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Graph-structured tensor optimization for
nonlinear density control and mean field games

Axel Ringh, Isabel Haasler, Yongxin Chen, and Johan Karlsson

Abstract—In this work we develop a numerical method for solving a
type of convex graph-structured tensor optimization problems. This type
of problems, which can be seen as a generalization of multi-marginal
optimal transport problems with graph-structured costs, appear in many
applications. In particular, we show that it can be used to model and solve
nonlinear density control problems, including convex dynamic network
flow problems and multi-species potential mean field games. The method
is based on coordinate ascent in a Lagrangian dual, and under mild
assumptions we prove that the algorithm converges globally. Moreover,
under a set of stricter assumptions, the algorithm converges R-linearly.
To perform the coordinate ascent steps one has to compute projections of
the tensor, and doing so by brute force is in general not computationally
feasible. Nevertheless, for certain graph structures we derive efficient
methods for computing these projections. In particular, these graph
structures are the ones that occur in convex dynamic network flow
problems and multi-species potential mean field games. We also illustrate
the methodology on numerical examples from these problem classes.

Index Terms—Tensor optimization problems, Multi-marginal optimal
transport, Density control, Mean field games.

I. INTRODUCTION

A strong trend in many research fields is the study of large-
scale systems consisting of components that are subsystems with
specific characteristics. Examples of such technological systems that
are currently emerging include smart electric grids [31], and road
networks with self-driving cars [58]. There are also many such
problems in biology, ecology, and social sciences, including, e.g.,
cell, animal, or human populations [78]. A major challenge is to
understand and control the macroscopic behavior of such complex
large-scale systems.

Since the number of agents is often too large to model each agent
individually, the overall system is typically viewed as a flow or den-
sity control problem. In this setting, the aggregate state information of
the agents is often described by a distribution or density function, and
classical problems of this form include, e.g., network flow problems.
More recently, there has been a large interest in control and estimation
of densities, and one key result is that certain density control problems
of first-order integrators can be seen as optimal transport problems
[5]. This correspondence can be extended to general dynamics, and
thus the optimal transport problem can be interpreted as a density
control problem of agents (subsystems) with general dynamics [13],
[17], [44].

Even though optimal transport problems are linear programs, the
number of variables is often very large and thus the problems can be
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computationally challenging. A computational breakthrough is the
use of Sinkhorn’s method for computing an approximate solution.
This builds on the insight that the entropy regularized problem
can be efficiently solved using dual coordinate ascent [26], [65].
Interestingly, the entropy regularization term can also be interpreted
in this setting as introducing stochasticity in the dynamics of the
subsystems, and can in fact be shown to be equivalent to the
Schrödinger bridge problem [19], [53], [54].

Many density flow problems can be viewed as a two-marginal
problem. However, many problems involve using a time grid in
order to model, e.g., congestion, instantaneous costs, or observations
[39]. For such problems it is natural to use versions of the multi-
marginal optimal transport problem, where marginals represent the
distributions at different time points j = 1, . . . , T . The multi-
marginal optimal transport problem is an optimization problem where
a nonnegative tensor is sought to minimize a linear cost subject
to constraints on the marginals, where the marginals correspond to
projections of the tensor on specific modes.

In this paper, we generalize the multi-marginal optimal transport
problem and consider optimization problems on tensors with certain
structures that appear in, e.g., density control problems and mean field
games. More specifically, for such control problems with identical
and indistinguishable agents, the Markov property may be used to
separate the problem into T − 1 parts, where each part represents
the evolution during time interval [j, j + 1] for j = 1, . . . , T − 1.
The transition of the agents from time j to time j + 1 can thus be
specified by the bimarginal projection of the tensor onto the joint
two marginals j and j + 1, and thus this problem is a structured
tensor problem with structure corresponding to a path graph (see,
e.g., [23], [29], [40]). However, when the agents have heterogeneous
dynamics or objectives, the distribution at a given time does not
contain all necessary information about the past and thus the Markov
property does not hold. Nevertheless, many problems of interest can
instead be modeled by introducing additional dependencies between
marginals. For example, traffic flow problems with origin destination
constraints can be formulated by introducing dependence between
the initial and final node [39], and Euler flow problems can be seen
as a special case of this [6]. By introducing an additional marginal
representing different types of agents we can also formulate and solve
multi-species dynamic flow problems and large multi-commodity
problems [41]. Interesting to note in this context is that the algorithms
developed to solve this type of structured problems are closely related
to the unified propagation and scaling algorithm for inference in
graphical models [74].

Many of the problems in the previous paragraph can be formulated
as linear optimization problems. Nevertheless, in many situations it
is also natural to consider problems with convex costs, for example
in potential mean field games [7], but standard convex optimization
methods in general do not scale to this type of large-scale problems.
The contribution of this paper is therefore to develop a theoretical
framework for a type of convex structured tensor optimization prob-
lems, along with numerical solution methods and convergence results
for these. We also illustrate how this type of problems can be used to
model and solve, e.g., convex dynamic flow problems [63], density
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control problems, and multi-species potential mean field games. An
important observation is that the dual problem has a decomposable
form, and can be efficiently solved using dual coordinate ascent
[48] (cf. [65]). Moreover, the structure in these problems can be
represented by a graph connecting the marginals, and by utilizing
this graph we show how marginal and bimarginal projections of the
tensor can be computed efficiently, thus alleviating the computational
bottleneck of the algorithm (cf. [41]).

The outline of the paper is as follows: in Section II we intro-
duce some background material on optimal transport and convex
optimization. The main results are presented in Section III, where
we formulate the graph-structured tensor optimization problem of
interest and present a primal-dual framework for solving it, together
with a Sinkhorn-type algorithm for iteratively solving the dual
problem. Conditions for convergence and R-linear convergence are
also presented. Based on this, in Section IV and V we develop
algorithms for solving two important types of problems: convex
dynamic network flow problems and multi-species potential mean
field games, respectively. This is done by casting the correspond-
ing problem as a graph-structured tensor optimization problem and
then specializing the general algorithm to the particular instance.
Moreover, in each of the two sections we also present numerical
examples to illustrate the use and performance of the algorithms.
Finally, Section VI contains some concluding remarks. Some proofs
are deferred to the appendix for improved readability. This paper
builds on [68], where we presented an algorithm, without proof of
convergence, for the multi-species mean field game in a simplified
setting (see also remark V.3).

II. BACKGROUND

This section presents background material, in particular on graph-
structured multi-marginal optimal transport. We also introduce some
concepts from convex analysis and convex optimization that are
needed in this work.

A. The graph-structured multi-marginal optimal transport problem

The optimal transport problem seeks a transport plan for how to
move mass from an initial distribution to a target distribution with
minimum cost. This topic has been extensively studied, see, e.g.,
the monograph [77] and references therein. An extension of this
problem is the multi-marginal optimal transport problem, in which a
minimum-cost transport plan between several distributions is sought
[6], [29], [36], [59], [64], [70], [71]. In this work we consider the
discrete case of the latter, where the marginal distributions are given
by a finite set of T nonnegative vectors1 µ1, . . . , µT ∈ RN+ . The
transport plan and the corresponding cost of moving mass are both
represented by T -mode tensors M ∈ RN

T
+ and C ∈ RN

T
, respec-

tively. More precisely, Mi1...iT and Ci1...iT are the transported mass
and the cost of moving mass associated with the tuple (i1, . . . , iT ),
respectively. The total cost of transport is therefore given by

〈C,M〉 :=
∑

i1,...,iT

Ci1...iTMi1...iT .

Moreover, for M to be a feasible transport plan, it must have the given
distributions as its marginals. To this end, the marginal distributions
of M are given by the projections Pj(M) ∈ RN+ , where

(Pj(M))ij :=
∑

i1,...,ij−1,ij+1,iT

Mi1...iT ,

1To simplify the notation, we assume that all the marginals have the same
number of elements, i.e., µj ∈ RN . This can easily be relaxed.

and hence M is feasible if Pj(M) = µj for j = 1, . . . , T . A
generalization of this optimization problem is to not necessarily
impose marginal constraints on all projections Pj(M), but only for
an index set Γ ⊂ {1, . . . , T }. The discrete multi-marginal optimal
transport problem can thus be formulated as

minimize
M∈RNT

+

〈C,M〉 (1a)

subject to Pj(M) = µj , j ∈ Γ. (1b)

Problem (1) is a linear program, however solving it can be
computationally challenging due to the large number of variables.
An approach for obtaining approximate solutions in the bimarginal
case is to add a small entropy term to the cost function and solve
the corresponding perturbed problem [26] (see also [65]). This
perturbed problem can be solved by using the so-called Sinkhorn
iterations.2 The approach has been extended to the multi-marginal
setting [6], [29], [59], however in this case it only partly alleviates
the computational difficulty. More precisely, in the multi-marginal
setting the entropy term is defined3 as

D(M) :=
∑

i1,...,iT

(
Mi1...iT log(Mi1...iT )−Mi1...iT + 1

)
,

and the optimal solution to the perturbed problem can be shown to
take the form [6], [29]

M = K�U,

where K = exp(−C/ε), � denotes the elementwise product, and
U is the rank-one tensor

Ui1...iT =
∏
j∈Γ

u
(ij)

j ,

i.e., U = (⊗j∈Γuj)⊗(⊗j∈{1,...,T }\Γ1), where ⊗ denotes the tensor
product and 1 denotes a vector of ones. In fact, the variables uj are
the logarithms of the Lagrangian dual variables in a relaxation of
the entropy-regularized version of (1). Moreover, the (multi-marginal)
Sinkhorn iterations iteratively update uj to match the given marginals:

uj ← uj � µj � Pj(K�U), for j ∈ Γ,

where � denotes elementwise division. However, in the multi-
marginal case, computing Pj(K � U) is challenging since the
number of terms in the sum grows exponentially with the number
of marginals, and the latter is also reflected in complexity bounds for
the algorithm [55]. Nevertheless, in some cases when the underlying
cost C is structured the projections can be computed efficiently. In
particular, this is the case for certain graph-structured costs.

To this end, let G = (V, E) be a connected graph with T = |V|
nodes, and consider the optimization problem

minimize
M∈RNT

+

〈C,M〉+ εD(M) (2a)

subject to Pt(M) = µt, t ∈ Ṽ, (2b)

where Ṽ ⊂ V is a set of vertices. Moreover, consider cost tensor C
with the structure

Ci1...iT =
∑

(t1,t2)∈E

C
(t1,t2)
it1 ,it2

, (3)

where C(t1,t2) ∈ RN×N , which in particular means that the linear
cost term takes the form

〈C,M〉 =
∑

(t1,t2)∈E

〈C(t1,t2), Pt1,t2(M)〉.

