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Abstract 
During normal operations of a nuclear reactor, neutron flux measurements show small 
fluctuations around mean values, the so-called neutron noise. These fluctuations may be 
driven by a variety of perturbations, e.g., mechanical vibrations of core components. From the 
analysis of the neutron noise, anomalous patterns can be identified at an early stage and 
corrected before they escalate. For this purpose, the modelling of the reactor transfer function, 
which describes the core response to a possible perturbation and is based on the neutron 
transport equation, is often required. In this thesis a discrete ordinate method is investigated to 
solve the neutron noise transport equation in the frequency domain. When applying the 
method, two main issues need to be considered carefully, i.e., the performance of the 
numerical algorithm and possible numerical artifacts arising from the discretization of the 
equation. For an efficient numerical scheme, acceleration techniques are tested, namely, the 
synthetic diffusion acceleration and various forms of the coarse mesh finite difference 
method. To reduce the possible numerical artifacts, the impact of the order of discrete 
ordinates and the use of a fictitious source method are studied. These analyses serve to 
develop the higher-order neutron noise solver NOISE-SN. The solver is compared with 
different solvers and used to simulate neutron noise experiments carried out in the research 
reactor CROCUS (at EPFL). The solver NOISE-SN is shown to provide results that are 
consistent with the results obtained from other higher-order codes and can reproduce features 
observed in neutron noise experiments. 

Keywords: Neutron noise, Deterministic neutron transport, Discrete ordinates method, 
Numerical acceleration, Ray effects 
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Nomenclature 
 

𝒓𝒓 Position vector 

𝜴𝜴 Vector in the direction of motion 

𝐸𝐸 Neutron energy 

𝑡𝑡 General time coordinate 

𝑖𝑖 Imaginary unit 

𝜔𝜔 Angular frequency 

𝑣𝑣 Neutron speed 

𝛴𝛴𝑡𝑡 Macroscopic total cross section 

𝛴𝛴𝑠𝑠 Macroscopic scattering cross section 

𝛴𝛴𝑓𝑓 Macroscopic fission cross section 

𝜈𝜈 Average total fission neutron yield 

𝜒𝜒𝑝𝑝 Prompt fission neutron spectrum 

𝜒𝜒𝑑𝑑 Delayed fission neutron spectrum 

𝜆𝜆 Neutron precursor decay constant 

𝐷𝐷 Neutron diffusion coefficient 

𝜓𝜓 Angular neutron flux 

𝜙𝜙 Scalar neutron flux 

𝛿𝛿𝛿𝛿 Angular neutron noise 

𝛿𝛿𝜙𝜙 Scalar neutron noise 

𝐶𝐶 Concentration of neutron precursor 

𝜌𝜌 Reactivity 

Λ Mean neutron generation time 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 Effective multiplication factor 

𝑔𝑔 Energy group  

𝑞𝑞 Delayed neutron precursor family 
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Chapter 1  
 

Introduction 
 

 

The general background and the objectives of the doctoral research are discussed together 
with the structure of the thesis. 

 

1.1 Nuclear Power Reactors 
Nuclear power provides around 10% of the world’s electricity. Despite the disadvantages such 
as the production of harmful radioactive waste and the high cost for the construction of 
nuclear power plants, nuclear energy can facilitate the reduction of carbon dioxide emissions 
and contribute to an energy transition towards a more sustainable society. In fact, electricity 
generation from nuclear power plants is essentially free of direct greenhouse gas emissions 
and the indirect emissions are limited [1]. 

At present, most commercial reactors are Light Water Reactors (LWRs), which are further 
divided into Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The 
thermal energy is generated in the so-called reactor core via nuclear fission reactions, in 
which fissile atoms, e.g., of uranium-235 are split by means of neutrons. Each fission also 
emits new neutrons that can cause other fissions and thus a steady reaction chain can be 
maintained. Light water is used to remove and transport away from the core the energy 
released from the fissions. The light water also has the function of neutron moderator, i.e., it 
slows down the neutrons to increase the probability of fission events. The neutron moderation 
is needed because the typical nuclear fuel in these systems consists of natural uranium with a 
relatively low (about 3-5%) enrichment in uranium-235. In the case of PWRs, a primary 
cooling system, where the water is kept liquid, is used to transfer the heat from the core to 
steam generators in which steam is obtained for the secondary system of the plant. The steam 
is then sent to the turbines that are connected to an electrical generator to produce electricity. 
In the case of BWRs, the steam for the turbines is directly generated in the reactor core. 

A commercial LWR core is loaded with hundreds of nuclear fuel assemblies, see Fig. 1.1. A 
fuel assembly includes fuel pins arranged in a square lattice (a typical lattice may be 17 × 17 
for PWRs and 8 × 8 for BWRs). A fuel pin consists of a metal tube (the cladding, which is 
usually a zirconium alloy) containing pellets of nuclear fuel (e.g., uranium dioxide). The 
diameter of a LWR fuel pin is about 1 cm and the nuclear active length is about 3.5 meters. 
Control rods made of neutron absorption material can be inserted between fuel assemblies to 
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control the neutron population in the core, and to stop the fission reactions and thus the power 
production. 

Calculations are crucial to design and operate nuclear power plants in a safe and efficient 
manner. For this purpose, mathematical models and numerical methods have been developed 
to reproduce the reactor core behavior under a variety of conditions, with a high level of detail 
and accuracy. Such a task is complex since it requires the modelling of different field of 
physics (e.g., neutron transport and fluid dynamics) and phenomena at different spatial and 
time scales. 

 

Figure 1.1 Schematic of the radial cross section of a nuclear reactor core, fuel assembly and 
fuel pin 

 

1.2 Neutron noise 
In nuclear power reactors, it is desired to maintain a steady operation so that a large amount of 
power can be produced in a stable manner. From an operational and safety viewpoint, the 
spatial distribution of the neutron population in the reactor and its time evolution are 
important to monitor since it drives the reactor power output. Therefore, nuclear reactors are 
equipped with detectors for neutron flux measurements.  

The time-dependent signals of the neutron detectors show small fluctuations around mean 
values, even under normal, steady-state operation. Such fluctuations are referred to as neutron 
noise, and, in the case of reactors operating at a high-power level, power reactor noise. 

Power reactor noise mainly arises from the perturbations in the neutron population induced by 
mechanical vibrations of core components and fluctuations of the properties of the coolant 
flow through the core. These types of phenomena need to be monitored carefully because they 
can escalate into more severe problems and challenge the safety of the plant. For example, 
vibrations of fuel assemblies and fluctuations of coolant flow (via local overheating) may lead 
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to failures of the cladding of the fuel pins with possible leakage of radioactive material. Then 
the analysis of the neutron noise can provide important information about the core conditions 
and help to identify and localize anomalous patterns, so that appropriate actions can be taken 
promptly [2, 3]. The approach also has the advantage to be applicable online, without 
interfering with reactor operation, since it relies on neutron flux measurements using the 
existing instrumentation. 

To retrieve an anomaly from neutron noise measurements, an inversion procedure (also 
denoted as unfolding procedure) is necessary [4], as shown in Fig. 1.2. Such a procedure is 
often based on the modelling of the reactor transfer function, which describes the response of 
the neutron flux in the reactor core to a perturbation, and simulations of neutron noise.  

The process of using neutron noise to backtrack core perturbations is known as neutron noise 
diagnostics, and it has successfully been applied in the past, e.g., to study control rod 
vibrations [5] and core barrel vibrations [6], and to estimate in-core coolant velocity [7]. 

Figure 1.2 Illustration of using reactor neutron noise for core monitoring and diagnostics 

 

1.3 Objective of the thesis 
As discussed in [8], a coarser estimation of the reactor transfer function may be sufficient for 
reactor diagnostics, and most of the work in the field of reactor neutron noise relies on 
neutron diffusion theory, e.g., see [9, 10]. The advantage of this coarser modelling is that 
simulations of neutron noise problems in relatively large systems such as nuclear power 
reactors can be performed without too heavy computational efforts. Nevertheless, recent 
efforts also focus on higher-order deterministic [11,12] or stochastic [13, 14, 15] methods for 
solving the transport neutron noise equation. Although these methods are more 
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computationally expensive, they can provide more detailed analyses and be used to assess the 
limitations of lower-order approximations. 

The current thesis investigates a higher-order deterministic method for the simulation of 
neutron noise problems in the frequency domain, i.e., the discrete ordinates (SN) method. 

The discrete ordinates method has been studied for static and time-dependent reactor 
calculations. When it is applied, two main issues must be considered carefully. Firstly, the 
discrete ordinates method uses an iterative procedure for the numerical solution. This 
algorithm can be computationally very expensive because of the high number of iterations 
needed for convergence. Secondly, results obtained from the SN method may suffer from 
numerical artifacts, known as ray effects. According to the SN method, a limited, discrete 
number of angular directions is taken to model the neutrons travelling in the system. If the 
discretization with respect to the angular variable is too coarse (in relation to the spatial grid 
used), ray effects may arise and lead to inaccurate or even incorrect results. 

In the research presented in this doctoral thesis, the two issues are addressed for the case of 
neutron noise calculations in the frequency domain. Therefore, acceleration methods to 
improve the numerical efficiency of the scheme, and ray effects together with strategies for 
their mitigation are analyzed. Following these studies, the neutron noise solver NOISE-SN is 
developed. To verify the correct implementation and explore the capability of the method, 
numerical benchmark problems and neutron noise experiments are simulated. 

 

1.4 Structure of the thesis 
The thesis is built from the contents of Paper I to Paper V and is structured as follows. In 
Chapter 2, the neutron noise equations in the frequency domain are derived and the zero-
power reactor transfer function is introduced. In Chapter 3, the formulation of the SN method 
and the basic calculation procedure used in NOISE-SN is described. In Chapter 4, two 
acceleration methods, i.e., the Diffusion Synthetic Acceleration method and the Coarse Mesh 
Finite Difference method, are studied for neutron noise calculations. In Chapter 5, ray effects 
and possible mitigation strategies are discussed. In Chapter 6, results calculated with NOISE-
SN for numerical problems and neutron noise experiments are presented. In Chapter 7, the 
work is summarized and an outlook for future research is provided. 
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Chapter 2  
 

Frequency-domain neutron noise equation and 
reactor transfer function 
 

 

The time-dependent neutron balance equations and the static neutron transport equation are 
introduced in Section 2.1 and Section 2.2, respectively. The transport neutron noise equation 
in the frequency domain is derived in Section 2.3. The zero-power reactor transfer function is 
discussed in Section 2.4.  

