Large, Tunable, and Reversible pH Changes by Merocyanine Photoacids

Downloaded from: https://research.chalmers.se, 2023-09-13 20:21 UTC

Citation for the original published paper (version of record):
http://dx.doi.org/10.1021/jacs.1c08810

N.B. When citing this work, cite the original published paper.
ABSTRACT: Molecular photoswitches capable of generating precise pH changes will allow pH-dependent processes to be controlled remotely and noninvasively with light. We introduce a series of new merocyanine photoswitches, which deliver reversible bulk pH changes up to 3.2 pH units (pH 6.5 to pH 3.3) upon irradiation with 450 nm light, displaying tunable and predictable timescales for thermal recovery. We present models to show that the key parameters for optimizing the bulk pH changes are measurable: the solubility of the photoswitch, the acidity of the merocyanine form, the thermal equilibrium position between the spiropyran and the merocyanine isomers, and the increased acidity under visible light irradiation. Using ultrafast transient absorption spectroscopy, we determined the quantum yields for the ring-closing reaction and found that the lifetimes of the transient cis-merocyanine isomers ranged from 30 to 550 ns. Quantum yields did not appear to be a limitation for bulk pH switching. The models we present use experimentally determined parameters and are, in principle, able to predict the change in pH obtained for any related merocyanine photoacid.

INTRODUCTION

Controlling pH environments is critical for many important chemical processes, including the biological operating ranges of enzymes and using proton gradients for energy storage. Tools for reversible pH control are highly sought after for mimicking biological systems and to control chemical processes like catalysis,1 assembly/dissassembly,2 for generating out-of-equilibrium states,3 or for controlling molecular machines.4 It has long been recognized5 that using light to reversibly control pH has advantages of being noninvasive and allows precise control in both time and space. One way to use light to control pH is with molecular photoacids. Photoacids are molecules whose excited states are substantially more acidic than the ground state. For example, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) exhibits a very large change in pKa from the ground state (pKa = 1.4) to the excited state (pKa = 7.3).6,7 The short lifetimes of the excited states, for example, 6 ns for HPTS,7 prevent the buildup of significant proton concentration, and the resulting pH changes are limited, although some impressive applications have been reported.8 Molecules that can be isomerized by visible light to long-lived metastable ground states are more suitable for controlling many protonation/deprotonation events.9 Photoacids based on the spiropyran/merocyanine photoswitch10 are generally the most versatile and widely used in part due to the large difference in effective pKa between the spiropyran (SP) and merocyanine (MC(H)) forms (Figure 1).

The first merocyanine commonly used as a reversible photoacid was ethylene alcohol-functionalized merocyanine 1.11 This photoswitch was used in organic solvents for controlling self-assembly,12 luminescence,13 and optical signaling.14 However, the relatively slow thermal recovery time (several days),11b relatively low pKaw, poor solubility of the spiropyran form in water,17 and susceptibility of the merocyanine form to hydrolysis limited more widespread applications.

Liao16 introduced a sulfonate group at the end of an alkyl chain attached to the indolinium nitrogen (position R2, Figure 1) to prepare water-soluble merocyanine 2a.17 This photoacid allowed bulk pH switching by ∼2 pH units (pH 5.5 to 3.5), with a thermal half-life of 70 s for the pH recovery in the dark. The large jump in pH and the relatively rapid thermal recovery allowed this photoswitch to be applied in diverse contexts. Examples are the controlled self-assembly of discrete18 or extended structures,18d,19 including DNA structures3c,20 or nanoparticles,21 and influencing the properties of nano-
reactors, soft materials, gels, and dyes. Other applications include the control of polymerizations, hydrazone molecular switches, enhancing photophosphorylation by chloroplasts, and operating molecular machines. Building on earlier investigations, Pezzato and co-workers recently reported a detailed study that significantly progressed the understanding of the thermodynamic and kinetic parameters of photoacid 2a. Using optimized conditions, the authors also demonstrated a 2.5 unit pH jump (from ∼6.1 to ∼3.6 pH) and very recently improved it to approximately 3 pH units (from ∼7 to ∼4 pH).

Despite these advances, designing merocyanine photoacids to deliver specific pH changes remains a significant challenge as the observed pH jump depends on several chemical/photophysical properties for which the structure–property relationships are not fully understood. Here, we introduce merocyanines 2b–3d, investigate their photoacidic properties, and identify the key parameters that control the bulk pH change by merocyanines, providing clear guidelines for their ideal application and highlighting their limitations.