2In fact, the iterations have been discovered in different settings and
therefore also have many different names; see, e.g., [19], [51].

3In this work, we use the convention that 0 · (±∞) = (±∞) · 0 = 0.
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Here Pt1,t2(M) ∈ RN×N+ denotes the joint projection of the tensor
M on the two marginals t1 and t2, given by

(Pt1,t2(M))it1 ,it2 :=
∑

{i1,...,iT }\{it1 ,it2}

Mi1...iT .

Problem (2) with a cost tensor structured according to (3) is called a
(entropy-regularized) graph-structured multi-marginal optimal trans-
port problem [30], [40], [41]. Moreover, for many graph structures,
the projections Pj(M) can be efficiently computed, see, e.g, [2], [6],
[29], [30], [39]–[43], [72], and hence the Sinkhorn iterations can be
used to efficiently solve such problems.

B. Convex analysis and optimization

We need the following definitions and results from convex analysis
and optimization. For extensive treatments of the topic, see, e.g.,
the monographs [4], [56], [69]. To this end, let f : Rn → R̄ :=
R ∪ {±∞} be an extended real-valued function. The epigraph of
f is defined as epi(f) := {(x, η) ∈ Rn × R | f(x) ≤ η},
and f is called convex if epi(f) ⊂ Rn+1 is a convex set. A
function f is lower-semicontinuous if and only if epi(f) is closed
[69, Thm. 7.1]. The effective domain of f is defined as dom(f) :=
{x ∈ Rn | f(x) < ∞}, and f is called proper if f(x) > −∞
for all x ∈ Rn and dom(f) 6= ∅. A convex set C is called
polyhedral if it can be written as the intersection of a finite number
of closed half spaces. A convex function f is called polyhedral
if epi(f) is polyhedral. The Fenchel conjugate of a function f
is defined as f∗(x∗) := supx〈x∗, x〉 − f(x). A convex, proper,
lower-semicontinuous function f is called co-finite if epi(f) contains
no non-vertical half-lines, which is equivalent to that f∗ is finite
everywhere, i.e., that dom(f∗) = Rn, [69, Cor. 13.3.1].

The subdifferential of a function f in a point x is the set ∂f(x) :=
{u ∈ Rn | 〈y − x, u〉+ f(x) ≤ f(y) ∀ y ∈ Rn}, and if f is proper,
convex, and differentiable in x with gradient ∇f(x), then ∂f(x) =
{∇f(x)} [4, Prop. 17.31]. A convex, proper, lower-semicontinuous
function f is called essentially smooth if i) it is differentiable on
int(dom(f)), i.e., on the interior of the effective domain, and ii)
lim`→∞ ‖∇f(x`)‖ → ∞ for any sequence {x`}` ⊂ int(dom(f))
that either converges to the boundary of int(dom(f)) or is such that
‖x`‖ → ∞. Finally, an operator A : Rn → Rn is called strongly
monotone if there exists a γ > 0 such that 〈Ax − Ay, x − y〉 ≥
γ‖x− y‖2 for all x, y ∈ Rn.

III. CONVEX GRAPH-STRUCTURED TENSOR OPTIMIZATION

In this work, we consider a family of optimization problems that
generalizes problems of the form (2). To this end, let G = (V, E) be
a connected graph with T = |V| nodes, and let C ∈ R̄N

T
be a cost

tensor that takes the form (3). The convex graph-structured tensor
optimization problems of interest are problems of the form

minimize
M∈RNT

+

〈C,M〉+ εD(M) +
∑
t∈V

g(t)(Pt(M))

+
∑

(t1,t2)∈E

f (t1,t2)(Pt1,t2(M)), (4)

where g(t) and f (t1,t2) are proper, convex, and lower-semicontinuous
functionals; further assumptions on these functionals will be imposed
where needed. The reason for our interest in problems of the form
(4) is that a number of different applications can be modeled as such
problems. In particular, this is true for convex dynamic network flow
problems, and potential multi-species mean field games. These two
applications are studied in detail in Sections IV and V, respectively.

Remark III.1. To see that problems of the form (4) is a generaliza-
tion of the graph-structured optimal transport problem (2), let IA(·)
denote the indicator function on the set A, i.e., the function

IA(x) :=

{
0, if x ∈ A
∞, else,

and note that this function is proper, convex, and lower-
semicontinuous if and only if A is a nonempty, closed, convex
set. Now, (2) is recovered from (4) by taking g(t)(Pt(M)) =
I{µt}(Pt(M)) for t ∈ Ṽ and g(t)(Pt(M)) ≡ 0 otherwise, and
f (t1,t2)(Pt1,t2(M)) ≡ 0 for all (t1, t2) ∈ E . Another particular
case of interest is a version of (2), but where some of the equality
constraints are replaced by inequality constraints, cf. [41].

Remark III.2. In problem (4) the functions f (t1,t2) and the tensor C
are defined on the same set of edges E . This is done for convenience
of notation, and is not a restrictive assumption. To see this, note
that it is possible to define certain functions f (t1,t2) to be the zero
function, or to take certain matrices C(t1,t2) in the decomposition
(3) to be the zero-matrix.

Note that (4) is typically a large-scale problem, where the full
set of variables may neither be stored nor manipulated directly.
Therefore one must utilize the problem structure in order to compute
the solution. In this section, we develop a method for such problems,
based on generalized Sinkhorn iterations. This methodology for
handling the problem builds on deriving the Lagrangian dual of an
optimization problem that is equivalent to (4), and solving this dual
using coordinate ascent. As we will see, the method exploits the graph
structure and the algorithm is efficient when the graph is simple, i.e.,
the tree-width is low (cf. [30], [41], [43]), and when the functionals
g(t) and f (t1,t2) are in some sense simple.

A. An equivalent problem and existence of solution

We first introduce and analyze a problem that is equivalent to (4),
and give conditions under which the latter has an optimal solution. To
this end, introducing the variables µt, t ∈ V , and Rt1,t2 , (t1, t2) ∈ E ,
problem (4) can be rewritten as

minimize
M∈RNT

+ , µt∈RN , t∈V
Rt1,t2

∈RN×N , (t1,t2)∈E

〈C,M〉+ εD(M) +
∑
t∈V

g(t)(µt)

+
∑

(t1,t2)∈E

f (t1,t2)(Rt1,t2) (5a)

subject to Pt(M) = µt, t ∈ V (5b)

Pt1,t2(M) = Rt1,t2 , (t1, t2) ∈ E . (5c)

In order for this to be a well-posed problem, we impose the following
assumptions on the functionals involved.

Assumption A. Assume that all elements of C are strictly larger than
−∞, and that g(t), t ∈ V , and f (t1,t2), (t1, t2) ∈ E , are all proper,
convex, and lower-semicontinuous, Moreover, assume that there exists
a feasible point to (5) with finite objective function value, i.e., a
nonnegative tensor M such that 〈C,M〉 < ∞, and with marginals
and bimarginals as in (5b)-(5c), respectively, such that

g(t)(µt) <∞, for all t ∈ V,
f (t1,t2)(Rt1,t2) <∞, for all (t1, t2) ∈ E .

In fact, this assumption ensures that (5) has an optimal solution,
as stated in the following lemma.

Lemma III.3. If Assumption A holds, then there exists a unique
optimal solution to problem (5).

Proof: See Appendix A.
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Remark III.4. A necessary condition for Assumption A to hold is
that there exist vectors µt ∈ RN+ ∩dom(g(t)), for all t ∈ V , matrices
Rt1,t2 ∈ RN×N+ ∩dom(f (t1,t2)), for all (t1, t2) ∈ E , and a constant
γ ≥ 0 such that

µTt 1 = γ, for all t ∈ V
Rt1,t21 = µt1 , R

T
t1,t21 = µt2 , for all (t1, t2) ∈ E ,

〈C(t1,t2), Rt1,t2〉 <∞, for all (t1, t2) ∈ E .

However, unless the graph (V, E) is a tree, this is not a sufficient
condition for the existence of a tensor that fulfills Assumption A.
More precisely, the existence of marginals and bimarginals that
are consistent with each other does, in general, not guarantee that
there exists a tensor that matches the marginals and bimarginals. A
counterexample can be found in [40, Rem. 3].

B. Form of the optimal solution and Lagrangian dual

Next, we derive the Lagrangian dual of (5) and show that there is
no duality gap between the primal and the dual problem.

Theorem III.5. A Lagrangian dual of (5) is, up to a constant, given
by

sup
λt∈RN , t∈V

Λt1,t2
∈RN×N , (t1,t2)∈E

− ε〈K,U〉 −
∑
t∈V

(g(t))∗(−λt)

−
∑

(t1,t2)∈E

(f (t1,t2))∗(−Λt1,t2), (6)

where K and U are given by

Ki1...iT = exp(−Ci1...iT /ε), (7a)

Ui1...iT =
∏
t∈V

u
(it)
t

∏
(t1,t2)∈E

U
(it1 ,it2 )

t1,t2

=
∏
t∈V

exp
(
λ

(it)
t /ε

) ∏
(t1,t2)∈E

exp
(

Λ
(it1 ,it2 )

t1,t2
/ε
)
. (7b)

Moreover, under Assumption A, the minimum in (5) equals the
supremum in (6) (up to the discarded constant). Finally, if the dual
(6) has an optimal solution, then the optimal solution to the primal
problem takes the form M? = K �U?, where U? is obtained via
(7b) from an optimal solution to (6).

Proof: Relaxing each constraint (5b) and (5c) with a multiplier
λt ∈ RN and Λt1,t2 ∈ RN×N , respectively, we get the Lagrangian

L(M, µ, R, λ,Λ) := 〈C,M〉+ εD(M) +
∑
t∈V

g(t)(µt)

+
∑

(t1,t2)∈E

f (t1,t2)(Rt1,t2) +
∑
t∈V

λTt (µt − Pt(M))

+
∑

(t1,t2)∈E

tr[ΛTt1,t2(Rt1,t2 − Pt1,t2(M))], (8)

where µ denote (µt)t∈V , and similar for all other variables. The dual
function is given by inf L over M, µ, and R, but the Lagrangian
decouples over M, µt, and Rt1,t2 . For the inf over µt we have that

inf
µt

λTt µt + g(t)(µt)=−sup
µt

(−λt)Tµt − g(t)(µt)=−(g(t))∗(−λt)

where ∗ denotes the Fenchel conjugate; and analogous result follows
for f (t1,t2) and the inf over Rt1,t2 . This means that

inf
M≥0,µ,R

L(M, µ, R, λ,Λ) = inf
M≥0

L(M, λ,Λ)

−
∑
t∈V

(g(t))∗(−λt)−
∑

(t1,t2)∈E

(f (t1,t2))∗(−Λt1,t2) (9)

where L(M, λ,Λ) is defined as

〈C,M〉+ εD(M)−
∑
t∈V

λTt Pt(M)−
∑

(t1,t2)∈E

tr[ΛTt1,t2Pt1,t2(M)].

