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Traction Adaptive Motion Planning and
Control at the Limits of Handling

Lars Svensson , Member, IEEE, Monimoy Bujarbaruah , Arpit Karsolia, Christian Berger ,

and Martin Törngren , Senior Member, IEEE

Abstract— In this article, we address the problem of motion
planning and control at the limits of handling, under locally
varying traction conditions. We propose a novel solution method
where traction variations over the prediction horizon are rep-
resented by time-varying tire force constraints, derived from a
predictive friction estimate. A constrained finite time optimal
control problem (CFTOC) is solved in a receding horizon fash-
ion, imposing these time-varying constraints. Furthermore, our
method features an integrated sampling augmentation procedure
that addresses the problems of infeasibility and sensitivity to local
minima that arise at abrupt constraint alterations, for example,
due to sudden friction changes. We validate the proposed algo-
rithm on a Volvo FH16 heavy-duty vehicle, in a range of critical
scenarios. Experimental results indicate that traction adaptive
motion planning and control improves the vehicle’s capacity
to avoid accidents, both when adapting to low local traction,
by ensuring dynamic feasibility of the planned motion, and
when adapting to high local traction, by realizing high traction
utilization.

Index Terms— Adaptive control, autonomous vehicles, collision
avoidance, friction, motion planning, optimization-based motion
planning, sampling-based motion planning, vehicle control.

I. INTRODUCTION

AUTOMATED driving and advanced driver assistance
technology show increasing potential to improve safety

and mobility of transportation systems in the future. A major
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challenge in driving automation is handling of critical situ-
ations, that is, situations that appear suddenly, in which an
accident is imminent. Critical situations may originate from
multiple sources, for example, unpredictable behavior of other
traffic agents or rapid changes in the operational conditions.
The steady progress in sensors as well as perception and pre-
diction algorithms indicate that a subset of critical situations
can be anticipated and avoided ahead of time. However, con-
sidering the inherent unpredictability of humans in the traffic
environment and the wide range of operational conditions,
it is unlikely that all critical situations can be anticipated and
avoided ahead of time, without sacrificing efficiency and avail-
ability by enforcing overly cautious behavior. When a critical
situation does occur, passenger comfort is no longer a priority,
and if necessary, we wish to utilize the full physical capability
of the vehicle to avoid the imminent accident. This motivates
research in the field of motion planning and control at the
limits of handling. Previous research efforts present methods
for which performance approaches the physical limits [1], [2].
However, the motion capability of a road vehicle is greatly
affected by locally varying traction conditions of the road.
This phenomenon, which can be intuitively understood by the
simple experiment depicted in Fig. 1, has been well studied
and is included in standard vehicle dynamics literature [3], [4],
but has only recently been considered in the context of motion
planning at the limits of handling [5].

The work presented in this article represents a further
step toward traction adaptive motion planning and control
at the limits of handling. We propose a novel optimization-
based framework, in which the locally varying traction limit
is represented as time-varying constraints on tire forces.
The constraints are updated online as a function of the
estimated friction coefficient and dynamic tire loads. Fur-
thermore, we employ sampling augmentation to address the
non-convexity and infeasibility issues of the arising optimiza-
tion problem. We evaluate the proposed method in comparison
with an equivalent non-adaptive scheme, in a sequence of
experiments on various road surfaces.

The article presents an extended and refined version of
the method that was originally introduced in [6]. The exten-
sion includes refinement of the mathematical framework,
a more accurate model of the vehicle and its traction
limitations, a novel, GPU accelerated method to generate
feasible sample trajectories, and an extensive experimental
evaluation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Example of how operational conditions dictate the dynamic capabil-
ities of a road vehicle. Entering the curve at 15 m/s, the vehicle comfortably
negotiates the corner when the road is dry, but slides out into the opposing
lane when the road is wet, causing a hazardous situation. (a) Dry road surface.
(b) Wet road surface.

We summarize the contributions of the article as follows.

1) A real-time capable algorithm for traction adap-
tive motion planning and control that produces opti-
mal solutions with respect to time-varying tire force
constraints.

2) An experimental evaluation of traction adaptive motion
planning and control, showing that the concept improves
capacity to avoid accidents in a range of critical sce-
narios, when adapting to low as well as high local
traction.

II. MOTIVATION

Critical scenarios at the limits of handling put the following
high-level requirements on the local motion planning function-
ality.

1) A relatively complex vehicle model is required to accu-
rately describe the vehicle in aggressive motions.

2) A sufficiently long planning horizon is required to the
handle the inertia and limited actuation capacity of the
vehicle.

3) A short planning time is required in order to react
promptly to a dynamically changing traffic scene.

4) The planner has to be able to make discrete decisions,
for example, to go left or right of an obstacle.

5) Local traction variations should be considered.

Requirements 1–4 have been identified in previous academic
works with state-of-the-art approaches presented in Section III.
Next, we motivate why 5 should also be considered in this
context.

From basic mechanics we have that for a single tire, the
combined longitudinal, Fx , and lateral, Fy , force that can be
exerted between tire and road is upper bounded by the friction
coefficient μ times the normal force acting on the tire, Fz , that
is,

√
F2

x + F2
y ≤ μFz . (1)

Fig. 2. Numerical example of how tire force limits of our test vehicle
vary at different operational conditions and motion cases, here represented
by the following parameters: Dry: μ = 0.8, Wet: μ = 0.5, Snow: μ = 0.3,
Accelerating: ax = 0.5 m/s2, Constant speed: ax = 0 m/s2, Braking: ax =
−0.5 m/s2.

This limit forms a circle in the lateral–longitudinal plane
and is therefore commonly referred to as the friction circle.1

Both μ and Fz typically vary substantially with time. The
friction coefficient varies with, for example, road surface, tire
temperature, and wear, and the normal force varies as a result
of road inclination and dynamic forces caused by vehicle
motion. Fig. 2 highlights the impact of this phenomenon in
terms of motion planning near the physical limits. The figure
visualizes to what extent the force limits of the front and rear
tires vary under different operational conditions and motion
cases.

The phenomenon presents an additional challenge to motion
planning in critical situations. For example, not considering it
and assuming static bounds on tire forces will have one of two
consequences when planning aggressive evasive maneuvers.

1) Planning of infeasible motions: The real vehicle will be
unable to track the plan.

2) Reduced capability to avoid accident: The planner will
not be able to fully utilize the available traction to avoid
an accident.

Both 1 and 2 reduce the vehicle’s capacity to avoid acci-
dents in critical situations. This conclusion motivates us to
pursue the development of algorithms for motion planning
and control at the limits of handling, with a time-varying
traction boundary. We refer to this concept as traction adaptive
motion planning and control. Next, we give a brief summary
of relevant academic works in related fields.

III. RELATED WORK

Motion planning algorithms for automated vehicles can
be roughly classified into random sampling-based, graph

1The friction circle is an approximation of the true force boundary of a
tire. In reality, different tire–surface combinations will have differently shaped
force boundaries. Therefore, the framework presented in Section V is designed
to allow any convex shape to represent the force limit. In this study, however,
we use a circular representation for simplicity.
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search-based, trajectory roll-out, and optimization-based [7],
[8]. Considering the special requirements in critical scenarios
stated in Section II, there is an evident computational trade-off
between properties 1, 2, and 3, and therefore, efficient solving
of the motion planning problem is a key challenge. Previous
studies, for example, [1], [2] show that optimization-based
methods are well suited to handle such a computational trade-
off, but have less favorable properties for requirement 4,
compared to the other three classes.

Random sampling-based and graph search-based algo-
rithms are primarily designed to produce complex maneuver
sequences [7], which is typically not required for short-term
evasive maneuvers in critical situations. Also, such algorithms
are inherently sequential, restricting efficient implementation
through parallel computing. Therefore, we delimit our related
work section to optimization-based and trajectory rollout algo-
rithms, as well as a few relevant concepts from the fields of
tire–road friction estimation and adaptive control.

A. Optimization-Based Methods

Optimization-based methods dominate the field of motion
planning at the limits of handling. Compared to other methods,
they are not restricted to a discretized search space, scale
comparatively well with model complexity [9], and allow
explicit representation of constraints on states and inputs.

