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Estimating the SARS‑CoV‑2 
infected population fraction 
and the infection‑to‑fatality ratio: 
a data‑driven case study based 
on Swedish time series data
Andreas Wacker1, Anna Jöud2, Bo Bernhardsson3, Philip Gerlee4, Fredrik Gustafsson5 & 
Kristian Soltesz3*

We demonstrate that finite impulse response (FIR) models can be applied to analyze the time 
evolution of an epidemic with its impact on deaths and healthcare strain. Using time series data for 
COVID‑19‑related cases, ICU admissions and deaths from Sweden, the FIR model gives a consistent 
epidemiological trajectory for a simple delta filter function. This results in a consistent scaling between 
the time series if appropriate time delays are applied and allows the reconstruction of cases for times 
before July 2020, when RT‑PCR testing was not widely available. Combined with randomized RT‑PCR 
study results, we utilize this approach to estimate the total number of infections in Sweden, and 
the corresponding infection‑to‑fatality ratio (IFR), infection‑to‑case ratio (ICR), and infection‑to‑ICU 
admission ratio (IIAR). Our values for IFR, ICR and IIAR are essentially constant over large parts of 
2020 in contrast with claims of healthcare adaptation or mutated virus variants importantly affecting 
these ratios. We observe a diminished IFR in late summer 2020 as well as a strong decline during 2021, 
following the launch of a nation‑wide vaccination program. The total number of infections during 2020 
is estimated to 1.3 million, indicating that Sweden was far from herd immunity.

List of symbols
Abbreviations
FIR  Finite impulse response (model)
ICR  Infection-to-case ratio
ICU  Intensive care unit
IFR  Infection-to-fatality ratio
IIAR  Infection-to-ICU admission ratio
LS  Least-squares (method)
RT-PCR  Reverse transcription polymerace chain reaction

Subscripts and modifiers
a  ICU admission
c  Case (detected infection)
d  fatality (death)
∼  denotes raw data before taking averages
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Variables and symbols
δ  Dirac’s delta distribution
�  IIAR/ICR
σ  Standard deviation
τ  Time delay (unit: days)
b  Gain parameter
e  Error or residual time series
N  Number of individuals
p  Probability
t  Time index (unit: days)
x  New infection time series (not directly observable)
y  Daily time series (observation)

The COVID-19 pandemic has posed enormous global challenges to the healthcare sector. To estimate the future 
need of personnel, equipment and hospital beds, reliable statistical analysis tools are required. Historic data is an 
important asset in figuring out how to best combine available time series data to gain predictive capability while 
reducing the influence of bias and other sources of prediction error and uncertainty. At the same time, statistical 
analysis of the historical epidemic evolution can provide indications for the success of medical treatments and 
vaccination programs. It also allows estimation of the accumulated number of infections. This number essentially 
determines the level of herd immunity, and thus received much attention in Sweden during the spring of 2020.

It is a difficult task to predict healthcare, and—of particular interest in the COVID-19 context—ICU demand. 
This is especially true in an early phase of an epidemic caused by a previously unknown pathogen, such as the 
SARS-CoV-2 virus that causes COVID-19. While it was possible to falsify early prediction  models1 based on 
high sensitivity, it remains a largely open question how time series data could be analyzed to arrive at accurate 
and precise predictions, with practical use to healthcare planners.

We investigate if a particular simple class of time-invariant finite impulse response (FIR)  models2—those with 
a delayed delta impulse response—is sufficient to model the relation between time series data. Particularly, our 
aim is to investigate whether the simple FIR model is sufficient for relating COVID-19 cases (detected infections), 
ICU admissions, and registered deaths in Sweden. We then demonstrate how such simple models can be used 
for reconstructing the epidemiological evolution during times of measurement uncertainty caused by limited 
test capacity, as well as prediction of ICU demand based on case data.

Methods
Data used. In this paper, the evolution of the pandemic is based on the following official and openly acces-
sible time series reported by the Swedish Public Health Agency:

• Cases: Daily RT-PCR-confirmed SARS-CoV-2 cases in Sweden. The date refers to the registration.
• ICU admissions: Daily number of ICU admissions in Sweden for patients with COVID-19 at the given day.
• Deaths: Daily number of deaths in Sweden for persons with a SARS-CoV-2 infection at the given day.