Now, noticing that

λTt Pt(M) =

N∑
it=1

λ
(it)
t

∑
i1,...,iT \{it}

Mi1...iT =
∑

i1,...,iT

λ
(it)
t Mi1...iT ,

tr[ΛTt1,t2Pt1,t2(M)] =
∑

i1,...,iT

Λ
(it1 ,it2 )

t1,t2
Mi1...iT ,

L(M, λ,Λ) decouples over the elements of the tensor. Therefore, the
inf in each element is either attained in 0, or found by setting the first
variation to 0. If Ci1...iT = ∞, then the trivial case Mi1...iT = 0
holds. Otherwise, setting the first variation equal to 0 gives

0 = Ci1...iT + ε log(Mi1...iT )−
∑
t∈V

λ
(it)
t −

∑
(t1,t2)∈E

Λ
(it1 ,it2 )

t1,t2

from which it can be seen that the optimum is such that Mi1...iT > 0.
Moreover, solving for Mi1...iT gives that M = K �U, where K
and U are given in (7). Note that this form for M also holds for the
elements of C that are infinite. Plugging this back into L(M, λ,Λ)
we get that infM≥0 L(M, λ,Λ) = −ε〈K,U〉 + NT ε, which, after
removing the constant, together with (9) gives the dual problem (6).

Finally, for improved readability the detailed proof of that there is
no duality gap is deferred to Lemma A.2 in Appendix A.

By using the change of variables implicit in (7b), problem (6) can
be expressed equivalently as

sup
ut∈RN

+ , t∈V
Ut1,t2

∈RN×N
+ , (t1,t2)∈E

− ε〈K,U〉 −
∑
t∈V

(g(t))∗
(
− ε log(ut)

)

−
∑

(t1,t2)∈E

(f (t1,t2))∗
(
− ε log(Ut1,t2)

)
. (10)

Moreover, under a Slater-type condition of for the primal problem,
i.e., that the relative interior (denoted ri)4 of the effective domains of
the cost functions in (4) have a nonempty intersection, we have that
the suprema in (6) and (10) are attained.

Assumption B. Assume that there exists an M > 0 such that
〈C,M〉 < ∞, and with marginals and bimarginals (µt)t∈V and
(Rt1,t2)(t1,t2)∈E satisfying (5b) and (5c), respectively, so that

• for all g(t) and f (t1,t2) that are polyhedral, µt ∈ dom(g(t))
and Rt1,t2 ∈ dom(f (t1,t2)),

• for all g(t) and f (t1,t2) that are not polyhedral, µt ∈
ri(dom(g(t))) and Rt1,t2 ∈ ri(dom(f (t1,t2))).

Corollary III.6. Given Assumption B the conclusions of Theo-
rem III.5 holds, with the addition that the dual (6) is guaranteed
to have a nonempty set of optimal solutions.

Proof: The result follows from [69, Ch. 29 and 30].
Nevertheless, even if the Slater-type condition in Assumption B is

not fulfilled, the form M = K�U will be important in deriving a
convergent algorithm for solving (5).

Remark III.7. For the unregularized problem, i.e., problem (4)
without the term εD(M), the dual can be obtained by a slight

4The relative interior of a set A consists of all points in A that are interior
when A is regarded as a subset of its affine hull, see [69, Ch. 6].
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modification of the above argument. More precisely, it is given by

sup
λt∈RN , t∈V

Λt1,t2
∈RN×N , (t1,t2)∈E

−
∑
t∈V

(g(t))∗(−λt) (11)

−
∑

(t1,t2)∈E

(f (t1,t2))∗(−Λt1,t2)

subject to
∑
t∈V

λ
(it)
t +

∑
(t1,t2)∈E

Λ
(it1 ,it2 )

t1,t2
≤ Ci1...iT .

In fact, the term −ε〈K,U〉 in (6) can be interpreted as a barrier
term for the constraint in (11) in the sense that when ε → 0
then the term −ε〈K,U〉 → −∞ if the constraint in (11) is not
fulfilled. Nevertheless, for the unregularized problem one need to
impose further assumptions in order to guarantee the existence of
an optimal solution. To see this, note that for a problem instance
where g(t)(µt) ≡ 0, t ∈ V , f (t1,t2)(Rt1,t2) ≡ 0, (t1, t2) ∈ E ,
and where C has at least one element which is negative, the primal
problem is unbounded from below.

C. Coordinate ascent iterations for solving the dual problem

In this section we derive an efficient solution method for (5),
based on performing coordinate ascent in the dual problem (6) (or,
equivalently, in (10)). To this end, let φ((λt)t∈V , (Λt1,t2)(t1,t2)∈E)
denote the objective function in the dual problem (6). Given an iterate
((λkt )t∈V , (Λ

k
t1,t2)(t1,t2)∈E), in a coordinate ascent step we cyclically

select an element j ∈ V or (j1, j2) ∈ E and compute an update to
the corresponding variable by taking λk+1

j to be in

arg max
λj∈RN

φ(λj , (λ
k
t )t∈V\{j}, (Λ

k
t1,t2)(t1,t2)∈E), (12a)

or Λk+1
j1,j2

to be in

arg max
Λj1,j2

∈RN×N

φ(Λj1,j2 , (λ
k
t )t∈V , (Λ

k
t1,t2)(t1,t2)∈E\{(j1,j2)}),

(12b)
respectively, while taking λk+1

t = λkt and Λk+1
t1,t2

= Λkt1,t2 for all
other elements. In order for this to be a well-defined algorithm,
we need that the set of maximizing arguments in (12) is always
nonempty. To guarantee this, we impose the following assumption
(which is milder than Assumption B).

Assumption C. Assume that C <∞ and that for each index j ∈ V
there exists a µj > 0 so that
• if g(j) is polyhedral, then µj ∈ dom(g(j)),
• if g(j) is not polyhedral, then µj ∈ ri(dom(g(j))),

and analogously for each index (j1, j2) ∈ E , Rj1,j2 , and f (j1,j2).

Lemma III.8. Under Assumptions A and C, the subproblems in (12)
always have a nonempty set of maximizers.

Proof: To prove the lemma, we restrict our attention to one
subproblem of the form (12a); for subproblems of the form (12b) it
follows analogously. Now, note that problem (12a) can be see as the
Lagrangian dual of the primal problem

minimize
M∈RNT

+ , µj∈RN

〈C,M〉+ εD(M) + g(j)(µj)−
∑

t∈V\{j}

(λkt )TPt(M)

−
∑

(t1,t2)∈E

tr[(Λkt1,t2)TPt1,t2(M)]

subject to Pj(M) = µj .

Moreover, using Assumption C we have that µj > 0 and M = µj ⊗
(⊗t∈V\{j}1) > 0 is a point fulfilling Slater’s condition for the above
problem. Therefore, following [69, Ch. 29 and 30] we have that strong

duality holds between these two problems, and in particular that the
dual (12a) has a nonempty set of maximizers (cf. [75, Lem. 3.1]).

By the above lemma, the coordinate ascent steps in (12) are well-
defined. Moreover, since each problem is concave and unconstrained,
the optimal solution is where the subgradient is zero. To compute the
subgradients, first note that

Pj(K�U)� uj =
∑

i1,...,iT \ij

Ki1...iT

∏
t∈V\{j}

u
(it)
t

∏
(t1,t2)∈E

U
(it1 ,it2 )

t1,t2

is a well-defined vector which is independent of uj . We therefore
define

wj := Pj(K�U)� uj , (13a)

and note that this means that Pj(K�U) = uj � wj . Analogously,
we also define

Wj1,j2 := Pj1,j2(K�U)� Uj1,j2 , (13b)

which in the same way is a well-defined matrix, independent of
Uj1,j2 , and hence Pj1,j2(K�U) = Uj1,j2 �Wj1,j2 .

Next, note that

∂

∂λ
(ij)

j

〈K,U〉 = − exp
(
λ

(ij)

j /ε
)
w

(ij)

j = −u(ij)

j w
(ij)

j

with K and U given as in (7) and wj as in (13a). Thus, in each
update of the variable λj one has to solve the inclusion problem

0 ∈ ∂λjφ=− exp (λj/ε)� wj + ∂(g(j))∗(−λj), (14a)

where ∂λj denotes the subdifferential with respect to λj . By an
analogous derivation, in each update of the variable Λj1,j2 one has
to solve the inclusion problem

0 ∈ ∂Λj1,j2
φ =− exp (Λj1,j2/ε)�Wj1,j2

+ ∂(f (j1,j2))∗(−Λj1,j2). (14b)

These inclusions, and hence the updates, can be reformulated in terms
of the transformed dual variables uj and Uj1,j2 , in which case they
read

0 ∈ −uj � wj + ∂(g(j))∗
(
− ε log(uj)

)
, (15a)

0 ∈ −Uj1,j2 �Wj1,j2 + ∂(f (j1,j2))∗
(
−ε log(Uj1,j2)

)
. (15b)

This is summarized in Algorithm 1. However, note that directly
computing wj and Wj1,j2 needed in (15) by brute-force is com-
putationally demanding, and effectively numerically infeasible for
large-scale problems. Therefore, from this perspective Algorithm 1
is an “abstract algorithm”. Nevertheless, for many graph structures
it is possible to compute the projections efficiently by sequentially
eliminating the modes of the tensor, see [2], [6], [29], [39]–[43], [72].
In fact, storing and using intermediate results of eliminated modes,
the procedure can also be understood as a message-passing scheme
[43]. Moreover, the examples of applications presented in Sections IV
and V can be effectively solved in this way, and for each of these we
present an implementable algorithm (see Algorithms 2 and 3). Finally,
under relatively mild assumptions, Algorithm 1 is convergent in the
following sense.