The key concept of optimization-based motion planning is
to solve a constrained finite time optimal control problem
(CFTOC) at each planning iteration, where the solution is
the control and state sequence that obeys the constraints
and minimizes a cost function over a fixed time horizon.
In general, the CFTOC representing a collision avoidance
motion planning problem is nonconvex, due to the nonlinear
vehicle dynamics and nonconvex state constraints representing
obstacles [10]. The nonconvexity of the problem renders
the problem nontrivial to solve under the time requirements
associated with critical evasive maneuvers. However, there
exist several methods such as quasi-Newton algorithms with
line search or sequential quadratic programming (SQP) that
are capable of solving the problem given a near-optimal
initial guess of the optimal trajectory [11]–[13]. SQP is an
iterative approach in which a quadratic, and hence convex,
approximation of the problem is formed and solved at each
iteration. The approximation is obtained by performing a
second-order approximation of the cost function and a lin-
earization of dynamics and constraints at the solution from
the previous iteration. Thus, a quadratic program (QP) is
solved at each iteration. Diehl et al. [14] proposed selecting
the solution trajectory from the previous planning iteration
as the initial guess and performed a single SQP iteration per
planning iteration. This approach, called real time iteration
(RTI), is exceptionally computationally efficient and has been
proved successful in numerous applications, including motion
planning for automated vehicles [1], [9], [15].

Ziegler et al. [9] highlighted a drawback of the RTI
approach, noticing a sensitivity to local minima in situations
where the motion planning problem contains discrete decision-
making. The intuition behind the phenomenon is that at

each iteration, the optimizer searches for the best solution
locally around the initial guess, and therefore it is unlikely
to find a solution in a different part of the state space, which
may contain the globally optimal solution. Liniger et al. [1]
identify the same issue and mitigate it by means of a high-level
path planner based on dynamic programming, a solution that
works well in the particular application, but not for the general
case.

B. Trajectory Roll-Out Methods

The trajectory roll-out concept represents a radically differ-
ent approach to solving the motion planning problem. A large
set of candidate trajectories are computed followed by a
feasibility check and cost function evaluation that determines
the optimal feasible candidate within the set [16]–[18]. Since
the candidate trajectories are distributed across the drivable
area, the method is less sensitive to local minima and thus
performs well in situations where the motion planning problem
contains discrete decisions.

Computing the individual trajectories connecting the initial
state to a sampled goal state means solving a nonlinear
optimal control problem. This is computationally intractable
for large numbers of samples. However, for particular classes
of trajectory candidates, for example, quintic and quartic
polynomials, these problems have closed-form solutions [18].
While such a solution makes trajectory roll-out computa-
tionally tractable, the resulting reference trajectories are not
suitable for maneuvers at the limits of handling, due to the
inaccurate representation of vehicle dynamics and limitations.

C. Adaptive Control

To account for local variations in physical capabilities
of the vehicle, we draw from developments in the field of
adaptive control. Predictive control under model uncertainty
is a well-studied topic [19]–[21]. Such frameworks allow the
system to dynamically re-plan safer and more cost efficient
trajectories with time, as model parameters get updated.

These and related concepts are increasingly being adopted to
account for traction variations in motion planning and control
of automated vehicles. For example, Alsterda et al. [5] present
a novel approach in which a contingency plan, based on an
alternative model parameter set, is computed in parallel to the
nominal plan. As such, the method maintains a dynamically
feasible contingency plan at all times, even in the event of, for
example, a rapid friction reduction. In this work, we instead
leverage the notion of adaptive control by updating model
parameters based on a predictive friction estimate.

D. Predictive Tire–Road Friction Estimation

There exists a large body of research on the topic of
tire–road friction estimation from on-board vehicle measure-
ments [22], [23]. Such estimates have previously been shown
to improve performance in several vehicle control applications,
for example, automatic emergency braking [24], [25] and path
tracking control at deteriorated traction [26], [27]. With the
recent developments in computer vision and machine learning,



SVENSSON et al.: TRACTION ADAPTIVE MOTION PLANNING AND CONTROL AT LIMITS OF HANDLING 1891

methods for predictive friction estimation using camera images
have emerged [28]–[32]. A predictive friction estimate enables
motion planning according to the traction conditions ahead
of the vehicle. This could also be obtained using a classical
method such as [22], [23], under the assumption that the
traction conditions are unchanged for a short distance ahead
of the vehicle.

To perform motion planning and control with respect to such
predictive friction estimates, the planner must reliably handle
situations where the friction estimate varies over the prediction
horizon or changes between subsequent planning iterations.

E. Summary

To summarize, optimization-based methods (RTI in par-
ticular) provide good performance in handling the trade-off
between requirements 1, 2, and 3 in Section II, but strug-
gle with 4. Trajectory roll-out methods, on the other hand,
inherently handle 4, but have much lower performance in the
trade-off between 1, 2, and 3. The method proposed in this
work combines RTI, trajectory roll-out, and adaptive control to
collectively address requirements 1–5. We leverage the notion
of adaptive control by utilizing updated model information
derived from a predictive friction estimate,2 to account for
time-varying traction limitations in local motion planning,
including discrete decisions.

IV. PROBLEM FORMULATION

Our goal in algorithm design is to develop a method that
efficiently computes dynamically feasible reference trajecto-
ries at a high degree of traction utilization on varying road
surfaces, based on a predictive friction estimate. Furthermore,
the algorithm must handle cases where the predictive friction
estimate changes over the course of the planning horizon
and/or changes abruptly between planning iterations. In this
section, we introduce the mathematical details of the con-
sidered motion planning problem and state the challenges it
presents in further detail.

A. Planning Model

We derive a continuous time vehicle model with time-
varying parameters, as shown in Appendix B, and denote it
fc(·, ·). We let tc denote continuous time. For controller design,
we obtain a discrete time version of this model as

f (xt , ut) = xt + Ts fc(x(tTs), u(tTs)) (2)

with time index t , time step Ts , and the state and input vectors

x = [s, d,�ψ, ψ̇, vx , vy]� ∈ R
n

u = [Fyf , Fxf , Fxr]� ∈ R
m .

Remark 1: We avoid separate notations for “nominal” states
from (2) and the true states from the vehicle for the sake of
notational simplicity in the remainder of the article. This can

2We designed the method to receive a predictive friction estimate from a
state-of-the-art method, but the estimation itself is not included in the scope
of this article.

be done as we do not opt for a robust control design approach,
such as [33]–[35].

State variables s, d , and �ψ represent the progress along,
the lateral deviation from, and relative orientation to the
lane center, respectively. Variables ψ̇ , vx , and vy denote
yaw angular velocity, longitudinal, and lateral velocity of the
vehicle, respectively. We employ the single-track modeling
technique [4], in which the combined influence of two wheels
on an axle is represented by a single tire in the middle of the
axle and select as control inputs: the lateral force on the front
tire, Fyf , the longitudinal force on the front tire, Fxf , and the
longitudinal force on the rear tire Fxr .

Remark 2: The primary reason for selecting tire force con-
trol inputs is that it allows us to explicitly model the locally
varying traction limit as a time-varying constraint on the
inputs. Furthermore, it contributes to the generality of the
solution, since it can be instantiated on a wide range of vehicle
types by setting a small number of easily measured parameters.
A drawback compared to selecting steering angle as the
control input for the lateral dimension is that it is non-trivial
to represent actuator limitations such as maximum steering
angle. However, for the speed range associated with the type
of maneuvers, we are targeting (vx > 5 m/s) this problem
does not occur. In order to translate the resulting tire force
commands into the vehicle’s actual control inputs, a vehicle
specific control interface is required. The control interface
developed for our test vehicle is described in Appendix C.

In addition to the dynamics in the xy-plane, the model
includes relations to determine the front and rear normal forces
Fzf and Fzr from the state xt . This, together with a predictive
friction estimate, allows us to obtain a time-varying traction
force boundary through (1). Further details on the model are
provided in Appendix B.

B. Optimal Control Problem

In optimization-based motion planning, a CFTOC is solved
at regular time intervals, producing a new motion plan at each
planning iteration as its solution. For the motion planning
problem with traction limit variation, we consider the CFTOC

min
u0|t ,...,uN−1|t

J (Tt)

s.t., xk+1|t = f
(
xk|t , uk|t

)

uk|t ∈ Uk|t
xk|t ∈ Xk|t
∀k ∈ {0, 1, . . . , (N − 1)}
x0|t = xt , xN |t ∈ Xk|t (3)

where the variables {u0|t , u1|t , . . . , uN−1|t } denote a predicted
input sequence at time step t , which, when applied through
the vehicle model f (·, ·), yields the corresponding predicted
state sequence {x0|t , x1|t , . . . , xN |t }. The closed-loop state is
reset again when xt+1 is measured. We denote a predicted
trajectory consisting of the associated predicted state and
control sequences as

Tt = {{xk|t }N
k=0, {uk|t }N−1

k=0

}
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which is used in the selected quadratic cost function

J (Tt) = x�
N |t QN xN |t +

N−1∑
k=0

(x�
k|t Qxk|t + u�

k|t Ruk|t ) (4)

where QN � 0, Q � 0, and R � 0 are weight matrices that
can be tuned by the designer. The choice here of a quadratic
cost in (4) is done without loss of generality. Standard methods
exists to make local quadratic approximations of non-quadratic
cost functions (see Section III-A).

