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Abstract—The recursive projection–aggregation (RPA) decod-
ing algorithm for Reed–Muller (RM) codes was recently intro-
duced by Ye and Abbe. We show that the RPA algorithm is
closely related to (weighted) belief-propagation (BP) decoding
by interpreting it as a message-passing algorithm on a factor
graph with redundant code constraints. We use this observation
to introduce a novel decoder tailored to high-rate RM codes.
The new algorithm relies on puncturing rather than projections
and is called recursive puncturing–aggregation (RXA). We also
investigate collapsed (i.e., non-recursive) versions of RPA and
RXA and show some examples where they achieve similar
performance with lower decoding complexity.

I. INTRODUCTION

Reed–Muller (RM) codes were introduced by Muller [1]
and a bounded-distance decoding algorithm was given by
Reed [2]. Under maximum-likelihood (ML) decoding, RM
codes achieve capacity on the binary erasure channel [3] and
they also provide excellent performance at low to medium
block lengths over the additive white Gaussian noise (AWGN)
channel [4], [5]. Due to the intractability of ML decoding,
an important question is how to approach ML performance
with reasonable decoding complexity in practice. Many recent
approaches exploit the symmetry of RM codes by making use
of their large automorphism group1 [4], [5], [7], [8]. This typi-
cally results in code representations with many redundant code
constraints, e.g., overcomplete parity-check matrices where
the number of rows is much larger than the rank [7], [9].
Other options for decoding RM codes include the recursive
list decoder introduced by Dumer and Shabunov [16] and the
successive-cancellation list decoder for polar codes [8], [10].
These will be discussed further in Section V.

This paper focuses on the recursive projection–aggregation
(RPA) algorithm that was recently introduced in [4], [5]. RPA
decoding achieves excellent performance on low-rate (2nd-
and 3rd-order) RM codes. It also significantly outperforms
comparable polar codes under successive-cancellation list de-
coding. In this work, we show that the RPA algorithm has a
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1The automorphism group of a code C is defined as {π ∈ SN |xπ ∈
C, ∀x ∈ C}, where SN is the symmetric group on N elements, i.e., π ∈ SN
is a bijective mapping (or permutation) from [N ] to itself, and xπ denotes a
permuted vector, i.e., xπi = xπ(i).

natural interpretation on a factor graph with generalized check
constraints and can be seen as a version of (weighted) belief-
propagation (BP) decoding using many redundant code con-
straints. We use this observation to introduce a new decoding
approach tailored to high-rate codes. For a detailed comparison
between RPA and previous decoding approaches, such as [11]–
[13] and [14]–[16], see [5, Sec. V-B].

To begin, we provide a simple overview of RM codes
that illustrates how their recursive structure and their large
automorphism group together imply that they satisfy a very
large set of code constraints. We then give a high-level
description of the algorithms and contributions in this paper
with the help of the RM code table shown in Fig. 1. To that
end, let RM(r,m) ⊆ FN

2 denote the set of codewords in the
r-th order RM code of length N = 2m. The well-known
recursive definition of RM(r,m) [17, p. 374] is given by

{(u,u+ v) |u∈RM(r,m− 1),v∈RM(r − 1,m− 1)} , (1)

where (u,w) denotes vector concatenation. For u,w ∈ FN/2
2

with (u,w) ∈ RM(r,m), this implies that (i) u ∈ RM(r,m−
1), i.e., puncturing the second half of the codeword gives a
shorter RM codeword of the same order, and (ii) v = u+w ∈
RM(r − 1,m − 1), i.e., summing the two codeword halves
projects onto a shorter RM code with reduced order. Of course,
these statements remain true even after reordering the code bits
using a permutation in the code’s automorphism group. Thus,
there are in fact many different puncturing and projection
patterns that result in RM subcodes. In RPA decoding, these
subcodes are decoded recursively until one reaches a 1st-
order (i.e., augmented Hadamard) code, for which there exist
efficient decoders based on the fast Hadamard transform (FHT)
[17]. The schematic decoding path taken by RPA is illustrated
by the solid red line in Fig. 1.