In the dark, merocyanine photoacids exist predominantly in three forms: protonated merocyanine (MCH), deprotonated merocyanine (MC), and spiropyran (SP); see Figure 1. The MC undergoes thermal ring-closing (rate constant k_o) to form SP, which can ring-open (rate constant k_c) in the reverse reaction to give an equilibrium constant K_e as in eq 1.

$$K_e = \frac{[SP]}{[MC]} = \frac{k_c}{k_o}$$

(1)

The thermal equilibrium between MC and SP (K_e) is inherently linked to the protonation equilibrium (K_a) between MCH and MC, as in eq 2.

$$K_a = \frac{[MC][H^+]}{[MCH]}$$

(2)

At pH values where MC is preferentially protonated, MCH is thermodynamically stable, and the equilibrium can be shifted entirely to the MCH form at sufficiently low pH. Under visible light irradiation, the MCH undergoes trans to cis isomerization to form cis-MCH, which is reportedly more acidic than MCH. Thus, cis-MCH can only be observed at very low pH to cis-MCH leads to fast ring-closure to the SP form, resulting in increased proton concentrations under irradiation and as such acting as a photoacid.

RESULTS AND DISCUSSION

We synthesized a small library of merocyanines 2a–d, 3a–d in two or three steps (for details on the preparation and characterization, see Supporting Information S2–S4) and used the reported 2a as a reference compound. Substituents were introduced in three different positions (Figure 1; R^1, R^2, and R^3) to study their effects on the proton dissociation behavior. An increase in pK_a values is desirable as this would allow applications near neutral pH values. We opted for unsubstituted phenolic moieties or substitution with a weakly electron-donating group ($R^3 = 'Bu$). This is to prevent a decrease of the pK_a value, which occurs when the molecule is substituted with electron-withdrawing groups that can stabilize the negative charge on the phenolate oxygen. Introducing a methoxy group on the indolinium ring ($R^1 = OMe$) has been reported to increase the pK_a value, so we included examples in our study to explore this effect. Very recently, it was also shown that the introduction of a methoxy group in this position improves the hydrolytic stability.

We studied the effects of the alkyl side chain (R^2) by comparing a negatively charged sulfonate group and a positively charged trimethylammonium group. We used compound 2d to confirm the differences between merocyanines containing an electron-donating versus electron-withdrawing groups (R^3) in addition to comparison with the literature. To determine the change in acidity upon light irradiation of our merocyanines, we applied a recently reported methodology by Pezzato and co-workers. A series of equilibrated UV-visible absorption spectra were collected at different pH values in the dark and under visible light irradiation. Representative data for photoacid 3d are shown in Figure 2. The data were fit to a sigmoidal function to determine the acidity in the dark, pK_a^dark, and under irradiation, pK_a^lev, defined as (see Supporting Information S6.5 for details):

$$K_{a^\text{dark}} = \frac{[H^+][\text{MC} + \text{SP}]}{[\text{MCH}]} = K_a(1 + K_c)$$

(3)

$$K_{a^\text{lev}} = \frac{[H^+][\text{SP}]}{[\text{cis-MCH}]}$$

(4)

The photoacidity I is calculated as the difference between pK_a^dark and pK_a^lev. The values obtained for all compounds are shown in Table 1. Photocoid 2a served as a reference compound, and our obtained values are in good agreement with the literature. The experimentally observed pK_a^dark value is not equivalent to the pK_a value of the MCH form, as previously noted. The pK_a^dark value considers the K_e and the K_a equilibrium because the deprotonation of MCH to MC is linked to the ring-closure to form SP. This implies that pK_a^dark approaches pK_a of MCH when the equilibrium shifts sufficiently toward MC (i.e., $K_e \approx 0$, $[SP] \approx 0$) or if the rate of ring-closure is very slow (i.e., low k_c, as for 2d). In all other cases, the shift in the equilibrium toward the SP form (i.e., $K_c \approx 1$) leads to a decrease in the pK_a^dark
The pKₐ value determined under irradiation can be viewed as the pKₐ value of the cis-MCH form because the equilibrium between cis-MC and SP is shifted entirely to SP when irradiated. The cis-MC form is short-lived and can only be detected by transient absorption spectroscopy, whereas cis-MCH is stable at low pH values (determined by pKₐ,max). In earlier studies, the cis-MCH was assigned as the protonated spiropyran (SPH). More recent work has shown that the assignment as cis-MCH is most appropriate. From a practical perspective, cis-MCH behaves mechanistically as SPH due to an apparent barrierless transition from SP to cis-MCH at low pH. The pKₐ,dark and pKₐ,vis values obtained for our library of compounds cover a range between 4.52–7.11 for pKₐ,dark and 1.03–3.72 for pKₐ,vis. The introduction of a methoxy group onto the indolinium moiety (R1) caused an increase of ca. one unit for both for pKₐ,dark and pKₐ,vis in all compounds (i.e., 2b vs 2c; 3a vs 3d; 3b vs 3c). By contrast, introducing a tert-butyl group (R3, Figure 1) had a negligible effect on the pKₐ,dark and pKₐ,vis values (i.e., 2a vs 2b; 3a vs 3b; 3d vs 3c). The alkylsulfonate-substituted (R², Figure 1) compounds 2a–c have pKₐ,dark and pKₐ,vis values ~1.5–1.7 units higher than those of alkylammonium-substituted photoacids 3a–3d. By removing electron-withdrawing groups (R²) and adding a methoxy group to the indolinium moiety (R₁), we could significantly increase the pKₐ,dark and pKₐ,vis values of the alkylammonium compounds. For example, the pKₐ,dark and pKₐ,vis values for 3d are up to 1.3 units higher than those reported for known compounds 6–11. An overview of pKₐ,dark and pKₐ,vis values of this study (Table 1) as compared to the reported values is shown in Figure 3. Interestingly, modifying the electronic properties by changing the substitution patterns appears to similarly influence pKₐ,dark and pKₐ,vis, resulting in a relatively constant photoacidity parameter Π (3.4–3.9) for our compounds. The known photoacid 2a retained the highest Π value of 3.9 units. As we explain later, Π is not the main limiting factor for generating bulk pH changes in aqueous solutions, as other properties like the solubility of the compounds play a substantial role.