Theorem III.9. Given that Assumptions A and C hold, and assume
further that

1) g(t), t ∈ V , and f (t1,t2), (t1, t2) ∈ E , are all continuous on
dom(g(t)) and dom(f (t1,t2)), respectively,

2) for all g(t), t ∈ V , and f (t1,t2), (t1, t2) ∈ E , that are not
polyhedral, the feasible point in Assumption A is such that µt ∈
ri(dom(g(t))) and Rt1,t2 ∈ ri(dom(f (t1,t2))), respectively.
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Algorithm 1 Generalized Sinkhorn method for solving (5).
1: Give: graph G = (V, E), cost tensor C that decouples according

to G, functions (g(t))∗, for t ∈ V , and (f (t1,t2))∗, for (t1, t2) ∈
E , nonnegative initial guesses (u0

t )t∈V and (U0
t1,t2)(t1,t2)∈E .

2: k = 0
3: while Not converged do
4: k = k + 1
5: for j ∈ V and (j1, j2) ∈ E do
6: Update ukj by solving (15a) with wj as in (13a).
7: Update Ukj1,j2 by solving (15b) with Wj1,j2 as in (13b).
8: end for
9: end while

10: return (ukt )t∈V and (Ukt1,t2)(t1,t2)∈E .

Let (ukt )t∈V and (Ukt1,t2)(t1,t2)∈E be the iterates of Algorithm 1
at iteration k, and let Uk be the corresponding tensor as in
(7b). Moreover, let Mk = K � Uk. Then (Mk)k is a bounded
sequence that converges to the optimal solution to (5). Furthermore,
if the set of optimal solutions to (6) is nonempty and bounded,
then ((ukt )t∈V , (U

k
t1,t2)(t1,t2)∈E)k is a bounded sequence and every

cluster point is an optimal solution to (10).

Proof: To prove the theorem, we define

h(M) := 〈C,M〉+ εD(M).

This is a strictly convex function, since the entropy term is strictly
convex [4, Ex. 9.35]. Moreover dom(h) = RN

T
+ , and hence polyhe-

dral. Next, the Fenchel conjugate of h can be obtained by using [4,
Ex. 13.2] and [4, Prop 13.23], which gives

h∗(T) = −ε
∑
i1...iT

exp((Ti1...iT −Ci1...iT )/ε)− 1

= −ε〈K, exp(T/ε)〉+ nT ε,

(compare with the expression infM L(M, λ,Λ) = −ε〈K,U〉+NT ε
in the proof of Theorem III.5). Hence, h is co-finite. Therefore,
following along the lines of [75, Sec. 6], we have that (Mk)k is a
bounded sequence and that every cluster point is an optimal solution
to (5). In particular, [75, Thm. 3.1] imposes some slightly stronger
assumptions,5 but it is readily checked in all places where these
stronger assumptions are invoked that the same conclusions hold true
in this particular case under the weaker assumptions. For brevity, we
omit the details.

Next, since (Mk)k is a bounded sequence and every cluster point
is optimal to (5), by the uniqueness of the optimal solution M? the
sequence must converge to it. To see this, for δ > 0 let Bδ(M?)
denote a ball of radius δ around M?. If there is an infinite number
of points of (Mk)k outside of Bδ(M?), since the corresponding
subsequence is also bounded there is a converging subsubsequence,
i.e., the subsubsequence has a cluster point; call this cluster point
M∞. Since this is also a cluster point of the original sequence, we
must have M∞ = M?, but we must also have that M∞ 6∈ Bδ(M?),
which is a contradiction. Therefore, for every δ > 0 there can only be
a finite number of points in the sequence (Mk)k that do not belong
to Bδ(M?), and hence the entire sequence converges to M?.

Finally, the last statement of the theorem follows similarly from
[75, Thm. 3.1(b)].

5More precisely, to directly apply the result in [75, Thm. 3.1], we must
assume that the feasible point in Assumption A is such that M > 0; see [75,
Ass. B] where “f0” corresponds to 〈C,M〉 + εD(M). For an example of
where this weaker assumption is indeed used, see Example III.12.

The above theorem guarantees convergence, but does not guarantee
how fast the iterates converge. In particular, in order to guarantee R-
linear convergence (for the definition, see, e.g., [62, Sec. 9.2] or [60,
pp. 619-620]) we need to impose further assumptions on the functions
involved.

Theorem III.10. Given Assumption A, further assume that there
exists an M > 0 with marginals and bimarginals (µt)t∈V and
(Rt1,t2)(t1,t2)∈E satisfying (5b) and (5c), respectively, and that all
functions g(t) and f (t1,t2) are such that either

i) the function is a polyhedral indicator function and µt ∈
dom(g(t)) or Rt1,t2 ∈ dom(f (t1,t2)), respectively, or

ii) the function is co-finite, essentially smooth, continuous on the
effective domain, and the gradient operator is strongly monotone
and Lipschitz continuous on any compact convex subset of the
interior of the effective domain, and so that µt ∈ int(dom(g(t)))
or Rt1,t2 ∈ int(dom(f (t1,t2))), respectively.

Under these assumptions, let (ukt )t∈V and (Ukt1,t2)(t1,t2)∈E be the
iterates of Algorithm 1, and let Mk = K�Uk. Then Mk →M? at
least R-linearly, where M? is the unique optimal solution to (5), and
the cost function in (10), evaluated in (ukt )t∈V and (Ukt1,t2)(t1,t2)∈E ,
converges to the optimal value of (5) at least R-linearly.

Proof: Assume first that all functions are as in ii). In this case,
note that (5a) is separable in the different variables, and that E in
[57, Eq. (1.1)] is of the form

ET =

 PT1 . . . PTT PT1,2 . . . PTT ,T −1

−I 0

0 −I


where Pt is a matrix so that Ptvec(M) is the projection on the
tth marginal and Pt1,t2 is a matrix such that Pt1,t2vec(M) is
the projection on the (t1, t2)-bimarginal. This means that PTt and
PTt1,t2 are the corresponding back-projections. Now, under the given
assumptions the results in [57, Thm 6.1] are directly applicable.

In the case that some of the functions are of the form as in i),
this cost function can be replaced by a finite number of inequality
constraints. By adding the corresponding inequalities in the matrix
E above, the above argument show R-linear convergence of the
algorithm.

Remark III.11. One of the assumptions in Theorem III.10 is that
all functions g(t) and f (t1,t2) (that are not polyhedral indicator
functions) are such that they are differentiable on the interior of their
effective domains. Under this assumption, all inclusions in (14) and
(15) are in fact equalities on the interior of the effective domain.

Example III.12. Here, we consider a small bimarginal example to
illustrate some of the differences between the results presented so far.
To this end, let M,C ∈ R2×2, and consider the problem

minimize
M∈R2×2

+

D(M) subject to P1(M) ≤
[
1
2

]
, P12(M) ≥

[
1 0
0 0

]
,

where we for simplicity have taken C = 0 and ε = 1. The two
constraints together imply that M12 = 0 for any feasible solution,
and hence neither the conditions in Assumption B nor the ones in
Theorem III.10 are fulfilled. Nevertheless, the conditions in Assump-
tion A are fulfilled, and hence the problem has a unique optimal
solution (Lemma III.3). Moreover, the conditions in Assumption C
are fulfilled, and hence each step in the algorithm is therefore
well-defined (Lemma III.8). In fact, the conditions in Theorem III.9
are fulfilled, which guarantees that the dual ascent algorithm is
converging to the optimal solution; the latter is given by

M? =

[
1 0
1 1

]
.
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Moreover, for suitable initial conditions the coordinate ascent method
gives the iterates

uk1 =

[
1/(exp(k) + 1)

1

]
, Uk1,2 =

[
exp(k) 1

1 1

]
,

and the corresponding dual cost converges towards the optimal value
as k → ∞. However, the dual problem does not attain an optimal
solution since (Uk1,2)k diverges. Finally, by evaluating ‖Mk−M?‖2
it can be seen that in fact the iterates converge R-linearly, which
indicates that there might be room for improvement with respect to
the conditions in Theorem III.10.

As a final remark, note that Assumption B implicitly and Assump-
tion C explicitly enforce that we must have C < ∞. Similarly, the
functions g(t) and f (t1,t2) must have effective domains that include
marginals and bimarginals that are elementwise strictly positive, and
hence they cannot, e.g., be indicator functions on singletons with
zero elements. For some applications this is not fulfilled, and in
particularly this is the case for the examples in Sections IV and
V. Nevertheless, the assumptions can be weakened somewhat to
accommodate for this, similar to [41, Sec. 4.1]. More specifically,
if any element Ci1...iT = ∞, then we can fix Mi1...iT = 0 and
remove it from the set of variables. This means that M is technically
no longer a tensor, but the marginal and bimarginal projections can
still be defined, and the above derivations carry over to this setting.
Similarly, if dom(g(j)) is such that µ(ij)

j = 0, then we can remove all
the variables Mi1...iT with indices {(i1, . . . , ij−1, ij , ij+1, . . . , iT ) |
it = 1, . . . , N for t 6= j}, and analogously for f (j1,j2) and the
bimarginals. From the perspective of Algorithm 1, it is interesting to
note that in the first case Ki1...iT = 0, and in the second case we
can take u(ij)

j = 0.

D. Extension to multiple costs on each marginal

In some problems, certain marginals or bimarginals are associated
with cost functions for which there is no simple Fenchel conju-
gate. However, sometimes these functions can be split into simpler
components. In particular, this is often the case when a marginal is
associated with both a cost and has to satisfy an inequality constraint.
To handle such cases, we consider a modified version of problem (5)
that takes the form

minimize
M∈RNT

+ , µt,k1
∈RN

+ ,

Rt1,t2,k2
∈RN×N

+
t∈V and k1=1,...,κ1

(t1,t2)∈E and k2=1,...,κ2

〈C,M〉+ εD(M) +
∑
t∈V

κ1∑
k1=1

g
(t)
k1

(µt,k1)

+
∑

(t1,t2)∈E

κ2∑
k2=1

f
(t1,t2)
k2

(Rt1,t2,k2) (16)

subject to Pt(M) = µt,k1 , k1 = 1, . . . , κ1, t ∈ V
Pt1,t2(M) = Rt1,t2,k2 , k2 = 1, . . . , κ2,

(t1, t2) ∈ E .

