
IEEE 1

Real-time Security Margin Control Using Deep
Reinforcement Learning

Hannes Hagmar, Student Member, IEEE, Robert Eriksson, Senior Member, IEEE, and
Le Anh Tuan, Member, IEEE

Abstract—This paper develops a real-time control method
based on deep reinforcement learning (DRL) aimed to determine
the optimal control actions to maintain a sufficient secure
operating limit (SOL). The SOL refers to the limit to the most
stressed pre-contingency operating point of an electric power
system that can withstand a set of credible contingencies without
violating stability criteria. The developed DRL method uses a
hybrid control scheme that is capable of simultaneously adjusting
both discrete and continuous action variables. The performance
is evaluated on a modified version of the Nordic32 test system.
The results show that the developed DRL method quickly learns
an effective control policy to ensure a sufficient SOL for a
range of different system scenarios. The impact of measurement
errors and unseen system conditions are also evaluated. While
the DRL method manages to achieve good performance on a
majority of the defined test scenarios, including measurement
errors during the training phase would improve the robustness
of the control with respect to random errors in the state signal.
The performance is also compared to a conventional look-up table
control where the advantages of the DRL method are highlighted.

Index Terms—Deep reinforcement learning, preventive control,
proximal policy optimization, secure operating limit

I. INTRODUCTION

An electric power system that can withstand the loss of
any single system component (N-1) without losing stability
is generally referred to as being operated securely. To ensure
that a power system is secure, system operators continuously
estimate security margins and take preventive actions as soon
as the security margins are deemed insufficient. This paper
is devoted to the determination of the optimal control actions
to ensure a sufficient secure operating limit (SOL). The SOL
is the margin to the most stressed pre-contingency operating
point that can withstand a set of credible contingencies without
violating defined stability criteria [1]. Thus, the SOL provides
a measure of how far a system can move from its current
operating point and still be able to maintain N-1 security.
The estimation of the SOL is computationally demanding
and requires time-domain simulations (or a quasi-steady-state
approximation) to account for the dynamic response after a
disturbance. However, it generally provides a better measure of
the security margin than conventional methods that are based
on static assessments.

Typical preventive control actions used to ensure suffi-
cient security margins include (1) management of reactive
power resources and voltage control through tap changes and

The work presented in this paper has been financially supported by En-
ergiforsk and Svenska kraftnät (Swedish National Grid) with project numbers
EVU10140 and EVU10450.

capacitor/reactor switching, and (2) generation rescheduling
and load curtailment intended to relieve loading of stressed
transmission lines and buses [2]. Traditionally, power system
control schemes have been based on look-up tables that
are pre-defined through offline simulations based on various
typical scenarios. However, as control actions and their level of
activation are correlated with different costs, such non-optimal
control schemes can significantly decrease the operational
efficiency of the system.

Optimal control methods such as model predictive control
have in several studies been proposed to deal with various
types of electric power system control [2], [3]. However, power
systems exhibit complex characteristics with a large number of
states, nonlinear dynamics, and system uncertainties [3], [4].
To be able to compute the optimal control actions in a time
frame required by system operators, significant simplifications
of the system model are then generally required. Data-based
control schemes, such as in [5], [6], are an alternative approach
based on an (offline) assessment of different states and actions.
The optimal actions for each state are stored in a database
and supervised learning algorithms are trained to map a state
to a set of optimized actions. However, the combinatorial
complexity in assessing all the state-action pairs, especially
if the number of available control actions is high, may result
in slow learning and makes the method not suited to handle
changes (e.g. in topology) of the underlying power system.

In recent years, significant progress has been made in solv-
ing complex control problems by using reinforcement learning
(RL). RL is a data-driven approach where a control agent
learns an optimal policy through interactions with a real power
system or its simulation model [7], [8]. Its combination with
deep learning, called deep reinforcement learning (DRL), has
proven effective in solving complex control problems in envi-
ronments such as games [9], [10], autonomous driving [11],
and robotics [12]. DRL enables automatic high-dimensional
feature extraction, making the control agent capable of han-
dling a large number of states and actions that are involved in
electric power system control.

Previous implementations of DRL in electric power system
control have so far mainly been focused on emergency control,
which has the role of controlling the system back into a
stable state after a disturbance has already occurred [13].
Implementations include methods adapted for automatic volt-
age control [14]–[17], optimal load shedding [4], [18], [19],
generator dynamic breaking [4], and oscillation damping [20].
DRL-based implementations adapted for preventive control
found in the literature are few and in [13], the authors argue

IEEE 2

that the reason may be because these control problems have
traditionally been formulated as static optimization problems.
One example of an RL-based implementation for preventive
control is presented in [21], which aimed to determine the
optimal control of active power generation for preventing
cascading failures and blackouts. However, the method was
based on a tabular form of Q-learning, which in general is not
suited to handle large state and action spaces.

Although previous DRL implementations in electric power
system control have achieved good performance on the pre-
sented test systems, some limitations in terms of practical
control remains. To achieve efficient control, system operators
are generally required to simultaneously control both discrete
(e.g. switching of a shunt capacitor) and continuous (e.g.
the level of active power generation rescheduling and load
curtailment) action variables. However, state-of-the-art DRL
algorithms such as deep Q-networks, or deep deterministic
policy gradients are generally designed to only control either
discrete or continuous action variables, and all previously
mentioned implementations of DRL in electric power system
control have been reduced to rather simple control schemes
where only a single type of action space has been considered.

In this paper, we address the lack of preventive control
methods and introduce a new method based on DRL aimed at
determining the optimal control actions to maintain a sufficient
SOL. We also introduce a hybrid control scheme, which is ca-
pable of simultaneously adjusting both discrete and continuous
action variables. To the authors’ best knowledge, this is the
first paper to develop a DRL method to address the advanced
control problem of optimally maintaining a sufficient SOL, as
well as providing a preventive control method that can handle
multiple discrete and continuous actions simultaneously.

The main contributions of this study can be summarized as:

• Development of a preventive control tool based on DRL
aimed to optimally control and ensure a sufficient SOL.
The DRL-based tool monitors the current state through
measurements, and if the system moves too close to the
security boundary, it suggests optimal control actions to
steer the system back into a secure operation again.