In (3), the state trajectory constraints Xk|t , for all k ∈
{0, 1, . . . , N}, represent collision-free configurations of the
vehicle with respect to the road geometry, static obstacles,
as well as positions and predicted positions of dynamic obsta-
cles.

Notice that the input constraints Uk|t are time-varying along
the prediction horizon for k ∈ {0, 1, . . . , (N − 1)}. This is
the mechanism we use to adapt the planned motion to local
traction limitations. The set Uk|t is computed at run time as
a function of the predicted friction estimate μk|t and normal
forces Fzf and Fzr . A further description on how the tire
force limits are obtained is described in Appendix B. Finally,
we let T �

t = {{x�k|t}N
k=0, {u�k|t }N−1

k=0 } denote the optimal predicted
trajectory.

C. Applying a State-of-the-Art Approach: RTI

The RTI approach [14], [36] is a state-of-the-art approach
for solving CFTOCs that enables extraordinary computational
efficiency [37]. In the context of motion planning in critical
situations, computational efficiency is essential to achieving
an acceptable trade-off between properties 1, 2, and 3 of
Section II. Hence, we select RTI as a starting point for
algorithm development.

The central idea of the algorithm is to use the solution from
the previous planning iteration to formulate a QP approxi-
mation of the CFTOC, which can be solved efficiently. The
quadratic formulation is obtained by linearizing the dynamics
and expressing the constraints as linear inequalities [10]. At a
single planning iteration starting at time t , a standard RTI
algorithm goes through the following steps.

First, the solution from the previous iteration T �
t−1 is shifted

one step forward in time, to compensate for the time passing
between planning iterations. Thus, at time step t , an initial
guess is obtained as

T̂t = {{x̂k|t }N
k=0, {ûk|t }N−1

k=0

}

where x̂k|t = x�k+1|t−1 and ûk|t = u�k+1|t−1 for k ∈
{1, 2, . . . , (N − 1)}.3 Next, the dynamics are linearized about
T̂t . The system model matrices are obtained as

Ak|t = ∂ f
∂x

∣∣∣∣
(x̂k|t ,ûk|t )

, Bk|t = ∂ f
∂u

∣∣∣∣
(x̂k|t ,ûk|t )

3Forward shifting is not possible for the N th predicted state. So, the final
control input is duplicated ûN−1|t = u�N−1|t−1 and the final state is obtained
by integrating the dynamics forward x̂N |t = f (x�N−1|t−1, u�N−1|t−1).

for all k ∈ {0, 1, . . . , (N − 1)}. State and input constraints are
expressed as sets of linear inequalities

PX
k|t = {x : HX

k|t x ≤ hX
k|t } ⊆ Xk|t

PU
k|t = {u : HU

k|t u ≤ hU
k|t } ⊆ Uk|t

with HX
k|t ∈ R

sx×n, hX
k|t ∈ R

sx , for all k ∈ {0, 1, . . . , N}, and
HU

k|t ∈ R
su×m , hU

k|t ∈ R
su for all k ∈ {0, 1, . . . , (N − 1)}.

The procedure we use to linearize the input constraints of our
vehicle model is described in Appendix B.

The final RTI style reformulation of (3) around an initial
guess T̂t is shown in the following equation:

min
�u0|t ,...,�uN−1|t

J (Tt ), with Tt = {{xk|t }N
k=0, {uk|t }N−1

k=0 }
s.t., xk+1|t = Ak|t (�xk|t )+Bk|t(�uk|t )+ x̂�k+1|t

(linearized about T̂t )

uk|t ∈ PU
k|t

∀k ∈ {0, 1, . . . , (N − 1)}, with

[�xk|t ,�uk|t ] = [xk|t − x̂ ′
k|t , uk|t − û′

k|t ]
xk|t ∈ PX

k|t
∀k ∈ {0, 1, . . . , N}
x0|t = xt . (5)

When a solution of (5) for time step t is obtained, the
control

ut = u�0|t
is applied to the vehicle. At the next time step, (t + 1),
Problem (5) is solved again.

D. Challenges in Solving the RTI Problem (5)

The RTI algorithm builds on the assumption that T �
t−1 is a

feasible and near-optimal initial guess for time step t . If this is
not the case, performance of the algorithm deteriorates, leading
to three essential drawbacks with respect to the problem
formulation of this article.

1) Infeasibility w.r.t. PU
k|t : In the presence of time-varying

input constraints, there is no guarantee that at time step
t the input sequence from, T �

t−1 is feasible with respect
to PU

k|t , that is, the condition u�k|t−1 ∈ PU
k|t may or may

not hold for all k ∈ {1, 2, . . . , N}.
2) Infeasibility w.r.t. PX

k|t : Irrespective of 1, in a dynami-
cally changing environment with sensor limitations and
unpredictably moving human actors, there is no guaran-
tee that at time step t , the state sequence of T �

t−1 will be
collision-free, that is, the condition x�k|t−1 ∈ PX

k|t may or
may not hold for all k ∈ {1, 2, . . . , N}.

3) Sensitivity to local minima: Due to the fact that the
search for T �

t is only performed locally around T �
t−1,

RTI is prone to suboptimal decision-making where the
planning problem includes discrete decision making.
In realistic traffic, new discrete decisions may appear
dynamically [9].

Problem 1 is unique to our problem formulation and stems
from the addition of traction adaptation through time-varying
input constraints PU

k|t introduced in (3). A naive solution is
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to project u�k|t−1 onto PU
k|t for all k ∈ {1, 2, . . . , (N − 1)}

and recompute T̂t from the dynamics model (this is the first
step of our proposed algorithm, see Section V-A). However,
this is not a complete solution as it, for non-trivial cases,
merely transforms Problem 1 into Problem 2. Problem 2
has been identified in previous works and is unavoidable
in a dynamic traffic environment. Computational feasibility
can be obtained by introducing slack variables, such that
state constraint violations are allowed, but with a very high
cost [1], [38]. Commonly, however, this approach merely
transforms Problem 2 into Problem 3. Problem 3 in turn may
be handled for specific applications by a higher-level decision-
making layer [1]. In critical situations, however, the optimal
decision, for example, to swerve left or right of a suddenly
appearing obstacle, is highly dependent on, for example, the
geometry of the traffic scene, the vehicle’s state, dynamics,
and dynamic limitations. This information is typically only
available at the local motion planning level and, therefore,
an informed decision can only be made there. In such critical
decision-making, insufficient scene understanding may lead to
suboptimal decisions regarding the selected maneuvers, which
in turn reduces capacity to avoid accidents. Trajectory roll-out
methods, in contrast to optimization-based methods, inherently
handle such decisions by construction at the local planning
level, as described in Section III-B.

In Section V, we present a novel variant of RTI, which
we refer to as sampling augmented adaptive RTI (SAA-RTI),
to jointly address 1, 2, and 3.

V. SAMPLING AUGMENTED ADAPTIVE RTI

The SAA-RTI algorithm decomposes the solving of (3)
into four steps using the same planning horizon N and time
discretization step Ts . Furthermore, steps C and D use the
same cost function (4). The steps are:

1) ensuring input feasibility of T �
t−1;

2) generating additional initial guess candidates through
sampling;

3) selection of initial guess trajectory;
4) constraint adaptive trajectory optimization.

Together, steps A–D remedy the limitations 1, 2, and 3 of RTI
introduced in Section IV-D. In Sections V-A–V-D, we explain
each step in further detail.

A. Ensuring Input Feasibility of T �
t−1

Due to the time-varying input constraints, situations when
u�k|t−1 /∈ PU

k|t for k ∈ {1, 2, . . . , (N −1)} may occur. To resolve
this, we replace the shifting procedure in conventional RTI as

ũk|t = ProjPU
k|t (u

�
k+1|t−1) ∀k ∈ {0, 1, . . . , (N − 1)} (6)

where Proj�(·) denotes Euclidean projection operation to the
set �. Thus, we modify individual inputs if needed, such that
ũk|t ∈ PU

k|t for k ∈ {0, 1, . . . , (N − 1)}. Then, under the new
input sequence, we propagate the system forward from x̃0|t =
x�1|t−1 to determine the state sequence x̃k+1|t = f (x̃k|t , ũk|t ),
k ∈ {1, 2, . . . , (N − 1)}. Therefore, we obtain an initial guess

T̃t = {{x̃k|t }N
k=0, {ũk|t }N−1

k=0

}
(7)

that satisfies dynamics and time-varying input constraints,
resolving limitation 1 of Section IV.