For ease of notation, we have the same number of functions κ1

and κ2 associated with each marginal and bimarginal, respectively,
however this can easily be relaxed. Moreover, note that the constraints
implicitly ensure that for any feasible point we have µt,k1 = µt,k′1
for all k1, k

′
1 = 1, . . . , κ1 and all t ∈ V , and similarly for the

bimarginals. Next, by modifying the arguments in the previous
sections it is straightforward to derive a Lagrangian dual of (16).
In particular, similar to before, if the dual problem has an optimal
solution then the optimal solution to (16) is of the form M = K�U,

where K is as before (see (7a)) and U has the form

Ui1...iT =

∏
t∈V

κ1∏
k1=1

u
(it)
t,k1

 ∏
(t1,t2)∈E

κ2∏
k2=1

U
(it1 ,it2 )

t1,t2,k2


=

∏
t∈V

κ1∏
k1=1

exp
(
λ

(it)
t,k1

/ε
) ∏

(t1,t2)∈E

κ2∏
k2=1

exp
(

Λ
(it1 ,it2 )

t1,t2,k2
/ε
) .

Note that this structure is similar to the one in (7b). In fact, it can
be interpreted as splitting ut as ut = �κ1

k1=1ut,k1 , and similarly
Ut1,t2 = �κ2

k2=1Ut1,t2,k2 . Moreover, this means that the coordinate
ascent inclusion for uj,k̃1 is given by

0 ∈ −uj,k̃1 �
( ⊙
k1 6=k̃1

uj,k1

)
� wj + ∂(g

(j)

k̃1
)∗
(
− ε log(uj,k̃1)

)
,

where wj is defined analogously to (13a) as

wj = Pj(K�U)�
( κ1⊙
k1=1

uj,k1

)
(17)

Similar expressions hold for the inclusion problem for Ut1,t2,k2 .
Furthermore, reexamining the proof of Theorem III.9 and III.10, it can
be readily seen that by modifying the assumptions accordingly, i.e.,
stating the assumptions in terms of each function g(t)

k1
and f (t1,t2)

k2
, the

results can be extended to this setting. For brevity, we omit explicitly
stating these results.

Finally, by reexamining the argument of sequentially eliminating
the modes of the tensor as in [29], [40], [41], one can see that the
efficiency in computing wj and Wj1,j2 in (17) only depends on the
underlying graph structure (V, E), and not on the number of cost
functions associated with each marginal and bimarginal. Therefore,
we can still efficiently solve the inclusions for “simple functions” and
graph structures for which the projections can be easily computed.

IV. CONVEX DYNAMIC NETWORK FLOW PROBLEMS

Given a network G = (V,E) with nodes V and edges E, a
minimum-cost flow problem is to determine the cheapest way to
transport a commodity from a set of sources S+ ⊂ V to a set of sinks
S− ⊂ V . In the simplest case, when the cost is specified as a linear
cost ce per unit for using edge e ∈ E in the transportation, and the
flow on each edge e is limited by the capacity de ∈ R+, the problem
can be formulated as a linear programming problem [10]. However, in
many cases the costs associated with using edges are in fact nonlinear
functions of the flows, i.e., given by some ge : R+ → R for e ∈ E.
Here, we will restrict our attention to the case when ge is convex for
all e ∈ E, cf. [10], [61], [63]. In a dynamic network flow problem,
the travel times on the edges are also taken into account [3], [32],
[35], [73]. These types of flow problems have many applications,
for example in production planning, vehicle routing, and scheduling
[25], [61], [66]. A common way to solve dynamic network flow
problems is to formulate a corresponding static problem on the time-
expanded network [35]. However, in many applications the time-
expanded network becomes large and hence intractable to work with.
Here, we will develop a (approximate) solution algorithm for convex
dynamic network flow problems by casting it as a graph-structured
tensor-optimization problem (4) and using the results in Section III.
For results and algorithms corresponding to the linear case, see [41].

A. Solution method for convex dynamic network flow problems

On a network where the flow time on all edges are the same,6

one way to formulate a dynamic network flow problem is as follows

6Note that this is a standard assumption, and can (at least approximately)
be achieved by introducing intermediate edges and nodes.
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[41]: consider the time points t = 1, . . . , T , let N1 := |E| be the
number of edges in the network, N2 := |S+| be the number of
sources, and N3 := |S−| be the number of sinks. Furthermore, let
N := N1 + N2 + N3 and consider the tensor M ∈ RN

T
+ . This

means that the projection Pt(M) = µt ∈ RN+ can be interpreted as
the vector representing the flow at time t (N1 elements), together
with the amount that is left in the sources (N2 elements) and the
amount that has reached the sinks (N3 elements) at that time point
t, for t = 1, . . . , T . Since the initial and final distribution of the
commodity are known and fixed, the marginals µ1 and µT are given.

Next, note that the tensor M represents all flows which are possible
from a combinatorial perspective. However, the set of feasible flows
is much smaller. In particular, a flow needs to start in a source, end
in a sink, and can only take a path which is feasible according to the
network G. This flow feasibility is implicitly imposed using the cost
tensor. To this end, let C ∈ R̄N×N+ be a cost matrix that encodes
the topology of the network G. This means that Cik = 0 if state
i connects to state k, i.e., 1) if the indices i and k represent edges
connected via a node, 2) if i represents a source node and k an
edge connected to it, or 3) if k represents a sink node and i an edge
connected to it. Otherwise, Cik =∞. Expressed differently,

Cik =


0 if i ∈ E ∪ S+ connects to k ∈ E ∪ S+ ∪ S−,
0 if i ∈ E ∪ S+ ∪ S− connects to k ∈ E ∪ S−,
∞ else.

(18a)

Now, let

Ci1...iT =

T −1∑
t=1

Citit+1 . (18b)

This means that

〈C,M〉 =
∑

i1,...,iT

(T −1∑
t=1

Citit+1(Pt,t+1(M))it,it+1

)
,

and hence 〈C,M〉 is finite if and only if M has support only
on feasible flows. To see this, note that the bimarginal projection
Pt,t+1(M) describes how the flow at time t transitions to the flow at
time t+1, i.e., the element (Pt,t+1(M))it,it+1 is the amount of flow
that transitions from state it (i.e., the corresponding edge, source or
sink) at time t to state it+1 at time t+ 1. Since by construction we
have that Cit,it+1 is∞ for transitions which are not compatible with
the network G, we have that 〈C,M〉 = ∞ if and only if the flow
described by M is not compatible with G. With this in mind, it is also
clear that one can model linear costs associated with using edges, or
for staying in sources or sinks, by changing the corresponding zero-
values of the cost matrix in (18a) to non-zero values.

Finally, defining the convex function g : RN+ → R by g : x 7→∑
e∈E ge(xe), where ge : R+ → R is the convex cost associate

with edge e ∈ E, the convex dynamic network flow problem can be
formulated as

minimize
M∈RNT

+

〈C,M〉+

T −1∑
t=2

g(Pt(M)) (19a)

subject to P1(M) = µ1, PT (M) = µT . (19b)

This is a problem of the form (4), with no costs imposed on the
bimarginals and with underlying graph structure G given by a path-
graph, except that it does not have an entropy term εD(M). The
latter can be introduced in order to derive efficient algorithms for
approximately solving (19). However, it has also been shown that the
introduction of the entropy term in (19) can be interpreted as finding
robust transport plans [20]–[22]. In any case, the corresponding
projections needed to solve the inclusion problems (15) can be

P1,T (M) = R

µ2µ1 µT−1 µT
C C CC

Fig. 1: Illustration of the graph G for the convex dynamic network
flow problem with origin-destination constraint. Grey circles corre-
spond to known densities, and white circles correspond to densities
which are to be optimized over.

efficiently computed [29, Prop. 2] (see also [40], [41]), and hence
Algorithm 1 can be adapted to solve the entropy-regularized version
of (19).

B. Convex dynamic network flow problems with origin-destination
constraint

The above formulation (19) of a convex dynamic network flow
problem finds an optimal way of steering the commodity from
the sources to the sinks. However, the formulation only models
aggregate distributions and flows, and does not take any individual
behaviors into account. While this is adequate when all agents in
the ensemble are indistinguishable, in some applications the latter
is not true. One example is in traffic networks, where agents have
specific destinations. One way to solve this is to consider multi-
commodity flow problems [11], [41], [49]. However, following along
the lines of [39], origin-destination constraints can also be included
in this framework by simply changing the constraints in (19b) to a
bimarginal constraint.

To this end, note that, as mentioned above, the bimarginal projec-
tion Pt1,t2(M) describes how the flow at time t1 transitions to the
flow at time t2. In particular, this means that P1,T (M) describes how
the initial flow distribution transitions to the final flow distribution.
Introducing the origin-destination matrix R ∈ RN×N+ (cf. [76]) with
elements

Rik =

{
ξik if i ∈ S+ and k ∈ S−

0 else,

by imposing the bimarginal constraint P1,T (M) = R the element
ξik ≥ 0 represents how much of the commodity that starts in
source i ∈ S+ will go to sink k ∈ S−. Therefore, an entropy-
regularized convex dynamic network flow problem with origin-
destination constraint matrix R can be formulated as

minimize
M∈RNT

+

〈C,M〉+ εD(M) +

T −1∑
t=2

g(Pt(M)) (20a)

subject to P1,T (M) = R. (20b)

The underlying graph structure G for (20) is no longer a path-graph,
but contains a cycle. The latter is illustrated in Figure 1. Nevertheless,
the projections needed to solve the inclusion problems (15) can be
efficiently computed as follows.

Proposition IV.1 ([39, Thm. 2 and Cor. 1]). For ε > 0, let K =
exp(−C/ε) and let K = exp(−C/ε), with C and C defined as in
(18), and let

Ui1...iT = Ui1,iT

T −1∏
t=2

u
(it)
t .

Define

Ψ̂j =

{
K, j = 2,

Ψ̂j−1diag(uj−1)K, j = 3, . . . , T ,
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Algorithm 2 Method for solving the entropy-regularized convex
dynamic network flow problem (20).
Input: Initial guess u2, . . . , uT −1, U

1: ΨT −1 ← K
2: for j = T − 2, . . . , 1 do
3: Ψj ← Kdiag(uj+1)Ψj+1

4: end for
5: while Not converged do
6: U ← R�Ψ1

7: Ψ̂2 ← K
8: for j = 2, . . . , T − 1 do
9: wj ← (Ψ̂T

j � (ΨjU
T ))1

10: Update uj by 0 = −uj � wj + ∂g∗(−ε log(uj)).
11: Ψ̂j+1 ← Ψ̂jdiag(uj)K
12: end for
13: ΨT −1 ← K
14: for j = T − 2, . . . , 1 do
15: Ψj ← Kdiag(uj+1)Ψj+1

16: end for
17: end while
Output: u2, . . . , uT −1, U

and

Ψj =

{
K, j = T − 1,

Kdiag(uj+1)Ψj+1, j = 1, . . . , T − 2.