 

2.1 Neutron kinetics 
In a nuclear reactor, neutrons induce nuclear fission reactions in the nuclear fuel that contains, 
for example, uranium-235. When an atom of uranium-235 undergoes fission, two fission 
fragments are produced and neutrons that can induce further fissions are released. A fraction 
of these neutrons (the prompt neutrons) is emitted immediately, while a fraction (the delayed 
neutrons) is emitted with a delay from the beta decay of the fission fragments (the precursors 
of the delayed neutrons). Therefore, the neutron population of the reactor is described by the 
time-dependent Boltzmann transport equation coupled to a set of equations for the precursors 
of delayed neutrons. The precursors of delayed neutrons are usually grouped into several 
families according to their decay constants, and a balance equation is given for each family. 
Then the neutron kinetics equations read, as: 

 

�
1

𝑣𝑣(𝐸𝐸)
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜴𝜴 ∙ 𝛻𝛻 + 𝛴𝛴𝑡𝑡(𝒓𝒓,𝐸𝐸, 𝑡𝑡)� 𝜓𝜓(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡) 

= � �𝛴𝛴𝑠𝑠(𝒓𝒓,𝐸𝐸′ → 𝐸𝐸,𝜴𝜴′ → 𝜴𝜴, 𝑡𝑡)𝜓𝜓(𝒓𝒓,𝜴𝜴′,𝐸𝐸′, 𝑡𝑡)𝑑𝑑𝐸𝐸′

4𝜋𝜋

 

+
1

4𝜋𝜋𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝(𝒓𝒓,𝐸𝐸)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

��𝜈𝜈𝛴𝛴𝑓𝑓(𝒓𝒓,𝐸𝐸′, 𝑡𝑡)𝜙𝜙(𝒓𝒓,𝐸𝐸′, 𝑡𝑡)𝑑𝑑𝐸𝐸′ + �𝜒𝜒𝑑𝑑,𝑞𝑞(𝒓𝒓,𝐸𝐸)𝜆𝜆𝑞𝑞𝐶𝐶𝑞𝑞(𝒓𝒓, 𝑡𝑡)
𝑞𝑞

� (2.1) 

 

𝜕𝜕𝐶𝐶𝑞𝑞(𝒓𝒓, 𝑡𝑡)
𝜕𝜕𝜕𝜕 = 𝛽𝛽𝑞𝑞(𝒓𝒓)�𝜈𝜈𝛴𝛴𝑓𝑓 �𝒓𝒓,𝐸𝐸′, 𝑡𝑡�𝜙𝜙 �𝒓𝒓,𝐸𝐸′, 𝑡𝑡�𝑑𝑑𝐸𝐸′ − 𝜆𝜆𝑞𝑞𝐶𝐶𝑞𝑞(𝒓𝒓, 𝑡𝑡) (2.2) 
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Equation (2.1) describes the neutron balance through the angular neutron flux 𝜓𝜓(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡), 
which depends on the space vector 𝒓𝒓, the direction of neutron motion 𝜴𝜴, the energy 𝐸𝐸 and the 
time 𝑡𝑡. The terms on the left-hand side of this equation represent the time variation of the 
neutron density, the streaming of neutrons, and the disappearance of neutrons in the unit 
phase space. The right-hand side contains the contributions from scattering events and prompt 
and delayed neutrons emitted from the fission reactions. For the prompt fission contribution, 
the scalar neutron flux 𝜙𝜙(𝒓𝒓,𝐸𝐸, 𝑡𝑡) estimated from the integration of the angular flux over all 
the angular directions is used. By normalizing the fission-related terms with the effective 
multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, the criticality condition is met even after the discretization of the 
equation. In addition, it is assumed that the small perturbations considered in neutron noise 
problems do not change 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒. 

Equation (2.2) gives the rate of change in the concentration 𝐶𝐶𝑞𝑞(𝒓𝒓, 𝑡𝑡) of the 𝑞𝑞-th family of 
delayed neutron precursors as the difference between the precursors created by fission and the 
precursors disappearing because of decay. The fraction of delayed neutrons and the decay 
constants for each precursor group are given by 𝛽𝛽𝑞𝑞 and 𝜆𝜆𝑞𝑞, respectively.  

 

2.2 Static neutron transport equation 
The steady-state spatial distribution of the neutron flux in a critical system is determined by 
solving the static neutron transport equation. The equation is derived from the kinetic 
equations (2.1) and (2.2) by setting the time derivatives to zero and assuming that all the 
terms are time-independent, and it reads as: 

�𝜴𝜴 ∙ 𝛻𝛻 + 𝛴𝛴𝑡𝑡,0(𝒓𝒓,𝐸𝐸)�𝜓𝜓0(𝒓𝒓,𝜴𝜴,𝐸𝐸) = � �𝛴𝛴𝑠𝑠,0(𝒓𝒓,𝐸𝐸′ → 𝐸𝐸,𝜴𝜴′ → 𝜴𝜴)𝜓𝜓0(𝒓𝒓,𝜴𝜴′,𝐸𝐸′)𝑑𝑑𝐸𝐸′

4𝜋𝜋

 

+
1

4𝜋𝜋𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝(𝒓𝒓,𝐸𝐸)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

� + �𝜒𝜒𝑑𝑑,𝑞𝑞(𝒓𝒓,𝐸𝐸)𝛽𝛽𝑞𝑞(𝒓𝒓)
𝑞𝑞

��𝜈𝜈𝛴𝛴𝑓𝑓,0(𝒓𝒓,𝐸𝐸′)𝜙𝜙0(𝒓𝒓,𝐸𝐸′)𝑑𝑑𝐸𝐸′ (2.3) 

 

The static quantities are denoted by the subscript “0”. 

2.3 Frequency domain transport neutron noise equation 
The perturbations that drive the neutron noise in a nuclear reactor can be described through 
variations of the macroscopic nuclear cross sections, which lead to spatial and temporal 
change in the neutron flux. In this work, the perturbations and thus the variations in the 
macroscopic nuclear cross sections are assumed to be small and stationary fluctuations around 
expected mean values. Then, the time-dependent fluxes, macroscopic cross sections, and 
precursor densities can be split into a time-independent term and a fluctuating part: 
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𝜓𝜓(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡) = 𝜓𝜓0(𝒓𝒓,𝜴𝜴,𝐸𝐸) + 𝛿𝛿𝛿𝛿(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡) (2.4) 

𝜙𝜙(𝒓𝒓,𝐸𝐸, 𝑡𝑡) = 𝜙𝜙0(𝒓𝒓,𝐸𝐸) + 𝛿𝛿𝛿𝛿(𝒓𝒓,𝐸𝐸, 𝑡𝑡) (2.5) 

𝛴𝛴𝑥𝑥(𝒓𝒓,𝐸𝐸, 𝑡𝑡) = 𝛴𝛴𝑥𝑥,0(𝒓𝒓,𝐸𝐸) + 𝛿𝛿𝛿𝛿𝑥𝑥(𝒓𝒓,𝐸𝐸, 𝑡𝑡) (2.6) 

𝐶𝐶𝑞𝑞(𝒓𝒓, 𝑡𝑡) = 𝐶𝐶𝑞𝑞,0(𝒓𝒓) + 𝛿𝛿𝛿𝛿𝑞𝑞(𝒓𝒓, 𝑡𝑡) (2.7) 

The fluctuation 𝛿𝛿𝛿𝛿𝑥𝑥 is associated with the generic macroscopic cross section 𝛴𝛴𝑥𝑥 and is used to 
model the driving perturbations. The quantities 𝛿𝛿𝛿𝛿(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡) and 𝛿𝛿𝛿𝛿(𝒓𝒓,𝐸𝐸, 𝑡𝑡) are the induced 
angular and scalar neutron noise, respectively. 

The first order neutron noise equation in the frequency domain can be derived as follows. 
Equations (2.4) to (2.7) are introduced into Eqs. (2.1) to (2.2). The two resulting equations are 
combined, and Eq. (2.3) is subtracted. The second order perturbation terms (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑥𝑥  and 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑥𝑥) are neglected, and a temporal Fourier transform is performed. This gives: 

�𝛺𝛺� ∙ 𝛻𝛻 + 𝛴𝛴𝑡𝑡,0(𝒓𝒓,𝐸𝐸) +
𝑖𝑖𝑖𝑖
𝑣𝑣(𝐸𝐸)� 𝛿𝛿𝛿𝛿

(𝒓𝒓,𝜴𝜴,𝐸𝐸,𝜔𝜔) = � �𝛴𝛴𝑠𝑠,0(𝒓𝒓,𝐸𝐸′ → 𝐸𝐸,𝜴𝜴′ → 𝜴𝜴)𝛿𝛿𝛿𝛿(𝒓𝒓,𝜴𝜴′,𝐸𝐸′,𝜔𝜔)𝑑𝑑𝐸𝐸′

4𝜋𝜋

 

+
1

4𝜋𝜋𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝(𝒓𝒓,𝐸𝐸)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

�+ �𝜒𝜒𝑑𝑑,𝑞𝑞(𝒓𝒓,𝐸𝐸)
𝜆𝜆𝑞𝑞𝛽𝛽𝑞𝑞(𝒓𝒓)
𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑞𝑞𝑞𝑞

��𝜈𝜈𝛴𝛴𝑓𝑓(𝒓𝒓,𝐸𝐸′, 𝑡𝑡)𝛿𝛿𝛿𝛿(𝒓𝒓,𝐸𝐸′, 𝑡𝑡)𝑑𝑑𝐸𝐸′ 

+𝑆𝑆(𝒓𝒓,𝜴𝜴,𝐸𝐸,𝜔𝜔)                                                                                                                                  (2.8) 

 
The noise source 𝑆𝑆(𝒓𝒓,𝜴𝜴,𝐸𝐸,𝜔𝜔)  has the following expression: 
 

𝑆𝑆(𝒓𝒓,𝜴𝜴,𝐸𝐸,𝜔𝜔) = −𝛿𝛿𝛿𝛿𝑡𝑡(𝒓𝒓,𝐸𝐸,𝜔𝜔)𝜓𝜓0(𝒓𝒓,𝜴𝜴,𝐸𝐸) + � �𝛿𝛿𝛿𝛿𝑠𝑠(𝒓𝒓,𝐸𝐸′ → 𝐸𝐸,𝜴𝜴′ → 𝜴𝜴,𝜔𝜔)𝜓𝜓0(𝒓𝒓,𝜴𝜴′,𝐸𝐸′)𝑑𝑑𝐸𝐸′

4𝜋𝜋

 

+
1

4𝜋𝜋𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝(𝒓𝒓,𝐸𝐸)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

� + �𝜒𝜒𝑑𝑑,𝑞𝑞(𝒓𝒓,𝐸𝐸)
𝜆𝜆𝑞𝑞𝛽𝛽𝑞𝑞(𝒓𝒓)
𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑞𝑞𝑞𝑞

�� 𝜈𝜈𝛿𝛿𝛿𝛿𝑓𝑓�𝒓𝒓,𝐸𝐸′,𝜔𝜔�𝜙𝜙0�𝒓𝒓,𝐸𝐸′�𝑑𝑑𝐸𝐸′  (2.9) 

In Eqs. (2.8) and (2.9), 𝜔𝜔 = 2π𝑓𝑓 is the angular frequency of the driving perturbation and 𝑖𝑖 is 
the imaginary unit. Thus, the calculated neutron noise quantities take complex values and 
their amplitude and phase which bring a more intuitive physical meaning can be determined 
in a post-processing step. 