The complexity of RPA increases significantly with each
additional recursion stage and RPA decoding is thus limited
to low-rate codes in practice. To alleviate this problem, we
propose a new algorithm, which is similar in spirit to RPA, that
relies on puncturing instead of projection. The new algorithm
is called recursive puncturing–aggregation (RXA). It uses all
possible RM(r,m− 1) subcodes and traverses upwards in the
RM tableau, as illustrated by the solid blue line in Fig. 1.
The base case for RXA is the RM(r, r + 2) (i.e., extended
Hamming) code which also has a FHT-based decoder [18].

We further investigate collapsed, i.e., non-recursive, ver-
sions of RPA and RXA. We provide a theoretical justifica-
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Fig. 1: Standard tableau of Reed–Muller (RM) codes and schematic illustration
of all algorithms considered in this paper. (SPC: single parity-check)

tion for using collapsed algorithms by showing that multiple
recursive stages result in reuse of the same subcodes. We
then propose two new algorithms, called collapsed projection–
aggregation (CPA) and collapsed puncturing–aggregation
(CXA), and show that they can achieve similar performance as
their recursive counterparts with lower complexity. CPA and
CXA correspond to the dashed lines in Fig. 1 and directly
project or puncture onto the base codes.

Lastly, we connect the decoding algorithms in this paper
to previous approaches based on overcomplete parity-check
matrices that contain all minimum-weight dual codewords as
rows [7], [9]. In particular, we show that the factor graph for
CXA with one additional stage of puncturing (i.e., to single
parity-checks instead of extended Hamming codes, see the
blue dotted line in Fig. 1) is equivalent to the factor graph
that contains all minimum-weight parity-checks (MWPCs).

In summary, the contributions in this paper are as follows:

• We show that RPA is closely related to BP decoding by
interpreting it as a message-passing algorithm on a highly
redundant factor graph representation of the code.

• We propose a new algorithm, called RXA, which allows
for efficient decoding of high-rate RM codes.

• We propose collapsed versions of RPA and RXA, called
CPA and CXA, and show that they sometimes achieve
similar performance with lower complexity2.

• We highlight the connections between this work, RPA,
and previous approaches based on using all MWPCs.

II. FACTOR GRAPHS FOR REED–MULLER CODES

In order to compare RPA and BP decoding, we start by
reviewing a few factor graph representations of RM(r,m). For
an introduction to factor graphs, see [19].

In general, the factor graphs in this paper contain four
distinct node types, which are collected in the sets V, C,Vh, Cg:

2The journal version [5] of [4] appeared after this paper was submitted and
also considers a simplified decoder that partially collapses the RPA recursion.

• V: variable nodes (VNs), corresponding to the code bits
of RM(r,m), where |V| = 2m,

• C: check nodes (CNs), corresponding to projections, i.e.,
the summation of code bits,

• Vh: hidden VNs (of degree 2), corresponding to the code
bits of RM(r − 1,m− 1) subcodes,

• Cg: generalized CNs, corresponding to RM(r,m− d) or
RM(r−d,m−d) subcode constraints for 1 ≤ d ≤ r−1.

The number of nodes of each type and the graph connec-
tivity (including the node degrees) depend on the particular
code representation. As an example, the factor graph that can
be inferred from the (u,u+v) construction in (1) is shown in
Fig. 2(a). It consists of one generalized CN corresponding to
RM(r,m− 1) for the first codeword half and one generalized
CN corresponding to RM(r−1,m−1) that constrains the sum
of the two codeword halves. Moreover, one may use the fact
that RM(r − 1,m) ⊂ RM(r,m) [17, p. 377] to see that the
second half of the codeword also forms a valid codeword in
RM(r,m− 1), leading to one additional subcode constraint.

A. Redundant Factor Graphs

Redundant code constraints can be obtained by exploiting
the code’s automorphism group. Fig. 2(a) shows the implicit
factor graph for RPA decoding, which is based on projecting
onto the 2m − 1 different RM(r − 1,m − 1) subcodes. Note
that, for factor graphs with generalized CNs, the ordering of
edges corresponding to the subcode bits is important. Here, we
neglect this issue to allow for a concise high-level description
of all decoding algorithms. A precise definition of the factor
graph connectivity, including proper indexing of subcode bits,
can be found in the extended version of this paper [20].

