away energy, while high-frequency kinetic instabilities were proposed as
an explanation for the anomalously large pitch angles. Paper Q later
also proposed strong pitch angle scattering due to the magnetic ripple
as a potential explanation for both the differences in energy and pitch
angle. The ripple pitch angle scattering should mainly affect particles
near the resonant energy, which in TCV coincided with the p ≈ 50mec
energy estimated from synchrotron images for the runaways that domi-
nated synchrotron emission.

In Paper E, coupled simulations with the fluid code Go and kinetic
code Code were used to provide Soft with a time-evolving distribu-
tion function that could be compared with experimental measurements
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of synchrotron radiation in the ASDEX Upgrade tokamak. The model
constructed for the runaway generation assumed an instantaneous TQ
in which a seed of fast electrons is born, assumed to be radially uniform,
and which was manually scaled to match the measured runaway plateau
current after avalanche multiplication. The background plasma and run-
away generation was then evolved self-consistently through the CQ and
plateau phases. The evolution seen in simulated synchrotron images was
found to qualitatively resemble that observed in experiment, although a
more tailored seed radial distribution was speculated to greatly improve
the quantitative agreement.

The runaway electron simulations of Paper E also suggested a straight-
forward evolution of the runaway distribution function in the disruption.
During the CQ, the seed electrons would quickly be accelerated to high
energies where they would drive avalanche multiplication, leading to a
final distribution function which mostly resembles an avalanche distri-
bution, but with a “bump” of remnant seed electrons occupying the
highest energies. Since the most energetic particles will typically dom-
inate synchrotron emission, this motivated the approximation of the
runaway distribution as a delta function in energy, and as f(ξ0) ∼ eCξ
in pitch, for the purpose of constraining the radial distribution of the
electrons from synchrotron camera images. Using a regularised inversion
technique, the time evolution of the runaway radial distribution could
be determined and shown to expand radially during a sudden transition
of the synchrotron spot shape.

After a series of papers focused on synchrotron radiation and the
validation of runaway electron models, attention was turned towards
the development of models for runaway electron generation. In recent
years, the understanding for the fundamental principles of runaway gen-
eration in tokamak disruptions has greatly improved and lead to the
development of a number of advanced tools and models. In Paper G,
our aim was therefore to bring together the state of the art of runaway
generation models into a single framework. The resulting code, named
Dream, combines 1D fluid models for the background plasma with ei-
ther 1D fluid, 1D1P or 1D2P bounce-averaged kinetic models for the
electrons. The electrons can be divided into up to three distinct pop-
ulations based on their energies, and each population can be evolved
using either a fluid or kinetic model, enabling fast simulations. This
also allows a runaway electron distribution function to be calculated
in simulations where the bulk and mildly superthermal electrons are

72



5.1. Summary of papers

treated using fluid models, providing more detailed predictions of the
electrons which can be used to calculate e.g. synthetic bremsstrahlung
and synchrotron radiation signals.

In Ref. [63], a two-temperature model for electrons in tokamak dis-
ruptions was first introduced, which was also implemented and further
developed in Dream. The model considers electrons to exist in one
cold and one hot population at the onset of the disruption. The cold
population is then assumed to remain in thermal equilibrium through-
out the disruption, while the hot population, which is evolved using a
kinetic equation expanded in the superthermal limit, partly thermalises
with the cold electrons, and partly provides a seed of runaway electrons.
Since collisions dominate the dynamics for p < pc, where pc denotes the
critical momentum for runaway acceleration, and since the hot electrons
are initially in thermal equilibrium, the hot electron distribution func-
tion will remain close to isotropic during the disruption. This motivated
a further reduction in Paper G of the kinetic equation, by averaging the
equation over the pitch coordinate ξ0. The resulting equation, which has
one spatial and one momentum dimension, provides a new, computation-
ally efficient and accurate model for the hot-tail runaway mechanism.