To better understand the effects of the substitution pattern on the pKₐ,dark values, we determined the K₅ equilibrium between photoacid 3d-MCH and the deprotonated forms 3d-MC and 3d-SP. (ii) Equilibrated UV–vis absorbance spectra of photoacid 3d in the dark over a range of pH values (orange, pH = 3.1; yellow/purple, pH = 9.9). (iii) The change in absorbance maxima at equilibrium characteristic for the individual species (orange, λ_MCH = 442 nm; purple, λ_MCH = 538 nm) over the pH range with corresponding fits to eq S1 (Supporting Information S6.4) to determine pKₐ,dark (inflection point). Experimental conditions: [3d] = 16.3 μM, [phosphate buffer] = 20 mM, pH 2.7–9.9, T = 25 °C. (b) pKₐ,vis determination. (i) The K₅ equilibrium between photoacid 3d-cis-MCH and the deprotonated form 3d-SP. (ii) Equilibrated UV–vis absorbance spectra of photoacid 3d under blue light irradiation (λ = 455 nm) at different pH values (blue, pH = −0.8; yellow, pH = 6.1). (iii) The change in absorbance maxima characteristic for the individual species (yellow, λ_MCH = 246 nm; blue, λ_MCH = 383 nm) over the pH range with corresponding fits to eq S1 (Supporting Information S6.4) to determine pKₐ,vis. Experimental conditions: hν (λ = 455 nm), [3d] = 16.3 μM, [phosphate buffer] = 20 mM, pH = 1.1–6.1, T = 25 °C.
Table 1. Critical Parameters of Merocyanine Photoacids 1, 2a–d, and 3a–d