We acknowledge that the procedure may alter the state
sequence such that state constraints are violated, that is,
x̃k|t /∈ PX

k|t , for some k ∈ {0, 1, . . . , N}. However, as stated in
Problem 2 in Section IV-D, this problem has to be addressed
regardless of this addition, due to the dynamic environment.
We address the problem in the next step of the algorithm by
employing the trajectory roll-out concept [16].

B. Generating Additional Initial Guess Candidates Through
Sampling

To handle the case when the initial guess (7) violates the
state constraints, x̃k|t /∈ PX

k|t for any k ∈ {1, 2, . . . , N}, that
is, Problem 2, and to avoid highly suboptimal local minima,
that is, Problem 3, we employ a further developed version of
the sampling augmentation concept that was first introduced
in [6].

The procedure starts by selecting Ns reference states x (i)ref ,
i ∈ {1, 2, . . . , Ns }. Reference values for d and vx are uni-
formly distributed within admissible values, the s-reference
selected as the current s of the vehicle, and remaining state
references are set to zero. For each reference state, we integrate
the dynamics forward

x̂ (i)k+1|t = f
(

x̂ (i)k|t , û(i)k|t
)

∀k ∈ {0, 1, . . . , (N − 1)} (8)

from the initial state x̂ (i)0|t = xt , under a linear quadratic
tracking (LQT) controller, for all i ∈ {1, 2, . . . , Ns }, that
minimizes deviation from the reference state. At each time
step k, the optimal control input is computed as

û(i)k|t = −Kt

(
x̂ (i)k|t − x (i)ref

)
(9)

where Kt is the optimal gain matrix, recomputed at each
planning iteration by linearizing the dynamics around the
initial state xt and solving the discrete-time algebraic Riccati
equation. The cost function weights are selected such that
behavior is primarily dominated by errors in d and vx . Errors,
for example, in s, have small influence.

To ensure û(i)k|t ∈ PU
k|t for k ∈ {1, 2, . . . , N} we apply the

procedure described in Section V-A to project all control inputs
onto the feasible set before propagating the state. The Ns

candidate trajectories

T̂ (i)
t =

{
{x̂ (i)k|t }N

k=0, {û(i)k|t }N−1
k=0

}

for all i ∈ {1, 2, . . . , Ns } are stored in the trajectory set

Ŝt =
Ns⋃

i=1

T̂ (i)
t . (10)

Notice that following the computation of Kt , each
trajectory is computed independently, enabling efficient
GPU acceleration.

C. Selection of Initial Guess Trajectory

To determine the best available initial guess, each candidate
trajectory in the set Ŝt ∪ T̃t is evaluated based on the shared
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cost function J (·) in (4). The lowest cost candidate, that is,

T̂ ′
t = arg min

T̂t ∈Ŝt ∪T̃t

(J (T̂t)) (11)

is selected for subsequent optimization. Trajectory can-
didates that violate state constraints, that is, x̂k|t /∈
PX

k|t for any k ∈ {1, 2, . . . , N} are disregarded in the
selection.

In case T̃t is colliding or is in a highly suboptimal local
minima, an alternative feasible and near-optimal initial guess
can be obtained from Ŝt . Thus, we exploit the inherent
redundancy in the trajectory roll-out concept [18], to resolve
Problems 2 and 3. This property of the algorithm is experi-
mentally verified in Section VI-D.

Remark 3: In cases when changes to the time-varying state
and input constraints are small between planning iterations,
it is highly probable that T̂ ′

t = T̃t . In this case, algorithm
behavior is identical to that of RTI. This is further elaborated
in Section VI-D.

D. Constraint Adaptive Trajectory Optimization

With the initial guess T̂ ′
t obtained from (11), the final step

of the SAA-RTI algorithm is to solve the QP

min
�u0|t ,...,�uN−1|t

J (Tt), with Tt = {{xk|t}N
k=0, {uk|t }N−1

k=0 }
s.t., xk+1|t = Ak|t (�xk|t )+Bk|t(�uk|t )+ x̂ ′

k+1|t
(linearized about T̂ ′

t )

uk|t ∈ PU
k|t

∀k ∈ {0, 1, . . . , (N − 1)}, with

[�xk|t ,�uk|t ] = [xk|t − x̂ ′
k|t , uk|t − û′

k|t ]
xk|t ∈ PX

k|t
∀k ∈ {0, 1, . . . , N}
x0|t = xt . (12)

In contrast to (5), the QP is initialized at T̂ ′
t , that is, with

the system model matrices given as

Ak|t = ∂ f

∂x

∣∣∣∣
(x̂′

k|t ,û
′
k|t )
, Bk|t = ∂ f

∂u

∣∣∣∣
(x̂′

k|t ,û
′
k|t )

for all k ∈ {0, 1, . . . , (N − 1)}. After solving (12) at any time
step t , we apply the closed-loop command

ut = u�0|t (13)

to the vehicle system through the low-level control interface
described in Appendix C. At time step (t + 1), (12) is
re-solved.

E. Summary and Implications for Traction Adaptation

We summarize SAA-RTI in Algorithm 1. Here, Mt repre-
sents local map features, for example, lane boundaries and
static obstacles, and Ot denotes dynamic obstacles at time
step t . Note that we assume availability of a predictive
tire–road friction estimates μk|t for k ∈ {0, 1, . . . , (N − 1)}
at any time step t .

Algorithm 1 The SAA-RTI Algorithm

Fig. 3. Example of planned behavior when the friction coefficient varies over
the prediction horizon. The proposed approach plans dynamically feasible
motions at the (varying) limit of tire adhesion. (a) Position and orientation of
planned motion. (b) Velocity and front tire force of planned motion.

The proposed approach of modeling locally varying tire
force limits as time-varying input constraints allows the vehi-
cle to plan motions that optimally utilizes traction throughout
the prediction horizon. Fig. 3 shows an example where μ
drops from 0.8 to 0.3 in the middle of the horizon. Recall
that tc denotes our continuous time variable. The planned
motion exploits the initial high traction to reduce velocity
[Fig. 3(b)], and position the vehicle such that the curvature
of the trajectory is reduced over the low traction part of the
corner [Fig. 3(b)]. This is done in a coordinated manner such
that planned tire forces, shown for the front tire in Fig. 3(b),
are at the (varying) limit throughout the planned maneuver,

that is, for the front tire,
√
(Fxf)

2
k|t + (Fyf)

2
k|t = μk|t (Fzf)k|t .

The SAA-RTI algorithm ensures efficient and reliable solv-
ing of the traction adaptive motion planning problem. The
sampling augmentation procedure ensures that the optimiza-
tion procedure is always provided a feasible and near-optimal
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Fig. 4. Initial guess candidates when estimated traction changes abruptly
between planning iterations. Sampling augmentation mitigates the problems
of using the solution from the previous iteration as initial guess. (a) Position
and orientation of initial guess candidates and optimized solution. (b) Velocity
state of initial guess candidates and optimized solution.

initial guess, even when the predictive friction estimate
changes dramatically between planning iterations. Fig. 4 shows
an example where the estimate of μ has dropped from 0.8 to
0.3 between the previous and the current planning iteration.
The figure shows position and orientation, Fig. 4(a), and
velocity states, Fig. 4(b), of the forward shifted and input
feasibility adjusted solution from the previous iteration T̃t

(blue), the lowest cost SAA-RTI initial guess candidate T̂ ′
t

(orange) and the final optimized trajectory T �
t (green). It is

evident from Fig. 4(a) that even when adjusted for input
feasibility, Problem 1, T̃t is still not feasible with respect
to state constraints, Problem 2. The addition of sampling
augmentation reliably alleviates this problem by providing an
abundance of additional feasible candidates and selecting the
best available option T̂ ′

t . In addition, since the candidates
are spread across the drivable area, sampling augmentation
greatly reduces sensitivity to local minima in the presence
of discrete decisions, Problem 3, which we will revisit in
Section VI-D.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of traction adaptive motion
planning and control, realized by Algorithm 1, in terms of
its capacity to avoid accidents in a set of critical scenarios.
We compare the traction adaptive algorithm (abbreviated TA)
with a baseline non-adaptive RTI scheme with static tire
force constraints (abbreviated NA). The TA scheme uses
time-varying tire force constraints computed as a function
of predicted normal forces and a predictive tire–road friction
estimate μk|t = μest(s) for all k ∈ {0, 1, . . . , (N − 1)} as
per (16) and (17) in Appendix B with traction utilization factor
λ = 0.90 for all scenarios. The NA scheme, on the other hand,
uses static tire force constraints associated with a static friction
estimate μk|t = μsta for all k ∈ {0, 1, . . . , (N −1)} and ax = 0.
All evaluated configurations use N = 40 and Ts = 0.1 s, that
is, a planning horizon length of 4 s.