The frequency-domain calculations have the advantage over time-domain calculations that the 
computational burden is reduced since the equations are solved for the characteristic 
frequency of the noise source and not for a time interval. However, the solution of the neutron 
noise equation in the frequency domain with complex values can still be challenging, as 
discussed in the following chapters. 
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2.4 Zero-power reactor transfer function 
The transfer function of a nuclear reactor describes how a perturbation influences the reactor 
state variables such as the neutron flux. To illustrate some basic features of the neutron noise 
in reactors, the zero-power or open loop reactor transfer function is taken. This provides the 
system response in the case of small perturbations that do not lead to any reactivity feedback 
effect (so the power variation induced by the perturbation is small and has no relevant impact 
on the neutron multiplicity). In this section, the point-kinetic approximation is used for the 
modelling. Such an approximation is valid if the spatial distribution of the neutron flux 
remains identical to the one of the initial static neutron flux. 

The point kinetics equations are derived from Eqs. (2.1) to (2.3) following a standard 
procedure (e.g., see [16]) and are based on the separation of the space- and time-dependent 
neutron flux into an amplitude factor 𝑃𝑃(𝑡𝑡) and a normalized shape function Ψ(𝒓𝒓,𝜴𝜴,𝐸𝐸; 𝑡𝑡), i.e.: 

𝜓𝜓(𝒓𝒓,𝜴𝜴,𝐸𝐸, 𝑡𝑡) = 𝑃𝑃(𝑡𝑡)Ψ(𝒓𝒓,𝜴𝜴,𝐸𝐸; 𝑡𝑡) (2.10) 

Under the assumption that the spatial shape function does not change in time, the resulting 
equation may be written as (using only one family of delayed neutron precursor): 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝜌𝜌(𝑡𝑡) − 𝛽̅𝛽
Λ(𝑡𝑡)

𝑃𝑃(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) (2.11) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝛽̅𝛽
Λ(𝑡𝑡)

𝑃𝑃(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) (2.12) 

where 𝜌𝜌(𝑡𝑡)  is the reactivity, Λ(𝑡𝑡)  is the mean neutron generation time, 𝛽̅𝛽  is the effective 
fraction of delayed neutrons, and 𝜆𝜆 is related to the decay of delayed-neutron precursors. The 
expressions of the quantities in Eqs. (2.11)-(2.12) can be found in [16]. 

A critical system initially operating in steady state at power 𝑃𝑃0  is considered. The initial 
reactivity 𝜌𝜌0  is thus equal to zero. The kinetics equations (2.11) and (2.12) have time-
independent solutions 𝑃𝑃0 and 𝐶𝐶0 and their relationship is: 

𝛽̅𝛽
Λ
𝑃𝑃0  = 𝜆𝜆𝐶𝐶0 (2.13) 

When the reactivity is perturbed by a small amount 𝛿𝛿𝛿𝛿, small perturbations are caused in both 
the amplitude factor 𝑃𝑃(𝑡𝑡) and the delayed neutron precursor density 𝐶𝐶(𝑡𝑡). The reactivity, the 
amplitude factor and the delayed neutron precursor density are split into their mean values 
and fluctuating parts: 

𝜌𝜌(𝑡𝑡) = 𝜌𝜌0 + 𝛿𝛿𝛿𝛿(𝑡𝑡) (2.14) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 + 𝛿𝛿𝛿𝛿(𝑡𝑡)  (2.15)
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𝐶𝐶(𝑡𝑡) = 𝐶𝐶0 + 𝛿𝛿𝛿𝛿(𝑡𝑡) (2.16) 

The relationship between the response of the system 𝛿𝛿𝛿𝛿  and the perturbation 𝛿𝛿𝛿𝛿  may be 
obtained by inserting Eqs. (2.14) to (2.16) into Eqs. (2.11) and (2.12), neglecting the second-
order terms, subtracting Eq. (2.13) from the results, and performing a temporal Fourier 
transform, and reads as: 

𝛿𝛿𝛿𝛿(𝜔𝜔) = 𝑃𝑃0𝐺𝐺0(𝜔𝜔)𝛿𝛿𝛿𝛿(𝜔𝜔) (2.17) 

The function 𝐺𝐺0(𝜔𝜔) is the zero-power reactor transfer function in the frequency domain and 
has the following expression: 

𝐺𝐺0(𝜔𝜔) =
1

𝑖𝑖𝑖𝑖 �Λ + 𝛽̅𝛽
𝑖𝑖𝑖𝑖 + 𝜆𝜆�

(2.18) 

The quantity 𝑖𝑖 is the imaginary unity, so 𝐺𝐺0(𝜔𝜔) takes complex values. The quantity 𝜔𝜔 is the 
angular frequency of the perturbation. 

Equation (2.18) indicates that the amplitude factor oscillates with an amplitude that is 
proportional to the amplitude of 𝐺𝐺0(𝜔𝜔), at the same frequency of the perturbation, but with a 
phase shift given by the phase of 𝐺𝐺0(𝜔𝜔). In Fig. 2.1, the amplitude and phase of 𝐺𝐺0(𝜔𝜔) is 
plotted with respect to the angular frequency with 𝛽̅𝛽 = 0.0075 , 𝜆𝜆 = 0.08 𝑠𝑠−1  and Λ =
6 × 10−5 𝑠𝑠 . The so-called plateau region, where the amplitude is nearly constant 
(approximately equal to 1/𝛽𝛽) and the phase is close to zero, is observed for 𝜆𝜆 ≪ 𝜔𝜔 ≪ 𝛽𝛽/Λ. 

 

 

Figure 2.1 Amplitude (left) and phase (right) of the zero-power reactor transfer function 
𝐺𝐺0(𝜔𝜔) 

 

 

plateau region plateau region
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Chapter 3  
 

The solver NOISE-SN 
 

 

The solver NOISE-SN is developed in MATLAB to explore algorithms based on the discrete 
ordinates method for the solution of the frequency-domain neutron noise equations. In Section 
3.1, the overall calculation scheme of the solver is provided. In Section 3.2, the energy, 
angular and spatial discretization schemes are introduced. In Section 3.3, the transport 
sweeps, and the iterative procedure for solving the discretized equations are discussed.  

 

3.1 Calculation scheme 
Equations (2.8) and (2.9) require the static neutron flux and the effective multiplication factor 
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒. Therefore, NOISE-SN consists of a static and a dynamic module. For every new system 
considered, the static module first solves the static equation (2.3). The dynamic module solves 
Eqs. (2.8) and (2.9) provided the necessary information about the static configuration (static 
flux and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒) and the perturbation (position, amplitude, and frequency). The two modules 
can be used independently, so static calculations do not need to be repeated for neutron noise 
problems based on the same static, critical system. 

 

3.2 Discretization of the transport equation 
For the numerical solution, the continuous equations (2.3) and (2.8)-(2.9) are discretized with 
respect to the energy 𝐸𝐸, the angular direction 𝜴𝜴 and the spatial position 𝒓𝒓. The discretization 
of the static and noise equations follows the same approach. In this section, the details are 
given only for the neutron noise equation (2.8)-(2.9). 

3.2.1 Multi-energy group formalism 

The continuous energy dependence is treated with the multi-energy-group formalism. The 
range of all possible neutron energy is divided into 𝐺𝐺 energy bins as: 

[𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚:𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚] = ��𝐸𝐸𝑔𝑔:𝐸𝐸𝑔𝑔−1�
1

𝑔𝑔=𝐺𝐺

(3.1) 
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Conventionally, the first group (𝑔𝑔 = 1) contains the neutrons with highest energies and the 
lowest energy neutrons belong to the last group (𝑔𝑔 = 𝐺𝐺). The multi-energy-group transport 
neutron noise equation can then be obtained by integrating Eqs. (2.8)-(2.9) over each of the 
predefined energy bins, and this results in: 

 

�𝜴𝜴 ∙ 𝛻𝛻 + 𝛴𝛴𝑡𝑡,𝑔𝑔,0(𝒓𝒓) +
𝑖𝑖𝑖𝑖

𝑣𝑣𝑔𝑔(𝒓𝒓)� 𝛿𝛿𝛿𝛿𝑔𝑔
(𝒓𝒓,𝜴𝜴,𝜔𝜔) = � � 𝛴𝛴𝑠𝑠,0𝑔𝑔′→𝑔𝑔(𝒓𝒓,𝜴𝜴′ → 𝜴𝜴)𝛿𝛿𝛿𝛿𝑔𝑔′(𝒓𝒓,𝜴𝜴′,𝜔𝜔)

𝐺𝐺

𝑔𝑔′=14𝜋𝜋

 

+
1

4𝜋𝜋𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝,𝑔𝑔(𝒓𝒓)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

�+ �𝜒𝜒𝑑𝑑,𝑞𝑞,𝑔𝑔(𝒓𝒓)
𝜆𝜆𝑞𝑞𝛽𝛽𝑞𝑞(𝒓𝒓)
𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑞𝑞𝑞𝑞

� � 𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′(𝒓𝒓, 𝑡𝑡)𝛿𝛿𝛿𝛿𝑔𝑔′(𝒓𝒓, 𝑡𝑡)
𝐺𝐺

𝑔𝑔′=1

 

+𝑆𝑆𝑔𝑔(𝒓𝒓,𝜴𝜴,𝜔𝜔)                                                                                                                                  (3.2) 

and 

Sg(𝒓𝒓,𝜴𝜴,𝜔𝜔) = −δ𝛴𝛴𝑡𝑡,𝑔𝑔(𝒓𝒓,𝜔𝜔)𝜓𝜓𝑔𝑔,0(𝒓𝒓,𝜴𝜴) + � �δ𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔(𝒓𝒓,𝜴𝜴′ → 𝜴𝜴,𝜔𝜔)
𝑔𝑔′

𝜓𝜓𝑔𝑔′,0�𝒓𝒓,𝜴𝜴′�𝑑𝑑𝜴𝜴′
4𝜋𝜋

 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
�𝜒𝜒𝑝𝑝,𝑔𝑔(𝐫𝐫)�1 −�𝛽𝛽𝑞𝑞(𝐫𝐫)

𝑞𝑞

� + �𝜒𝜒𝑑𝑑,𝑞𝑞,𝑔𝑔(𝐫𝐫)
𝜆𝜆𝑞𝑞𝛽𝛽𝑞𝑞(𝐫𝐫)
iω + 𝜆𝜆𝑞𝑞𝑞𝑞

��𝜈𝜈𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′(𝐫𝐫,ω)𝜙𝜙𝑔𝑔′,0(𝐫𝐫)
𝑔𝑔′

(3.3) 

The multi-group velocity becomes space-dependent because of the procedure for preparing 
the group constants [17].  