B. Belief-Propagation Decoding

Once the factor graph is defined, many decoding algorithms
are defined automatically by standard variations of BP update
rules. For example, assume VN messages are updated with

λ(t)v→c = `v +
∑

c′∈∂v\c
λ̂
(t)
c′→v, (2)

and outgoing CN messages are updated with

λ̂(t)c→v = 2 tanh−1

 ∏
v′∈∂c\v

tanh

(
λ
(t)
v′→c

2

) , (3)

where t refers to the iteration number and `v corresponds to
the channel log-likelihood ratio (LLR). For hidden (degree-2)
VNs in Vh, we have `v = 0 and (2) corresponds to a simple
message forwarding. Outgoing messages for generalized CNs
are updated by computing the corresponding extrinsic bit-wise
posterior LLRs. This is generally intractable for r > 1, which
motivates the use of recursive approaches.

III. RECURSIVE DECODING ALGORITHMS

In this section, we revisit RPA decoding as a message-
passing algorithm and highlight the differences compared
to standard BP decoding. We then describe the new RXA
decoding algorithm.
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Fig. 2: Factor graphs for RM(r,m). Circled numbers and arrows indicate message-passing schedules for the decoding algorithms.

Algorithm 1: RPA [4] and CPA
Input: LLRs `, params r,m, flags E,C ∈ {0, 1}
Output: (binary) output LLRs ˆ̀ where `v ∈ {±∞}

1 if r = 1 then
2 ˆ̀ = FHT decode `: hard-ML to ±∞ (E=0) or extrinsic (E=1)
3 else
4 construct the RPA or, if C = 1, the CPA factor graph for

RM(r,m) with node sets V,Vh, C, Cg (see Figs. 2(b) and 2(d))
5 initialize λ(0)v→c = `v ∀v ∈ V
6 for t = 1, . . . , Tmax do

// projection, step (1) in Fig. 2(b)

7 update λ̂(t)c→v via (3) ∀c ∈ C and λ(t)v→c via (2) ∀v ∈ Vh
// subcode decoding, step (2)

8 if C = 0 then
9 (λ̂

(t)
c→v)v∈∂c = RPA

(
(λ

(t)
v→c)v∈∂c, r − 1,m− 1

)
∀c ∈ Cg

10 else // jump to line 2 and apply FHT decoding

11 (λ̂
(t)
c→v)v∈∂c = RPA

(
(λ

(t)
v→c)v∈∂c, 1,m− r + 1

)
∀c ∈ Cg

// backward update, step (3)

12 update λ(t)v→c via (2) ∀v ∈ Vh and λ̂(t)c→v via (3) ∀c ∈ C
// VN update, step (4)

13 update λ(t)v→c via (4) (E=0) or (6) (E=1) for all v ∈ V
14 compute ˆ̀

v via (5) and map to ±∞ ∀v ∈ V
15 return ˆ̀

A. Recursive Projection–Aggregation

The message-passing version of RPA is defined in Algo-
rithm 1. The inputs to the algorithm are the channel LLRs `,
the RM parameters r and m, and the flags E,C ∈ {0, 1}.
The flag E indicates if intrinsic (E = 0) or extrinsic updates
(E = 1) should be used and the flag C indicates if the original
(C = 0) or the collapsed version (C = 1) should be used. On
line 2, the base codes (r = 1) are decoded via FHTs using
either (E = 0) intrinsic hard-ML decoding with LLR decisions
mapped to ±∞ or (E = 1) extrinsic soft decoding [21]. If
r 6= 1, then the decoding starts by constructing the factor
graph shown in Fig. 2(b) (line 4) and initializing all outgoing
VN messages to the channel LLRs (line 5). The algorithm
then iterates Tmax times over the following four steps:

1) Projection: All CNs update their outgoing messages
according to the standard CN update rule (3). Afterwards, the
hidden VNs forward these messages to the generalized CNs.
One can also show that (3) is equivalent to the projection-
step update equation in the original RPA algorithm because

ln(ea+b + 1)− ln(ea + eb) = 2 tanh−1
(
tanh a

2 tanh
b
2

)
[20].