The critical scenarios selected for evaluation are:
1) Turn at low local traction;
2) Collision avoidance at low local traction;
3) Collision avoidance at high local traction;
4) Collision avoidance with discrete decisions.

Scenarios 1–3 are selected to test the accident avoidance
performance impact of traction adaptation, whereas Scenario
4 highlights the impact of avoiding local minima in the
planning problem.

For the evaluation in this article, we assume that an accurate
predictive friction estimate is available, that is, μest(s) =
μgt(s), where μgt(s) denotes the ground-truth tire–road fric-
tion, which was obtained for the experiments by performing
friction measurements ahead of time and storing the values in
a map of the track. The tests were performed on flat and level
road surfaces and therefore, evaluation of the effects of road
inclination is not included in this work, that is, θ = φ = 0 rad.
in (14), Appendix B. In the collision avoidance scenarios, all
suddenly appearing obstacles remain at a static position after
appearing.

Remark 4: This delimitation is not done because of limi-
tations in the evaluated algorithms with respect to dynamic
obstacles. For both the TA and NA schemes, state constraints
PX

k|t are set individually for each k ∈ {0, 1, . . . , N}. Hence,
including avoidance of, for example, a confidence interval of
predicted positions of the obstacle, is trivial from the planning
perspective. Rather, the delimitation was made to ensure
consistency between runs and to avoid introducing additional
uncertainty from the prediction functionality. Since the traction
adaptive and the non-adaptive schemes are equivalent in this
regard, we are confident that the conclusions we make for
static obstacles will also hold for dynamic obstacles.

In Sections VI-A–VI-D, we present and discuss results from
each of the scenarios. The experimental setup is detailed in
Appendix A.

A. Scenario 1: Turn at Low Local Traction

At the start of the first critical scenario at tc = 0 s and
s = 0 m, the vehicle approaches a turn at 8 m/s. Traction
has deteriorated such that μgt(s) = 0.2 for s ≥ 0 m instead
of the previous μgt(s) = 0.8 for s < 0 m. The objective of
the vehicle is to maintain its initial velocity and stay close
to the center of the lane. Fig. 5 shows a driving behavior
analysis comparing the TA scheme with time-varying tire
force constraints corresponding to μest(s) = μgt(s) and the
NA scheme with static tire force constraints corresponding to
μsta = 0.8.

1) Not Adapting to Low Local Traction: We make the
following observations of the behavior under the NA scheme.
At tc = 0 s, before reaching the corner, Fig. 5(a), the planned
motion appears to follow the intended objective of tracking
the center of the lane and maintaining velocity. Immediately
after entering the corner, Fig. 5(c), the vehicle starts to exhibit
under-steering behavior that was not previously anticipated,
that is, the planned motion at tc = 0 s did not include this
motion, and the plan gets gradually shifted toward the outside
of the corner. The vehicle continues to under-steer heavily [see
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Fig. 5. Scenario 1, turn at low μ. (a)–(h) Overhead visualizations of the
planned motion. The left and right columns correspond to the non-adaptive
(NA) and traction adaptive (TA) schemes, respectively. (i) Planned tire forces
and prevailing force limits for the front tires at tc = 0 s. (j)–(m) Comparisons
in terms of deviation from the lane center, velocity, front wheel slip angle,
and lateral acceleration. (a) NA, tc = 0 s. (b) TA, tc = 0 s. (c) NA, tc =
2.5 s (under-steering). (d) TA, tc = 2.5 s. (e) NA, tc = 3.5 s (exiting lane).
(f) TA, tc = 4 s. (g) NA, tc = 7 s (accident). (h) TA, tc = 5 s (no accident).
(i) Planned tire forces at tc = 0 s [corresponding to (a) and (b)]. (j) Position
w.r.t. lane center. (k) Forward velocity. (l) Front wheel slip angle. (m) Lateral
acceleration.

front slip angle in Fig. 5(l)], such that it eventually enters the
opposing lane, Fig. 5(e), at a velocity of 7 m/s Fig. 5(k). At this
point in the experiment, the planner disengages and full brak-
ing is applied. The vehicle eventually comes to a stop 15 m
outside of the lane, Fig. 5(g). The planned trajectory at the
beginning of the scenario, Fig. 5(a), differs dramatically from
the resulting closed-loop trajectory, Fig. 5(c), (e), and (g).

The reason behind this undesirable behavior is evident from
the planned tire forces at tc = 0 s, plotted in Fig. 5(i). The
dashed blue and dotted orange lines represent the maximum
horizontal forces that can be generated by the front and
rear tires, respectively, according to (1), given the recorded
state trajectory. It is clear that the non-adaptive scheme plans
tire forces (solid blue) that violate the physical limitations.
Therefore, the vehicle is unable to realize the planned motion
and promptly veers out of its lane.

2) Adapting to Low Local Traction: The adaptive scheme,
however, sets the tire force constraints dynamically accord-
ing to the predictive friction estimate μest(s). Therefore, the
planned tire forces [dashed-dotted orange in Fig. 5(i)] do not
violate the physical limitations of the tires. Instead, it plans
a motion, Fig. 5(b), that minimizes the deviation from the
objective (track the center of the lane and maintain 8 m/s),
while satisfying the updated tire force constraints. With the
TA scheme, the vehicle slows down from 8 to 5.5 m/s before
entering the corner, Fig. 5(k) and keeps a position on the
outside of the turn. About a third of the way through the
turn, Fig. 5(d), the vehicle has cut across the lane and is
positioned along the inside of the corner, Fig. 5(j). Toward
the end of the turn, Fig. 5(h), it starts cutting back across
to the outside of the corner. Finally, the vehicle completes
the turn safely, positioned at the outer edge of the lane,
Fig. 5(h) and (j). In contrast to the NA scheme, here the
planned trajectory at the beginning of the scenario, Fig. 5(b),
corresponds well with the closed-loop trajectory of the vehicle,
Fig. 5(d), (f), and (h).

We break this behavior down into three coordinated charac-
teristics of the maneuver that enable the vehicle to successfully
negotiate the turn. First, contrary to the NA scheme, the
TA scheme generates feasible tire force commands, utilizing
approximately 90% (λ = 0.90) of the available traction for this
surface [see Fig. 5(i)]. This in turn generates slip angles within
acceptable limits, Fig 5(l), yielding high lateral acceleration,
Fig 5(m). Second, the maneuver utilizes the full width of
the lane to minimize the curvature of the vehicle trace, thus
reducing the lateral acceleration required to negotiate the
turn. Third, the longitudinal velocity is reduced early in the
maneuver such that the maximum tire forces are sufficient to
negotiate the turn.

These coordinated adjustments to the motion plan are a
direct result of the reduced tire force constraint set PU

k|t , for
all k ∈ {0, 1, . . . , (N − 1)} in the optimization problem (12).
The planned motion utilizes 90% of the available local trac-
tion, such that control authority is maintained throughout the
maneuver. Thus, the planning/control scheme safely mitigates
the critical situation. Next, we evaluate the traction adaptation
concept in collision avoidance scenarios.
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B. Scenario 2: Collision Avoidance at Low Local Traction

The second scenario is aimed at replicating the conditions
when a pedestrian has suddenly entered the lane from the side
of the road. At the start of the second scenario, tc = 0 s, the
pedestrian has been detected by the vehicle’s perception stack
and the planner/controller starts reacting. The initial velocity
of the vehicle is 8 m/s and the pedestrian is detected 20 m
ahead of the vehicle. Traction conditions are the same as
in the previous case, that is, μgt(s) = 0.8 for s < 0 and
μgt(s) = 0.2 for s ≥ 0. The NA scheme operates under
static tire force constraints corresponding to a static friction
estimate of μsta = 0.8, while the adaptive scheme sets its tire
force constraints dynamically according to μest(s) = μgt(s).
The objective of the vehicle is to avoid collision with the
obstacle, while minimizing deviations from the lane center.
The performance of the NA and TA schemes in this scenario
is presented in Fig. 6.

1) Not Adapting to Low Local Traction: Under the non-
adaptive scheme, we make the following observations. Upon
detecting the pedestrian, Fig. 6(a), the NA scheme initiates an
aggressive maneuver, that is, high curvature given the speed,
that is meant to quickly move the vehicle away from its
collision course with the obstacle. However, the vehicle is not
able to realize the aggressive motion, so the plan is gradually
shifted forward, ahead of the vehicle. At tc = 2 s, Fig. 6(c),
the vehicle has eventually moved 2 m to the right of the lane
center, Fig. 6(j), enough to clear the obstacle. However, this
occurs closer to the obstacle than was planned at tc = 0 s.
Also, at this point, the vehicle exhibits heavy under-steering
behavior while turning right [see plotted front slip angle
in Fig. 6(l)]. After clearing the obstacle, the vehicle starts
steering left to return to the lane, but the grip is insufficient to
counteract the motion out of the lane that was initiated during
the first part of the maneuver. At tc = 3.1 s, Fig. 6(e), the high
slip angles have led to a complete loss of control authority,
and the vehicle is now veering out of the lane. At this point
in the experiment, the planner disengages and full braking is
applied. The vehicle eventually comes to a stop 7 m outside
the lane Fig. 6(g).