3.2.2 Discrete ordinates method 

Equations (3.2)-(3.3) are discretized with respect to the angular variable according to the 
discrete ordinates (SN) method. The SN method has been widely used to solve both the static 
and time-dependent neutron transport equation because of its simplicity in the derivation 
process and its good computational efficiency while avoiding excessive computer memory 
consumption [18]. The multi-group neutron noise equation (3.2) has the same integro-
differential form as the static equation. The application of the SN method to this equation is 
thus straightforward and is briefly presented in the following. 

The principle of this method assumes that the transport equation, e.g., Eq. (3.2), holds for a 
number 𝑁𝑁0  of discrete angular directions, i.e., 𝜴𝜴𝟏𝟏, … ,𝜴𝜴𝒏𝒏, …𝜴𝜴𝑵𝑵𝟎𝟎 . In three dimensional 
cartesian geometry, the discrete angular directions 𝜴𝜴𝒏𝒏 is given by the direction cosines along 
the orthogonal 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 directions: 

𝜴𝜴𝑛𝑛 = 𝜴𝜴(𝜇𝜇𝑛𝑛, 𝜂𝜂𝑛𝑛, 𝜉𝜉𝑛𝑛) (3.4) 

The integration over angle is approximated by performing a weighted sum of the discrete 
angular points. The associated weights 𝑤𝑤𝑛𝑛 are positive, and in this work, they are normalized 
by:
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�𝑤𝑤𝑛𝑛
𝑛𝑛

= 1 (3.5) 

The discrete ordinate points 𝜴𝜴𝒏𝒏 together with the associated weights 𝑤𝑤𝑛𝑛 form a quadrature set 
for the SN approximation.  

There exist many techniques for generating the quadrature sets, see e.g. [19]. The Level-
symmetric (LQN) [18] and Legendre-Chebyshev (PN-TN) [20] quadrature sets are the most 
used and are implemented in NOISE-SN. Both quadrature sets contain symmetric directions 
over the unit sphere. In the 3-dimensional case, for a SN approximation of order 𝑁𝑁, they both 
contain 𝑁𝑁(𝑁𝑁 + 2)/8  ordinates per octant and thus a total of 𝑁𝑁0 = 𝑁𝑁(𝑁𝑁 + 2)  number of 
ordinates. However, the LQN set is limited to 𝑁𝑁 < 20 to avoid negative weights. Then, both 
quadrature sets are suitable for problems where a low order SN approximation is sufficient for 
an accurate solution. If high orders of SN are required, the PN-TN set is used. 

In NOISE-SN, the scattering term is approximated by an 𝐿𝐿-order real spherical harmonics 
expansion, in a way similar to the static case, as presented in [21]. 

The discrete ordinates formalism of Eq. (3.2)-(3.3) can be written as: 

�𝜇𝜇𝑛𝑛
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜂𝜂𝑛𝑛
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜉𝜉𝑛𝑛
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛴𝛴𝑡𝑡,𝑔𝑔,0(𝒓𝒓) +
𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔(𝑟𝑟)� 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛(𝑟𝑟,𝜔𝜔) 

= ��(2𝑙𝑙 + 1)𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔′→𝑔𝑔,0(𝒓𝒓) � 𝑅𝑅𝑙𝑙𝑚𝑚(𝜴𝜴𝒏𝒏)δ𝜙𝜙𝑙𝑙,𝑔𝑔′
𝑚𝑚 (𝒓𝒓,𝜔𝜔)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

𝐿𝐿

𝑙𝑙=0𝑔𝑔′
 

  +
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔
𝑑𝑑𝑑𝑑𝑑𝑑(𝒓𝒓)�𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′,0(𝒓𝒓)𝛿𝛿𝛿𝛿𝑔𝑔′(𝒓𝒓,𝜔𝜔) + 𝑆𝑆𝑔𝑔,𝑛𝑛(𝒓𝒓,𝜔𝜔) 

𝑔𝑔′
(3.6) 

and 

𝑆𝑆𝑔𝑔,𝑛𝑛(𝒓𝒓,𝜔𝜔) = −δ𝛴𝛴𝑡𝑡,𝑔𝑔(𝒓𝒓,ω)𝜓𝜓𝑔𝑔,𝑛𝑛,0(𝒓𝒓) + ��(2𝑙𝑙 + 1)δ𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔′→𝑔𝑔(𝒓𝒓,𝜔𝜔) � 𝑅𝑅𝑙𝑙
𝑚𝑚(𝜴𝜴𝒏𝒏)𝜙𝜙𝑙𝑙,𝑔𝑔′,0

𝑚𝑚 (𝒓𝒓)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

𝐿𝐿

𝑙𝑙=0𝑔𝑔′

 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔
𝑑𝑑𝑑𝑑𝑑𝑑(𝒓𝒓)�𝜈𝜈𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′(𝒓𝒓,ω)𝜙𝜙𝑙𝑙=0,𝑔𝑔′,0

𝑚𝑚=0 (𝒓𝒓)
𝑔𝑔′

 (3.7)    

The multiplication of 1/(4𝜋𝜋)  in the fission term is eliminated due to the normalization 
condition of the weighting factor, i.e., Eq. (3.5). The moments of the neutron noise 𝛿𝛿𝜙𝜙𝑙𝑙,𝑔𝑔𝑚𝑚 , are 
computed with the quadrature summation: 

δ𝜙𝜙𝑙𝑙,𝑔𝑔𝑚𝑚 (𝜔𝜔, 𝒓𝒓) = �𝑤𝑤𝑛𝑛
𝑛𝑛

𝑅𝑅𝑙𝑙𝑚𝑚(𝜴𝜴𝒏𝒏)𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛(𝜔𝜔, 𝒓𝒓) (3.8) 

The fission spectrum term is given by: 
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𝜒𝜒𝑔𝑔
𝑑𝑑𝑑𝑑𝑑𝑑(𝒓𝒓) = �𝜒𝜒𝑝𝑝,𝑔𝑔(𝒓𝒓)�1 −�𝛽𝛽𝑞𝑞(𝒓𝒓)

𝑞𝑞

�+ �𝜒𝜒𝑑𝑑,𝑞𝑞,𝑔𝑔(𝒓𝒓)
𝜆𝜆𝑞𝑞𝛽𝛽𝑞𝑞(𝒓𝒓)
𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑞𝑞𝑞𝑞

� (3.9) 

3.2.3 Diamond finite difference scheme 

In this work, the discretization with respect to the spatial variable is based on the diamond 
finite difference scheme. The spatial differencing scheme is again consistent for both the 
static and dynamic module, and the description is given only for the neutron noise equations. 

 

 

Figure 3.1 Spatial discretization of a 3-D system into cuboids 

 

A 3-D system is considered and is divided into rectangular cuboids, as shown in Fig. 3.1. The 
cuboids are bounded by the surfaces perpendicular to the three axes. The position coordinates 
of the surfaces are 𝑥𝑥1/2, 𝑥𝑥3/2,⋯ , 𝑥𝑥𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+1/2 in the 𝑥𝑥 direction, 𝑦𝑦1/2, 𝑦𝑦3/2,⋯ ,𝑦𝑦𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚+1/2 in the 𝑦𝑦 
direction and 𝑧𝑧1/2, 𝑧𝑧3/2,⋯ , 𝑧𝑧𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚+1/2 in the 𝑧𝑧 direction. The side length of each cuboid is thus 
∆𝑥𝑥𝐼𝐼 = 𝑥𝑥𝐼𝐼+1/2 − 𝑥𝑥𝐼𝐼−1/2 , ∆𝑦𝑦𝐽𝐽 = 𝑦𝑦𝐽𝐽+1/2 − 𝑦𝑦𝐽𝐽−1/2  and ∆𝑧𝑧𝐾𝐾 = 𝑧𝑧𝐾𝐾+1/2 − 𝑧𝑧𝐾𝐾−1/2 . In each cuboid, 
the system parameters take constant values and change only at the surfaces denoted by the 
half-integers.  