Then the projections of the tensor K�U are given by

P1,T (K�U) = U �Ψ1,

Pj(K�U) = uj �
(

Ψ̂T
j � (ΨjU

T )
)
1,

for j = 2, . . . , T − 1.

Finally, Algorithm 1 can now be adapted to solve (20) efficiently;
the latter is given in Algorithm 2. The origin-destination constraint is
a first step towards introducing heterogeneity among the transported
commodity. A larger degree of heterogeneity can be introduced
by considering the multi-commodity case. The model and solution
algorithm described above can be extended to this case, along the
same lines as in Section V-C (cf. [41]).

C. Numerical examples

In this section we consider numerical examples of convex dynamic
network flow problems with origin-destination constraint. To this
end, consider the transportation network G = (V,E) depicted in
Figure 2a. This network has 150 undirected edges, and hence the
corresponding directed network has |E| = 2 · 150 = 300 edges.
Moreover, the network has |V | = 57 nodes and we consider the flow
over T − 1 = 29 time steps. Next, on each edge we introduce a
maximum capacity given by de which is equal to 20 times the length
of the edge for normal edges, and 100 times the length of the edge
for the thick edges, since the latter represent highways.

1) Performance comparison: In this numerical experiment, as cost
on an edge e ∈ E we consider the convex function ge : xe 7→
(xe/de)

2 +I[0,de](xe), i.e., a quadratic function normalized with the
capacity on the edge and a hard constraint on not exceeding maximum
capacity on the edge. We consider a problem with an origin-
destination constraint, which can be modeled as a multi-commodity
flow problem when formulated on a time-expanded network. More
precisely, for each commodity, there is one source node in which
we let 10|V | = 570 units start, and 10 units of the commodity

TABLE I: List of some functions together with their Fenchel conju-
gates. In particular, for the p-norm, p ∈ (1,∞) and 1/p+ 1/q = 1.

Function f(x) Fenchel conjugate f∗(x∗)

0 I{0}(x
∗)

I{x̂}(x) 〈x∗, x̂〉

I[α,β](x)
n∑
i=1

(
x∗(i)βiIR+

(x∗(i)) + x∗(i)αiIR− (x∗(i))
)

σ‖x− y‖pp 〈x∗, y〉+
1

q σq−1 pq−1
‖x∗‖qq

x

β − x
+ I[0,β](x)

{
0 if x∗ ≤ 1/β

x∗β − 2
√
x∗β + 1 if x∗ ≥ 1/β

are sent to each node in the network. No two commodities share
the same source node, and we solve the problem for 1, 2, . . . , 57
commodities. This can be formulated as an instance of the problem
(20), where the origin-destination matrix R has elements ξik = 10
for all i ∈ S+ ⊆ V and all k ∈ S− = V . Finally, we also introduce
an incentive for goods to arrive early by in the cost matrix in (18a)
setting Cii = −0.01 for i ∈ S−; this can be handled in a formulation
on a time-expanded network by introducing extra nodes and edges,
where the edges are associated with a linear cost of −0.01.

The problem is solved for ε = 10−2, using Algorithm 2, where the
latter is adapted as in Section III-D to handle both the quadratic cost
and the capacity constraint; for details on the corresponding Fenchel
conjugates, see Table I. The solution times for the proposed method is
compared with the solution times obtained when solving the problem
on a time-expanded network using the commercial solver Gurobi
[38]. Solution times for both methods, with a varying number of
commodities, are shown in Figure 2b. As can be seen in the figure, our
method outperforms Gurobi as the number of commodities increases.7

2) Illustration with non-quadratic cost: Next, we illustrate a
solution on the same transportation network G but for a problem
with non-quadratic cost on the edges. More precisely, as cost on
each edge e ∈ E, we consider the convex function

ge : xe 7→
xe

de − xe
+ I[0,de](xe). (21)

This is used to minimize the total congestion in the network, cf. [63].
We use a similar setup as in the previous example: the origin-
destination matrix R is taken to have nonzero elements ξik = 10
for all i ∈ S+ = V and all k ∈ S− = V , which means that
10|V | = 570 units start in each node, and that each node receives
10|V | = 570 units; for the cost matrix in (18a) we set Cii = −0.01
for i ∈ S− as an incentive for goods to arrive early. The problem is
solved for ε = 10−2, using Algorithm 2. For details on the Fenchel
conjugate of (21), see Table I. The flow at a number of different time
points is illustrated in Figure 2c. In particular, in Figure 2c the width
of each edge is proportional to the logarithm of 1+ the flow on that
edge at that time point. Moreover, the maximum capacity utilization,
i.e., the value maxe∈E{xe/de}, varies between 0.8106 and 0.8339
for time points t = 2, . . . , 29.

7Simulations are run on a Dell OptiPlex7080 with Intel(R) Core(TM) i7-
10700 CPU and 32GB of RAM. Moreover, in the comparison it should also be
noted that the proposed method is implemented in Matlab, while the Gurobi
back-end is implemented in C.
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(a) Flow network G.

(b) Solution times for the proposed
method and for Gurobi, when solving
the problem in Section IV-C1.

(c) An illustration of the optimal flow, using the setup in Section IV-C2, from one of the sources at a
number of different time points. The width of each edge is proportional to the logarithm of 1+ the flow
on that edge at the given time point.

Fig. 2: Figures for the numerical examples in Section IV-C.

V. MULTI-SPECIES POTENTIAL MEAN FIELD GAMES

An important tool for analyzing and controlling systems of sys-
tems, which has emerged during the last decades, is mean field
games [12], [28], [45]–[47], [52]. Mean field games are models of
dynamic games where each player’s action is negligible to other
players at the individual level, but where the actions are significant
when aggregated. A subclass of such games are potential mean field
games. These can be seen as density control problems, where the
density abides to a controlled Fokker-Planck equation with distributed
control [52]. This type of control problems have been studied in, e.g.,
[8], [14], [18]. An important generalization of mean field games is
the multi-species setting, where the population consists of several
different types of agents or species [1], [9], [24], [46], [50], [52]. In
this section, we show that discretizations of potential multi-species
mean field games take the form of a convex graph-structured tensor
optimization problem (5). By also deriving efficient methods for
computing the corresponding projections needed in Algorithm 1, we
here develop an efficient numerical solution algorithm for solving
such problems. In order to do so, we will first consider the nonlinear
density control problem obtained in the single-species setting, and its
corresponding discretization.

A. The single-species problem

Let X ⊂ Rn be a state space, and consider a set of infinitesimal
agents on X which obeys the (Itô) stochastic differential equation

dx(t) = f(x(t))dt+B(x(t))
(
v(x(t), t)dt+

√
εdw

)
, (22)

subject to the initial condition x(0) = x0 ∼ ρ0(x). More precisely,
we assume that f : X → Rn and B : X → Rn×n are continuously
differentiable with bounded derivatives, in which case, under suitable
conditions on the (Markovian) feedback v, there exists a unique
solution to (22) a.s., see, e.g, [33, Thm. V.4.1], [8, pp. 7-8]. Moreover,
under suitable regularity conditions [8], [14] the density ρ(t, ·) which
describe the distribution of particles at time point t exists and is the
solution of a controlled Fokker-Planck equation (cf. [67, p. 72]). A

potential mean field game can then be reformulated as the density
optimal control problem [52]

minimize
ρ,v

∫ 1

0

∫
X

1

2
‖v‖2ρdxdt+

∫ 1

0

Ft(ρ(t, ·))dt+ G(ρ(1, ·)) (23a)

subject to
∂ρ

∂t
+∇ · ((f +Bv)ρ)− ε

2

n∑
i,k=1

∂2(σikρ)

∂xi∂xk
= 0 (23b)

ρ(0, ·) = ρ0. (23c)

Here, σ(x) := B(x)B(x)T . Moreover, Ft and G are functionals on
L2 ∩ L∞, and we assume that they are proper, convex, and lower-
semicontinuous. We also assume that Ft is piece-wise continuous
with respect to t.

To discretize problem (23), we rewrite it as a problem over path
space. To this end, let Pv denote the distribution on path space, i.e.,
a probability distribution over C([0, 1], X) := the set of continuous
functions from [0, 1] to X , induced by the controlled process (22). In
particular, this means that for the marginal of Pv corresponding to
time t, denoted Pvt , we have that Pvt = ρ(t, ·), where ρ is the solution
to (23b) and (23c). Moreover, let P0 denote the corresponding
(uncontrolled) Wiener process with initial density ρ0. By the Girsanov
theorem (see, e.g., [34, pp. 156-157], [27, p. 321]), we have that

1

2

∫
X

∫ 1

0

‖v‖2ρdtdx=
1

2
EPv

{∫ 1

0

‖v‖2dt
}

=εKL(Pv‖P0) (24)

where KL(·‖·) is the Kullback-Leibler divergence, see, e.g., [7], [15],
[18], [37], [53], [54]. To ensure that (24) holds, it is important that
the control signal and the noise enter the system through the same
channel, as in (22) [16], [17]. Moreover, the link between stochastic
control and entropy provided by (24) has recently led to several novel
applications of optimal control [13], [15]–[17], [19].

By using (24), the problem (23) can be reformulated as

minimize
Pv

εKL(Pv‖P0) +

∫ 1

0

Ft(Pvt )dt+ G(Pv1 )

subject to Pv0 = ρ0.
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Next, we discretize this problem in both time and space. More pre-
cisely, discretizing over time into the time points 0,∆t, 2∆t, . . . , 1,
where ∆t = 1/T , and over space into the grid points x1, . . . , xN ,
the problem becomes

minimize
M∈RNT+1

+

µ1,...,µT ∈RN
+

〈C,M〉+ εD(M) + ∆t

T −1∑
j=1

Fj(µj) +G(µT ) (25a)

subject to Pj(M) = µj , j = 1, 2, . . . , T , (25b)

P0(M) = µ0. (25c)

Here, M is a nonnegative (T + 1)-mode tensor that represents the
flow of the agents, µ0 is a discrete approximation of ρ0, and µj is the
distribution of agents at time point j. Moreover, C is a (T +1)-mode
tensor that represents the cost of moving agents. Since the cost of
moving agents depends only on the current time step, the cost tensor
takes the form

Ci0,...,iT =

T −1∑
j=0

Cij ,ij+1 , (26a)

where C is a N × N matrix defining the transition costs. More
precisely, the elements Cik are the (optimal) cost of moving mass
from discretization point xi to discretization point xk in one time
step, given by

Cik =


minimize
v∈L2([0,∆t])

∫ ∆t

0

1

2
‖v‖2dt

subject to ẋ = f(x) +B(x)v

x(0) = xi, x(∆t) = xk.