The underlying reason is again revealed by the planned tire
forces at tc = 0 s, plotted in Fig. 6(i). The NA scheme (solid
blue) plans tire forces that exceed the physical limit (dotted
blue), and therefore, the planned motion is not physically
attainable. The fact that the real vehicle cannot realize the
planned motion has two separate unfavorable consequences in
this case: First, the vehicle cannot change direction as fast
as the planner dictates, therefore, the margin to the obstacle
ends up being smaller than what was originally planned [see
Fig. 6(a) and (c)]. Second, the overly aggressive maneuver
leads to high slip angles, Fig. 6(l), which eventually leads
to complete loss of control authority, Fig. 6(e), due to tire
saturation [4].

2) Adapting to Low Local Traction: As we saw in the
previous scenario, the TA scheme dynamically updates tire
force constraints such that the planned motions are dynam-
ically feasible with respect to the local traction conditions.
Therefore, in this case, we observe that the initial plan from the

Fig. 6. Scenario 2, collision avoidance at low traction conditions.
(a)–(h) Overhead visualizations of the planned motion. The left and right
columns correspond to the non-adaptive (NA) and traction adaptive (TA)
schemes, respectively. (i) Planned tire forces and prevailing force limits for
the front tire at tc = 0 s. (j)–(m) Comparisons in terms of deviation from the
lane center, forward velocity, front wheel slip angle, and lateral acceleration
(a) NA, tc = 0 s. (b) TA, tc = 0 s. (c) NA, tc = 2 s (under-steering). (d) TA,
tc = 2 s. (e) NA, tc = 3.1 s (exiting lane). (f) TA, tc = 3.1 s. (g) NA, tc = 5 s
(accident). (h) TA, tc = 5 s, (no accident). (i) Planned tire forces at tc = 0 s
[corresponding to (a) and (b)]. (j) Position w.r.t. lane center. (k) Forward
velocity. (l) Front wheel slip angle. (m) Lateral acceleration.

TA scheme at tc = 0 s, Fig. 6(b) is a less aggressive maneuver
compared to the NA scheme. At tc = 2 s, Fig. 6(b), the vehicle
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has moved 2 m to the right of the lane center, enough to clear
the obstacle, without generating excessive front wheel slip,
Fig. 6(l). At tc = 3.1 s, Fig. 6(f), the vehicle has cleared the
obstacle and at tc = 5 s, Fig. 6(h), the vehicle is returning from
a comparatively small deviation from the lane, maintaining full
control authority.

Fig. 6(i) reveals that the planned motion from the TA
scheme at tc = 0 s exploits approximately 90% (λ = 0.90) of
the available traction force for large parts of the maneuver
(dashed-dotted orange), while the NA scheme (solid blue)
exceeds the traction bound by a large margin. Hence, apart
from a small margin to the absolute traction limit, it delivers
the most aggressive plan that is achievable at the prevailing
conditions, yielding manageable slip angles, Fig. 6(l), and
therefore maintained control authority. As such, the critical
scenario is mitigated.

Furthermore, we observe from Fig. 6(j), showing deviation
from the lane center, that for the first two seconds of the
evasive maneuver, the sideways motion of the vehicle is almost
identical for the two schemes. From this, we get an indication
that sacrificing control authority of the vehicle in an overly
aggressive maneuver does not improve the capacity to avoid
colliding with the obstacle. It does, however, increase the risk
of a secondary accident as the vehicle enters the opposing lane
at high speed in an uncontrolled manner.

C. Scenario 3: Collision Avoidance at High Local Traction

A naive solution for handling scenarios 1 and 2 with static
tire force constraints is to select a conservative static con-
straint, corresponding to the worst-case traction. However, this
strategy will restrict the utilization of the vehicle’s capability at
favorable traction conditions. Next, we investigate this aspect
for collision avoidance at high μ.

In this scenario, μgt(s) = 0.8 for s ≥ 0, and the pedestrian
is detected 15 m ahead of the vehicle. The initial velocity of
the vehicle is 15 m/s. The NA scheme operates under static
tire force constraints corresponding to a conservative static
friction estimate of μsta = 0.4, while the adaptive scheme sets
its tire force constraints dynamically according to μest(s) =
μgt(s) as in previous scenarios. Performance for the NA and
TA schemes in this scenario is presented in Fig. 7.

1) Not Adapting to High Local Traction: For the NA
scheme, we make the following observations. Upon detecting
the pedestrian, Fig. 7(a), the planner initiates an evasive
maneuver under conservative static tire force constraints.
Given the vehicle state at the time when the planner/controller
starts reacting to the obstacle, in combination with the restric-
tive tire force constraints, there is no collision-free solution
to the motion planning problem. As a result, the planner
selects the least violating trajectory. At tc = 0.7 s, Fig. 7(c),
the vehicle is colliding with the obstacle at a velocity of
13.9 m/s. Notice that in this scenario the final motion of the
vehicle corresponds well with the initial plan from the NA
scheme, which was not the case in the low μ scenario. This
is because in this case, the NA scheme is not violating the
physical limitations in terms of tire forces [see Fig. 7(f) (blue
dots)]. Rather, traction force utilization for the front wheel is
consistently below 50% throughout the maneuver.

Fig. 7. Scenario 3, collision avoidance at high μ. (a)–(e) Overhead
visualizations of the vehicle position and the planned motion. The left
and right columns of overhead views correspond to the non-adaptive (NA)
and traction adaptive (TA) schemes, respectively. (f) Planned tire forces and
prevailing force limits for the front tire at tc = 0 s. (g)–(j) Comparison in
terms of deviation from the lane center, forward velocity, front wheel slip
angle, and lateral acceleration. (a) NA, tc = 0 s. (b) TA, tc = 0 s. (c) NA,
tc = 0.7 s (accident). (d) TA, tc = 0.7 s (evading). (e) TA, tc = 3 s (no
accident). (f) Planned tire forces at tc = 0 s [corresponding to (a) and (b)].
(g) Position w.r.t. lane center. (h) Forward velocity. (i) Slip angle of front
wheel. (j) Lateral acceleration.

2) Adapting to High Local Traction: Because μest(s) >
μsta in this case, adapting the tire force constraints means
expanding the set of allowed tire forces compared to the
NA case. Hence, the TA scheme is able to produce a more
aggressive plan at tc = 0 s, Fig. 7(b), that manages to avoid
colliding with the obstacle. At tc = 0.7 s, Fig. 7(d), the
vehicle passes beside the obstacle as per the initial plan, and
at tc = 3 s, Fig. 7(e), the vehicle is returning to the lane, fully
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Fig. 8. Minimum distances to avoid obstacles for three configurations of
the planner: traction adaptive (TA) with μest = 0.8 (blue), non-adaptive (NA)
with static tire force constraints corresponding to μsta = 0.6 (orange), and
NA with static tire force constraints corresponding to μsta = 0.4 (green).
Zero value corresponds to collision.

recovered from the incident. Fig. 7(f) reveals that at tc = 0 s,
the TA scheme plans to exploit a larger part of the available
traction. This is also reflected by the measured front slip angle,
Fig. 7(i).

Also, in this scenario, because of the higher accelerations,
the effect of dynamic normal loads become more apparent, see
Fig. 7(f). In the beginning of the maneuver, when the vehicle
is braking hard, the normal force, and hence the maximum
horizontal force, is larger on the front tire and smaller on
the rear. Notice that the TA scheme is able to exploit also
this effect and allocates 12% higher front tire force to the
front tire and the start of the maneuver (while the vehicle is
braking hard) compared to the end of the maneuver (when
the vehicle is no longer decelerating). Although this effect
is small compared to the 50% difference between the TA and
NA schemes due to the friction estimate, it is not insignificant.
The effect will be more pronounced at higher accelerations,
and thus, is even more important to consider for vehicles that
are smaller and more agile than our 8.5 ton test vehicle.

The higher utilization of the available traction for the TA
scheme leads to a quicker sideways motion compared to the
NA scheme [Fig. 7(g)], and for this case, such a performance
difference represents the difference between success and fail-
ure of the collision avoidance maneuver. Here, in contrast
to Scenarios 1 and 2, the TA scheme mitigates the critical
situation by expanding the tire force constraints instead of
reducing them. In all three cases, however, it utilizes around
90% of the locally available traction.