<table>
<thead>
<tr>
<th></th>
<th>pK_{a,c}^{cr}</th>
<th>pK_{a,c}^{dark}</th>
<th>Π</th>
<th>k_{−}/10^{-2} s^{-1}</th>
<th>k_{+}/10^{-2} s^{-1}</th>
<th>Φ_{MCH→SP}</th>
<th>pK_{d}^{cd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.52</td>
<td>4.52</td>
<td></td>
<td>7.6 × 10^{-9}</td>
<td>7.6 × 10^{-9}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>6.27 ± 0.02</td>
<td>6.20 ± 0.04</td>
<td>3.65 ± 0.08</td>
<td>0.54 ± 0.1</td>
<td>2.8 ± 0.5</td>
<td>5.2 ± 1</td>
<td>7.07 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>(6.19 ± 0.06)</td>
<td>(2.47 ± 0.04)</td>
<td>(3.7 ± 0.1)</td>
<td>(0.45)</td>
<td>(3.9)</td>
<td>(8.6 ± 4.9)</td>
<td>(7.20 ± 0.03)</td>
</tr>
<tr>
<td>2b</td>
<td>6.20 ± n.a.</td>
<td>2.81 ± 0.04</td>
<td>3.39 ± 0.04</td>
<td>1.7 ± 0.3</td>
<td>15 ± 3</td>
<td>8.6 ± 2</td>
<td>7.18 ± 0.11</td>
</tr>
<tr>
<td>2c</td>
<td>7.11 ± 0.03</td>
<td>3.72 ± 0.01</td>
<td>3.38 ± 0.03</td>
<td>1.9 ± 0.3</td>
<td>2.3 ± 0.5</td>
<td>1.2 ± 0.3</td>
<td>7.46 ± 0.07</td>
</tr>
<tr>
<td>2d</td>
<td>4.66 ± 0.04</td>
<td>1.88 ± 0.03</td>
<td>2.78 ± 0.05</td>
<td>0.0038</td>
<td>0.0021</td>
<td>0.55</td>
<td>4.85 ± 0.04</td>
</tr>
<tr>
<td>3a</td>
<td>4.66 ± 0.04</td>
<td>1.03 ± 0.08</td>
<td>3.63 ± 0.09</td>
<td>0.18</td>
<td>22 ± 4</td>
<td>123 ± 23</td>
<td>6.76 ± 0.09</td>
</tr>
<tr>
<td>3b</td>
<td>6.68 ± 0.08</td>
<td>1.20 ± 0.02</td>
<td>3.48 ± 0.05</td>
<td>0.57</td>
<td>104 ± 22</td>
<td>183 ± 40</td>
<td>6.95 ± 0.12</td>
</tr>
<tr>
<td>3c</td>
<td>5.56 ± 0.01</td>
<td>1.98 ± 0.01</td>
<td>3.58 ± 0.01</td>
<td>0.62</td>
<td>25 ± 6</td>
<td>41 ± 10</td>
<td>7.18 ± 0.10</td>
</tr>
<tr>
<td>3d</td>
<td>5.55 ± n.a.</td>
<td>1.78 ± 0.03</td>
<td>3.76 ± 0.03</td>
<td>0.17</td>
<td>4.4 ± 0.9</td>
<td>26 ± 5</td>
<td>6.97 ± 0.08</td>
</tr>
</tbody>
</table>

“pK_{a,c}^{dark}” experimentally observed value for the proton dissociation of the MCH form, pK_{a,c}^{dark} ≠ pK_{a,c}^{cr}; “pK_{a,c}^{dark}” experimentally observed value for the proton dissociation of the photoacids under blue light irradiation (λ = 455 nm), equivalent to the pK_{a} of cis-MCH. pK_{a,c}^{dark} and pK_{a,c}^{cr} were determined from the fit to eq S1 (Supporting Information S6.4) and reported as the average of two fits; error from standard deviation (n.a. = error negligible). “Photocidity parameter; Π = pK_{a,c}^{dark} − pK_{a,c}^{cr};” uncertainty from error propagation. "Thermal equilibrium constant describing MC ⇌ SP as defined in Figure 1, calculated from eq 1 (Supporting Information S6.6);” uncertainty from error propagation. "Calculated from eq 6 with pK_{a,c}^{dark} experimentally determined from fit to eq S1 (Supporting Information S6.4) and K_{e} from eq 1 (Supporting Information S6.6). "Quantum yields for the SP formation from MCH determined by transient absorption (Supporting Information S7)." Reported for MCH in water; assuming SP has negligible solubility, we determine that this value would also be the pK_{a} see ref 15. K_{e} and K_{f} values from Tables 1 and S1 in ref 31. "Averaged over three temperatures (T = 25 ± 1 °C) extracted from the linear fit in the Eyring plot; errors calculated by standard deviation (details in Supporting Information S6.5).” From ref 42. “Significant hydrolysis was observed at pH values where the merocyanine form is deprotonated. The rate of hydrolysis K_{h,0,w} was determined as 1.6 × 10^{-3} s^{-1}; for details, see Supporting Information S6.6.” Calculated from pK_{a,c}^{dark} = −log(K_{e}(1 + K_{e})) with K_{e} determined from the fit to eq S1. "Error from single exponential fit is negligible; temperature dependence was not determined. “Temperature-dependent error was not determined; error from fit is negligible. “Because of slow thermal equilibration, the experimentally observed pK_{a} ≠ pK_{a,c}^{dark} determined from the fit to eq S1 (Supporting Information S6.4).” From ref 37.

Figure 1. Overview of the photoacidity parameters of our study (orange-yellow bars) as compared to the literature (Supporting Information S11.5) (gray bars), 31, 33a pK_{a,c}^{cr} (yellow), pK_{a,c}^{dark} (orange), and pK_{a} (orange box) values of photoacids with their corresponding K_{e} values shown above.

time (Δt) to the exponential function given in eq 5 to obtain the observed thermal equilibration rate constant, k_{obs} at different pH values:

\[A_t = A_{eq} + (A_0 - A_{eq}) \times e^{-k_{obs} \times \Delta t} \] (5)

where \(A_{eq} \) is the absorption at equilibrium and \(A_0 \) is the absorption at the start of the measurement.