(26b)

The optimal control problem (26b) can typically not be solved
analytically, except in the linear-quadratic case. Nevertheless, a
numerical solution to the problem suffices, and the computation of
the cost function C can be done off-line before solving (25). In
order to guarantee that the elements (26b) are all finite, we typically
impose the following assumption: that the deterministic counterpart
to system (22) is controllable in the (rather strong) sense that for all
x0, x1 ∈ X and for all t > 0 there exists a control signal in L2([0, t])
that transitions the system from the initial state x(0) = x0 to the
final state x(t) = x1. By allowing the matrix C to have elements
with value∞, this assumption may be relaxed. However, in this case
one has to assure that (25) has a feasible solution with finite object
function value, i.e., that there is an M ∈ RN

T+1

+ that fulfills (25b)
and (25c) and is such that (25a) is finite (cf. Assumption A).

Finally, note that the problem (25)–(26) is a convex graph-
structured tensor optimization problem of the form (5) on a path-
graph.

Remark V.1. Another solution method for solving problems of
the form (25), for agents that follow the dynamics of a first-order
integrator, has been presented in [7]. The two methods are similar,
and the main difference is that the computational method developed
in [7] is based on a variable elimination technique, in contrast to
the belief-propagation-type technique used here; see the discussion
just before Theorem III.9.

B. The multi-species problem

A multi-species mean field game is an extension of mean field
games to a set of heterogeneous agents, and the idea was already
presented in the seminal work [46], [52]. Here, we consider a multi-
species potential mean field game which has L different populations,
each of which can be associated with different costs and constraints,
and where each infinitesimal agent of species ` obeys the dynamics

dx`(t) = f(x`)dt+B(x`)
(
v`dt+

√
εdw`

)
.

Next, let ρ`(t, ·) denote the distribution of species ` at time point
t, and note that a multi-species potential mean field game can,
analogously to the single species game, be formulated as an optimal
control problem over densities. More precisely, the problem of
interest here takes the form

minimize
ρ,ρ`,v`

∫ 1

0

∫
X

L∑
`=1

1

2
‖v`‖2ρ` dxdt+

∫ 1

0

Ft(ρ(t, ·))dt+ G(ρ(1, ·))

+

L∑
`=1

(∫ 1

0

F`t (ρ`(t, ·))dt+ G`(ρ`(1, ·))
)

(27a)

subject to
∂ρ`
∂t

+∇ · ((f(x) +B(x)v`)ρ`)

− ε

2

n∑
i,k=1

∂2(σikρ`)

∂xi∂xk
= 0, ` = 1, . . . L, (27b)

ρ`(0, ·) = ρ0,`, ρ(t, x) =

L∑
`=1

ρ`(t, x), (27c)

where we impose the same assumptions on F`t and G` as on Ft and G,
respectively. The functionals

∫ 1

0
Ft(·)dt and G(·) are the cooperative

part of the cost, which connects the different species. In particular,
for Ft ≡ 0, G ≡ 0, (27) reduces to L independent single-species
problems. Moreover, the functionals

∫ 1

0
F`t (·)dt and G`(·) are the

ones that give rise to the heterogeneity among the species.

C. Numerical algorithm for solving the multi-species problem

To derive a numerical algorithm for solving (27), analogously to
the single-species problem we first discretize the problem over time
and space. To this end, by adapting the arguments in the previous
section, we arrive at the discrete problem

minimize
M`,µj ,µ

(`)
j

j=1,...,T
`=1,...,L

L∑
`=1

(
〈C,M`〉+ εD(M`)

)
+ ∆t

T −1∑
j=1

Fj(µj) +G(µT )

+

L∑
`=1

(
∆t

T −1∑
j=1

F `j (µ
(`)
j ) +G`(µ

(`)
T )

)
(28a)

subject to Pj(M`) = µ
(`)
j , j = 1, . . . , T , ` = 1, . . . , L, (28b)

P0(M`) = µ0,`, ` = 1, . . . , L, (28c)
L∑
`=1

µ
(`)
j = µj , j = 0, . . . , T (28d)

where C still has the form (26), and where µ0,` are discrete
approximations of ρ0,`. In particular, note that the second line in the
cost (28a) is the discretization of the second line in (27a). Moreover,
also note that (28) consists of L coupled multi-marginal optimal
transport problems, coupled via the constraint (28d) and the cost
imposed on µj , for j = 1, . . . , T , in (28a).

Next, we reformulate (28) into one single entropy-regularized
multi-marginal transport problem (cf. [41]). To this end, let M ∈
RL×N

T+1

be the (T + 2)-mode tensor such that M`i0...iT =
(M`)i0...iT , i.e., M`i0...iT is the amount of mass of species ` that
moves along the path xi0 , . . . , xiT . For this tensor M, we will
use the index −1 to denote the “species index”. This means that
(P−1(M))` =

∑
i0,...,iT

(M`)i0...iT , for ` = 1, . . . , L, and hence
the elements of the additional marginal µ−1 ∈ RL+ are the total mass
of the densities of the different species. Moreover, this means that
Pj(M) is the total distribution µj at time j∆t, as defined by (28d),
while the bimarginal projection P−1,j(M) gives the L × N matrix
[µ

(1)
j , . . . , µ

(L)
j ]T . By introducing the matrix

R(−1,0) = [µ0,1, . . . , µ0,L]T ∈ RL×N+ ,
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the constraint (28c) can be imposed by requiring that P−1,0(M) =
R(−1,0). Next, by defining the functions FL

j : RL×N → R as

FL
j (R(−1,j)) =

L∑
`=1

∆tF `j (µ
(`)
j ) j = 1, . . . , T ,

and similarly for G L, the last term in the cost (28a) can be written as
functionals applied to the bimarginal projections. Finally, by noting
that

∑L
`=1 D(M`) = D(M), we can write the problem as

minimize
M,µj ,R

(−1,j)

j=1,...,T

〈C̃,M〉+ εD(M) + ∆t

T −1∑
j=1

Fj(µj) +G(µT )

+

T −1∑
j=1

FL
j (R(−1,j)) + G L(R(−1,T )) (29a)

subject to Pj(M) = µj , j = 1, . . . , T , (29b)

P−1,j(M) = R(−1,j), j = 1, . . . , T , (29c)

P−1,0(M) = R(−1,0) (29d)

where

C̃`i0...iT =

T −1∑
j=0

Cij ,ij+1 . (29e)

The problem (29) is readily seen to be a graph-structured entropy-
regularized multi-marginal optimal transport problem of the form (5),
and can hence be solved using Algorithm 1. In particular, the iterates
of the transport plan produced by Algorithm 1 are of the form Mk =
K�Uk, where K = exp(−C̃/ε) and where

U`i0...iT = U
(`,i0)
−1,0

T∏
j=1

U
(`,ij)

−1,j

T∏
j=1

u
(ij)

j . (30)

The underlying graph-structure is illustrated in Figure 3, and by
adapting the arguments in [41], marginal and bimarginal projections
needed in the inclusion problems (15) can be computed efficiently as
follows.

Theorem V.2. Let K = exp(−C̃/ε), with C̃ defined as in (29e) and
ε > 0, and let U be as in (30). Define K = exp(−C/ε), and let

Ψ̂j =

{
U−1,0K, j = 1,(

Ψ̂j−1 � U−1,j−1

)
diag(uj−1)K, j = 2, . . . , T ,

and

Ψj =

{
U−1,T diag(uT )KT , j = T − 1,

(Ψj+1 � U−1,j+1) diag(uj+1)KT , j = 0, . . . , T − 2.

Then we have the following expressions for projections of the tensor
K�U

P−1,0(K�U) = U−1,0 �Ψ0,

P−1,j(K�U) = Ψ̂j �Ψj � U−1,jdiag(uj),

P−1,T (K�U) = U−1,T diag(uT )� Ψ̂T ,

PT (K�U) = uT �
(

Ψ̂T � U−1,T

)T
1,

Pj(K�U) = uj �
(

Ψ̂j �Ψj � U−1,j

)T
1,

for j = 1, . . . , T − 1.

Proof: See Appendix A.
Finally, using Theorem V.2 and specializing Algorithm 1 to solving

the particular problem (29), an algorithm for solving discretized
multi-species potential mean field games is given in Algorithm 3.

Remark V.3. The algorithms in [68] are special instances of
Algorithm 3. In particular, if FL

j (·) = 〈Cj , ·〉 for some Cj ∈ RL×N ,

Algorithm 3 Method for solving the multi-species potential mean
field game (29).
Input: Initial guess u1, . . . , uT , U−1,0, . . . , U−1,T

1: ΨT −1 ← U−1,T diag(uT )KT

2: for j = T − 2, . . . , 0 do
3: Ψj ← (Ψj+1 � U−1,j+1)diag(uj+1)KT

4: end for
5: while Not converged do
6: U−1,0 ← R(−1,0) �Ψ0

7: Ψ̂1 ← U−1,0K
8: for j = 1, . . . , T − 1 do
9: W−1,j ← (Ψ̂j �Ψj)diag(uj)

10: Update U−1,j by 0 = −U−1,j � W−1,j +
∂(FL

j )∗(−ε log(U−1,j)).
11: wj ← (Ψ̂j �Ψj � U−1,j)

T1
12: Update uj by 0 = −uj � wj + ∂(∆tFj)

∗(−ε log(uj)).
13: Ψ̂j+1 ← (Ψ̂j � U−1,j)diag(uj)K
14: end for
15: W−1,T ← Ψ̂T diag(uT )
16: Update U−1,T by 0 = −U−1,T � W−1,T +

∂(G L)∗(−ε log(U−1,T )).
17: wT ← (Ψ̂T � U−1,T )T1
18: Update uT by 0 = −uT � wT + ∂G∗(−ε log(uT )).
19: ΨT −1 ← U−1,T diag(uT )KT

20: for j = T − 1, . . . , 1 do
21: Ψj−1 ← (Ψj � U−1,j)diag(uj)K

T

22: end for
23: end while
Output: u1, . . . , uT , U−1,0, . . . , U−1,T

µ−1

µ1µ0 µT−1 µT

P−1,0(M) = R(−1,0)

R−1,1 R−1,T −1

R−1,T

C C CC

Fig. 3: Illustration of the graph G for the multi-species density optimal
control problem. Grey circles correspond to known densities, and
white circles correspond to densities which are to be optimized over.

then (FL
j )∗(·) = I{Cj}(·). Hence, U−1,j must equal Kj :=

exp(−Cj/ε). Similarly, if G L(·) = 〈CT , ·〉, we get that U−j,T must
be equal to KT , from which we recover [68, Alg. 1]. On the other
hand, if G L(·) = I{R(−1,T )}(·) for some given R(−1,T ), then the
marginal µT is also known and any cost associated with it is a con-
stant and can hence be removed. Moreover, (G L)∗(·) = 〈R(−1,T ), ·〉,
from which we recover [68, Alg. 2].