From this example, we conclude that conservative fric-
tion estimation may reduce collision avoidance performance.
To further investigate the extent of this phenomenon, we ran
three configurations of the planning/ctrl schemes, TA with
μest = 0.8, NA with μsta = 0.6, and NA with μsta = 0.4,
through a sequence of 40 challenging collision avoidance sce-
narios each. A sequence of relative positions of the suddenly
appearing obstacles was pre-generated by sampling from a
uniform distribution, −1.0 m ≤ dobs ≤ 1.0 m, s + 11.0 m ≤
sobs ≤ s + 13.0 m. The initial velocity at obstacle detection
was 10 m/s.

With the three configurations, the vehicle managed to avoid
collision in 11/40, 6/40, and 4/40 cases, respectively. Fig. 8
shows individual differences in terms of minimum distance

margin to the obstacle, �m, for the 11 cases in which at least
one configuration performed a successful avoidance maneuver.

Note that the most conservative configuration (NA with
μsta = 0.4) has the least amount of successful avoidance
maneuvers and the four successful avoidance maneuvers are
very near misses, with less than 0.10 m of clearance to the
obstacle. The least conservative configuration (TA with μest =
0.8) has the largest number of successful avoidance maneuvers
and tends to also have the largest amount of clearance to
the avoided obstacles. This is true for all cases except for
obstacles 5 and 8, where (NA with μsta = 0.6) has slightly
higher margin. We believe this stems from variations in the
state of the vehicle when the obstacle is detected. In particular,
the lateral position within the lane exhibited small variations
during the experiment, which had noticeable effect on the
margin to the obstacle.

D. Scenario 4: Collision Avoidance With Discrete Decisions

As mentioned in Section IV-D, the RTI method handles
situations when the initial guess T̂t violates state constraints,
x̂k|t /∈ PX

k|t , for any k ∈ {0, 1, . . . , N}, by softening the
constraints and giving constraint violations a high cost. This
in combination with the fact that the algorithm only searches
for a solution locally around T̂t leads to sensitivity to highly
suboptimal local minima. The problem occurs when the
constraint configuration changes abruptly between planning
iterations, for example, at suddenly appearing obstacles, or in
our approach to traction adaptation, at large changes in traction
conditions. Therefore, we employ the sampling augmentation
procedure, see Sections V-B and V-C, to mitigate this problem.
In this section, we evaluate the safety implications of sampling
augmentation in critical scenarios with discrete decisions.

Scenario 4 is a collision avoidance scenario where two
obstacles appear simultaneously 20 and 35 m in front of the
vehicle. The first obstacle appears slightly to the left of the
lane center and the second obstacle appears on the right side of
the lane. State constraints are set such that obstacles should be
avoided by a margin of 0.5 m. We compare performance of
the non-augmented RTI scheme (abbreviated RTI), with our
sampling augmented variant (abbreviated SA). For this test,
both schemes use the same static tire force constraints. Results
are presented in Fig. 9.

1) Without Sampling Augmentation (RTI): When the obsta-
cles are detected at tc = 1.0 s, Fig 9(a), the non-augmented
RTI scheme produces an evasive plan that avoids the obstacles
by going in between them (right of the first and left of the
second obstacle). The vehicle manages to avoid collision,
Fig. 9(c) and (e), but needs to use the maximum front tire force
almost throughout the maneuver, Fig. 9(g), and has a very
small distance margin �m to the obstacles (state constraints
are violated), Fig. 9(h).

The decision to plan the maneuver between the obstacles
stems from the last planning iteration before the obstacles
appeared. At the first planning iteration after the obstacle is
detected, the solution from the previous iteration T �

t−1 and
hence the initial guess, T̂t , is at the center of the lane. When
the obstacles appear, T̂t violates the state constraints x̂k|t /∈ PX

k|t
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Fig. 9. Scenario 4, collision with discrete decisions. (a)–(f) Overhead
visualizations of the vehicle position and the planned motion. The left
and right columns of overhead views correspond to the non-augmented
RTI scheme (RTI) and sampling augmented (SA) schemes, respectively.
(g) Planned tire forces for the front tires at tc = 1.0 s. (h) Comparison in
terms of smallest distance to either obstacle. (i) Which candidate was selected
as initial guess with the SA scheme. (a) RTI, tc = 1 s. (b) SA, tc = 1 s.
(c) RTI, tc = 2.5 s. (d) SA, tc = 2.5 s. (e) RTI, tc = 5.2 s. (f) SA, tc = 4.5 s.
(g) Planned tire forces at tc = 1.0 s [corresponding to (a) and (b)]. (h) Distance
to obstacles. (i) Initial guess selection with SA.

for some k ∈ {0, 1, . . . , N}. Since state constraints are soft,
the optimization problem is still feasible, but the decision
of adjusting the trajectory left or right of an obstacle is
determined by minimizing cost locally around T �

t−1. Since in
this case, the first obstacle appears slightly to the left of the
lane center, the planner makes the decision to go between the
obstacles.

2) With Sampling Augmentation (SA): When the sampling
augmented RTI algorithm is exposed to the same scenario,
we observe that upon detecting the obstacle, the SA scheme
instead produces an evasive plan to the left of both obstacles,
Fig. 9(b). When following this plan, the vehicle is able to clear
the obstacles more comfortably, Fig. 9(c) and (e). It uses the
maximum front tire force for a smaller amount of the time,
Fig. 9(g), keeps above the minimum margin to both obstacles
(not violating state constraints), Fig. 9(h), and recovers more
quickly after the incident [compare Fig. 9(e) and (f)].

Just as before, at the first planning iteration after the
obstacles are detected, the initial guess T̃t originating from
T �

t−1 is in collision with the obstacles. However, due to the
sampling augmentation procedure, at tc = 0.1 s, a sampled
trajectory T̂ ′

t is selected as initial guess. In the subsequent
planning iterations throughout the maneuver, T̃t is selected,
Fig. 9(i).

Fig. 9(i) reveals that the sampled trajectories were only used
in a single planning iteration just after the obstacles appeared.
This indicates that sampling augmentation steps in exactly
when needed, to avoid unfavorable local minima, that is,
at rapid changes in the constraint configuration of the motion
planning problem. Otherwise, when changes to the constraint
configuration are small, T̃t typically has the lowest cost and
gets selected. This result indicates that sampling augmentation
alleviates Problem 3 of Section IV-D RTI, without impairing
the otherwise desirable properties of the RTI method.

The sampling augmentation procedure should be viewed
as an exploratory effort, which continuously evaluates a
range of dynamically feasible maneuver alternatives, spread
throughout the physically reachable drivable area, such that
discrete decision-making is made based on the full reachable
state space of the vehicle (given current traction conditions),
represented by Ŝt ∪ T̃t rather than being solely determined by
local information around T �

t−1.

VII. CONCLUSION AND FUTURE WORK

In this article, we address the problem of motion planning at
the limits of handling under locally varying traction conditions.
We evaluate the proposed traction adaptive algorithm by com-
paring it to an equivalent non-adaptive scheme in a sequence
of critical scenarios at various traction conditions. Results
from experimental evaluation indicate that traction adaptation
improves capacity to avoid accident in all four tested critical
scenarios. The proposed algorithm’s performance in this regard
stems from two properties.

1) Ensured dynamic feasibility of planned motions, even at
varying local traction conditions.

2) A high ratio (90% for the tested configuration) of
locally available traction is utilized to avoid collision
if necessary.

Moreover, we demonstrate experimentally that the sampling
augmentation procedures (steps A–D of Section V) of the
proposed algorithm successfully mitigates the computational
challenges associated with infeasibility and sensitivity to local
minima (listed in Section IV-D) that emerges in the planning
problem at rapid changes to the constraint configuration.

In Section III-D, we briefly introduce a selection of
approaches to obtaining predictive friction estimates online.
It is intuitively clear that the characteristics and perfor-
mance of such friction estimates will influence the planned
behavior. We do not include that aspect in the scope of
this article, instead we present a follow-up study, dedi-
cated to that topic [39], where we conclude that combining
camera-based and traditional friction estimation techniques
enable near-optimal traction adaptive motion planning and
control. These preliminary results are obtained by emulating
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TABLE I

STATIC PHYSICAL PARAMETERS OF TEST VEHICLE

state-of-the-art friction estimation methods in a simulated
environment. Thus, the next step is to return to the test track
and evaluate traction adaptive motion planning and control in
closed loop with state-of-the-art friction estimation.