The data was downloaded from The Swedish Public Health  Agency3 on 2 November 2021. Here we display (death) 
data until 10 October 2021 in order to avoid incomplete data due to late reporting. Due to insufficient testing we 
omit case data before 18 June 2020 in the model fitting, and represent it with dotted lines in the figures. During 
the first wave in March–May 2020, RT-PCR-testing was essentially focused to persons admitted to hospital and 
elderly care in Sweden due to limited testing capacity. In the first half of June, the Swedish government strongly 
advocated the testing of all persons with symptoms of COVID-19 and supplied financial assistance to the regions 
as of 11 June 2020. We assume that this had full effect on testing after a further week, which justifies the date 
given above.

In addition to the ordinary testing of persons with suspected COVID-19 infection, results for six randomized 
 studies4 in 2020 and 2021 have been published by the Swedish Public Health Agency. They can be used to esti-
mate the prevalence of COVID-19 in the population at the corresponding times. The studies conducted 24–28 
August 2020 and 21-25 September 2020 did not provide any positive samples, while 23, 9, 24, and 43 positive 
cases where detected for 21–24 April 2020, 25–28 May 2020, 30 November–4 December 2020, and 12–16 April 
2021, respectively. Test results were available for slightly less than 3 000 persons in the studies of 2020 and 4758 
persons for the study in 2021. The limited sample size results in statistical uncertainty, indicated by the 68% 
confidence limits for the average assuming a Poisson distribution for the number of positively tested. Sampling 
bias might provide a reduced prevalence for the two latest studies according to the statistical analysis performed 
in the  studies4. Here, we use the bare results based on the number of positive cases. For comparison, we also 
provide an estimate for the ICR based on sampling-bias corrected data.

While deaths and ICU admissions related to COVID-19 naturally also appear in the case data, their total 
number until 1 November 2021 sums up to only 1.3% and 0.7%, respectively, of the total cases. Regarding ICU 
and death data, one has to take into account that approximately 75% of ICU patients  survive5, and former ICU 
patients contribute to the death toll with only 13%, as there are approximately twice as many deaths as ICU 
admissions. Furthermore, ICU admission data and death data relate to different age groups: While 69% of the 
ICU patients are younger than 70 years old, 69% of the deceased have reached at least the age of 80. The small 
overlap between the groups generating the cases, ICU admission, and deaths time series suggests that statisti-
cal correlations between the time series can be expected to reflect the links to their common cause: antecedent 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23963  | https://doi.org/10.1038/s41598-021-03269-w

www.nature.com/scientificreports/

SARS-CoV-2 infection in the Swedish society. This motivates the FIR model discussed in “Finite impulse response 
models” with three independent filter functions for cases, ICU admission, and deaths.

Furthermore, data on antibody prevalence from blood donors and health center samples (unrelated to 
COVID-19-specific testing) have been aggregated and  published6. Here we provide 95% confidence intervals 
for COVID-prevalence based on these data sources. We are aware, that neither the group of blood donors nor the 
group visiting healthcare centers for other reasons than COVID-19 are representative for the entire population. 
However, the fact that the prevalence of both groups are very similar, despite their very different characteristics, 
suggests that their prevalences of antibodies against Covid-19 are representative for the population.

Parameters used. In addition to the data on the COVID-19 evolution and prevalences provided by the 
Swedish Public Health Agency addressed in “Data used”, we apply three further parameters within this study:

• The time interval Tinterval = 10± 1 days, during which an infected person shows a positive RT-PCR result. 
See “Calibrating against randomized RT-PCR test data” for details.

• The probability pantibody = 0.95± 0.05 , that a previous SARS-CoV-2 infection is detected by an antibody 
test. See “Comparing with randomized RT-PCR and antibody studies” for details.

• The average duration τa = 17 between infection and the admission to ICU. See “Reconstructing the IFR and 
the IIAR” for details.

Note that Tinterval and pantibody are used independently of each other in two different determinations of the ICR. 
Both ways provide essentially the same result, which stabilizes our results against systematic errors in these 
parameters. τa only enters Eq. (22) and the time axis in Fig. 3.

Finite impulse response models. Finite impulse response (FIR) models are a class of linear filters. (The 
interested reader is referred to the  textbook2 for a thorough mathematical introduction to FIR and related linear 
model structures.) They describe the outcome of a time-dependent observable (such as a death rate) by a sum 
of preceding data (here number of infections at earlier dates), which are weighted by a filter function. They are 
commonly used for analysing epidemiological problems, where the filter function could represent for example 
the serial interval distribution. For practical applications, the filter function is often not easy to obtain. Here we 
show that the assumption of a Dirac delta response, where the filter function has only two free parameters (delay 
and amplitude), allows for a consistent analysis of the COVID-19 evolution in Sweden.