• A new DRL architecture based on the proximal policy
optimization (PPO) algorithm is developed that can han-
dle a hybrid of continuous and discrete action spaces si-
multaneously. The hybrid DRL agent can simultaneously
control reactive power injections through switching of
shunt reactive power devices, as well as controlling power
flows by load and generation rescheduling in stressed
system areas.

• An investigation into several aspects of the hybrid DRL
agent, including robustness to different simulation sce-
narios and noise in the inputs.

The rest of the paper is organized as follows. In Section II,
the theory regarding RL, the PPO algorithm, and adaptations
for hybrid control are presented. In Section III, the proposed
method is presented along with the steps for developing
the training data and the training of the developed hybrid
DRL agent. In Section IV, the results and the discussion are
presented. Concluding remarks are presented in Section V.

II. REINFORCEMENT LEARNING: THEORY

Reinforcement learning is a data-driven approach used to
solve complex and sequential optimal control problems. RL
problems are generally modeled as discrete-time Markov de-
cision processes (MDPs), where an agent uses its policy to
interact with the MDP to give a trajectory of states, actions,
and rewards. The received reward - also referred to as the
reinforcement signal - is used to determine whether the taken
actions were effective. The most common objective of the
agent is to maximize the expected sum of future rewards over
time. Through continuous interactions with the environment,
the agent is then trained to achieve this goal [22].

In this paper, the considered MPD is comprised of: a state
space S; a hybrid action space with both discrete and continu-
ous actions A; an initial state distribution with density p1(s1);
a stationary transition dynamics distribution p(st+1|st, at)
which satisfies the Markov property (st+1|s1, a1, ...st, at) =
(st+1|st, at); and a reward function R : S × A � R. We
denote at, st, and Rt the action, the state, and the reward,
respectively, taken at time t [22]. A parametrized policy is
used to select actions in the MPD. In the formulation used
in this paper, the policy is assumed to be stochastic and can
be formulated by πθ(at|st) : S −→ P(A) where P(A) is a
set of probability measures on A, θ ∈ Rn is a vector of n
parameters, and πθ(at|st) is a conditional probability density
of taking action at in state st associated with the policy. The
return Gγt is the total discounted reward from time step t and
onward, defined as:

Gγt =

T∑
k=t

γk−tR(sk, ak) (1)

where 0 < γ < 1 is a discounting factor. The value function is
defined as the expected total discounted reward in state s when
following the policy: V π(s) = E [Gγt |st = s;π]. The action-
value function is defined as the expected total discounted
reward in state s when taking action a and then following
the policy: Qπ(s, a) = E [Gγt |st = s, at = a;π].

A. Policy Gradients and Actor-Critic Methods

Policy gradient methods are a class of model-free RL algo-
rithms that learns a parameterized policy that can select actions
without requiring a value function [23]. These methods seek to
maximize a defined objective function J(θ) parametrized by
θ, and their updates commonly approximate gradient ascent:

θt+1 = θt + α∇̂J(θt) (2)

where ∇̂J(θt) is a stochastic estimate of the gradient of the
objective function with respect to θt [23] and α is the learning
rate used in the optimization. One of the most commonly used
gradient estimator in RL has the following form:

∇̂J(θt) = Êt
[
∇θ log πθ(at|st)Ât

]
(3)

where the expectation Êt [...] indicates an empirical average
over a batch of samples drawn from the MDP,∇θ log πθ(at|st)
is the gradient of the parametrized policy, and Ât is an

IEEE 3

estimator of the advantage function at time step t, which can
be formulated as:

Ât = Q̂π(st, at)− V̂ πφ (st) (4)

where V̂φ and Q̂π is an estimate of the value function
and the action-value function, respectively. In the problem
formulation used in this paper, relatively short episodic tasks
are considered. This allows us to use the sample return Gγt
from (1) to estimate the value of Q̂π , same as the approach
used in the REINFORCE algorithm [24]. The value function
is generally unknown and a function approximator is instead
used, parametrized by a weight vector φ. The value function is
learned simultaneously as the policy, commonly by minimiz-
ing a new cost function L(φ), based on the mean-squared error
(or some other loss function) between the true value function
V π(st) and its approximation V̂ πφ (st):

L(φ) = Eπ
[(
V π(st)− V̂ πφ (st)

)2]
(5)

By computing the gradient of L(φ) and taking stochas-
tic gradient-descent (or more efficient algorithms based on
stochastic gradient-descent such as RMSprop [25]) on batches
of data, the parameter vector φ that minimizes the loss can
be found. By definition, Gγt is an unbiased estimate of the
value function and can thus be used as a target value in the
training [23]. The presented approach can be viewed as an
actor-critic architecture where the policy πθ is estimated by
the actor and the value function V̂ πφ is estimated by the critic.
The parameters used in forming the policy (θ) and the value
function (φ) are in this paper representing the node weights
of two separate neural networks, and the goal of training the
networks is to find the optimal weights for these networks.

B. Proximal Policy Optimization

Policy gradient methods are generally trained on-policy,
which means that they need to sample transitions following the
current policy. Once the policy has been updated by training
on the current batch of transitions, the samples need to be
discarded and new sampled. A tempting solution is to either
run multiple steps of optimization on the same batch of data
or to use a large learning rate. However, doing so is not well-
justified, and empirically it often leads to destructively large
policy updates [26]. The PPO algorithm, first presented in [26],
presents a solution to these problems. In this paper, we use
the "clipped" version of the PPO algorithm, with the objective
function:

Jclip(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(6)

where rt is a probability ratio given by:

rt =
πθ(at|st)
πθold(at|st)

(7)

and ε governs the clipping range of the objective function,
and θold refers to the vector of policy parameters used in
sampling the transitions and thus before any update of the
policy parameters. The clipped objective function ensures that
we do not move too far away from the current policy, which

allows us to run multiple epochs of gradient ascent on the
samples without causing destructively large policy updates.
The rt-ratio is always equal to 1 for the first epoch, when
current policy πθ(at|st) is the same as was used to sample the
transitions πθold(at|st). For each epoch, the policy is trained to
increase the probability ratio rt above 1.0 when the advantage
function is positive, thus making advantageous actions more
probable to be chosen by the policy. Similarly, the policy is
trained to decrease the probability ratio rt below 1.0 when the
advantage function is negative, thus making disadvantageous
actions less probable to be chosen by the policy in the future.