The varying degree of protonation coincided with a change in k_{obs} over the pH range (Figure 6a; see Supporting Information S6.6 for other compounds). At low pH (pH ≪ pK_{a}), k_{obs} is equal to k_{a} as the ring-closing reaction is impeded by protonation of MC, which gives the thermodynamically stable MCH form. 31, 33a

The rate constants for the ring-closing reaction (k_{c}) of photoacids 2a–c were determined following a reported procedure31 by monitoring the equilibration process at high pH with UV–vis absorbance spectroscopy. At high pH (pH ≫ pK_{a}, [MCH] ≈ 0), the observed rate constant is equal to the sum of the ring-closing and ring-opening reactions (k_{obs} = k_{c} + k_{ν}), as expected for a reversible first-order process. Photoacids 3a–d have significantly faster rates of ring-closing, which prevented application of this method. Instead, we observed the equilibration process by perturbing the equilibrium by UV-
irradiation (265 nm) at high pH, using a custom-made setup to give a higher time resolution (details in Supporting Information S6.3). The K_c values were then calculated using eq 1. Variable-temperature studies of the equilibration process also allowed us to define a temperature-based error of K_c (see Supporting Information S6.6).

The K_c values of the alkylsulfonate compounds $2a$–d lay in the range of 0.6–9, and the value for photoacid $2a$ agrees with the reported values (5.2 ± 1 vs 8.6 ± 4.9, ref 31). The K_c values of the alkylammonium compounds $3a$–d are significantly higher, ranging from ~ 30 to ~ 180, meaning the SP form is largely preferred over the MC form.

The thermodynamic preference of the SP form is related to a decrease in the stability of the positive charge on the indolinium nitrogen in the MC/MCH forms. For alkylammonium compounds $3a$–d, the positive charge of the side chain appears to destabilize the positive charge of the indolinium nitrogen, leading to an increased relative stability of the SP form (high K_c). By comparison, the negatively charged alkylsulfonate side chain in $2a$–d has a more stabilizing effect on the MC form (lower K_c). The distance between the charge on the side chain and that on the indolinium nitrogen has been previously reported to have an influence on the relative stability of the MC form (e.g., compound $2a$ vs 4 and 5; 6 vs 8; 7 vs 9; see Figure 3 for structures).31,33a The positively charged alkyl ammonium side chain also results in lower pK_a values than those of the sulfonate derivatives. For example, the pK_a of $3a$ is 1.6 units lower than that of $2a$; the pK_a of 6 is 1.2 units lower than that of $2d$.

Introducing a methoxy group on the indolinium ring (R^1) appears to have a stabilizing effect on the positively charged nitrogen, leading to a decrease in K_c. By contrast, substitution on the phenolic moiety (R^3) has a minimal effect on K_c. For all compounds, higher K_c values led to a higher acidity of the system (i.e., pK_a^{dark} and pK_a^{hih}).

The pK_a values of MCH were then calculated using eq 1. Variable-temperature studies of the equilibration process also allowed us to define a temperature-based error of K_c (see Supporting Information S6.6).

We studied the achievable pH changes caused by the photoacids over a pH range. This required considering the following key parameters: (1) the logarithmic scale of pH, as higher pH values require a smaller concentration of protons to induce a pH change; (2) the autoionization of water (K_w) at high pH values; (3) the solubility of the photoacid, as higher [MCH] will result in a higher concentration of released protons upon irradiation; (4) pK_a that defines the concentration of MCH present at the respective pH values; (5) pK_a^{cis} (cis-MCH) under irradiation that defines a lower limit of proton dissociation; and (6) the extent of photoswitching, as full conversion of MCH to SP under irradiation generates the maximum concentration of released protons.

To evaluate the pH switching, we first calculated the mole fractions of the individual species (MCH/MC/SP) over the pH range in the dark using pK_a and K_c. The mole fractions under
irradiation (cis-MCH/SP) were calculated using pH assuming a complete bleach of the MCH form. The distribution of the individual species over the pH range is shown for photoacid 3d in Figure 4a (see Supporting Information S6.7 for data of the other photoacids).