A central entity for the evolution of an epidemic is the number of new infections x̃(t) , occurring on day t. Let 
p̃c(t, τ) be the probability for an infection starting on day t to generate a reported positive RT-PCR test τ days 
later. This results in the observation model

where ỹc(t) denotes new cases on day t, and ẽc is a zero-mean uncorrelated noise process representing statistical 
fluctuations associated with the probability p̃c . The model has finite impulse since pc is identically zero for suf-
ficiently large τ (e.g. a human lifetime), and can be regarded practically as zero for τ ≫ 1 week. The time index t 
has the unit of days. In (1) it represents that the detection probability distribution, defined through the depend-
ence of the second time index τ , may itself vary over time.

The use of the tilde ∼ in (1) is to distinguish unfiltered measurements. Historic observations ỹc(t) exhibit 
a clear weekday pattern. For retrospective analysis it is therefore customary to apply a centered 7-day moving 
average filter,

to compensate for such effects. Throughout the paper we will work with time series that have been subjected 
to filtering according to (2). We will drop the ∼ notation but still write e.g. “cases” instead of “filtered cases” in 
favor of readability.

Within linear system theory, a model with the structure of Eq. (1) is referred to as a (stochastic) finite impulse 
response (FIR) model, implying (combined with Eq. (2)) that a yc(t) can be described by a finite record of x(t).

Summation of pc(t, τ) over τ , yields the expected infection-to-case ratio (ICR):

defined as the probability that a person infected on day t will eventually become detected and registered as a case.
The central point of the manuscript is that we investigate the hypothesis that pc(t, τ) can be adequately mod-

eled using the delta FIR model

where the discrete delta filter function given by

(1)ỹc(t) =

∞
∑

τ=0

p̃c(t − τ , τ)x̃(t − τ)+ ẽc(t),

(2)yc(t) =
1

7

3
∑

s=−3

ỹc(t − s),

(3)bc(t) =

∞
∑

τ=0

pc(t, τ),

(4)pc(t, τ) = bc(t)δ(τ − τc),
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where τc is the average delay between infection and case registration. Note that the model (4) is defined for the 
averaged quantities (2), where pc(t, τ) does not display the weekday fluctuations in t, that are likely in p̃c(t, τ) . 
Assuming that the τ-dependence of pc(t, τ) is reasonably well reproduced by its average τc and standard devia-
tion σ , the simplified model (Eq. 4) is justified in the Appendix. This relies on the assumption that pc(t, τ) does 
not change on the scale σ in t and that the second derivative of x(t) is much smaller than x(t)/σ 2 . For the special 
case of an exponential evolution for x(t), this provides an accuracy of better than 5% if σ is less than 46% of the 
doubling time, as has already been  stated7.

Employing Eq. (4), the observation model Eq. (1) becomes

The model (6) asserts that the number of cases yc(t) , detected through RT-PCR testing on day t, only depends 
on the number of new infections x(t − τc) that occurred τc days earlier. Furthermore, the expected dependence 
is through a linear scaling factor, the ICR.

Relating the time series. We introduce analogous observation models for ICU admissions ya and deaths 
yd:

where ba(t) is the Infection ICU admission Ratio (IIAR) and bd(t) the Infection Fatality Ratio (IFR), where the 
time dependence denotes the infection date.

The underlying infections x(t) are unknown, and cannot be estimated solely from the measurements yc , ya, yd , 
since an absolute reference frame against which to estimate the individual time-shifts and gain factors is not avail-
able. However, if we disregard the noise terms, we can relate the cases and ICU admissions time series through

where τac = τa − τc is the average delay between the registration as a case and the admission to ICU (not neces-
sarily for the same person). Analogously, we have

with τdc = τd − τc and

with τda = τd − τa.
Equations (9–11) can be conveniently fitted to data. If the time-dependence of the b-coefficients is negligible, 

we can fit the ratio � = ba/bc and τac from Eq. (9) by minimising the sum of squares

which results in the two fitting parameters �, τac . In order to obtain robust estimates we alternatively minimise 
the modified sum of squares

As a third option, we maximize the correlation coefficient

to obtain τac and use ba/bc = ȳa/ȳc . In all three approaches, the times t are chosen such that reliable data for 
both yc(t − τac) and ya(t) are available. Equations (10, 11) are treated in the same way, where the indices a, c are 
replaced by d, c and d, a, respectively, in the formulae above. Note, that each combination of indices applies a 
different time interval due to the reliability condition.