C. Adaptations for Continuous-Discrete Control

To handle a hybrid actions space of continuous and discrete
actions, we follow the implementation introduced in [27]. The
hybrid policy πθ(a|s) is defined as a state-dependent distri-
bution that jointly models discrete and continuous random
variables. Independence between action dimensions, denoted
by ai, is assumed and the hybrid policy can be written as:

πθ(a|s) = πcθ(aC |s)πdθ (aD|s) =

=
∏
ai∈aC

πcθ(a
i|s)

∏
ai∈aD

πdθ (ai|s) (8)

where aC and aD are subsets of action dimensions with
continuous and discrete values respectively (where C and D
represents continuous respectively discrete action spaces), and
a is a vector of both discrete and continuous actions. We
represent each component of the continuous policy πcθ as a
normal distribution:

πcθ(a
i|s) = N

(
µi,θ(s), σ

2
i,θ(s)

)
(9)

We also represent each component of the discrete policy πdθ
as a Bernoulli distribution parameterized by state-dependent
probabilities Pθ(s):

πdθ (ai|s) = Bernoullii
(
αiθ(s)

)
, ∀i, s

2∑
j=1

P ij,θ(s) = 1 (10)

where θ are the parameters of the policy components that we
want to optimize. In this paper, we will represent the outputs
µi,θ(s), σ

2
i,θ(s)), π

d
θ (a|s) as outputs from a single branched

neural network.

III. PROPOSED FRAMEWORK FOR REAL-TIME CONTROL
OF SECURE OPERATING LIMITS

In this section, the framework used in training the real-
time SOL control algorithm is presented. The algorithm works
by continuously monitoring the current state of the system
through a set of measurements. If the hybrid DRL agent
assesses that the system is not secure, or has a too small margin
towards the security boundary, actions are initiated to steer the
system to a more secure state. Other types of control, such as
maintaining system voltages within acceptable limits, is not
included in the developed control, but could theoretically be
added as additional control goals.

The hybrid DRL agent is trained on different loading scenar-
ios where the security state of the system is varied to reflect

IEEE 4

g19

4071

4072

g20

g9
4011

4012

g10

4022

g5

10221021

g4

Eq.

g8

2032 2031 4031
g12

1011 1013

1014

4021

4032

4041

4061

4063

4062

4051
4045 4047

4046
4043

4042

4044

1043 1044

1041
1045

1042

g1
1012

g2

g3
g11

g14

g15

g6

g16(a/b)g18(a/b)

g17

g13 g7c

North

Central

South

Fig. 1. One-line diagram of the modified Nordic32 system [28]. Loads and
generators included in the continuous action space are marked in red, while
shunt capacitors participating in the discrete action space are marked in blue.

the different operating conditions that may occur in a real
power system. All simulations have been tested on the slightly
modified version of the Nordic32 test system, detailed in [28].
The main characteristic of the system is sensitivity towards
long-term voltage instability, and we will limit the scope of
the stability criteria mainly to this instability phenomenon. A
one-line diagram of the test system is presented in Fig. 1.
The training data were generated using PSS®E 35.0.0 with its
in-built dynamic models [29].

An overview of the interaction between the hybrid DRL
agent and the environment is illustrated in Fig. 2. The hybrid
DRL agent is based on the PPO algorithm and consists of an
actor used to form the policy and to choose actions, and a
critic used to evaluate the taken actions and to estimate the
value function. The actor and the critic are developed using
two separate neural networks, further discussed in Section
III-B. All the steps in the data generation and the training
of the networks are detailed in the following sections.

The control problem is defined as an episodic task that ends
whenever the SOL in the system is restored above a certain
threshold, or until a maximum number of time steps T is
reached, whichever comes first. For each training iteration,
batches of transitions consisting of N = 64 episodes, with
a total episode length of a maximum T = 8, are generated.
Thus, the training is performed on batches consisting of a
(maximum) of NT = 512 samples, but the samples may
be less if the episodes are ended earlier than at t = 8. To
improve the performance of the training, the learning rate
used in optimizing the actor and the critic network varies
during training, further specified in Section III-E. To speed
up training, we also parallelized the data generation and used
multiple CPU cores to generate data. Each parameter used in
the training and the generation of data is presented in Table I.

st

Actor
Choose

actions from
policy: πθ(at|st)

Optimize
policy

parameters: θ

Initial operating condition

Solve for next state: st st+1
Compute SOL

t=T or SOL > 30 MW?

actions at

Critic
Estimate Vϕ(st)
and compute

Aϕ(st)

Optimize
critic

parameters: ϕ

End episode

Aϕ(st)st+1

Compute returns Gγ

st+1
Gγ

Yes

No

st

Fig. 2. The generation of training data and the interaction between the actor
and critic network and the environment (the power system).

A. Generation of new initial states

A large range of different initial OCs was generated to
serve as training data for the algorithm. The initial OCs were
generated around the operating point of the simulated modified
Nordic32 system denoted as "operating point B" in [28]. All
loads in the system were randomly and individually varied
by multiplying the active load value with a random variable
generated from a uniform distribution (95 % of the original
load as lower limit, 105 % of the original load as upper
limit). The range was chosen to reflect the different loading
levels that may occur in a power system. In real applications,
training data could be sampled both from historic OCs and by
efficient database generation schemes [30]. The power factors
of all loads were kept constant. The total change in loading
was partly randomly distributed among all the generators in
the system and was based on a combination of a uniform
distribution and the initial active power produced by each
generator. Thus, a generator with a higher rated capacity had
a higher probability of compensating for a larger share of the
increased load.

To further stress the initial OCs and to provide a wider
range of different operating states, a single random topology
change could also be introduced. With the same probability for
each scenario, either a line was disconnected between buses (i)
4032-4044, (ii) 4032-4042, (iii) 4031-4041, or (iv) no change
was introduced. The disconnected lines were introduced to
model the impact that possible topology changes might have
on the training of the hybrid DRL model. In actual implemen-
tations, all possible topology changes and components (e.g.
generators) that could be taken out of service and be imperative
for the system stability should be included in the generation
of the training data.