2) Subcode decoding: The incoming messages for each
generalized CN c ∈ Cg are collected into a vector (λ(t)v→c)v∈∂c
which serves as the input for the recursive RPA decoding of
the subcodes (line 9). The output vector is used to update the
outgoing messages of the generalized CNs. Note that, if r 6= 1
or E = 0, then the outgoing messages are binary (±∞).

3) Backward update: The hidden VNs forward the mes-
sages from the generalized CNs and the standard CNs are
updated according to (3). If r 6= 1 or E = 0, then the messages
from generalized CN are ±∞ and the message received by a
given VN equals the LLR from the other connected VN, but
perhaps with a flipped sign. In this case, the result matches the
aggregation function in the original RPA algorithm [4, Alg. 4].

4) VN update: If E = 0, then the outgoing VN messages
for v ∈ V are computed like the original RPA algorithm with

λ(t)v→c =
1

2m − 1

∑
c′∈∂v\c

λ̂
(t)
c′→v, (4)

where the If E = 1, then (6) is used instead. Then, after Tmax
iterations, the hard-decision outputs are formed by computing

ˆ̀
v =

1

2m − 1

∑
c∈∂v

λ̂(t)c→v, (5)

for all v ∈ V , and then mapping the output to ±∞.
The VN update rule (4) can be seen as an intrinsic version of

a weighted BP update rule where the channel message has zero
weight and the 2m−1 incoming messages are simply averaged.
Indeed, a known problem with the standard BP decoder is
that it only tends to work well for sparse factor graphs with
tree-like neighborhoods. However, redundant factor graphs
generally have many cycles. A standard technique in this case
is to add weights to reduce the overconfidence induced by
correlated messages [22]. For example, weighted BP decoding
using a single weighting factor for scaling incoming VN
message gives good performance when decoding RM codes
based on overcomplete parity-check matrices, even though the
factor graph has many cycles [7]. More generally, it can be
beneficial to introduce and optimize general weighting factors
for each edge in the factor graph [23], [24].



Algorithm 2: RXA and CXA
Input: input LLRs `, RM parameters r,m, collapsed C ∈ {0, 1}
Output: output LLRs ˆ̀

1 if r = m− 2 then
2 ˆ̀ = decode ` using extended Hamming FHT decoder [18]
3 else
4 construct the RXA or, if C = 1, the CXA factor graph for

RM(r,m) with node sets V, Cg

5 initialize λ(0)v→c = `v ∀v ∈ V
6 for t = 1, . . . , Tmax do

// subcode decoding, step (1) in Fig. 2(c)
7 if C = 0 then
8 (λ̂

(t)
c→v)v∈∂c = RXA

(
(λ

(t)
v→c)v∈∂c, r,m− 1

)
∀c ∈ Cg

9 else // jump to line 2 and apply FHT decoding

10 (λ̂
(t)
c→v)v∈∂c = RXA

(
(λ

(t)
v→c)v∈∂c, r, r + 2

)
∀c ∈ Cg

// VN update, step (2)

11 update λ(t)v→c via (6) ∀v ∈ V
12 compute ˆ̀

v via (5) ∀v ∈ V
13 return ˆ̀;

B. Recursive Puncturing–Aggregation

The factor graph for the (u,u+v) construction in Fig. 2(a)
has two RM(r,m−1) constraints based on puncturing the two
codeword halves. Similar to RPA, additional RM(r,m − 1)
constraints can be obtained by exploiting the code’s automor-
phism group. Fig. 2(c) illustrates the resulting factor graph
that is used for RXA decoding. A precise definition of the
factor graph connectivity3 is given in [20]. Since there are
no projections, the factor graph consists only of standard VNs
(contained in V) and generalized CNs (contained in Cg). There
are |Cg| = 2(2m − 1) subcode constraints in total—twice as
many as for RPA.

The RXA algorithm is shown in Algorithm 2. The base
codes are decoded using an extended Hamming FHT decoder
[18] that produces bit-wise posterior LLRs. Thus, RXA works
entirely with extrinsic (i.e., E = 1) message passing. Other-
wise, the algorithm follows a simple “flooding” scheduling,
alternating between recursive decoding (line 8) and a VN
update (line 11). For RXA, we observed that the update rule
in (4) does not give good results and we instead use the
weighted extrinsic VN update rule given by

λ(t)v→c = `v + wr,m

∑
c′∈∂v\c

λ̂
(t)
c′→v, (6)

where wr,m can be optimized separately for each algorithm
(i.e., RPA, RXA, CPA, and CXA) and each channel condition.