Calibrating against randomized RT‑PCR test data. While Eqs. (9–11) establish relative relations 
between the time series yc , ya, yd , a “grounding point” is needed to obtain absolute values of the time shift and 

(5)δ(t) =

{

1, t = 0,
0, otherwise,

(6)yc(t) = bc(t − τc)x(t − τc)+ ec(t).

(7)ya(t) = ba(t − τa)x(t − τa)+ ea(t),

(8)yd(t) = bd(t − τd)x(t − τd)+ ed(t),

(9)ya(t) =
ba(t − τa)

bc(t − τa)
yc(t − τac),

(10)yd(t) =
bd(t − τd)

bc(t − τd)
yc(t − τdc),

(11)yd(t) =
bd(t − τd)

ba(t − τd)
ya(t − τda),

(12)FLSac (�, τac) =
∑

t

[

ya(t)− �yc(t − τac)
]2
,

(13)FLSmod
ac (�, τac) =

∑

t

[

ya(t)
√

�
−

√

�yc(t − τac)

]2

.

(14)r(τac) =

∑

t

[

ya(t)− ȳa
][

yc(t − τac)− ȳc
]

√

∑

t

[

ya(t)− ȳa
]2
√

[

yc(t − τac)− ȳc
]2
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scaling parameters of the observation models Eqs. (6–8). Randomized RT-PCR studies provide such a ground-
ing point, where we use the data discussed in “Data used”. From the number of positive RT-PCR test results in 
each study, we can estimate the prevalence Npositive(t) by multiplying with the population of Sweden and divid-
ing by the number of tested persons.

The prevalence Npositive(t) depends on the probability ppositive(τ ) to have a positive test result τ days after 
becoming infected:

After time-averaging and using again the impulse FIR model this provides

where

is the average time-interval over which a positive test result is expected and

is the average delay after the time of infection. From the data displayed in Figure 2 of Kuricka et al.8, we extract 
TInterval = 10.8 days and τpositive = 12 days. Another  study9 found TInterval = 9.5 days. Motivated by these num-
bers we use TInterval = 10± 1 days and make the simplifying assumption τpositive = τc . (The resulting value for 
τc from Eq. (22) agrees well with τpositive = 12 days, extracted  from8). Analogously to Eq. (9) we fit the relation

where j = a, d refers to the data sets for ICU and deaths. We apply all three fitting routines, again neglecting the 
time-dependence of bj(t)—however, τpositive = τc is kept fixed. (As we only have 4 non-vanishing data points for 
Npositive , the use of a second fit-parameter next to bj could provide spurious results)

Results
Scaling of data. The symbols on the upper panel of Fig. 1 show the daily Swedish numbers of positively 
tested persons (named cases), persons admitted to intensive care units (named ICU), and deaths, see “Data used” 
for details. These data were averaged over a seven day period (lines) in order to avoid weekday fluctuations, 
resulting in the functions yc(t) (Cases), ya(t) (ICU admission), and yd(t) (deaths), which are the main data-sets 
used throughout this article. Here the time t is chosen as the central day of the averaging period.

As described in “Relating the time series”, we determined the ratios ba/bc , bd/bc , and bd/ba , as well as the 
corresponding delays. The vaccination program against SARS-CoV-2 (starting in the last week of 2020 in Swe-
den) is likely to have effected bc(t) , bd(t) and ba(t) differently. In its first phase, the program targeted elderly in 
need of special care, who show the by far largest risk to die from COVID-19. Thus, we disregard death data after 
January 2021 for the model fitting. Subsequently, groups were vaccinated in order of decreasing age. The main 
part of the age group 65–70 years was vaccinated with the first dose around the first half of April 2021. As this 
group is highly over-represented in ICU care, we also disregard ICU admission data newer than April 2021 from 
the model fitting. As mentioned above, we additionally disregard the case data before 18 June 2020, when testing 
became available to all persons with symptoms in Sweden, see “Data used”. The results are given in Table 1. We 
find that all three approaches provide identical time delays, which we regard as particularly reliable. Also the 
fractions between the ratios agree fairly well with deviations far below 10 %. In the following we apply the values 
from the least squares (LS) method, see “Relating the time series”, but we note that none of our results depends 
on this choice of method. The relations ba/bc · bd/ba = bd/bc and τac + τda = τdc hold only approximately as 
different time intervals are used in the fitting due to the exclusion of death data after 1 February 2021 and case 
data before 18 June 2020 addressed above.