The generated initial OCs were first solved by a full
Newton-Raphson load flow but were re-initialized in case the
load flow did not converge. After a solved load flow solution,
a state vector st consisting of measurements of:

1) Bus voltage magnitudes of all buses in the system.
2) Active and reactive power flows on all transmission lines

and transformers.

IEEE 5

TABLE I
DESIGN AND HYPERPARAMETERS USED IN TRAINING

Parameter Values

A
rc

hi
te

ct
ur

e

C
ri

tic

Number of inputs 499
Neurons in first layer 128
Neurons in second hidden layer 64
Final activation function Linear
Hidden layer activation RelU

A
ct

or

Number of inputs 499
Neurons in common hidden layer 128
Neurons in each separate hidden layer 64
Final activation for µcont Linear
Final activation for σcont Softplus
Final activation for P (Dx|s) Sigmoid
Hidden layer activation RelU

Tr
ai

ni
ng

Maximum episode length (T) 8
Max Epochs (K) 10
PPO clip parameter (ε) 0.2
Discount factor (γ) 0.99
Optimizer RMSprop [25]

The current time step of the episode was also added to the state
vector. The state vector was then normalized by subtracting
the mean value of each state value and then dividing by its
standard deviation. The mean and standard deviation of each
state value was computed from previously sampled states and
a double-ended list with a maximum of 10 000 sampled states
was stored. As more and more iterations were performed, the
double-ended list was filled up and old sampled states were
discarded.

B. Sampling of actions and estimation of value function

The sampled state st was then passed to the actor network,
illustrated in Fig. 3 and further detailed in Table I. The actor
network shares a common hidden layer, then a separate hidden
layer is used for each type of activation function. The network
outputs parameters used in defining the Normal distribution
(9) and the Bernoulli distributions (10) that are used for the
continuous and discrete action variables, respectively. The
Normal distribution is parametrized by a mean value µcont
and a standard deviation σcont, while the Bernoulli distribution
is parametrized by a single probability parameter ranging
from 0-1. The mean value µcont is computed using a linear
activation function in the final layer, the standard deviation
σcont is computed using a softplus activation function that
ensures that the value never becomes negative, while the
Bernoulli distribution is achieved using a sigmoid activation
function in the final layer that ensures that the output is
bounded between 0 and 1. Actions were then sampled from
the defined distributions.

The sampled continuous action value was used to
reschedule power generation and perform load curtail-
ment to reduce the transfer of power through the sys-
tem. This was achieved by reducing the consumption
in the "Central" area at certain participating load buses:
4042, 4047, 4051, 1041, 1042, 1044, while simultaneously
increasing the generation in the "North" area at certain par-
ticipating generators: G1, G5, G8, G9, G11, G12, G20. The
sampled continuous action value controlled how much in total
the active power should be reduced in the system for all

x1

x2

x3

xn
P(D1|s)

P(D2|s)

P(D5|s)

σcont

-σcont +σcontμcont

μcont

Continuous actions

Discrete actions

P(D1|s)

P

1-P

0 1

Sample from:

RelU

Linear

Softplus

Sigmoid

Inputs

Common
hidden layer

Separate
hidden layer

Final
activation
functions

Sample from:
R

R

R

R

R

R

R

R

R

L

L

S+

S

S+

S

S

S

Fig. 3. Architecture of the actor network.

participating load buses. The load decrease was distributed
on each of the participating load buses based on their initial
load before the change, while the power factors of all loads
were kept constant. The discrete action variables included the
switching of an additional 100 MVAr of reactive power support
from any, or several, shunt capacitors. The discrete actions
(D1-D5) controlled the shunt capacitors at the following buses:
D1: 1041, D2: 1043, D3: 1044, D4: 1045, D5: 4041. The
participating buses and equipment for the continuous and the
discrete actions are all marked in red respectively blue, in the
line diagram in Fig. 1.

The sampled state st was also passed to the critic network
which estimated the value function V̂ πφ (st) of the current state.
The critic network is separate from the actor network and
consists of a NN with two hidden layers and a linear final
activation function, further detailed in Table I.

C. Taking steps and computing the SOL

The sampled actions were then taken in the system and a
new load flow solution was computed, resulting in a new state
st+1. The SOL for the st+1 state was then computed. Estimat-
ing the SOL is relatively complex and involves checking the
system’s capacity of maintaining stability after different con-
tingencies and for various levels of system stress. To reduce the
number of required simulations, the system’s stability was only
assessed with respect to a single dimensioning fault, namely
the disconnection of generator G14. In real applications and
if the developed method is to be used for larger systems,
all possible contingencies that can be dimensioning for the
security margin of the system should be evaluated.

The SOL for the next state st+1 was computed using a dual-
binary search similar to the one presented in [31]. The process

IEEE 6

SOL >0SOL = 0

Secure operating point
Not secure operating point

ΔP

ΔP/2

ΔP/4

ΔP/2

ΔP/4

ΔP

SOL >0

SOL <0

SOL = 0SOL <0

Fig. 4. Illustration of the dual binary search for SOL for a secure and a
non-secure initial operating point.

is illustrated in Fig. 4 and is based on searching through a
narrowing interval by iteratively testing the system security
with respect to a dimensioning fault and different levels
of system stress. A dynamic simulation was first initialized
followed by a disturbance to test whether the st+1 state was
secure or not. The upper part in Fig. 4 illustrates the search
process when the state was not secure, while the lower part in
Fig. 4 illustrates the search process when the state was secure.
Black dots indicate a secure state, while white dots indicate a
state that is not secure.

We exemplify the search process for a secure starting state.
If the starting state was found secure, the system stress for state
st+1 was increased by increasing the loads in the "Central"
area with a total of ∆P=128 MW, while simultaneously
adjusting the generation in the "North" area with the same
amount. The power factors of all loads were kept at their initial
values and the distribution of the added load and generation
were again based on the initial load or the rated capacity
of each generator. After the loads and the generation were
updated, the load flow was reiterated which then served as a
starting point for the new dynamic simulations. If the new state
was found to be secure, the system stress was again increased
with ∆P . In case it was not found to be not secure, the system
stress was reduced by ∆P/2. The dual binary search then
continued until a secure operating point was found and when
the step size in system stress change was equal to 1 MW.

