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Abstract
This sharpens the result in the paper Jagers andZuyev (JMathBiol 81:845–851, 2020):
consider a population changing at discrete (but arbitrary and possibly random) time
points, the conditional expected change, given the complete past population history
being negative, whenever population size exceeds a carrying capacity. Further assume
that there is an ε > 0 such that the conditional probability of a population decrease
at the next step, given the past, always exceeds ε if the population is not extinct but
smaller than the carrying capacity. Then the population must die out.
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1 Three assumptions and one result

Denote population sizes, starting at time τ0 = 0, by Z0, changing into Z1, Z2, . . . ∈ N

at subsequent time points 0 < τ1 < τ2 . . .. Here N is the set of non-negative integers,
and we make no assumptions about the times between changes. LetFn be the sigma-
algebra of all events up to and including the n-th change - i.e. really all events, not only
population size changes - and introduce a carrying capacity K > 0, the population
size where reproduction turns conditionally subcritical. More precisely:
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Assumption 1

E[Zn+1|Fn] ≤ Zn, if Zn ≥ K . (1)

Further,

Assumption 2 There is no resurrection or immigration but, otherwise, a change is a
change in population size:

Zn = 0 ⇒ Zn+1 = 0, (2)

Zn > 0 ⇒ Zn+1 �= Zn . (3)

Assumption 3 Non-extinct populations, smaller than the carrying capacity, run a def-
inite risk of decreasing:

∃ε > 0; ∀n ∈ N, 0 < Zn < K ⇒ P(0 ≤ Zn+1 < Zn|Fn] ≥ ε. (4)

Then:

Theorem 1 Under the three assumptions given, the population must die out: with
probability 1, Zn = 0 eventually.

The original paper (Jagers and Zuyev 2020) had a stronger third assumption, viz.
that, whatever the population history, there must be a definite, strictly positive risk
that the population size decreases by exactly one unit at the next change. This is not
unnatural and can be interpreted as a possibility that a change involves no reproduction
but merely the death of one individual. But it turns out to be unnecessary.

2 The proof

Like the original proof, this starts from stopping times ν1, ν2, . . . and μ1, μ2, . . ., the
former denoting the times of successive visits to the integer interval [0, K ), the latter
the subsequent first hittings of levels ≥ K . More precisely,

ν1 := inf{n ∈ N; Zn < K },

and for k = 1, 2, . . . ,

μk := inf{n ∈ N; n > νk and Zn ≥ K }, νk+1 := inf{n ∈ N; n > μk and Zn < K }.

As was noted, ν1 < ∞, whereas the μk constitute an increasing sequence, possibly
hitting infinity. Clearly, νk < ∞, μk = ∞ means that the population dies out at or
after νk , without ever reaching K again. Also for any k, μk < ∞ ⇒ νk+1 < ∞.
Proceeding like in the original paper, note that

Zn → 0 ⇔ ∃n ∈ N; Zn = 0 ⇔ ∃k;μk = ∞,
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and

P(∃k;μk = ∞) = lim
k→∞P(μk = ∞) = 1 − lim

k→∞P(μk < ∞).

But

P(μk < ∞) = P(μk < ∞, νk < ∞) = E[P(μk < ∞|Fνk ); νk < ∞.]

For short, write

Dn := {Zn ≤ (Zn−1 − 1)+}

for the event that the n-th change is a decrease, provided Zn−1 > 0 (and of course the
population remains extinct if Zn−1 = 0). By Assumption 3, Zn < K implies that

P(∩K
j=1Dn+ j |Fn) = E[P(Dn+K |Fn+K−1; ∩K−1

j=1 Dn+ j |Fn]
≥ εP(∩K−1

j=1 Dn+ j |Fn) ≥ . . . ≥ εK .

Since Zn < K implies that Zn+K = 0 on the set

∩K
j=1Dn+ j ,

and the population size never crosses the carrying capacity, we can conclude that

P(μk = ∞) = 1 − P(μk < ∞)

≥ 1 − (1 − εK )P(μk−1 < ∞) ≥ . . . ≥ 1 − (1 − εK )k → 1.

The theorem follows.
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