Using these scaling factors ba/bc = 1/193 and bd/bc = 1/68 as well as the respective time delays, the lower 
panel of Fig. 1 shows that all three curves agree very well over the second wave of November 2020–January 
2021. The ICU and death curve also show a similar behavior at the first wave March–May 2020, albeit the ratio 
between ICU admission and deaths appears to be slightly higher here. The case numbers are much lower due 
to the limited testing before mid-July. For the third wave March–May 2021, the ICU and case curve agree very 
well (the dip in cases around 1 April may be attributed to decreased testing around Easter). We also see that 
the death curve shows much lower values from around mid-January 2021, which coincides with the start of the 
vaccination program in Sweden at the end of 2020.

Comparing with randomized RT‑PCR and antibody studies. We also fitted the data from the 6 ran-
domized RT-PCR studies to the ICU and death data (here we omitted the sixth study, as the fatality was signifi-
cantly reduced in 2021, most likely due to the vaccination program) and found almost identical results in both 
cases, see Table 1. Thus, the prevalence of RT-PCR-detectable SARS-CoV2 infections is about 16 times higher 

(15)Ñpositive(t) =
∑

τ

ppositive(τ )x̃(t − τ).

(16)Npositive(t) = TIntervalx(t − τpositive),

(17)TInterval =

∑

τ

ppositive(τ )

(18)τpositive =
1

TInterval

∑

τ

τppositive(τ )

(19)Npositive(t) =
TInterval

bj(t − τpositive)
yj(t − τpositive + τj)
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Figure 1.  Upper panel: Raw data (symbols) used in this study. (The numbers of ICU admissions and deaths 
have been multiplied by 100 to provide comparable numbers.) The lines show the respective averages over a 7 
day period, where the central day of the interval was used in the abscissa. Lower panel: 7 day averaged data from 
upper panel scaled using the proposed methodology of “Methods”, with resulting scale factors provided in the 
figure legend. The ICU-data are shifted by 5 days to the left and the death-data are shifted by 13 days to the left, 
so that they essentially fall on one curve. Dotted lines indicate sections of data that are considered as incomplete. 
The black error bars provide scaled 68% (one normal standard deviation) confidence levels of randomized 
RT-PCR study data. All scaling factors and delays are taken from the LS values in Table 1.

Table 1.  Results for different fitting procedures (LS least squares; LSmod modified least squares; Corr. coeff. 
correlation coefficient) detailed in “Relating the time series” for ratios and time delays. In the last two rows 
the fitted values for TInterval/ba and TInterval/bd were multiplied with the factors from row 1 and 3 respectively 
to obtain estimates for TInterval/bc . See List of symbols at the begining of the article for an explanation of the 
parameters.

Parameter LS LSmod Corr. coeff.

ba/bc 0.0052 0.0051 0.0051

τac 5 5 5

bd/bc 0.0147 0.0146 0.0141

τdc 13 13 13

bd/ba 2.70 2.65 2.59

τda 8 8 8
TInterval

ba

ba
bc

15.9 16.0 15.2
TInterval

bd

bd
bc

15.8 15.9 14.7
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than the number of cases (as reconstructed by shifting and scaling the death and ICU data), see the lower panel 
of Fig. 1. As an infected person can be detected over an average time interval Tinterval , but is only registered once 
as a case with probability bc , this implies TInterval/bc ≈ 15.6± 0.9.See “Calibrating against randomized RT-PCR 
test data” for details. Here we used the average of all values provided in the two lowest rows of Table 1 and used 
the maximal deviation as an estimate for the error. The time interval, an infected person is tested positive seems 
to be less well known. Using TInterval = 10± 1 days, see “See “Calibrating against randomized RT-PCR test data”, 
this provides the ICR based on the prevalence studies

We note that the sampling-bias corrected data for the prevalence results in a slightly larger value 
b
prevalence_corrected
c ≈ 0.7± 0.11 with overlapping error marginal.