Each dynamic simulation ran for a maximum of 800 seconds
but was stopped in advance if the case either collapsed (any
bus voltage below 0.7 pu) or if the system stabilized early. The
system was considered secure if, at the end of each simulation,
all transmission bus voltages were above 0.90 pu. If the SOL
was above 30 MW, the episode was ended. If not, the new
state (st+1) then served to sample new actions and estimate
new values of the value function.

D. Computing rewards and advantage estimates

Once all episodes had been generated, the returns and
the advantage estimates were computed. The reward Rt for
the taken actions was computed by a combination of the
resulting SOL and the costs for the continuous (Ccont) and
the discrete (Cdisc) actions, respectively. In this study, the
reward is unitless, but should in real applications reflect the

actual monetary cost of different actions and the corresponding
rewards when the control goal is either achieved or missed.
Any activation of the discrete actions contributed to a negative
reward of −3, representing the cost of the mechanical wear
that is involved in switching the shunt capacitors. The cost
for the continuous actions contributed to a negative reward of
-0.1 per adjusted MW in the power transfer. Changing a total
of ± 200 MW would thus result in a negative contribution to
the reward of −20. This negative reward reflects the system
cost of market adjustments or load/generation curtailment. The
control goal of the hybrid DRL agent is to always restore
the SOL to a value equal or above 30 MW, which would
ensure that a sufficient security margin is achieved and that
the N -1 contingency criterion always would be satisfied with
some margin. If the SOL was below 30 MW, a negative reward
of -50 was added to the total reward for that time step. The
final reward when accounting for the resulting SOL was then
computed as:

Rt =

{
Ccont + Cdisc + SOL− 50, if SOL ≤ 30 MW
Ccont + Cdisc, otherwise

(11)
The returns Gγt were estimated using (1) and the advantage

estimates Ât were estimated using (4) and the estimated value
of the state V̂ πφ given by the critic network. A discounting
factor γ of 0.99 was used to compute the returns. All sampled
data and transitions were then stored in a buffer which is later
used in training the actor and the critic networks.

E. Training actor and critic networks

Once the full N episodes were sampled, the actor and
the critic networks were trained. The training was performed
using the software Tensorflow in Python which automatically
computes the gradients on the defined cost functions. The
actor objective Jclip from (6) was augmented by adding an
entropy bonus to incentivize exploration of the policy [26].
The entropy S(πθ) for each Normal and Bernoulli distribution
defined by the hybrid policy πθ(a|s) was computed and added
as an entropy bonus Jent to the final actor objective function.
A coefficient βent was multiplied with the entropy bonus term
to adjust the weights in relation to the Jclip losses. The final
objective function for the actor network was computed by
taking the mean value of all samples for all N episodes on
the sum Jclip + βentJent. The critic objective function was
defined as the mean squared error (MSE) of the value function
error, computed from (5). The final critic objective function
was formed by taking the mean value of all samples for all N
episodes on the MSE of the value function error.

Once the actor and critic objectives were formed, they
were optimized using the RMSprop algorithm, which is an
adaptable algorithm suitable for gradient-based optimization
of stochastic objective functions. The actor objective function
was maximized with respect to θ, while the critic network
objective function was minimized with respect to φ. The
training was performed for K = 10 epochs on the whole batch
of N episodes simultaneously. It should be mentioned that
although a search of suitable hyperparameters was conducted,
the performance could have been improved even more by

IEEE 7

TABLE II
LEARNING RATES AND BATCH SIZES OVER ITERATIONS

Iteration αactor αcritic βent

≤ 200 1 · 10−3 3 · 10−3 0.01
≤ 400 3 · 10−4 1 · 10−3 0.0
> 400 1 · 10−5 3 · 10−5 0.0

further optimizing training parameters such as the learning
rate or the number of hidden neurons in each layer. To speed
up training and to stabilize it during later stages, the learning
rate and the βent coefficient were adjusted as the number
of training iterations increased. The values of the learning
rates and the used βent coefficient over training iterations are
specified in Table II.

IV. RESULTS AND DISCUSSION

A. Training results

The hybrid DRL agent was trained for a total of 1 000
iterations, corresponding to a total of 64 000 episodes, and
approximately 94 000 individual samples. The training per-
formance over episodes is presented in Fig. 5. The total
episode reward is presented in sub-figure (i). In sub-figure
(ii), the episode reward zoomed in at the final performance is
presented. The final SOL and the number of episode time steps
(length) are presented in sub-figures (iii) and (iv), respectively.
The red line shows a centered moving average computed
over the mean value over 5 000 episodes. To better visualize
the results, only every 100th value during the training is
illustrated in the figure. The results show that the performance
improved rapidly until around 1 000 episodes, after which
the policy managed to achieve a SOL above the threshold
value of 30 MW using only a single time step for a majority
of the episodes. In sub-figure (ii), it can be observed that
the performance continued to improve over time after 1 000
episodes, but at a much slower rate. The main increase in
performance after 1 000 episodes is mainly a result of the
decreasing exploration rate of the policy.

In Fig. 6, the development of the different policy parameters
is presented. The policy parameter governing the standard
deviation σcont increased at first, which was then followed
by the mean value µcont being adjusted. After the model was
trained on approximately 40 000 samples, the mean value
µcont stabilized. After that, the model improved mainly by
reducing its exploration rate (the standard deviation σcont
and the randomness of the discrete actions). In sub-figure
(iii) of Fig. 6, the probability of the taken action D3 is
illustrated, showing that the policy became more and more
certain of whether the discrete action should be activated or
kept inactivated. Similar training development for the other
discrete actions was observed as well.

B. Testing the hybrid DRL agent

During training, the actor used a stochastic policy which
allowed it to automatically explore the available action space.
While the exploration rate (the standard deviation of the con-
tinuous action space and the randomness of the discrete action
spaces) of the agent decreased during the final part of the

Fig. 5. Performance and development over training samples and episodes:
Sub-figures showing (i) episode rewards during all episodes; (ii) episode
rewards zoomed in at final performance; (iii) final SOL; (iv) episode length.
The red line indicates a moving average computed over the mean of 64 data
points. For better visualization, every 100th value is illustrated.