We studied the pH changes of photoacid 3d, which is more soluble (~8 mM) than the broadly applied alkylsulphonate derivative 2a (~0.2 mM). Blue light irradiation (λ = 450 nm) of concentrated solutions of 3d resulted in a drop of the pH value. After the light was removed, the pH recovered to its initial value, making this process fully reversible (Figure 4b). We adjusted the initial pH of the solution (pHinitial) by addition of minimal amounts of concentrated acid/base and measured the change in pH upon visible light irradiation at different initial pH values. At low pH, the change upon irradiation (ΔpH) was minimal due to the high concentration of cis-MCH and the large proton concentrations needed to induce a change in pH. As the pH increased, the light-induced pH drop increases, reaching a maximum of more than 3 pH units at an initial pH slightly above its pKdark value (5.56). At higher initial pH values, the pH drop under irradiation is minimal, due to the very low concentration of MCH and increasing concentration of MC. These observations confirm that increasing the pKdark value allows optimized bulk pH changes as the initial pH value is raised.

The maximum change in pH upon irradiation is due to a correlation between the concentration of MCH and the proton concentration needed to result in a change in pH. As indicated above, the significant reduction of the achievable ΔpH at higher pH can be partially explained by the very low MCH concentration and the high concentration of hydroxide ions. At very high pH values (pH ≈ 9), blue light irradiation appeared to result in hydrolytic degradation, which is known to occur for merocyanines.31,33,41b

Another crucial aspect at high pH is the increasing relative concentration of MC. Previous transient absorption studies35 of 2a indicated excitation of MCH to be the predominant pathway to SP formation, with the MC form having a negligible quantum yield (<1%) for photoisomerization to SP. Alkylsulphonate35,39 and alkylammonium merocyanine36,42 derivatives have been studied previously at the picosecond timescale to elucidate the isomerization mechanism. It was reported that excitation of 2a-MCH led to the trans-to-cis isomerization and deprotonation on a picosecond timescale.35 Depending on the orientation of the phenolic moiety in the cis-MC form, a small proportion was proposed to undergo prompt ring-closure to the SP form (within picoseconds).35 A longer-lived species was identified as the cis-MC form, which needs to rotate around the single bond to undergo ring-closure accounting for the longer lifetime (≥3.5 ns).35

We measured the transient absorption of photoacids 2a–c, 3a–d from 1 ns to 100 μs at different pH values to observe the decay of this species and calculate the quantum yields of MCH/MC for the SP formation. Representative data of photoacid 3a are shown in Figure 5. We used aqueous solutions of samples at pH values where the MCH form dominates and pumped at 355 nm to target the MCH absorption band. The decay of the excited-state species (Figure 5a, red) was observed, resulting in a spectrum containing only the persistent ground-state bleach (Figure 5a, blue).

The respective kinetic traces are shown in Figure 5b. The excited-state species with a positive change in optical density (ΔOD) at 520–570 nm decays completely over 100 ns, which we propose to be cis-MC, in line with previous assignments.35

![Figure 5](image-url)

This long-lived excited-state species of photoacids 2a–c, 3a–d had lifetimes of 30–550 ns, confirming previous estimates for 2a (≥3.5 ns).35 The ground-state bleach at 420–450 nm persists to at least 100 μs and corresponds to the maximum absorbance of MCH. The persistent ground-state bleach indicated the concentration of MCH assumed to form SP and was used to calculate the quantum yields of SP formation for photoacids 2a–c, 3a–d. Quantum yields for the isomerization of MCH to SP ranged from 3% for 3b and 3d to 16% for 2c. The quantum yield for 2a was 11%, previously estimated as 37% by UV–vis absorbance,30,31,42 albeit with excitation at longer wavelengths.

Similar transient absorption measurements at high pH were used to determine the quantum yields of isomerization by MC. For all compounds, these quantum yields were <1% and within error of zero (Supporting Information S7.3, S8). This confirms that the predominant pathway for photoisomerization is from the MCH form. In addition, our pH switching experiments suggest that the isomerization quantum yield of MCH is not a limiting factor to generate bulk pH changes.

With these data in hand, we developed a model to predict the expected pH changes upon irradiation on the basis of the initial pH value. The solubility, pKdark, and pKme values of the photoacids allow us to predict the pH change upon irradiation at any given initial pH value for any merocyanine with this equilibrium system. Our model assumes the protons contributing to the pH drop solely originate from MCH as well as a complete bleach of MCH upon irradiation (detailed considerations in Supporting Information S11.2).
Figure 6. (a) Observed rate constants k_{obs} over the pH range of photoacid 3d for the thermal equilibration of MC \rightleftharpoons SP. Samples at different pH values were measured in 20 mM phosphate buffer to ensure the pH was constant during the isomerization. Rate constants were obtained from a first-order exponential fit to the change in the characteristic absorbance peak (orange, MCH; purple, MC) over time after the equilibrium was perturbed (boxes, change in pH; triangle, after 265 nm light irradiation; see Supporting Information S6.3, S6.6). (b) The pH recovery in the dark of a concentrated solution of 3d after blue light irradiation ($\lambda = 450$ nm); initial pH values before irradiation are indicated, and the respective prediction of the model is shown as dashed lines.