To verify the correctness of the code, a number of special scenarios
were considered which could also be studied using the established codes
Code and Go, yielding only small deviations which could be explained
by the finite precision of the solution and the fact that some models have
been improved in Dream compared to Go. By comparing Dream sim-
ulations using different models for the electrons in a disruption scenario,
it was revealed that the choice of electron temperature model could have
a significant impact on the resulting dynamics.

Finally, in Paper F, the radial transport of fast electrons during an
idealised ITER thermal quench was studied theoretically using Dream.
As impurities are inserted into the plasma, MHD instabilities are ex-
pected to grow and cause magnetic flux surfaces to break up, leading
to significant radial transport of particles and heat. Employing a self-
consistent treatment of these losses, Using the parallel transport model
derived in Ref. [84], we scanned the magnetic field perturbation am-
plitude, δB/B, and the density of injected neon to find the resulting
runaway electron seed current after the TQ. To avoid excessive runaway
currents in the plateau, seed currents must be limited to a value which
depends on the pre-disruption plasma current, which was found to set
an upper limit on the amount of injected neon. Similarly, to avoid ex-
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cessive heat transport to the wall, the magnetic perturbation amplitude
must remain below an upper limit. With these limits accounted for, it
was found that combinations of magnetic perturbation amplitudes and
neon densities exist in both the standard ITER scenario, as well as mod-
ified scenarios, such that both safety limits are respected. This nuances
earlier results in Ref. [111], which did not account for the fast electron
transport, and which predicted intolerably large runaway currents.

The simulations in Paper F also provided insight into the runaway
generation and overall TQ dynamics in the ITER scenario. In the sim-
ulations, the thermal collapse proceeded gradually from the edge to the
core of the plasma. When the temperature dropped, an electric field
was quickly induced locally which accelerated electrons. Due to the fast
temperature drop near the edge, most runaway electrons were produced
there, leading to hollow runaway current profiles. Transport primarily
acts to remove fast electrons from the plasma and thus reduce the run-
away current, but was also found to enhance the runaway current under
certain circumstances. When the TQ was relatively slow, hot electrons
from the core of the plasma could be transported towards the edge where
they would be accelerated by the induced electric field, contributing to
an enhanced seed current via a previously unidentified “transport hot-
tail” mechanism.

5.2 Outlook

The overarching goal of present-day runaway electron and disruption
studies is to provide sufficient input to the design of robust disruption
mitigation systems for future tokamaks. In this thesis we have developed
numerical tools and methods for simulating runaway electrons and their
radiation, which can be used to conduct both interpretative simulations
of experiments, as well as predictive simulations of proposed disruption
mitigation schemes. While our work significantly advances our ability
to model and experimentally diagnose runaway electrons, work remains
on validating our models in the context of tokamak disruptions, as well
as with evaluating proposed disruption mitigation systems.

Among the more pressing questions remaining is that of whether
our models can robustly predict the runaway electron generation and
evolution during disruptions in present-day experiments. While several
authors have validated isolated aspects of runaway electron models [74,
108, 112, 113], the validation of self-consistent disruption models remains
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limited [114, 115]. Such validation should utilise as many plasma signals
as possible, but among the key signals to compare will be the evolution
of the plasma current and synchrotron radiation. The ultimate goal
should be to have a model which, given only the pre-disruption state of
the plasma, can accurately predict the runaway generation in multiple
existing tokamaks.

Further theoretical verification is also needed of the superthermal
model for the hot-tail generation originally described in Ref. [63] and
implemented in Dream. In the model, hot-cold and hot-hot electron
collisions are neglected, allowing a linearised test-particle collision op-
erator to be used. As argued in Refs. [13, 63], this should be a good
approximation when the density of cold electrons is greater than that of
hot electrons. However, in cases where the impurity deposition is slow
or comparable to the thermal quench time, this assumption may not be
satisfied. In that case a non-linear collision operator may be needed to
accurately calculate the production of runaways via the hot-tail mech-
anism [42]. Standalone solvers for the Fokker–Planck equation utilising
such a collision operator have been described previously in Refs. [116,
117], but the dynamical nature of tokamak disruptions requires the non-
linear collision operator to be adopted into a self-consistent disruption
simulator, such as Dream, where background plasma parameters essen-
tial to the hot-tail generation, such as temperature and electric field, are
evolved self-consistently along with the runaway electrons.