The lower panel of Fig. 1 shows, that the case data agree with the prevalences divided by 16 after testing 
become widely accessible around mid-June 2020. As both the scaled ICU and death data agree well with the 
prevalences at all times, we can take these curves for estimating the number of cases before mid-July, where the 
case data are not reliable due to limited testing.

In Fig. 2 we find a clear plateau of total cases in July–November 2020, as there were few new cases in 
this period. The average plateau value (at 1. Sept) was 450,000 (reconstructed) cases, with an uncertainty 
(based on the ICU and death data) of about 55,000. Antibody tests for different groups provide estimates of 
700,000 positive persons in Sweden both at the beginning and the end of the plateau, see Fig. 2. This results in 
bc/pantibody = 0.64± 0.08 . The probability pantibody to develop detectable antibodies has been  found10,11 to be 
above 90%. As it should not exceed 100%, we assume pantibody = 0.95± 0.05 , and find

This agrees very well with the different estimate Eq. (20), albeit different statistical and systematic errors (in 
particular the values of TInterval and pantibody ) enter both ways to calculate bc . Thus we consider bc = 0.63 as a 
good estimate for the ICR with the awareness that a 10% error is not unlikely.

We note, that a relatively large number of persons with antibodies was found in the study at the beginning of 
March 2021. Here, one has to take into account that a part of the antibodies detected results from vaccinations. 
At this time about 700,000 persons had been vaccinated in Sweden and a majority of them should have developed 
antibodies, when the data was collected.

Reconstructing the IFR and the IIAR. Assuming the ICR bc = 0.63 for the time after June 18th , 2020, we 
can estimate the variables ba(t) and bd(t) from Eqs. (9, 10). At first we need the absolute delays. Here we rely on 
the data for ICU admission, which in average occurs about 11 days after the onset of symptoms according to the 
Swedish Intensive Care  Registry12. Furthermore, it is known, that it takes about 6  days from the times of infec-
tion to develop  symptoms13–15. Thus we use τa = 17 days in the following. Based on the values on Table 1 we get

In Fig. 3 we plot the time-dependence of the infection-to-ICU admission ratio (IIAR) ba(t) by a green line on 
the basis of Eq. (9). Here we used 21 day averages to restrict fluctuations. We find that ba(t) ≈ 0.34 % is close 

(20)b
prevalence
c ≈ 0.64± 0.10

(21)b
antibody
c ≈ 0.61± 0.11

(22)τc = 12 days, τa = 17 days, and τd = 25 days.

Figure 2.  Accumulated number of cases at a given date, where we added the estimates based on scaling the 
death and ICU data. The dashed blue line provides the case data where we added an estimate for number of 
cases missed due to limited testing before mid-June. The symbols with error bars show the results of antibody 
tests performed for blood donors and blood samples from health  centers6, where the fraction of positive tests 
was multiplied by Sweden’s population. Note that the number of persons with antibodies in March 2021 include 
detected results from vaccinations.
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to its average, which confirms the quality of the scaling. The larger bump around late July occurs within a range 
with small numbers of ICU admissions (average of 1.6 in August 2020), so that statistical fluctuations cannot 
be excluded here.

Similarly, we obtain the IFR bd(t) from Eq. (10) as shown by the red line in Fig. 3. On average, we have 0.74% 
until end of 2020 (before vaccinations started to show effects), but there are pronounced changes over time. For 
infections in August and September of 2020, the IFR is much lower. For infections after 1 January 2021, we see 
a distinct decline in the IFR reaching values of 0.1% for infections around mid-June 2021. Afterwards the IFR 
predicted by our approach increased again. The same behavior for the IFR can be obtained from from Eq. (11) 
as shown by the blue line in Fig. 3, which now extrapolates to times before mid-June under the assumption, that 
the IIAR remained essentially constant in this period as well.

Discussion
Using openly accessible data from the Swedish Public Health Agency and the Swedish Intensive Care Reg-
istry, our approach provides estimates for the infection-to-fatality ratio (IFR), infection-to-case ratio (ICR), 
and infection-to-ICU admission ratio (IIAR). We find that data for daily cases, daily ICU admission, and daily 
deaths of individuals with confirmed infection fall on essentially a single curve based on a FIR model with a 
delta filter function and time-invariant fit parameters, see the lower panel of Fig. 1. There are only two major 
well-understood exceptions: (I) Cases exhibit a poor match before mid-June 2020, when free RT-PCR testing 
became broadly available in Sweden for all persons with symptoms. (II) There is a sharp relative decrease in 
deaths coinciding with the start of the national vaccination program around the turn of the year 2020–2021.