Fig. 6. Development of policy parameters over episodes. Sub-figures showing
(i) the mean value output µcont; (ii) the standard deviation output σcont; (iii)
the discrete probability of taking P (D3|s).

training, it would require a significantly longer training time
for it to reach a point where it essentially converged towards
a fully deterministic policy. When implementing the policy
online it is generally more suitable to transform the control
policy into a deterministic one and always pick the actions
that with the highest probability are optimal. When testing the
algorithm, the continuous action was thus controlled directly
by the mean value µcont. Each of the discrete actions was
activated whenever any of the defined Bernoulli probabilities
satisfied P (Di|s) ≥ 0.5. The hybrid DRL agent was tested on
three different test sets of data, each detailed below.

1) Test set 1: Data generated in the same way as for the
training data, but using a deterministic policy instead.

2) Test set 2: Introducing new unseen OCs by increasing
the variation of the generation and load configurations.

IEEE 8

TABLE III
AVERAGE PERFORMANCE OF THE HYBRID DRL AGENT

Reward Final SOL Episode length
[MW] [steps]

Test set 1 -42.0 72.4 1.04
Test set 2 -40.0 78.7 1.08
Test set 3 -67.0 59.4 1.65

Instead of randomly adjusting each load between 95 %
to 105 % as specified in Section III-A, the OCs were
adjusted randomly between 90 % to 110 %. The deter-
ministic policy was used to choose actions.

3) Test set 3: Introducing random measurement errors by
multiplying each of the state values with a random num-
ber with a mean of 1 and a standard deviation of 0.005.
The deterministic policy was used to choose actions.

The performance of the hybrid DRL agent when tested on
the different test sets is presented in Fig. 7 and Table III, each
consisting of 100 episodes. For test set 1, the average episode
length was 1.04 steps, indicating that the hybrid DRL agent
managed to ensure a sufficient security margin in a single time
step for almost all different scenarios. The average final SOL
was 74.2 MW, which is relatively close to the control goal of
ensuring a final SOL above 30 MW, indicating that a close to
minimal amount of actions have been activated to achieve the
control goal. It should further be noted that this value included
scenarios that were secure from the start as well. The average
episode reward was -42.0.

For test set 2, where new unseen OCs were introduced by
increasing the variation by which the loads and generation
were initialized, showed good performance as well. The aver-
age episode length increased slightly to 1.08 steps, indicating
that some of the unseen OCs forced the hybrid DRL agent to
require a few more steps before the SOL was restored. The
average final SOL is 78.7 MW, which again is relatively close
to the control goal of restoring the SOL above 30 MW. The
average episode reward ended up at -40. It should be noted
that this value cannot directly be compared to the one for test
set 1, as the system now is tested on scenarios with a larger
variation of the load and generation configurations.

For test set 3, where the impact of random measurement
errors on the state values was evaluated, the performance
of the DRL agent dropped significantly. The average reward
reduced to -67.0, while the average episode length increased
to 1.65 steps. Thus, for several of the scenarios in the test
set, the hybrid DRL agent required multiple control steps
before the SOL was restored above the threshold. This can
also be observed in Fig. 7. The results show the importance of
incorporating random errors that exist in real power systems,
but which are generally not present when training the method
on purely simulated data. Thus, it is important to include such
random errors during the training phase, which would force
the DRL agent to become more robust with respect to random
smaller perturbations in the state signal.

C. Comparison to a fixed look-up table

Conventional methods for preventive control typically rely
on system operators to choose suitable control actions by

Fig. 7. Performance when assessing the hybrid DRL agent on different test
sets and when transforming into a deterministic policy. Sub-figures showing
(i) episode rewards; (ii) final SOL; (iii) episode length. Mean values of the
performance indices are presented in Table III.

matching the current system state with the nearest system state
defined in a preventive control look-up table. The difficulty
of assessing raw measurements (commonly filtered through
a state estimator) from the system, require system operators
to pre-process the system state, generally by first computing
the security margin and then, in case the security margin is
below a defined threshold, take measures to restore it. Thus,
the system operator has to (i) first estimate the security margin,
(ii) possibly activate actions to restore it, and finally (iii) re-
evaluate the security margin to ensure that it is above the
defined threshold. In comparison, the developed hybrid DRL
agent can take actions by directly monitoring the system state,
without the need for the additional first step (i) with time-
consuming data pre-processing and computation of the SOL.

In this section, we compare the performance of the devel-
oped hybrid DRL agent to that of a fixed look-up table with
different actions for different levels of pre-computed SOLs.
Since the fixed look-up table require an initial computation of
the SOL before any actions can be initiated, a penalty is added
to be able to compare its performance to that of the hybrid
DRL agent. The pre-processing of measurement data and the
initial computation of the SOL corresponds to an additional
episode step for the hybrid DRL agent. Thus, a penalty of -50
(the penalty added for the DRL agent at every time step it
does not achieve its control goal) and an added time step for
each episode, are added to the performance of the fixed look-
up table. The actions available for the fixed look-up table are
based on the range of actions that were found suitable after
training the hybrid DRL agent, see Fig. 6. The same costs for
each of the actions as for the hybrid DRL agent were used.
The actions were designed to always ensure that the SOL was
restored above the threshold of 30 MW using a single set of
actions. The different actions of the fixed look-up table that

IEEE 9

TABLE IV
ACTIVATION LEVELS FOR THE FIXED LOOK-UP TABLE CONTROL SCHEME

Initially Actions activated
estimated SOL Continuous Discrete

SOL > 30 MW 0 MW None
−50 MW< SOL ≤ 30 MW -50 MW D1

−100 MW< SOL ≤ −50 MW -100 MW D1 +D2

−50 MW< SOL ≤ −100 MW -150 MW D1 +D2

−200 MW< SOL ≤ −100 MW -200 MW D1 +D2 +D3

−300 MW< SOL ≤ −200 MW -350 MW D1 +D2 +D3

SOL < −300 MW -450 MW All

TABLE V
AVERAGE PERFORMANCE WHEN USING A FIXED LOOK-UP TABLE

CONTROL SCHEME. VALUES IN PARENTHESIS PRESENTS THE PERCENTAGE
INCREASE TO THE AVERAGE PERFORMANCE OF THE HYBRID DRL AGENT

Reward Final SOL Episode length
[MW] [steps]

Test set 1 -105.2 (150 %) 198.7 (174 %) 2.0 (92 %)
Test set 2 -99.8 (149.5 %) 197.0 (150 %) 2.0 (85 %)
Test set 3 -105.2 (57 %) 198.7 (235 %) 2.0 (21 %)

were taken for the different levels of the initially estimated
SOLs are presented in Table IV.