A number of gaps also remain in the physical models implemented
in Dream and similar self-consistent disruption simulators. Perhaps
the most significant gap is that the radial transport of particles and
heat is not calculated self-consistently along with the rest of the back-
ground plasma. While advances have been made in incorporating radial
transport in one-dimensional fluid models for runaway electrons [87, 88],
the transport coefficients still require external calculations. The trans-
port is particularly important during the thermal quench, where MHD
instabilities typically break up magnetic flux surfaces and give rise to
significant turbulent transport, and, as shown in Paper F, play an im-
portant role in the formation of the hot-tail seed. Since the transport
arises due to the break-up of magnetic flux surfaces—an inherently three-
dimensional process—it will not be possible to calculate the transport
self-consistently from first-principles in Dream. By carefully studying
the process in more detailed 3D MHD simulations, it might however
be possible to construct a reduced or empirical model which allows the
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transport to be evolved self-consistently with the rest of the plasma. In
case even this approach turns out to be insufficient to accurately describe
the thermal quench, it would be necessary to study such effects using
3D MHD codes, including the effect of runaways [118, 119]. Codes such
as Dream could support this endeavour by identifying which runaway
electron generation models are most accurate and suitable for implemen-
tation in the 3D MHD codes, and could help in verifying the correctness
of such more complete models.

Another gap in the physics models of tools such as Dream is the lack
of treatment of vertical displacement events (VDE). The position of the
plasma inside the electrically conducting vacuum vessel will impact the
induced electric field, as will the scraping-off of runaway electrons on the
plasma facing components, both of which could significantly affect the
generation rate of runaway electrons [120]. A circuit-model which could
potentially be integrated into a code such as Dream was presented in
Ref. [121]. An even more accurate method for treating the VDE would
be to solve the Grad-Shafranov equation for the MHD equilibrium self-
consistently with the rest of the Dream equation system [122].

Finally, a topic which has not been addressed in this thesis, but
which could be studied using a tool such as Dream, is that of startup
runaways. The successful initiation of a plasma discharge is absolutely
essential for the operation of tokamaks, and it involves providing suffi-
cient heat to the forming plasma for it to fully ionise and establish stable
confinement. In present-day tokamaks, prescriptions for how to initialise
plasma discharges have often been developed via trial-and-error. Initia-
tion of plasmas in the larger tokamaks of the future will however need
to be guided by simulations, and several studies have been conducted,
using self-consistent calculations, to simulate the burn-through phase of
existing, as well as future, tokamaks [123, 124]. Due to the low den-
sities and strong electric fields usually required for successful plasma
initiation, runaway electrons could potentially arise. The presence of
runaway electrons would alter the discharge properties and could lead
to the plasma initiation failing [125]. The physical models used to study
tokamak burn-through are largely the same as those used to study toka-
mak disruptions, meaning that a tool such as Dream could also be
used to explore the generation of runaway electrons in startup scenar-
ios. This could be helpful in determining whether startup runaways
will be of concern to future tokamak reactors, such as ITER, and could
provide insights into how startup runaway electrons could be avoided.
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“Effect of partially ionized impurities and radiation on the effec-
tive critical electric field for runaway generation”. Plasma Physics
and Controlled Fusion 60 (7) (2018), p. 074010. doi: https :

//doi.org/10.1103/PhysRevLett.118.255001.

[57] T. C. Hender et al. “Chapter 3: MHD stability, operational limits
and disruptions”. Nuclear Fusion 47 (6) (2007), S128. doi: 10.
1088/0029-5515/47/6/S03.

[58] S. Putvinski, N. Fujisawa, D. Post, N. Putvinskaya, M. N. Rosen-
bluth, and J. Wesley.“Impurity fueling to terminate Tokamak dis-
charges”. Journal of Nuclear Materials 241-243 (1997), pp. 316–
321. doi: 10.1016/S0022-3115(97)80056-6.