The fully discretized neutron noise equation is obtained by integrating Eqs. (3.6)-(3.7) over 
the generic cell (𝐼𝐼, 𝐽𝐽,𝐾𝐾) and dividing by the cell volume 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾 = ∆𝑥𝑥𝐼𝐼∆𝑦𝑦𝐽𝐽∆𝑧𝑧𝐾𝐾. This results in: 
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𝜇𝜇𝑛𝑛
∆𝑥𝑥𝐼𝐼

�𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼+1/2,𝐽𝐽,𝐾𝐾(𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼−1/2,𝐽𝐽,𝐾𝐾(𝜔𝜔)�+
𝜂𝜂𝑛𝑛
∆𝑦𝑦𝐽𝐽

�𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽+1/2,𝐾𝐾(𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−1/2,𝐾𝐾(𝜔𝜔)�  

              +
𝜉𝜉𝑛𝑛
∆𝑧𝑧𝐾𝐾

�𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾+1/2(𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾−1/2(𝜔𝜔)� + �𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾 +
𝑖𝑖𝑖𝑖

𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
� 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) 

                              = ��(2𝑙𝑙 + 1)𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔′→𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾 � 𝑅𝑅𝑙𝑙𝑚𝑚(𝜴𝜴𝒏𝒏)δ𝜙𝜙𝑙𝑙,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚 (𝜔𝜔)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

𝐿𝐿

𝑙𝑙=0𝑔𝑔′
 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑 �𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω)

𝑔𝑔′
+ 𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω) (3.10) 

and 

𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) = −δ𝛴𝛴𝑡𝑡,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω)𝜓𝜓𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾,0 + ��(2𝑙𝑙 + 1)δ𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔′→𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) � 𝑅𝑅𝑙𝑙
𝑚𝑚(𝜴𝜴𝒏𝒏)𝜙𝜙𝑙𝑙,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚
𝑙𝑙

𝑚𝑚=−𝑙𝑙

𝐿𝐿

𝑙𝑙=0𝑔𝑔′

 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑 �𝜈𝜈𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω)𝜙𝜙𝑙𝑙=0,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0

𝑔𝑔′
 (3.11) 

The neutron noise with half-integer position indices represents surface-averaged quantities 
and the neutron noise with integer position indices represents volume-averaged quantities, 
e.g.:  

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼+12,𝐽𝐽,𝐾𝐾

=
1

∆𝑦𝑦𝐽𝐽∆𝑧𝑧𝐾𝐾
� � 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛 �𝑥𝑥𝐼𝐼+12

,𝑦𝑦𝐽𝐽, 𝑧𝑧𝐾𝐾� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3.12) 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾 =
1

𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾
� � � 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛�𝑥𝑥𝐼𝐼 , 𝑦𝑦𝐽𝐽, 𝑧𝑧𝐾𝐾� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3.13) 

The diamond relationships are then introduced between the volume-averaged and surface-
averaged quantities, i.e.: 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) =
1
2
�𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼+12,𝐽𝐽,𝐾𝐾
(𝜔𝜔) + 𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼−12,𝐽𝐽,𝐾𝐾
(𝜔𝜔)� (3.14) 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) =
1
2
�𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽+12,𝐾𝐾
(𝜔𝜔) + 𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−12,𝐾𝐾
(𝜔𝜔)� (3.15) 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) =
1
2
�𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾+12
(𝜔𝜔) + 𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾−12
(𝜔𝜔)� (3.16) 

 

3.3 Transport calculation 
The solution of both the fully discretized static neutron transport equation and the transport 
neutron noise equation is based on the conventional inner-outer iterative scheme. The scheme 
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is described for the dynamic module. The solution procedure in the static module is similar 
and the differences are briefly discussed at the end of the section. 

For the inner iterations, each energy group is considered separately, starting from the first 
energy group. Within each inner iteration for one energy group, a process referred to as the 
transport sweep is performed. In the transport sweep, the angular quantities are sequentially 
calculated in each cell by following the direction of neutron travel. Thus, the order of the 
spatial sweep depends on the angular direction.  

The sweeping process for a direction in the first octant (𝜇𝜇𝑛𝑛 > 0, 𝜂𝜂𝑛𝑛 > 0, 𝜉𝜉𝑛𝑛 > 0) is given as an 
example. The sweep starts from the cell (𝐼𝐼 = 1, 𝐽𝐽 = 1,𝐾𝐾 = 1) and proceeds in the direction of 
increasing 𝐼𝐼, 𝐽𝐽 and 𝐾𝐾, assuming that the surface-averaged quantities on the 𝐼𝐼 = 1/2, 𝐽𝐽 = 1/2 
and 𝐾𝐾 = 1/2 plane are known from previous calculation or from the boundary condition. 
Then for a generic cell (𝐼𝐼, 𝐽𝐽,𝐾𝐾), the volume-averaged angular neutron noise is calculated 
from: 

𝛿𝛿𝛿𝛿����𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) 

=
�2 𝜇𝜇𝑛𝑛
∆𝑥𝑥𝐼𝐼

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼−12,𝐽𝐽,𝐾𝐾

(𝜔𝜔) + 2 𝜂𝜂𝑛𝑛
∆𝑦𝑦𝐽𝐽

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−12,𝐾𝐾

(𝜔𝜔) + 2 𝜉𝜉𝑛𝑛
∆𝑧𝑧𝐾𝐾

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾−1

2
(𝜔𝜔) + 𝑞𝑞𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾�

�𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾 + 𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

+ 2 𝜇𝜇𝑛𝑛
∆𝑥𝑥𝐼𝐼

+ 2 𝜂𝜂𝑛𝑛
∆𝑦𝑦𝐽𝐽

+ 2 𝜉𝜉𝑛𝑛
∆𝑧𝑧𝐾𝐾

�
(3.17) 

Equation (3.17) is derived by eliminating the angular quantities 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼+12,𝐽𝐽,𝐾𝐾, 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽+12,𝐾𝐾 and 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾+12
 on the exiting surfaces (i.e., the values on the surfaces through which neutrons 

leave the cell) from Eq. (3.10), using Eqs. (3.14) to (3.16). The angular quantities 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼−12,𝐽𝐽,𝐾𝐾, 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−12,𝐾𝐾 and 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾−12
 on the three incoming surfaces are either known from previous 

calculations or from the boundary condition. The source term 𝑞𝑞𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾 is also known from 
previous iterations and from the prescribed noise source. Then the exiting-surface values are 
computed according to: 

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼+12,𝐽𝐽,𝐾𝐾

(𝜔𝜔) = 2𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) − 𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼−12,𝐽𝐽,𝐾𝐾

(𝜔𝜔) (3.18) 

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽+12,𝐾𝐾

(𝜔𝜔) = 2𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) − 𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−12,𝐾𝐾

(𝜔𝜔) (3.19) 

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾+12

(𝜔𝜔) = 2𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) − 𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾−12

(𝜔𝜔) (3.20) 

The sweep for the directions in the other octants is performed in an analogous manner by 
following the direction of neutron travel. 

After the sweep along all the directions has been completed, the volume averaged quantities 
𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) are obtained for all 𝑛𝑛, 𝐼𝐼, 𝐽𝐽 and 𝐾𝐾, and they are used to calculate the moments in 
each cell, according to: 
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δ𝜙𝜙𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚 (𝜔𝜔) = �𝑤𝑤𝑛𝑛

𝑛𝑛

𝑅𝑅𝑙𝑙𝑚𝑚(𝜴𝜴𝒏𝒏)𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) (3.21) 

The moments are then used to update the with-in group scattering source term in each 
computational cell, and one inner iteration for one energy group is completed. The inner 
iterations can be performed for multiple 𝑁𝑁𝐼𝐼 times based on the need. 

The down-scattering term, i.e., scattering from higher energy groups to lower energy groups, 
is automatically updated in the process by performing the inner iterations from the first to the 
last energy group. When the inner iterations are completed for all energy groups, the fission 
source term and the full scattering term are updated, and an outer iteration is concluded.  

The inner-outer iterative process is given in Algorithm 1, and it is referred to as the 
unaccelerated scheme since no numerical acceleration is applied. The accelerated version is 
presented in the next chapter. 

 

Algorithm 1: Unaccelerated scheme for the dynamic module 
1: Begin with δ𝜙𝜙𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚 = 0 and 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾 = 0 
2:  while  ℜ𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜 ℑ𝑒𝑒𝑒𝑒𝑒𝑒  > 𝜀𝜀 
3:   for 𝑔𝑔=1 to 𝑔𝑔 = 𝐺𝐺 do  
4:    for inner iteration count ≤ 𝑁𝑁𝐼𝐼 do 
5:     Sweep through the angular directions and spatial domain 
6:     Update moments and self-scattering term  
7:    end for 
8:   end for 
9:   Update fission source term and scattering terms 
10:  end while 

 

In line 2 of Algorithm 1, the convergence criterion is given. A convergence criterion based on 
the residuals of the SN solutions would be very time-consuming because of the size of the 
numerical problem. Then the convergence is checked on the relative differences computed 
between the last two iterations (𝐼𝐼𝐼𝐼𝐸𝐸 and 𝐼𝐼𝐼𝐼𝐼𝐼 − 1), for both the real and imaginary part of the 
scalar neutron noise, as: 

ℜ𝑒𝑒𝑒𝑒𝑒𝑒 = �
ℜ�δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼 − δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼−1�

ℜ�δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼 �

�
∞

< 𝜀𝜀 (3.22) 

ℑ𝑒𝑒𝑒𝑒𝑒𝑒 = �
ℑ�δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼 − δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼−1�

ℑ�δ𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼 �

�
∞

< 𝜀𝜀 (3.23) 

For slowly converging iteration schemes, the use of Eqs. (3.22)-(3.23) may lead to false 
convergence. To avoid this issue, the value of the convergence tolerance 𝜀𝜀 must be selected 
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very small. In this work, calculations are usually performed with 𝜀𝜀 equal to 10−6, which was 
found to provide satisfactory results. 

The same iterative scheme is applied in the static module with the following difference: 

• The initial guess is given as 𝜓𝜓𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾 = 1 for all 𝑔𝑔,𝑛𝑛, 𝐼𝐼, 𝐽𝐽,𝐾𝐾, and the moments 𝜙𝜙𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚  

are calculated in an analogous way to Eq. (3.21). 

• In the outer iterations, the update of the fission source term includes both the update of 
the scalar flux 𝜙𝜙𝑙𝑙=0,,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0  and the update of the effective multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, 
using the power iteration method [18]. 

• The diamond difference scheme may yield negative static angular flux values on the 
exiting surfaces in the transport sweep process, so a negative-flux fixup is performed. 
If the calculated surface angular flux is negative, it is set to zero and the volume 
averaged angular flux is re-evaluated. 

• The convergence is checked for the scalar flux in a point-wise manner and for the 
effective multiplication factor. 
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Chapter 4  
 

Acceleration  
 

 

In the development of the solver NOISE-SN, the Diffusion Synthetic Acceleration (DSA) is 
first considered due to its advantage in providing an unconditionally stable scheme, see 
Section 4.1. A significant acceleration effect is achieved, but a large number of iterations is 
still required. Then, the Coarse Mesh Finite Difference (CMFD) method is studied to 
accelerate the calculations further, see Section 4.2. The two methods are used to solve a 
neutron noise problem based on a benchmark configuration and their performances are 
compared, see Section 4.3. The discussion is based on Paper I, Paper III and Paper IV. 