In Table V, the performance when using the defined fixed
look-up table control on the three different test sets that were
defined in Section IV-B, is presented. For each metric and test
set, the percentage difference in performance compared to the
hybrid DRL agent is also presented in parenthesis after each
value. The results show that the proposed hybrid DRL agent
performed significantly better on all of the defined test sets.
The (negative) average reward increased from 57 % for test
set 3, up to 150 % for test set 1. Similarly, the average episode
length increased with 21 % for test set 3, up to 92 % for test set
1. While it should be noted that the steps defined in the look-
up table control scheme were chosen somewhat arbitrarily, it
also reflects the typical difficulty that system operators face
when defining such control rules in actual operation.

D. Practical aspects and requirements

The developed hybrid DRL agent is proposed to be used
as an online tool for system operators to control and ensure
a sufficient SOL in real-time. While the DRL agent can be
applied online to automatically activate actions, it can also be
used to suggest actions that system operators after evaluation
can manually choose to activate. Theoretically, it could also be
used as a method that could complement how system operators
today develop their preventive control look-up tables. Instead
of manually assessing the effectiveness of different actions on
a few typical system scenarios, the DRL framework could be
used to more efficiently evaluate what range of actions that
will be efficient for a larger range of different scenarios and
automate the evaluation process.

The inability to anticipate the behavior of neural networks
and in extension DRL methods is a major barrier in their
application in safety-critical systems, such as electric power
systems [32]. While neural networks might have high predic-
tion accuracy on unseen test data, they can be highly vul-
nerable to so-called adversarial examples, where small input
perturbations may lead to poor performance. For instance, the

results of the hybrid DRL agent in test set 3 illustrated the
impact that relatively small changes in the input data can have
on the performance. A possibility to strengthen the belief of
system operators in DRL control is to use verification methods
of the neural network behavior, such as the methods proposed
in [32], or by adopting methods that can provide estimates of
the uncertainty of the agent’s decisions [33]. By using such
verification methods and/or methods to estimate the actions’
uncertainty, system operators could have guarantees on when
the DRL agent is reliable to use and when conventional control
systems should be used instead. It should be stressed that
preventive control is fundamentally different from emergency
control in that the system will generally be stable even if
the taken actions do not make the system secure instantly.
Thus, although it is desirable to as fast as possible achieve a
N -1 secure state, it will not have the same severe impact on
the system as a wrong set of actions might have during an
emergency event.

Finally, the time consumption during data generation and the
high requirement of computational power should be addressed.
The training of the hybrid DRL agent is time-consuming,
both due to the large requirement of training data and the
fact that training scenarios were generated using full dynamic
simulations. The parallelization of the data generation on
different CPU cores significantly increased the efficiency by
which the data was generated. Furthermore, the use of the
PPO algorithm, which allowed multiple epochs of training
on the same batch data, further increased the efficiency of
the training. A possibility to further speed up the generation
of training data is to compute the SOL based on quasi-
steady-state (QSS) simulations or combinations of QSS and
dynamic simulations, as suggested in [1] or [34]. While QSS
methods, or combinations of QSS and dynamic simulations,
do not provide as accurate estimations of the SOL as if it
had been computed using a full dynamic simulation, it is still
significantly more accurate than most methods today that are
based on static estimations of the security margin.

V. CONCLUSION

This paper introduces a new method for optimal control to
maintain a sufficient SOL in real-time. The SOL is a security
margin that is based on evaluating the dynamic performance of
the system in a stressed operating point and provides a more
accurate estimate of the security margin than conventional
methods that are based on static assessments. The optimal
control method is based on DRL and introduces a hybrid
control scheme that can simultaneously control both discrete
(e.g. switching of a shunt capacitor) and continuous (e.g.
the level of active power generation rescheduling and load
curtailment) action variables to ensure that the SOL is above
defined threshold values.

The method showed good performance on the developed
test sets and managed to control the SOL above the defined
threshold values for a single time step for a majority of the
scenarios. When tested on disturbance scenarios and OCs that
were not included in the training, the method’s performance
dropped, which highlights the need for an efficient database

IEEE 10

generation and the need for methods to verify the accuracy of
the DRL agents policy. The method was further compared to
the performance of a fixed control scheme based on look-up
tables and proved to provide a more efficient control for all
of the defined test sets.

REFERENCES

[1] T. Van Cutsem, C. Moisse, and R. Mailhot, “Determination of secure
operating limits with respect to voltage collapse,” IEEE Transactions on
Power Systems, vol. 14, no. 1, pp. 327–335, Feb 1999.

[2] F. Capitanescu and T. Van Cutsem, “Preventive control of voltage
security margins: a multicontingency sensitivity-based approach,” IEEE
Trans. Power Syst., vol. 17, no. 2, pp. 358–364, 2002.

[3] M. Zima and G. Andersson, “Model predictive real-time control of
electric power systems under emergency conditions,” in Real-Time
Stability in Power Systems, S. Savulescu, Ed. Springer, 2004, pp. 367–
385.

[4] Q. Huang et al., “Adaptive power system emergency control using deep
reinforcement learning,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp.
1171–1182, 2020.

[5] H. Cai, H. Ma, and D. J. Hill, “A data-based learning and control method
for long-term voltage stability,” IEEE Trans. Power Syst., vol. 35, no. 4,
pp. 3203–3212, 2020.

[6] Q. Li, Y. Xu, and C. Ren, “A hierarchical data-driven method for event-
based load shedding against fault-induced delayed voltage recovery in
power systems,” IEEE Trans. Industrial Informatics, vol. 17, no. 1, pp.
699–709, 2021.