82

https://doi.org/10.1063/1.4886802
https://doi.org/10.1063/1.4866912
https://doi.org/10.1063/1.4866912
https://doi.org/10.1063/1.4968839
https://doi.org/10.1063/1.4968839
https://doi.org/10.1103/PhysRevLett.114.115002
https://doi.org/10.1103/PhysRevLett.114.115002
https://doi.org/10.1103/PhysRevLett.114.155001
https://doi.org/10.1103/PhysRevLett.114.155001
https://doi.org/https://doi.org/10.1103/PhysRevLett.118.255001
https://doi.org/https://doi.org/10.1103/PhysRevLett.118.255001
https://doi.org/10.1088/0029-5515/47/6/S03
https://doi.org/10.1088/0029-5515/47/6/S03
https://doi.org/10.1016/S0022-3115(97)80056-6


REFERENCES

[59] J. R. Mart̀ın-Sol̀ıs, A. Loarte, and M. Lehnen. “Formation and
termination of runaway beams in ITER disruptions”. Nuclear Fu-
sion 57 (6) (Apr. 2017), p. 066025. doi: 10.1088/1741-4326/
aa6939.

[60] H. Smith, P. Helander, L.-G. Eriksson, D. Anderson, M. Lisak,
and F. Andersson. “Runaway electrons and the evolution of the
plasma current in tokamak disruptions”. Physics of Plasmas 13
(10) (2006), p. 102502. doi: 10.1063/1.2358110.

[61] T. Fehér, H. M. Smith, T. Fülöp, and K. Gál. “Simulation of
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[80] O. Embréus, A. Stahl, and T. Fülöp. “Effect of bremsstrahlung
radiation emission on fast electrons in plasmas”. New Journal of
Physics 18 (9) (2016), p. 093023. doi: 10.1088/1367-2630/18/
9/093023.

[81] G. Bekefi. Radiation processes in plasmas. New York: John Wiley,
1966.

[82] E. Hirvijoki, I. Pusztai, J. Decker, O. Embréus, A. Stahl, and
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Pusztai, and T. Fülöp. “Numerical characterization of bump for-
mation in the runaway electron tail”. Plasma Physics and Con-
trolled Fusion 58 (2) (2016), p. 025016. doi: 10.1088/0741-

3335/58/2/025016.

[84] A. B. Rechester and M. N. Rosenbluth. “Electron Heat Trans-
port in a Tokamak with Destroyed Magnetic Surfaces”. Physical
Review Letters 40 (1) (Jan. 1978), pp. 38–41. doi: 10.1103/

PhysRevLett.40.38.

[85] B. Esposito, R. M. Solis, P. van Belle, O. N. Jarvis, F. B. Marcus,
G. Sadler, R. Sanchez, B. Fischer, P. Froissard, J. M. Adams, E.
Cecil, and N. Watkins. “Runaway electron measurements in the
JET tokamak”. Plasma Physics and Controlled Fusion 38 (12)

85

https://doi.org/10.1017/S002237781700099X
https://doi.org/10.1063/1.2208327
https://doi.org/10.1063/1.2208327
https://doi.org/10.1103/PhysRevLett.94.215003
https://doi.org/10.1103/PhysRevLett.94.215003
https://doi.org/10.1088/1367-2630/18/9/093023
https://doi.org/10.1088/1367-2630/18/9/093023
https://doi.org/10.1017/S0022377815000513
https://doi.org/10.1088/0741-3335/58/2/025016
https://doi.org/10.1088/0741-3335/58/2/025016
https://doi.org/10.1103/PhysRevLett.40.38
https://doi.org/10.1103/PhysRevLett.40.38


REFERENCES

(Dec. 1996), pp. 2035–2049. doi: 10.1088/0741-3335/38/12/
001.

[86] T. Hauff and F. Jenko. “Runaway electron transport via tokamak
microturbulence”. Physics of Plasmas 16 (10) (2009), p. 102308.
doi: 10.1063/1.3243494.
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