 

4.1 Diffusion Synthetic Acceleration 
The DSA method has been mainly used to accelerate static calculations and has proven to be 
very efficient [22,23]. The biggest advantage of the DSA method is the unconditionally stable 
convergence behavior, given that the DSA equations are properly derived. 

Hence, the DSA method is investigated in the case of the discrete ordinates method applied to 
the solution of the neutron noise equations in the frequency domain. It is implemented and 
tested in both the static and dynamic module of NOISE-SN.  

The DSA method is presented for the specific case of calculations in 2-dimensional systems, 
with 2-energy groups. The convergence of both the unaccelerated and DSA schemes is 
analyzed. The method is mainly described for the neutron noise calculations. 

The DSA method can be used to accelerate both the inner and the outer iterations. 
Accordingly, two sets of low-order diffusion-like equations are solved to provide corrections 
for the scalar and angular quantities calculated from the transport sweep process, and thus to 
make convergence faster. The discretization of the DSA equations needs to follow the 
transport equation to guarantee a stable convergence behavior. The derivation process of the 
DSA equations for neutron noise calculations are identical to the static case [24]; only the 
final equations implemented in NOISE-SN are given below. 

For convenience, the outer iteration number and the inner iteration number are denoted by 𝑛𝑛𝑜𝑜 
and 𝑛𝑛𝑖𝑖 , respectively, and the inner iterations are performed a maximum of 𝑁𝑁𝐼𝐼  times. The 
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transport sweep at the 𝑛𝑛𝑖𝑖-th inner iteration, within the (𝑛𝑛𝑜𝑜 + 1)-th outer iteration, is given, in 
two dimensions, as: 

𝜇𝜇𝑛𝑛
∆𝑥𝑥

�𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼+1/2,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(𝜔𝜔) − 𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼−1/2,𝐽𝐽

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(𝜔𝜔)� +
𝜂𝜂𝑛𝑛
∆𝑦𝑦

�𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(ω) − 𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼,𝐽𝐽−1/2

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(ω)� 

+𝛴𝛴t,𝐼𝐼,𝐽𝐽
dyn������ 𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼,𝐽𝐽

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(𝜔𝜔) 

= 𝛴𝛴𝑠𝑠𝑠𝑠����
𝐼𝐼,𝐽𝐽 δ𝜙𝜙����𝐼𝐼,𝐽𝐽

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖)(𝜔𝜔)  + 𝛴𝛴𝑠𝑠𝑠𝑠����
𝐼𝐼,𝐽𝐽 δ𝜙𝜙����𝐼𝐼,𝐽𝐽

(𝑛𝑛𝑜𝑜,𝑁𝑁𝐼𝐼)(𝜔𝜔) + χ�I,J νΣf����
𝐼𝐼,𝐽𝐽
𝑇𝑇

 δ𝜙𝜙����𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,0)(𝜔𝜔) + 𝑆𝑆𝑛̅𝑛,𝐼𝐼,𝐽𝐽(𝜔𝜔) (4.1) 

The vectors and matrices in Eq. (4.1) are defined as: 

𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2) = �

𝛿𝛿𝛿𝛿1,𝑛𝑛,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)

𝛿𝛿𝛿𝛿2,𝑛𝑛,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)� (4.2) 

δ𝜙𝜙����𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖) = �

δ𝜙𝜙1,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖)

δ𝜙𝜙2,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖)

� (4.3) 

𝑆𝑆𝑖̅𝑖,𝑗𝑗(𝜔𝜔) = �
𝑆𝑆1,𝑛𝑛,𝐼𝐼,𝐽𝐽(𝜔𝜔)
𝑆𝑆2,𝑛𝑛,𝐼𝐼,𝐽𝐽(𝜔𝜔)� (4.4) 

𝛴𝛴𝑠𝑠𝑠𝑠����
𝐼𝐼,𝐽𝐽 = �

𝛴𝛴𝑠𝑠0,1→1,0,𝐼𝐼,𝐽𝐽 0
0 𝛴𝛴𝑠𝑠0,2→2,0,𝐼𝐼,𝐽𝐽

� (4.5) 

 𝛴𝛴𝑠𝑠𝑠𝑠����
𝐼𝐼,𝐽𝐽 = �0 𝛴𝛴𝑠𝑠,1→2,0,𝐼𝐼,𝐽𝐽

0 0
� (4.6) 

𝛴𝛴t,𝐼𝐼,𝐽𝐽
dyn������ =

⎣
⎢
⎢
⎢
⎡𝛴𝛴𝑡𝑡,1,0,𝐼𝐼,𝐽𝐽 +

𝑖𝑖𝑖𝑖
𝑣𝑣1,𝐼𝐼,𝐽𝐽

0

0 𝛴𝛴𝑡𝑡,2,0,𝐼𝐼,𝐽𝐽 +
𝑖𝑖𝑖𝑖
𝑣𝑣2,𝐼𝐼,𝐽𝐽⎦

⎥
⎥
⎥
⎤

(4.7) 

𝜈𝜈𝛴𝛴𝑓𝑓�����
𝐼𝐼,𝐽𝐽

=
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
[𝜈𝜈𝛴𝛴𝑓𝑓,1,0,𝐼𝐼,𝐽𝐽 𝜈𝜈𝛴𝛴𝑓𝑓,2,0,𝐼𝐼,𝐽𝐽]𝑇𝑇 (4.8) 

χ�𝐼𝐼,𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡χp,1,𝐼𝐼,𝐽𝐽��1 − 𝛽𝛽𝑞𝑞,𝐼𝐼,𝐽𝐽�

q

+ �χd,q,1,𝐼𝐼,𝐽𝐽
λqβq,𝐼𝐼,𝐽𝐽

𝑖𝑖𝑖𝑖 + λqq

χp,2,𝐼𝐼,𝐽𝐽��1 − 𝛽𝛽𝑞𝑞,𝐼𝐼,𝐽𝐽�
q

+ �χd,q,2,𝐼𝐼,𝐽𝐽
λqβq,𝐼𝐼,𝐽𝐽

𝑖𝑖𝑖𝑖 + λqq ⎦
⎥
⎥
⎥
⎥
⎤

(4.9) 

The angular neutron noise is then used to compute the scalar flux: 
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δ𝜙𝜙����𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2)(𝜔𝜔) = �𝑤𝑤𝑛𝑛𝛿𝛿𝛿𝛿����𝑛𝑛,𝐼𝐼,𝐽𝐽

�𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+
1
2�(𝜔𝜔)

N0

n=1

(4.10) 

Before moving to the next inner iteration, the DSA method is applied in each energy group. 
The correction quantity 𝛿𝛿𝛿𝛿 for the inner iteration is obtained by solving: 

2
∆𝑥𝑥𝐼𝐼

�∆𝑦𝑦𝐽𝐽𝐷𝐷𝑔𝑔,𝐼𝐼,𝐽𝐽 + ∆𝑦𝑦𝐽𝐽+1𝐷𝐷𝑔𝑔,𝐼𝐼,𝐽𝐽+1� �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼−1/2,𝐽𝐽+1/2

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) � 

 −
2

∆𝑥𝑥𝐼𝐼+1
�∆𝑦𝑦𝐽𝐽𝐷𝐷𝑔𝑔,𝐼𝐼+1,𝐽𝐽 + ∆𝑦𝑦𝐽𝐽+1𝐷𝐷𝑔𝑔,𝐼𝐼+1,𝐽𝐽+1� �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+3/2,𝐽𝐽+1/2

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) � 

 +
2
∆𝑦𝑦𝐽𝐽

�∆𝑥𝑥𝐼𝐼𝐷𝐷𝑔𝑔,𝐼𝐼,𝐽𝐽 + ∆𝑥𝑥𝐼𝐼+1𝐷𝐷𝑔𝑔,𝐼𝐼+1,𝐽𝐽� �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽−1/2

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) � 

−
2

∆𝑦𝑦𝐽𝐽+1
�∆𝑥𝑥𝐼𝐼𝐷𝐷𝑔𝑔,𝐼𝐼,𝐽𝐽+1 + ∆𝑥𝑥𝐼𝐼+1𝐷𝐷𝑔𝑔,𝐼𝐼+1,𝐽𝐽+1� �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+3/2

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) � 

+ �� ��𝛴𝛴𝑅𝑅,𝑔𝑔,𝐼𝐼′,𝐽𝐽′𝑉𝑉𝐼𝐼′,𝐽𝐽′�
𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

� 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) = � �𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔,𝐼𝐼′,𝐽𝐽′𝑉𝑉𝐼𝐼′,𝐽𝐽′ �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼′,𝐽𝐽′

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1/2) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼′,𝐽𝐽′
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖)�

𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

 (4.11) 

where 

𝐷𝐷𝑔𝑔,𝐼𝐼,𝐽𝐽 =
1

3 �𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽 + 𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽

�
(4.12) 

𝛴𝛴𝑅𝑅,𝑔𝑔,𝐼𝐼,𝐽𝐽 = 𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽 +
𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽

− 𝛴𝛴𝑠𝑠0,𝑔𝑔→𝑔𝑔,0,𝐼𝐼,𝐽𝐽 (4.13) 

Eq. (4.11) represents a fixed source problem, and the linear system of equations is solved with 
the LU factorization method. The solution of Eq. (4.11) provides the correction quantity 𝛿𝛿𝛿𝛿 at 
cell vertices, and they are used to update the cell-center scalar neutron noise: 

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1) = 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼,𝐽𝐽

�𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+
1
2� +

1
4
��𝛿𝛿𝛿𝛿

𝑔𝑔,𝐼𝐼′−12,𝐽𝐽′−12

(𝑛𝑛𝑜𝑜,𝑛𝑛𝑖𝑖+1)
𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

(4.14) 

The adjusted values given by Eq. (4.14) are then used to update the self-scattering term. 