For photoacid 3d, the model predicts a steady increase of ΔpH_{eq} as the pH value increases (Figure 4c) with a maximum ΔpH_{eq} of \sim3.5 reached at an initial pH value of \sim7−8 ($c = 8$ mM), followed by a drastic decrease at higher pH. The model matches the experimental data with reasonable accuracy up to an initial pH value of \sim6−7. The model diverges from the experimental data above pH 7 where larger ΔpH_{eq} values were predicted at pH values with a very low MCH concentration ([MCH] = 0). This deviation is likely the result of incomplete beaching under these conditions due to the low isomerization quantum yield of MC and faster thermal processes at high pH values. A less concentrated sample ($c \approx 0.9$ mM) also showed this behavior and highlighted the concentration dependence of the resulting pH change. Increasing the concentration of 3d by one order of magnitude increases the pH drop by one pH unit.

Bulk pH switching experiments were also performed with photoacid 3c (Supporting Information S10), which confirmed the general trend of increasing ΔpH_{eq} with increasing initial pH values and a drastic decrease of ΔpH_{eq} at higher pH values (\sim6).

Despite the higher solubility of 3c (up to \sim20 mM), a maximum ΔpH_{eq} of only \sim2.7 units was observed experimentally. The model predicted a larger ΔpH_{eq} (\sim3.8) than we found experimentally with a similar discrepancy in shape as for photoacid 3d. Some of the divergence of the model can be attributed to concentration effects due to the high solubility of 3c, as aggregation is known to occur for other merocyanines.44 We confirmed the concentration-dependence of 3c above 1 mM by NMR spectroscopy, surprisingly finding that the SP form aggregates at high concentrations (see Supporting Information S5). At lower concentrations of 3c ($c \approx 0.8$ mM), the experimental data is in similar agreement to the pH drop model as for 3d (Supporting Information S11.4), consistent with negligible aggregation below 1 mM.

For application of these merocyanine photoacids, the timescale of switching is also of the highest importance. Photoacids 2a−c, 3a−d studied here rapidly reached photostationary states, typically within 20−30 s at concentrations for UV−visible absorption and for saturated solutions. Therefore, we propose the time-limiting factor for pH switching to be the recovery of pH in the dark after irradiation (Figure 6b), which is nonlinear over time. This is caused by the evolving rate constant k_{obs} of the SP−MC equilibrium as the pH recovers over time in the dark. We developed a model to describe the pH recovery over time considering the pH-dependent parameters k_{obs}, the concentrations of MCH, MC, and SP, the extent of the photoisomerization to SP (“bleaching”), as well as the equilibrium with water defined by K_w (details in Supporting Information S12). We assumed the protonation events are sufficiently fast that they could be modeled as thermodynamic equilibria defined by K_a, K_{buc}, and K_w, and we incorporated the K_c equilibrium as kinetic steps. Parameters were constrained within experimental errors with the largest error stemming from the sensitivity of the kinetic parameters to temperature. As our experimental setup could only limit temperature fluctuations ≤ 1 °C at best, the error margin for k_0 and k_∞ was slightly increased to account for this. We did not include a thermal cis-MCH to MCH process as such an isomerization has been proposed to be very slow as compared to equilibration between cis-MCH and SP, albeit for a different spiroproyan derivative.36 Further details are provided in Supporting Information S12, along with the Python code used in the modeling.

The model reproduces the experimental lineshape, timescale, and pH recovery values well, with some minor deviations in lineshape and the final equilibrium positions. Slight temperature fluctuations during the pH recovery result in a variation of the temperature-dependent rate constants k_0 and k_∞, which are modeled as constants. This sensitivity to temperature could account for the small deviations between the model and the experimental data.