IV. NON-RECURSIVE (COLLAPSED) ALGORITHMS

To decode RM(r,m) using RPA, the number of RM(1,m−
r + 1) base codes is

∏r−2
d=0(2

m−d − 1). On the other hand,
any RM(1,m− r+1) subcode can be obtained by projecting
RM(r,m) via an (r − 1)-dimensional subspace in Fm

2 [4,
Lem. 1]. The number of distinct (r−1)-dimensional subspaces
in Fm

2 is given by the Gaussian binomial coefficient
(

m
r−1
)
2
,∏d−1

l=0
2m−l−1
2d−l−1 , where r − 1 ≤ m. When r − 1 ≥ 2, the ratio

3RXA exploits the same 2m−1 distinct one-dimensional subspaces in Fm2
as RPA, but each subspace is used to partition V into two ordered sets.

between
∏r−2

d=0(2
m−d − 1) and

(
m

r−1
)
2

is
∏r−1

d=1(2
d − 1) > 1.

This means that RPA with more than one stage of recursion
reuses the same RM(1,m− r + 1) base code multiple times.
A similar argument can be made for RXA decoding.

To avoid this reuse of base codes, we investigate collapsed
algorithms based on factor graphs whose generalized CNs
directly correspond to RM(1,m− r+1) or RM(r, r+2). We
note that the idea of using other RM subcodes was mentioned
briefly in the arXiv version of [5, Sec. VI] but no results
were provided. The journal version [5] (which appeared after
this paper was submitted) does present results for a simplified
decoder that exploits this idea.

A. Collapsed Projection–Aggregation

The factor graph for CPA is shown in Fig. 2(d). There are
B =

(
m

r−1
)
2

different RM(1,m − r + 1) subcodes and each
VN in V has degree B. The CNs correspond to projections
involving 2r−1 code bits, i.e., their degree is 2r−1 + 1. The
CPA algorithm is obtained by calling Algorithm 1 with the
C = 1 flag. The corresponding steps mimic those of RPA
except that the recursion in line 9 is replaced with the decoding
of the RM(1,m−r+1) subcodes (line 11) and the combining
weight in (6) is wr,m = α/B for some optimized α ∈ (0, 1].

B. Collapsed Puncturing–Aggregation

Similar to CPA, the CXA algorithm collapses the recursion
in RXA and directly decodes RM(r, r+2) subcodes. The factor
graph is a bipartite graph similar to Fig. 2(c). The VN degree
is B =

(
m

m−r−2
)
2

and there are 2m−r−2B different subcodes
based on the distinct (m−r−2)-dimensional subspaces in Fm

2 .
The RXA algorithm uses 2m−r−2

∏m−r−2
d=0 (2m−d − 1) base

codes and, in comparison, the number of base codes used by
CXA is divided by

∏m−r−2
d=1 (2d − 1). The CXA algorithm

is obtained by calling Algorithm 2 with the C = 1 flag. It
follows the same steps as RXA except that the recursion in line
7 is replaced with the extended Hamming FHT decoder which
performs the base decoding. Also, the combining weight in (6)
is chosen to be wr,m = α/B for some optimized α ∈ (0, 1].

C. Connection to Minimum-Weight Parity Checks

In [7] (see also [9]), weighted BP decoding of RM codes
is considered based on parity-check matrices that contain all
minimum-weight dual codewords as rows. This can be seen
as CXA decoding with one additional stage of puncturing.
In particular, puncturing RM(r, r + 2) leads to RM(r, r + 1)
which are single parity-check codes, see Fig. 1. The number
of subcodes for CXA assuming an additional puncturing stage
is 2m−r−1

(
m

m−r−1
)

which is exactly the number of minimum
weight codewords of RM(m − r − 1,m) [17, p. 381]. Thus,
there is a common thread between these new methods and
prior work on overcomplete decoding.