Based on these findings we demonstrate that the approach can be used to retrospectively estimate the cases 
time series prior to July 2020, that would have been observable with a broad RT-PCR testing program in place. 
Furthermore, by incorporating data from six randomized RT-PCR studies conducted by the Swedish Public 
Health Agency and data for the prevalence of antibodies, we obtain an absolute value for the infection-to-case 
ratio ICR of 0.63± 0.07 for the time when testing is easily available to persons with symptoms in Sweden. This 
value is larger (but compatible within its error) than the value 0.56 obtained in a study for  Iceland10. It means 
that approximately 37% of all infected remained undetected as cases.

The key underlying assumption is that the correlation of the data observed under the model originates in 
causal relations. Such assumption is present, and constitutes a limitation, in all dynamic modeling. The reason 
we found merit in the proposed model is that it (I) is supported by data, (II) has few parameters, thus reducing 
the concern of over-fitting, and (III) is consistent with the plausible mechanistic explanation presented in the 
manuscript.

Additionally, the model relies on the assumption that the confusion matrices (true and false positives and 
negatives) for involved time series did not change importantly over time. For example, we have assumed that 
the RT-PCR detection probability is similar across SARS-CoV-2 variants (but it is straightforward to replace this 
assumption with externally obtained information on how e.g. detection probabilities vary based on the exact 
testing protocol). This is why we have omitted data from episodes during which such variations are known to 
have been prominent: early in the pandemic, when there was a shortage of RT-PCR test availability; late in the 
pandemic, when the effect of vaccination started to manifest itself in the data. For the period in-between, the 
good correlation of data under the model suggests that the assumption is a valid one, or at least one that cannot 
be rejected by the considered data.

Regarding systematic errors, the ICR value obtained from our study is reduced if both the time interval for 
positive testing, TInterval , and probability to develop measurable antibodies after an infection, pantibody , turn out to 
be much less than 10 days and 0.95, respectively. On the other hand, larger values are less likely as pantibody = 0.95 
was chosen close to its absolute maximum value 1 in the analysis. However, a sampling bias or false-positive tests 
may allow for deviations, which we cannot judge here.

Figure 3.  Estimated values for the IIAR ba(t) (green) and the IFR bd(t) (red, blue) based on Eqs. (9, 10, 11). 
We assume a constant ICR bc = 0.63 , which appears reliable for cases after 18 June (dotted curves indicate that 
earlier cases data are applied). The horizontal dashed lines provide the average values.
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Figure 2 indicates that the total number of cases would have been around 820 000 at the end of 2020, if testing 
in the first half of 2020 had been as available as in the second half. With an ICR of 0.63, this provides about 1.3 
million infected persons in Sweden in 2020. This corresponds to 13% of the population and is far below values 
required to reach herd immunity.

Based on the ICR of 0.63, we obtain the infection to ICU admission ratio IIAR of 0.34% and an average 
infection to fatality ratio IFR of 0.74 % (before the start of the vaccinations), see Fig. 3. Our value for the IFR is 
comparable to earlier  studies16–18. Note that possible systematic errors in ICR, as addressed above, affect the IIAR 
and IFR proportionally. Our analysis shows that the IIAR is rather constant in time, at least for the time after 
august 2020. In contrast, the IFR varies much stronger over time. We attribute its decline starting for infections 
around 1 January 2021 to successful vaccination of elderly persons. They dominate the mortality in COVID-19, 
but are less relevant for ICU admission. The increase in the IFR after early July 2021 may have a variety of reasons. 
It may indicate an increasing number of breakthrough infections for the elderly around 6 months after their 
vaccination. However, another contributing factor could be the fact that around 1 July 2021 the SARS-CoV-2 
vaccination became available to all adults in Sweden. In Sweden, the following vaccines are approved (approval 
date): Comirnaty by Pfizer/BionTech (21 December 2020), Spikevax by Moderna (January 6 2021), Vaxzevria by 
Astra Zenecas (29 January 2021), and Covid-19 Cavvine Janssen by Janssen (11 March 2021). Predominantly, 
Comirnaty has been used, making up for roughly 13 M of totally 19 M doses administered according to Swedish 
Public Health Agency  statistics19 by 29 October 2021.