Very small changes in concentrations, the many interlinked equilibrium processes, and sensitivity to temperature changes make these systems highly susceptible to small changes and challenging to model. Nonetheless, we can see that, depending on the initial pH, the measured recovery of the same photoacid (3d) varied by almost one order of magnitude (pH$_{initial}$ 7.06, apparent $t_{1/2} \approx 1.4$ min; pH$_{initial}$ 5.02, apparent $t_{1/2} \approx 10$ min) over the same pH range, as estimated from the data in Figure 6b. The nonlinear behavior of the system and pH-tunability could give rise to interesting applications. Implementation of switching cycles, which do not allow full recovery, could enable fast cycling, for example, between pH 5 and 6, by timing the irradiation and recovery time of the system. Modifying the speed of pH recovery could also open new opportunities, for example, in gel research, where control over the pH tunes the properties of the gel.
We demonstrated the reversibility of visible light-induced pH switching of photoacid 3d at reasonable timescales (2–3 min per cycle at ambient temperature). Photoacid 3d has the highest reported pKₐ, dark value (5.56) of the alkylammonium merocyanine derivatives, and combined with its good solubility we were able to switch the pH of a solution by ∼3.2 units from pH 6.5 to pH 3.3 over 16 cycles without showing significant decomposition (Figure 7, loss of ΔpH = 0.1). By comparison, photoacid 2a and its analogue with a butyl sulfonate chain (5) have exhibited pH switching of ∼2 and 2.5 units, respectively.16a,31 A very recent report of a related methoxy derivative increased this pH switching to 3 units.32

Figure 7. Visible light-induced (λ = 450 nm, indicated by blue boxes) pH switching of a concentrated solution of photoacid 3d (∼8 mM) by ∼3.2 units over 16 cycles (left). Highlighting key parameters of merocyanine photoacids to optimize light-induced pH switching (right).

■ CONCLUSIONS

We have determined the key parameters that underpin the photoacidity and thermal recovery processes of merocyanines 2b–d and 3a–d. The pH switching range is dictated by the thermodynamic parameters pKₐ, dark and pKₐ, light, as well as the solubility, while the speed of the pH recovery in the dark is controlled by kinetic parameters (kₐ, kₜ). The photoacidity (II) appears to be relatively constant regardless of the substitution pattern. These key parameters allow the pH switching behavior of merocyanine photoacids to be predicted. Comparison with the literature provides an understanding of how electronic effects influence these parameters, providing clear guidelines for future designs. Specific and reversible pH changes can be accessed by choosing a suitable photoacid, making merocyanine photoacids an incredibly useful tool for generating custom pH switching behavior.

We identified that increasing pKₐ, dark values and operating the merocyanine photoacids at higher pH values maximized the achievable light-induced pH changes. The upper pH operating range is limited by the pKₐ, dark value and the autoionization of water. The solubility also plays a crucial role in changing bulk pH values with alkylammonium-functionalized merocyanines being more soluble than alkylsulfonate derivatives, with higher concentrations resulting in larger pH changes.

The quantitative model we developed allows the prediction of light-induced pH changes based on the concentration, pKₐ, dark and pKₐ, light values and can be applied to many merocyanine photoacids (see Supporting Information S11, S12). We have also developed a kinetic model to describe the rate of pH recovery in the dark after visible light irradiation, which is in agreement with our experimental data and may also prove generally applicable to merocyanine photoacids. Finally, we were able to increase the light-induced pH change of merocyanine photoacids to ∼3.2 units (pH 6.5 to pH 3.3) using photoacid 3d with high reversibility.

Ultimately, the pH changes that can be obtained will depend on the buffering capacity of the system. That is, the pH changes we demonstrate are the maximum for these compounds as the solution does not contain other ions (other than KCl) that can buffer the changes in pH. The ability to tune the magnitude and timescales of pH switching offers exciting new possibilities in any research area that applies pH to control chemical or biological processes, including using photoswitches to drive systems away from equilibrium.45

■ ASSOCIATED CONTENT

 précis

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c08810.

Synthetic procedures, spectroscopic data, and all photoswitching and fitted data (PDF).

Photoacid switching code, included as a Jupyter notebook (ipynb); this format allows a readable combination of code and results and is a standard for data exploration (ZIP)

■ AUTHOR INFORMATION

Corresponding Author

Jonathon E. Beves — School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia; orcid.org/0000-0002-5997-6680; Email: j.beves@unsw.edu.au

Authors

Laura Wimberger — School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia

Shyamal K. K. Prasad — School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia

Martin D. Peeks — School of Chemistry, UNSW Sydney, New South Wales 2052, Australia; orcid.org/0000-0002-9057-9444

Joakim Andréasson — Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden

Timothy W. Schmidt — School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia; orcid.org/0000-0001-6691-1438

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c08810

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Australian Research Council (J.E.B., FT170100094; T.W.S., S.K.K.P., and J.E.B., Centre of Excellence in Exciton Science CE170100026). We acknowledge the Mark Wainwright Analytical Centre at UNSW Sydney for access to the NMR facility.

■ REFERENCES