D. Numerical example

In this section we demonstrate Algorithm 3 on a two-dimensional
numerical example with L = 4 different species. To this end, we
consider the state space [0, 3] × [0, 3] and uniformly discretize it
into 100 × 100 grid points; the latter are denoted xi,k for i, k =
1, . . . , 100. No points are placed on the boundary of the state space,
which means that the cell size is ∆x = 0.032. Moreover, time is
discretized into T +1 = 40 time steps, i.e., with a discretization size
∆t = 1/39 and with time index j = 0, . . . , 39. The dynamics of
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the agents is taken to be f(x) ≡ 0 and B(x) = I . This means that
the cost matrix, with elements (26b), is time-independent and given
by C = [‖xi1,k1 − xi2,k2‖2]100

i1,i2,k1,k2=1. This corresponds to the
squared Wasserstein-2 distance on the discrete grid.

For ε = 10−2, we consider the discrete problem

minimize
M`∈R10040

+ ,

µ
(`)
j ∈R

100
+

j=1,...,39, `=1,2,3,4

4∑
`=1

(
〈C,M`〉+ εD(M`)

)
+

39∑
j=1

〈c3, µ(3)
j 〉+ 0.1

39∑
j=1

‖µ(4)
j − µ̃

(4)‖22

+ 3‖µ19 − µ̃1‖22 + 3‖µ39 − µ̃2‖22 (31a)

subject to Pj(M`) = µ
(`)
j , j = 0, . . . , 39,

` = 1, 2, 3, 4, (31b)
4∑
`=1

µ
(`)
j = µj , j = 0, . . . , 39, (31c)

µj ≤ κj , j = 1, . . . , 39, (31d)

µ
(1)
j ≤ κ

(1), j = 1, . . . , 39. (31e)

Here, µ̃1 and µ̃2 are the two distributions given in Figure 4a.
Moreover, the linear cost c3, associated with species 3, and the
target distribution µ̃(4), associated with species 4, are both given in
Figure 4b.8 Finally, for the capacity constraint (31d), κj is illustrated
in Figure 4c, while for the capacity constraint (31e), κ(1) is zero in
the lower half of the domain and infinite for the upper half.

The multi-marginal optimal transport reformulation of (31) was
solved using Algorithm 3. The latter is adapted as in Section III-D to
handle both the costs on the total marginals in (31a) and the inequality
constraints in (31d); details on the Fenchel conjugates of the functions
involved can be found in Table I. Results are shown in Figure 5, where
the initial distributions µ(`)

0 for the different agents can be seen in
the left-most column (showing time point j = 0).

VI. CONCLUSIONS

In this paper we have seen that graph structured tensor optimization
problems naturally appear in several areas in systems and control. We
have developed numerical algorithms for these problems based on
dual coordinate ascent that utilize the fact that the dual problems
decouple according to the graph structure. We also showed that
under mild conditions these algorithms are globally convergent, and
in certain cases the convergence is R-linear. We believe that these
methods are useful for addressing many other types of problems, e.g.,
in flow problems where the nodes or edges also have dynamics (cf.
[25]). Moreover, we also believe that these methods can be extended
to handle, e.g., multi-species potential mean field games where each
species also has different dynamics.

APPENDIX

A. Deferred proofs

Proof of Lemma III.3: By Assumption A, there is a feasible
point to (5) with finite objective function value, and since problems
(5) and (4) are equivalent, this means that the objective function in
(4) is proper. To show that the minimum for the latter is attained, note
that g(t), t ∈ V , and f (t1,t2), (t1, t2) ∈ E , are all proper, convex,
and lower-semicontinuous, and hence they all have a continuous

8Note that µ̃2 and µ̃(4) are uniform distributions. The former has the same
total mass as the total distribution µ0, and the latter the same as µ(4)

0 .

affine minorant [4, Thm. 9.20]. However, and since the entropy
term εD(M) is radially unbounded and grows faster towards ∞
than linearly, we have that the objective function in (4) is radially
unbounded. Since the entire objective function is also proper, convex,
and lower-semicontinuous, the minimum is attained [69, Thm. 27.2],
and it is unique since D(M) (and hence the entire objective function
in (4)) is strictly convex.

Lemma A.1. Let f : Rn → R̄ be proper, convex, and lower-
semicontinuous, then ri(dom(f∗)) 6= ∅.

Proof: Since f is proper, convex, and lower-semicontinuous, so
is f∗ [4, Cor. 13.38]. dom(f∗) is therefore nonempty, and by [4,
Prop. 8.2] it is convex. Using [4, Fact 6.14(i)], the result follows.

Lemma A.2. There is no duality gap between (5) and (6).

Proof: To prove it, we derive a Lagrangian dual to an equivalent
problem to (6), and show that for the latter strong duality holds with
(5). To this end, note that a problem with the same set of globally
optimal solutions as (6) is the constrained optimization problem

sup
U,λ,Λ

− ε〈K,U〉 −
∑
t∈V

(g(t))∗(−λt)−
∑

(t1,t2)∈E

(f (t1,t2))∗(−Λt1,t2)

s.t. log(Ui1...iT ) =
1

ε

∑
t∈V

λ
(it)
t +

∑
(t1,t2)∈E

Λ
(it1 ,it2 )

t1,t2

 .

However, the latter is nonconvex due to the nonaffine equality con-
straint. Nevertheless, since K ≥ 0 the cost function is nonincreasing
in U, and since the logarithm is a monotone increasing function,
the above problem has the same globally optimal solution as the
relaxed, convex problem with the equality changed for an inequality
≥. Moreover, for this convex problem, by using Lemma A.1 it
is easily seen that Slater’s condition is fulfilled, and hence strong
duality holds. Next, relaxing the convex inequality constraints with
multipliers Qi1...iT ≥ 0 we get the Lagrangian

− ε〈K,U〉 −
∑
t∈V

(g(t))∗(−λt)−
∑

(t1,t2)∈E

(f (t1,t2))∗(−Λt1,t2)

+
∑
i1...iT

Qi1...iT

log(Ui1...iT )− 1

ε

∑
t∈V

λ
(it)
t +

∑
(t1,t2)∈E

Λ
(it1 ,it2 )

t1,t2


which separates over λt, Λt1,t2 , and U. Moreover, we have that∑
i1...iT

Qi1...iT
1
ε
λ

(it)
t = 〈1/εPt(Q), λt〉, and therefore when

taking the supremum over λt we get

sup
λt∈RN

−(g(t))∗(−λt)− 〈1/εPt(Q), λt〉 = (g(t))∗∗(1/εPt(Q))

= g(t)(1/εPt(Q)),

where the last equality follows from [4, Thm. 13.37]; an analogous
result holds for (f (t1,t2))∗ and Λt1,t2 . The remaining part of the
Lagrangian is sup

U∈RNT −ε〈K,U〉 + 〈Q, log(U)〉, and to find
this supremum we first note that if Ki1...iT = 0, then we must
have Qi1...iT = 0 or else the cost function is unbounded. For
all other elements, we take the derivative with respect to Ui1...iT

and set it equal to zero, from which it follows that Ui1...iT =
Qi1...iT /(εKi1...iT ) > 0, which is hence the supremum. Plugging
this back into the cost, we get

− ε〈K,U〉+ 〈Q, log(U)〉

=
∑
i1...iT

−Qi1...iT + 〈Q, log(Q)〉 − 〈Q, log(εK)〉

=
∑
i1...iT

−Qi1...iT + 〈Q, log(Q)− log(ε)〉+ (1/ε)〈Q,C〉,
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(a) Target densities µ̃1 (left) and µ̃2 (right) for
the total density at time points j = 19 and j =

39, respectively.

(b) The left plot shows the linear cost c3 for
species 3, where blue means cost 0 and yellow
means a cost of 390∆x∆t. The right plots
shows the target distributions µ̃(4) for species 4.

(c) Illustration of the capacity constraints κj
at the different time points j: blue means zero
capacity (obstacle) while yellow means infinite
capacity.

Fig. 4: Figures describing the setup in the numerical example in Section V-D.

Fig. 5: Time evolution of total density and densities of the individual species, for the numerical example in Section V-D.

together with the constraints that Qi1...iT = 0 if Ki1...iT = 0. But
for any element such that Ki1...iT = 0 we have that Ci1...iT =∞,
and the constraints can thus be removed since they are implicitly
enforced by the cost function. Therefore, with the change of variable
Q = εM we recover, up to a constant, the primal problem (4). Since
(4) has the same optimal value as (5), the result follows.

Proof of Theorem V.2: Note that K`i0...iT =
∏T −1
t=0 Kit,it+1 .

Together with (30), this means that

(P−1,j(K�U))`,ij =
∑

i0,...ij−1
ij+1,...iT

((T −1∏
t=0

Kit,it+1U
(`,i0)
−1,0

)
(
T∏
t=1

U
(`,it)
−1,t

)(
T∏
t=1

u
(it)
t

))
= U

(`,ij)

−1,j u
(ij)

j Ψ̂
(`,j)
j Ψ

(`,j)
j ,

where

Ψ̂
(`,ij)

j =
∑

i0,...ij−1

U
(`,i0)
−1,0 Ki0,i1

j−1∏
t=1

U
(`,it)
−1,t u

(it)
t Kit,it+1 ,

Ψ
(`,ij)

j =
∑

ij+1,...iT

U
(`,iT )
−1,T u

(iT )
T KiT−1,iT

T −1∏
t=j+1

U
(`,it)
−1,t u

(it)
t Kit−1,it .

A direct calculation gives that Ψ̂j and Ψj above fulfill the recursive
definitions in the theorem, which proves the form of the bimarginal
projection for j = 1, . . . , T − 1. Next, the form of the bimarginal
projections for j = 0 and T can be readily verified analogously.
Finally, note that

(Pj(K�U))ij =

L∑
`=1

(P−1,j(K�M))`,ij ,

which gives the result for the projections and proves the theorem.
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