[7] D. Ernst, M. Glavic, and L. Wehenkel, “Power systems stability control:
reinforcement learning framework,” IEEE Trans. Power Syst., vol. 19,
no. 1, pp. 427–435, 2004.

[8] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE Journal of Power and
Energy Systems, vol. 6, no. 1, pp. 213–225, 2020.

[9] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, p. 529–533, 2015.

[10] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–359, 10 2017.

[11] A. E. Sallab et al., “Deep reinforcement learning framework for au-
tonomous driving,” Electronic Imaging, vol. 2017, no. 19, pp. 70–76,
2017.

[12] S. Gu et al., “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 3389–3396.

[13] M. Glavic, “(deep) reinforcement learning for electric power system
control and related problems: A short review and perspectives,” Annual
Reviews in Control, vol. 48, pp. 22–35, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1367578819301014

[14] R. Diao et al., “Autonomous voltage control for grid operation using
deep reinforcement learning,” in 2019 IEEE Power Energy Society
General Meeting (PESGM), 2019, pp. 1–5.

[15] S. Wang et al., “A data-driven multi-agent autonomous voltage control
framework using deep reinforcement learning,” IEEE Trans. Power Syst.,
vol. 35, no. 6, pp. 4644–4654, 2020.

[16] B. L. Thayer and T. J. Overbye, “Deep reinforcement learning for
electric transmission voltage control,” in 2020 IEEE Electric Power and
Energy Conference (EPEC), 2020, pp. 1–8.

[17] J.-F. Toubeau et al., “Deep reinforcement learning-based voltage control
to deal with model uncertainties in distribution networks,” Energies,
vol. 13, no. 15, p. 3928, 2020.

[18] J. Zhang et al., “Deep reinforcement learning for short-term voltage
control by dynamic load shedding in China southem power grid,” in
2018 International Joint Conference on Neural Networks, 2018.

[19] C. X. Jiang et al., “Power system emergency control to improve short-
term voltage stability using deep reinforcement learning algorithm,”
in 2019 IEEE 3rd International Electrical and Energy Conference
(CIEEC), 2019, pp. 1872–1877.

[20] Y. Hashmy et al., “Wide-area measurement system-based low frequency
oscillation damping control through reinforcement learning,” IEEE
Trans. Smart Grid, vol. 11, no. 6, pp. 5072–5083, 2020.

[21] S. Zarrabian, R. Belkacemi, and A. A. Babalola, “Reinforcement learn-
ing approach for congestion management and cascading failure preven-
tion with experimental application,” Electric Power Systems Research,
vol. 141, pp. 179–190, 2016.

[22] D. Silver et al., “Deterministic policy gradient algorithms,” in Proceed-
ings of the 31st International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, E. P. Xing and T. Jebara,
Eds., vol. 32, no. 1. Bejing, China: PMLR, 22–24 Jun 2014, pp. 387–
395.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[24] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[25] Tensorflow Keras Optimizers: RMSprop. [Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop

[26] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[27] M. Neunert et al., “Continuous-discrete reinforcement learning for
hybrid control in robotics,” in Conference on Robot Learning. PMLR,
2020, pp. 735–751.

[28] T. Van Cutsem et al., “Test systems for voltage stability studies,” IEEE
Trans. Power Syst., vol. 35, no. 5, pp. 4078–4087, 2020.

[29] PSS®E 35.0.0 Model Library, Siemens Power Technologies Interna-
tional, Schenectady, NY, Apr. 2019.

[30] F. Thams et al., “Efficient database generation for data-driven security
assessment of power systems,” IEEE Transactions on Power Systems,
pp. 1–1, 2019.

[31] H. Hagmar, R. Eriksson, and L. Tuan, “Fast dynamic voltage security
margin estimation: Concept and development,” IET Smart Grid, vol. 3,
04 2020.

[32] A. Venzke and S. Chatzivasileiadis, “Verification of neural network
behaviour: Formal guarantees for power system applications,” IEEE
Transactions on Smart Grid, vol. 12, no. 1, pp. 383–397, 2021.

[33] C.-J. Hoel, K. Wolff, and L. Laine, “Ensemble quantile networks:
Uncertainty-aware reinforcement learning with applications in au-
tonomous driving,” arXiv preprint arXiv:2105.10266, 2021.

[34] T. Van Cutsem, M.-E. Grenier, and D. Lefebvre, “Combined detailed
and quasi steady-state time simulations for large-disturbance analysis,”
International Journal of Electrical Power & Energy Systems, vol. 28,
no. 9, pp. 634 – 642, 2006.

Hannes Hagmar (Student member, IEEE) received the M.Sc. degree in
electric power engineering from Chalmers University of Technology, Gothen-
burg, Sweden in 2016. Between 2016 to 2017, he worked at RISE Research
Institutes of Sweden with research in electric transmission systems and
measurement technology. He is currently pursuing a Ph.D. degree at Chalmers
University of Technology. His research interest includes power system dynam-
ics and stability, integration of renewables, and machine learning.

Robert Eriksson (Senior Member, IEEE) received the M.Sc. and Ph.D.
degrees in electrical engineering from the KTH Royal Institute of Technology,
Stockholm, Sweden, in 2005 and 2011, respectively. From 2013 to 2015, he
held a position as an Associate Professor with Center for Electric Power
and Energy, Technical University of Denmark - DTU, Kongens Lyngby,
Denmark. He is currently with the Swedish National Grid, Department of
Power Systems. Since 2020, he has been an Adjunct Professor with the KTH
Royal Institute of Technology. His current research interests include power
system dynamics and stability, automatic control, HVDC systems, and DC
grids.

Le Anh Tuan (Member, IEEE) received the BSc degree in power systems
from Hanoi University of Technology, Vietnam in 1995, the MSc degree
in energy economics from the Asian Institute of Technology, Thailand in
1997, and the PhD degree in power systems from the Chalmers University of
Technology, Sweden in 2004. He is currently an Associate Professor at the
Department of Electrical Engineering, Chalmers University of Technology.
His current research interests include power system operation and planning,
power market and deregulation issues, grid integration of renewable energy
and electric vehicles.