The appearance of novel variants of the virus in Sweden during late 2020 and 2021 complicates the interpreta-
tion of the results. The disease severity is known to vary depending on the  variant20, but the time period during 
which new variants appeared overlaps with the time frame of the vaccination program, making it difficult to 
disentangle the effects of vaccination and new variants on the IFR. Relatedly, we lack explanation for the reduced 
IFR between mid-July and mid-September of 2020, as seen in Fig. 3. Such observations suggest that modeling 
for prevalence and healthcare demand estimation or prediction could be facilitated by national-level aggrega-
tion of epidemiological data. Particularly, accessible data on vaccination status, relative prevalence of identified 
virus variants, and reasons (suspected infection, randomized testing, etc.) could be directly incorporated into 
the proposed model with the objective of bias reduction.

The close correlation between cases, ICU admissions, and deaths—down to a linear scaling and time-shift 
once self-test had been made broadly available—warrants further investigation. It could be explained through 
(I) time-invariance of the ICR, the IIAR, the IFR, (the dip in IFR in summer is not visible in the lower panel of 
Fig. 1 due to the small numbers) and the temporal distributions describing the associated flows; (II) variations 
in the mentioned entities that have essentially cancelled each other throughout 2020; (III) external confound-
ers providing this canceling effect. Case (I) would imply that the healthcare system’s ability to save COVID-19 
patients and the impact from different virus mutations has not changed markedly. Case (II) would be surprising 
for the time from August 2020, where the ratio between cases and ICU admission is largely constant in time, 
see Fig. 3. Thus it is most likely that bc(t) and ba(t) are both constant in this range. However, for the first half of 
2020, things are less obvious. The variations observed in the magenta curve may result from reductions in ba(t) 
and bd(t) (i.e. improvement in healthcare) occurring at different times. Case (III) would also be noteworthy since 
the groups of deceased and persons admitted to ICU care have marginal overlap with each other.

The studied time series alone are not sufficient to map out the causation of the observed correlations, thus 
distinguishing between (I) and combinations of (II) and (III). However, an understanding of the underlying 
mechanism could be obtained by retrospectively tracking individual traces connecting the considered time 
series (e.g. persons who have tested positive, been admitted to an ICU or died with COVID-19). Importantly, if 
the correlation can be understood and shown not to be coincidental, it could constitute the basis for an accurate 
1–2 week predictor of the ICU demand.

Conclusion
The summarizing conclusion from our observations is that important insight into numerous aspects of an ongo-
ing epidemic can be obtained by considering the scaling between different time series, where time shifts are 
crucial. This is based on an FIR model with a delta filter function, which is shown to work well. We demonstrated 
this by reconstructing the daily number of cases for the first half year of 2020 periods, where testing was limited 
in Sweden, and extracting time variations in the infection fatality ratio.

Appendix: Quality of the delta‑impulse model
After averaging to remove weekly fluctuations and neglecting fluctuations ec(t) , (1) provides

While we do not know much about pc(t, τ) , we make the reasonable assumption that it has a single peak and 
does decay rather quick for large delays τ . In this case it is reasonably represented by its average τ̄ and standard 
deviation σ defined as

(23)yc(t) =

∞
∑

τ=0

pc(t − τ , τ)x(t − τ).

(24)τ̄ (t) =
1

bc(t)

n
∑

τ=0

τpc(t, τ),
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where we used the normalisation from Eq. (3). Assuming, that x(t) is a smooth function, which appears reason-
able after 7-days averaging, we may approximate by a second order Taylor expansion

where, for given t, the average delay τc satisfies τc = τ̄ (t − τc) . Then we obtain from Eq. (23) that

Assuming pc(t − τ , τ) ≈ pc(t − τc , τ) , as the detection probability should not change within a time-scale of σ 
for constant delay τ , we find

The first term is just our delta-impulse model, see Eq. (4), while the second term provides a correction less than 
5% if

If the infections show an exponential behavior x(t) = x0e
rt , this provides σ r < 0.316 or σ < 0.46tdoubling with the 

doubling time tdoubling = ln 2/r . The last relation has been previously  published7 for the applicability of the delta-
response for exponential evolutions. Here we generalised this to arbitrary evolutions x(t), where tdoubling/ ln 2 is 
replaced by the square root of the inverse relative second derivative.
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