APPENDIX A
EXPERIMENTAL SETUP

The vehicle used for the experiments, depicted in Fig. 1,
was a Volvo FH16 6 × 4, a 750 hp tractor equipped with
Volvo Dynamic Steering and I-Shift transmission, housed at
the vehicle research laboratory Resource for Vehicle Research
(REVERE) at the Chalmers University of Technology. Table I
outlines the physical parameters of the vehicle. The truck is
equipped with multiple sensors to perceive the vehicle’s state
and surroundings, including LiDAR, stereo vision, differential
GNSS, and IMU.

The computing system of the truck includes the
microservices-based software stack OpenDLV4 that enables
transparent communication of distributed software components
using inter-process communication (IPC), for example, net-
work communication and shared memory for low latency in
real-time setups and for large volume sensor data handling.

The planning/control algorithms were integrated in a ROS
stack of rudimentary autonomous functionality (localization,
state estimation, track and object handling, etc.) which was run
on a PC with an Intel Core i7-7820HK CPU @ 2.9 GHz and
an Nvidia GeForce GTX 1070 GPU. On the truck’s computing
node, a ROS-to-OpenDLV bridge was realized for the project
to enable the ROS stack to access of the truck’s sensors and
actuators. Experiments were primarily conducted at the High
Speed Area of the AstaZero test facility in Borås, Sweden,
with complementary low μ tests at the Stora Holm test track
in Gothenburg, Sweden.

APPENDIX B
DYNAMIC BICYCLE MODEL WITH TIME-VARYING TIRE

FORCE LIMITS IN ROAD ALIGNED COORDINATES

We derive a dynamic bicycle model based on standard
vehicle dynamics literature [4]. See Fig. 10 for the geometric
relations of the model. From Newton’s second law for the
lateral dimension, we have that

v̇y = 1

m
(Fyf + Fyr)− vx ψ̇ + g sin φ

where Fyf and Fyr are lateral forces on the front and rear
tires, respectively. The term vx ψ̇ is the cross product term

4Cf. https://github.com/chalmers-revere/opendlv

from the rotating vehicle-fixed coordinate system5 and g sin φ
is the contribution from the bank angle of the road. As for the
longitudinal dynamics, we have that

v̇x = 1

m
(Fxf + Fxr)− g sin(θ)

where Fxf and Fxf are the controlled tractive forces on the
front and rear tires, respectively. The term g sin(θ) represent
the longitudinal acceleration contribution due to the inclination
of the road. The yaw dynamics are given by moment balance
around the z-axis as

ψ̈ = 1

Iz

(
lf Fyf − lr Fyr

)

where Iz is the vehicle’s moment of inertia about the z-axis,
and lf and lf are the distances from the center of mass to
the front and rear axle, respectively. In order to capture the
motion of the vehicle relative to the road, we use a road
aligned coordinate frame [40]. A coordinate s represents the
progress along the centerline of the lane and a coordinate d
represents the lateral deviation from the centerline, as depicted
in Fig. 10(a). The d-coordinate increases to the left. Variables
ψc and κc denote the path tangent and path curvature at the
point on the centerline, respectively, where the vehicle position
is perpendicular to the centerline tangent. �ψ = ψ − ψc

represents the relative angle between the vehicle yaw angle
and the tangent of the centerline. Geometric relations of the
coordinate system definition give us the evolution of s, d , and
�ψ . Finally, we express the continuous time dynamics as

ṡ = vx cos (�ψ)− vy sin (�ψ)

1 − dκc

ḋ = vx sin (�ψ) + vy cos (�ψ)

�ψ̇ = ψ̇ − κc
vx cos (�ψ)− vy sin (�ψ)

1 − dκc

ψ̈ = 1

Iz

(
lf Fyf − lr Fyr

)

v̇x = 1

m
(Fxf + Fxr)−g sin(θ)

v̇y = 1

m

(
Fyf + Fyr

) − vx ψ̇ + g sin φ. (14)

By selecting the state and control vectors as x =
[s, d,�ψ, ψ̇, vx , vy]� and u = [Fyf , Fxf , Fxr]�, we can com-
pactly write the planning model (14) as ẋ = f p(x, u).

The rear lateral force Fyr is not included among the con-
trol inputs, instead it is computed from the state through a
time-varying linear tire model

Fyr = C̃r(μ)αr (15)

with the rear slip angle αr = − arctan ((vy − lrψ̇))/vx . The
time-varying rear cornering stiffness C̃r is obtained by lin-
earizing Pacejka’s Magic Formula tire model [41]

Fy = D(μ) sin(C(μ) arctan( B(μ)αf

+ · · · − E(μ)(B(μ)αf − arctan(B(μ)αf ) ) ) )

5Since vy is typically small, we ignore the corresponding term vyψ̇ in the
equation for v̇x .
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Fig. 10. Geometric relations of the dynamic bicycle model with time-varying
tire force limits in a road aligned coordinate frame. (a) Top down view. (b) Left
side view.

with parameters B(μ), C(μ), D(μ), and E(μ) obtained as
functions of μ from a lookup table that approximately asso-
ciate the tire parameters to the friction coefficient for various
road surface conditions.

Remark 5: In general, the linear tire model used in (15)
does not accurately predict the relation between slip angle and
tire force at high slip angles [4]. However, in this context, the
combined lateral and longitudinal force command is always
inside the friction circle, by a margin determined by the
utilization factor λ. Inside such a boundary, a time-varying
linear model corresponds well with the Magic Formula. Con-
sidering the computational trade-off mentioned in Section II,
this design represents a compromise between complexity and
accuracy that have proved to be practically viable for our
application.

The normal forces Fzf and Fzr acting on the tires of the
model are obtained from moment balances about the contact
points of the rear and front tires respectively as

Fzf = 1

lf + lr

(−mv̇x h − mgh sin θ + mglr cos θ
)

Fzr = 1

lf + lr

(
mv̇x h + mgh sin θ + mglf cos θ

)
. (16)

See geometric relations in Fig. 10(b). Combining these
relations with the friction estimate μ, we define front and rear
time-varying6 force boundaries as

F (ub)
f = λμFzf , F (ub)

r = λμFzr

6Variables μ, Fzf , and Fzr vary in time and hence, so do F(ub)
f and F(ub)

r .
Just as with the state variables in (14), the time dependency is omitted from
the equations to simplify notation.

Fig. 11. Input constraint polytope PU (for single prediction step k) bounding
control signals produced by the algorithm (dark gray) and theoretical traction
limits according to (1).

where λ ∈ [0, 1] is a user adjustable traction utilization factor.
If λ = 1.0, the algorithm is allowed to utilize the full friction
circle. The experiments for this article were run at λ = 0.9.
To comply with these bounds, tire force commands need to
fulfill √

F2
xf + F2

yf ≤ F (ub)
f ,

√
F2

xr + F2
yr ≤ F (ub)

r (17)

where Fyr is determined by (15). In addition to the bounded
tire forces (17), the drivetrain of the vehicle imposes additional
constraints

Fxf ≤ 0, Fxr ≤ F (ub,dr)
r (18)

due to rear wheel drive and limited tractive force from the
motor F (ub,dr)

r .
Finally, the algorithmic framework used in this arti-

cle requires linear input constraints. To accommodate this,
we under-approximate the input constraints (17) and (18) by
a 3-D convex polytope PU , specific to each prediction step k,
visualized in Fig. 11.

APPENDIX C
LOW-LEVEL CONTROL INTERFACE

The purpose of the control interface is to translate tire force
commands, Fyf , Fxf , and Fxr from the planned trajectory
T �

t into the actual control inputs of the vehicle. For our
particular test vehicle, those are steering angle request δreq

and longitudinal acceleration request areq.
For the longitudinal control input, the transformation is

trivially computed as areq = (Fxf + Fxr)/m. For the steering
input δreq, we begin by computing the kinematic component
of the steering angle, given by δkin, that is, the steering angle
that would yield the planned motion in the absence of tire
slip. We fit a circle segment of curvature ρ to the Cartesian
representation of the position states s�k|t and d�k|t for k ∈
{0, 1, . . . , (Nfit)} of T �

t , where Nfit is selected such that only
the initial part of the trajectory is used. Then, the kinematic
steering angle component is obtained as δkin = ρ(lf + lr).
The dynamic steering angle component, that is, the desired
front wheel slip angle, is obtained as αf = Fyf/C̃f , where the
time-varying cornering stiffness C̃f is obtained by linearizing
the Pacejka Magic Formula tire model as per the procedure
described in Appendix B. The steering angle request is then
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obtained as δreq = δkin +αf . Finally, the control commands δreq

and areq are passed to the vehicle via the ROS-to-OpenDLV
bridge described in Appendix A.
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