V. SIMULATION RESULTS

A. Performance

The described decoding algorithms are tested on some
RM codes with lengths N ∈ {128, 256} over the AWGN
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Fig. 3: Simulation results

channel. The iteration number is set to Tmax = 15 in all
cases. A convergence-based stopping criterion according to

‖ˆ̀old − ˆ̀new‖ < 0.01‖ˆ̀old‖, where ‖x‖ =
√∑N

i=1 x
2
i , was

implemented to reduce simulation time, similar to [4]. Ordered
statistics decoding (OSD) is used as a benchmark, whose
performance is close to ML [25].

The self-dual RM(3, 7) code is used to compare the per-
formance between the different projection and puncturing
approaches. The results in Fig. 3(a) show that RPA, RXA,
CPA, and CXA all perform similarly and the gap to OSD in
all cases is around 0.3 dB at a word error rate (WER) of
10−3. The performance degradation of RXA when using the
RPA-style VN update (4) instead of (6) is also shown. As a
reference, we compare to weighted BP decoding assuming an
overcomplete parity-check matrix Hoc that contains all 94 488
minimum-weight dual codewords as rows, where the weight-
ing factor for incoming VN messages is 0.05 [7, Fig. 1(b)].
Weighted BP has higher WER compared to the considered
algorithms which highlights the advantage of using more
powerful base codes (i.e., extended Hamming or augmented
Hadamard codes) compared to single parity-checks. Following
[4], we also consider list decoding [26] in combination with
the proposed algorithms. For a list size of 16, the resulting
performance of both CPA and CXA approaches the OSD curve
within < 0.1 dB at a WER of 10−3.

Lastly, we consider the codes RM(2, 8) and RM(5, 8). For
RM(2, 8), the results in Fig 3(b) show that CPA performs
within 0.2 dB of OSD at a WER of 10−3, and this gap becomes
almost negligible once the list decoder is used. Note that CPA
and RPA are equivalent for second-order RM codes. For CXA
on RM(5, 8), Fig 3(c) shows a similar 0.2 dB gap from OSD,
and a reduced gap of < 0.1 dB once the list decoder is used.
Note that CXA is equivalent to RXA for this code.

B. Complexity
In terms of computational complexity, the same number of

projection/puncturing stages are required for self-dual codes.
In general, however, approaches based on projections have
fewer subcodes than those based on puncturing. They also

work well with hard-decision decoding of base codes, whereas
soft-decisions are required for RXA and CXA. On the other
hand, projections require evaluating the standard CN update
equation, which is not required for puncturing.

Comparing the recursive and collapsed approaches, both
CPA and CXA reduce the number of base codes for RM(3, 7)
by a factor of 3. Moreover, the number of base decodings
is limited to at most Tmax for collapsed algorithms, whereas
the recursion entail a potentially much higher number of base
decodings: up to T 2

max in the case of RM(3, 7).
While all of these algorithms are interesting from a theo-

retical perspective, their computational complexity is actually
quite high. For example, the CPA algorithm for RM(3, 7)
decodes 2667 RM(1, 5) codes per iteration giving a complexity
of roughly 2667 ·32 · (5+4) ≈ 768K operations per iteration.
The simplified RPA approach in [5] reduces this somewhat but
it is unclear if these methods can match list-based approaches
(e.g., [8], [10], [16]) in performance versus complexity.

For example, it is known that SCL decoding with a list size
of 16 already achieves very good performance for RM(3, 7)
at high SNR [8]. Also, the simulation code for the method
in [16] was recently posted to GitHub (see https://github.com/
kshabunov/ecclab). We tested this code and found that a list
size of 32 was sufficient to achieve near-ML performance for
RM(3, 7). The decoding speed, with list size 32, is also much
faster than our simulation code for RPA, RXA, CPA, and CXA
without a list. Of course, RPA is quite new and it remains to
be seen if program optimization and algorithm development
can make this approach competitive in practice.

VI. CONCLUSIONS

This paper connects the RPA decoding of RM codes to
message-passing and BP decoding on a redundant factor graph.
Based on this, the RXA algorithm is introduced to decode
high-rate RM codes. It is analagous to RPA decoding but it is
based on puncturing up to RM(m − 2,m) codes rather than
projection down to RM(1,m) codes. To reduce complexity,
we also propose collapsing the recursions and projecting (or
puncturing) directly to the base codes.
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