After the inner iterations are performed for all the energy groups, the correction quantities 𝛿𝛿𝛿𝛿���� 
for the (𝑛𝑛𝑜𝑜 + 1)-th outer iteration are computed for the two energy groups by solving the 
outer DSA equation, i.e.: 
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2
∆𝑥𝑥𝐼𝐼

�∆𝑦𝑦𝐽𝐽𝐷𝐷�𝐼𝐼,𝐽𝐽 + ∆𝑦𝑦𝐽𝐽+1𝐷𝐷�𝐼𝐼,𝐽𝐽+1� �𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜+1) − 𝛿𝛿𝛿𝛿����𝐼𝐼−1/2,𝐽𝐽+1/2

(𝑛𝑛𝑜𝑜+1) � 

−
2

∆𝑥𝑥𝐼𝐼+1
�∆𝑦𝑦𝐽𝐽𝐷𝐷�𝐼𝐼+1,𝐽𝐽 + ∆𝑦𝑦𝐽𝐽+1𝐷𝐷�𝐼𝐼+1,𝐽𝐽+1� �𝛿𝛿𝛿𝛿����𝐼𝐼+3/2,𝐽𝐽+1/2

(𝑛𝑛𝑜𝑜+1) − 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜+1) � 

+
2
∆𝑦𝑦𝐽𝐽

�∆𝑥𝑥𝐼𝐼𝐷𝐷�𝐼𝐼,𝐽𝐽 + ∆𝑥𝑥𝐼𝐼+1𝐷𝐷�𝐼𝐼+1,𝐽𝐽� �𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜+1) − 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽−1/2

(𝑛𝑛𝑜𝑜+1) � 

−
2

∆𝑦𝑦𝐽𝐽+1
�∆𝑥𝑥𝐼𝐼𝐷𝐷�𝐼𝐼,𝐽𝐽+1 + ∆𝑥𝑥𝐼𝐼+1𝐷𝐷�𝐼𝐼+1,𝐽𝐽+1� �𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+3/2

(𝑛𝑛𝑜𝑜+1) − 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜+1) � 

+ ��� �𝛴𝛴𝑅𝑅���,𝐼𝐼′,𝐽𝐽′𝑉𝑉𝐼𝐼′,𝐽𝐽′�
𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

� 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2
(𝑛𝑛𝑜𝑜+1)  

−��� �𝛴𝛴𝑠𝑠𝑠𝑠����
,𝐼𝐼′,𝐽𝐽′𝑉𝑉𝐼𝐼′,𝐽𝐽′�

𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

� 𝛿𝛿𝛿𝛿����
𝐼𝐼+12,𝐽𝐽+12

(𝑛𝑛𝑜𝑜+1) = ��χ�I′,J′ νΣf����
I′,J′𝑉𝑉𝐼𝐼′,𝐽𝐽′ �𝛿𝛿𝛿𝛿����𝐼𝐼′,𝐽𝐽′

(𝑛𝑛𝑜𝑜,𝑁𝑁𝐼𝐼) − 𝛿𝛿𝛿𝛿����𝐼𝐼′,𝐽𝐽′
(𝑛𝑛𝑜𝑜)�

𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

(4.15) 

where 

𝛴𝛴𝑅𝑅���,𝐼𝐼,𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡𝛴𝛴𝑡𝑡,1,0,𝐼𝐼,𝐽𝐽 +

𝑖𝑖𝑖𝑖
𝑣𝑣1,𝐼𝐼,𝐽𝐽

− 𝛴𝛴𝑠𝑠0,1→1,0,𝐼𝐼,𝐽𝐽 0

0 𝛴𝛴𝑡𝑡,2,0,𝐼𝐼,𝐽𝐽 +
𝑖𝑖𝑖𝑖
𝑣𝑣2,𝐼𝐼,𝐽𝐽

− 𝛴𝛴𝑠𝑠0,2→2,0,𝐼𝐼,𝐽𝐽⎦
⎥
⎥
⎥
⎤

(4.16) 

𝐷𝐷�𝐼𝐼,𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡

1

3 �𝛴𝛴𝑡𝑡,1,0,𝐼𝐼,𝐽𝐽 + 𝑖𝑖𝑖𝑖
𝑣𝑣1,𝐼𝐼,𝐽𝐽

�
0

0
1

3 �𝛴𝛴𝑡𝑡,2,0,𝐼𝐼,𝐽𝐽 + 𝑖𝑖𝑖𝑖
𝑣𝑣2,𝐼𝐼,𝐽𝐽

�⎦
⎥
⎥
⎥
⎥
⎤

(4.17) 

and  

𝛿𝛿𝛿𝛿����
𝐼𝐼+12,𝐽𝐽+12

(𝑛𝑛𝑜𝑜+1) = �
𝛿𝛿𝛿𝛿

1,𝐼𝐼+12,𝐽𝐽+12

(𝑛𝑛𝑜𝑜+1)

𝛿𝛿𝛿𝛿
2,𝐼𝐼+12,𝐽𝐽+12

(𝑛𝑛𝑜𝑜+1) � (4.18) 

Equation (4.15) also represents a fixed source problem, where the two energy groups are 
coupled. The calculated 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2

(𝑛𝑛𝑜𝑜+1)  are used to correct the scalar neutron noise at cell 
centers, according to: 

𝛿𝛿𝛿𝛿����𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜+1) = 𝛿𝛿𝛿𝛿����𝐼𝐼,𝐽𝐽

(𝑛𝑛𝑜𝑜,𝑁𝑁𝐼𝐼) +
1
4
��𝛿𝛿𝛿𝛿����

𝐼𝐼′−12,𝐽𝐽′−12

(𝑛𝑛𝑜𝑜+1)
𝐽𝐽+1

𝐽𝐽′=𝐽𝐽

𝐼𝐼+1

𝐼𝐼′=𝐼𝐼

(4.19) 
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The new values of 𝛿𝛿𝛿𝛿����𝐼𝐼,𝐽𝐽
(𝑛𝑛𝑜𝑜+1) obtained at the end of (𝑛𝑛𝑜𝑜 + 1)-th outer iteration are used to 

update the fission term for the next outer iteration. The DSA scheme for neutron noise 
calculations is summarized in Algorithm 2. 
 

Algorithm 2: DSA scheme for the dynamic module 
1: Begin with δ𝜙𝜙𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚 = 0 and 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽,𝐾𝐾 = 0 
2:  while  ℜ𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜 ℑ𝑒𝑒𝑒𝑒𝑒𝑒  > 𝜀𝜀 
3:   for 𝑔𝑔=1 to 𝑔𝑔 = 2 do  
4:    for inner iteration count ≤ 𝑁𝑁𝐼𝐼 do 
5:     Sweep through the angular directions and spatial domain 
6:     Solve Eq. (4.11) for 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼+1/2,𝐽𝐽+1/2 
7:     Adjust scalar noise according to Eq. (4.14) and update self-scattering term  
8:    end for 
9:   end for 
10:   Solve Eq. (4.15) for 𝛿𝛿𝛿𝛿����𝐼𝐼+1/2,𝐽𝐽+1/2 
11:   Adjust scalar noise according to Eq. (4.19) and update both scattering and fission  
   source terms 
12:  end while 
 

4.1.1 Theoretical convergence rates 

The convergence rate of iterative schemes can be studied analytically through the Fourier 
convergence analysis method. This method has been widely applied to study the convergence 
behavior of static neutron transport calculations [25], and, to some extent, of time-dependent 
calculations [26]. In this section, the analytical convergence rate of both the unaccelerated and 
the DSA scheme is presented for frequency-domain neutron noise calculations. Only the final 
expression is shown, and more details of the derivation can be found in Paper IV and in [27]. 

The aim is to derive an error transition matrix, denoted as 𝜍𝜍, that describes how fast the error 
in the approximated solution is reduced between two consecutive iterations and that can be 
used to estimate the convergence rate, denoted as 𝜚𝜚. If the predicted 𝜚𝜚 is smaller than 1, the 
scheme is convergent, otherwise the scheme does not converge. In addition, the smaller 𝜚𝜚 is, 
the faster the convergence becomes. 

The derivation is based on the fully discretized equations (4.1), (4.11) and (4.15). For the 
unaccelerated scheme, the error transition matrix 𝜍𝜍 is equal to: 

𝜍𝜍(𝜔𝜔,𝑁𝑁𝐼𝐼 ,𝜣𝜣) = �𝐼𝐼 ̿ − �𝐼𝐼 ̿ − 𝑃𝑃��
−1
�𝐼𝐼 ̿ − 𝑃𝑃�𝑁𝑁𝐼𝐼�𝑄𝑄��

−1
�𝑃𝑃�𝑁𝑁𝐼𝐼 + �𝐼𝐼 ̿ − 𝑃𝑃��

−1
�𝐼𝐼 ̿ − 𝑃𝑃�𝑁𝑁𝐼𝐼�𝑅𝑅�� (4.20) 

The matrix depends on the angular frequency of the perturbation 𝜔𝜔, the Fourier mode 𝜣𝜣, and 
the number 𝑁𝑁𝐼𝐼 of inner iterations. The Fourier mode consists of two components 𝛩𝛩1 and 𝛩𝛩2 in 
the 𝑥𝑥  and 𝑦𝑦  directions, respectively, and the two components can take any values in the 
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interval [−∞, +∞]. In Eq. (4.20), 𝐼𝐼 ̿is the identity matrix and the other matrix quantities have 
the following expressions: 

𝑃𝑃� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� (4.21) 

𝑄𝑄� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� (4.22) 

𝑅𝑅� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1χ� νΣf���� (4.23) 

and 

𝑇𝑇� = �
1
4

wn ��2𝑖𝑖
μn
∆x

tan �Θ1
Δ𝑥𝑥
2
� + 2𝑖𝑖

ηn
∆y

tan �Θ2
Δ𝑦𝑦
2
�� 𝛴𝛴𝑡𝑡

𝑑𝑑𝑑𝑑𝑑𝑑������−1 + 𝐼𝐼�̿
−1N0

n=1

(4.24) 

The convergence rate 𝜚𝜚  of the unaccelerated scheme is determined by taking the largest 
absolute eigenvalue of the matrix 𝜍𝜍, for all possible error modes, i.e.: 

𝜚𝜚(𝜔𝜔,𝑁𝑁𝐼𝐼) = max
−∞<Θ1,Θ2<+∞

�𝑎𝑎𝑎𝑎𝑎𝑎�𝑒𝑒𝑒𝑒𝑒𝑒�𝜍𝜍(𝜔𝜔,𝑁𝑁𝐼𝐼 ,𝜣𝜣)��� (4.25) 

The convergence rate of the DSA scheme for neutron noise calculations is obtained in a 
similar manner. The error transition matrix is expressed as: 

𝜍𝜍𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔,𝑁𝑁𝐼𝐼 ,𝜣𝜣) = �𝐼𝐼 ̿ − �𝐼𝐼 ̿ − 𝑃𝑃𝐷𝐷�����
−1
�𝐼𝐼 ̿ − 𝑃𝑃𝐷𝐷�����𝑄𝑄𝐷𝐷�����

−1
�𝑃𝑃𝐷𝐷����

𝑀𝑀
+ �𝐼𝐼 ̿ − 𝑃𝑃𝐷𝐷�����

−1
�𝐼𝐼 ̿ − 𝑃𝑃𝐷𝐷����

𝑀𝑀
�𝑅𝑅𝐷𝐷����� (4.26) 

with  

𝑃𝑃𝐷𝐷���� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� +

𝑎𝑎2

2
𝐿𝐿� �𝑇𝑇�𝛴𝛴𝑡𝑡

𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� − 𝐼𝐼�̿ (4.27) 

𝑄𝑄𝐷𝐷���� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� +

𝑎𝑎2

2
𝐿𝐿�𝑇𝑇�𝛴𝛴𝑡𝑡

𝑑𝑑𝑑𝑑𝑑𝑑������−1𝛴𝛴𝑠𝑠𝑠𝑠���� (4.28) 

𝑅𝑅𝐷𝐷���� = 𝑇𝑇�𝛴𝛴𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑������−1χ� νΣf���� +

𝑎𝑎2

2
𝐿𝐿�𝑇𝑇�𝛴𝛴𝑡𝑡

𝑑𝑑𝑑𝑑𝑑𝑑������−1χ� νΣf���� (4.29) 

and 

𝐿𝐿� = Δ𝑥𝑥Δ𝑦𝑦 �4
Δ𝑦𝑦
Δ𝑥𝑥

𝐷𝐷�(1 − cosΘ1Δ𝑥𝑥) + 4
Δ𝑥𝑥
Δ𝑦𝑦

𝐷𝐷�(1 − cosΘ2Δ𝑦𝑦) + 2𝛴𝛴𝑅𝑅���Δ𝑥𝑥Δ𝑦𝑦�
−1

𝛴𝛴𝑠𝑠𝑠𝑠���� (4.30) 

𝑎𝑎 = cos �
Θ1Δ𝑥𝑥

2
+
Θ2Δ𝑦𝑦

2
� + cos �

Θ1Δ𝑥𝑥
2

−
Θ2Δ𝑦𝑦

2
� (4.31) 

The convergence rate of the DSA scheme 𝜚𝜚𝐷𝐷𝐷𝐷𝐷𝐷 is estimated by: 
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𝜚𝜚𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔,𝑁𝑁𝐼𝐼) = max
−∞<Θ1,Θ2<+∞

�𝑎𝑎𝑎𝑎𝑎𝑎�𝑒𝑒𝑒𝑒𝑒𝑒�𝜍𝜍𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔,𝑁𝑁𝐼𝐼 ,𝜣𝜣)��� (4.32) 

4.1.2 Convergence analysis 

The convergence properties of the unaccelerated and DSA algorithms are investigated with 
respect to the number of inner iterations and the frequency of the neutron noise source. In 
addition, the theoretical and numerical values of the convergence rates are compared. The 
comparison can also serve as a verification of the correct implementation of the algorithms.  

A problem that consists of a neutron noise source (namely, an absorber of variable strength) 
in a two-dimensional homogeneous system is used. The amplitude of the noise source is 
arbitrarily chosen equal to unity since it does not influence the convergence, but the frequency 
may vary. The two-energy group neutron cross sections and the kinetics parameters of the 
system are taken from [14]. The spatial domain is discretized using a 30 × 30 square mesh, in 
which the size of one computational cell is such that Δ𝑥𝑥 = Δ𝑦𝑦 = 1 𝑐𝑐𝑐𝑐 . For the angular 
discretization, S8 level symmetric quadrature set is used. The boundary conditions are 
reflective, so the system can be considered infinite.  

The theoretical predictions of the convergence rates are calculated with Eqs. (4.25) and (4.32). 
The numerical convergence rates 𝜚𝜚𝑛𝑛𝑢𝑢𝑢𝑢  are obtained from the calculations of NOISE-SN 
using: 

𝜚𝜚𝑛𝑛𝑛𝑛𝑛𝑛 =
�𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜+1) − 𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜)�

2

�𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜) − 𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜−1)�2
(4.33) 

where  ‖ ∙ ‖2 is the Euclidean norm, and 𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜+1), 𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜) and 𝛿𝛿𝛿𝛿����(𝑛𝑛𝑜𝑜−1) are column-vectors 
that contain the simulated scalar neutron noise in all spatial points for both energy groups, at 
iterations (𝑛𝑛𝑜𝑜 + 1), (𝑛𝑛𝑜𝑜) and (𝑛𝑛𝑜𝑜 − 1). 

Dependence of the convergence rate on the number of inner iterations 

The change in convergence rate with different numbers of inner iterations is analyzed with a 
perturbation frequency of 1 Hz. For both DSA-based and unaccelerated schemes, the 
convergence rates are calculated analytically and numerically with varying numbers of 𝑁𝑁𝐼𝐼 and 
are compared in Fig. 4.1. 

The numerical performances of the two algorithms are consistent with the theoretical 
predictions. As expected, the unaccelerated scheme converges faster (fewer number of outer 
iterations required) with more inner iterations performed, but its values of 𝜚𝜚 are very close to 
one, indicating extremely slow convergence. On the other hand, the convergence rate for the 
accelerated scheme is lower and is not influenced by 𝑁𝑁𝐼𝐼 , even though it does not differ 
significantly from unity. Similar results are found at other frequencies, as discussed in Paper 
IV. 
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Figure 4.1 Convergence rate as a function of the number of inner iterations 𝑁𝑁𝐼𝐼 for the 
unaccelerated and DSA schemes 

 

Dependence of the convergence rate on the frequency of the neutron noise source 

The convergence rate is studied by varying the frequency of the perturbation and fixing the 
number of inner iterations 𝑁𝑁𝐼𝐼  to 1. In Fig. 4.2, the convergence rate is plotted against the 
frequency.  

The theoretical prediction agrees well with the numerical values. A plateau region is found 
between ~0.1 Hz and ~100 Hz, where the convergence is rather insensitive to the frequency. 
This finding is consistent with the properties of the zero-power reactor transfer function, 
whose amplitude and phase are approximately constant in the plateau region (see Section 2.4). 
Below the frequencies of the plateau region, the convergence rate increases largely with 
decreasing frequency, and the convergence becomes slow. Above the frequencies of the 
plateau region, the convergence rate decreases with increasing frequency, and the decreasing 
trend is more remarkable for the accelerated scheme. For other values of 𝑁𝑁𝐼𝐼 , the same 
behavior of 𝜚𝜚 with respect to frequency is observed, see details in Paper IV. According to the 
convergence analysis, DSA improves the numerical performances of the computational 
scheme. However, the number of iterations required for convergence might still be high. 
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Figure 4.2 Convergence rate as a function of frequency for the unaccelerated scheme (left) 
and for the DSA scheme (right) 

 

4.2 Coarse Mesh Finite Difference Acceleration 
The CMFD method has been demonstrated to accelerate both higher-order deterministic 
[28,29] and Monte Carlo transport calculations [30]. It is mainly used for static eigenvalue 
calculations and, to some extent, for static fixed source problems [31], and time-dependent 
transient calculations [32]. In this work, the CMFD acceleration is investigated for frequency-
domain neutron noise calculations. 

The CMFD method updates the quantities obtained from the transport sweep via the solution 
of a low-order equation, usually over a coarser mesh. The low-order equation is derived such 
that the heterogenous transport solution is preserved. 

The CMFD method is very efficient to remove slow converging components of the numerical 
error, but its biggest drawback is related to the conditional convergence property. In problems 
where the coarse mesh size and the value of total cross section are relatively large, numerical 
instabilities may occur and lead to failure in convergence [33, 34].  

Variants of the original CMFD method have been developed to obtain unconditional 
convergence behavior. An example of such variants is, for instance, pCMFD, i.e., the partial 
current-based CMFD [35]. Compared to the normal method, pCMFD solves a slightly 
different set of low-order linear equations, which leads to stable convergence properties. 
However, for specific problems, pCMFD may need more iterations to converge. More 
recently, based on the Fourier convergence analysis, the artificial diffusion CMFD (adCMFD) 
[36] and the optimally diffusive CMFD (odCMFD) [37] methods were proposed. Both 
methods modify the diffusion coefficient with an additional term. In adCMFD the additional 
term is fixed, while in odCMFD it may vary depending on the mesh and the problem to be 
solved. They have shown better convergence properties than the original CMFD method and 
the pCMFD method. Another variant of the CMFD method is the Linear Prolongation CMFD 
(lpCMFD) method [38], in which the update process is modified. In NOISE-SN, the regular 
CMFD, adCMFD and lpCMFD methods are implemented. 
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4.2.1 CMFD formulation for neutron noise calculation 

The basic CMFD-accelerated scheme developed in NOISE-SN for frequency-domain, 3-
dimensional, multi-energy group neutron noise calculations is described. The scheme is also 
discussed in Paper I. 

A full iteration consists of the transport inner-outer iterative process (discussed in Section 3.3) 
together with the solution of the lower-order CMFD equation. The neutron noise estimated in 
a sequence of inner-outer iterations is used to construct the CMFD equation over a coarser 
grid. The solution of the low-order problem then provides a correction of the neutron noise for 
the next full iteration. 

One generic full iteration is identified by the index 𝐼𝐼𝐼𝐼𝐼𝐼 + 1, while the associated inner-outer 
transport iteration by 𝐼𝐼𝐼𝐼𝐼𝐼 + 1/2. In the fine mesh used for the transport problem, one cell is 
characterized by its position indices (𝐼𝐼, 𝐽𝐽,𝐾𝐾). In the coarse mesh for the CMFD equation, the 
position indices of a cell are (𝐼𝐼𝐼𝐼, 𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾).  

The CMFD equation can be derived from Eq. (3.10) by applying the operations ∑ 𝑤𝑤𝑛𝑛(∙)𝑛𝑛  and 
∑ 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(∙)(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)  to both sides of the equation. The operation ∑ 𝑤𝑤𝑛𝑛(∙)𝑛𝑛  represents an 
integration over the angular variable using a quadrature set and the operation 
∑ 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(∙)(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)  represents a homogenization process from the fine mesh (used for 
the transport calculation) to a coarser mesh. Then, the CMFD equation discretized over the 
coarse mesh and solved within the full 𝐼𝐼𝐼𝐼𝐼𝐼 + 1-th iteration is: 

1
𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼

�𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1 − 𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼−1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1 � +
1

𝛥𝛥𝑌𝑌𝐽𝐽𝐽𝐽
�𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽+1/2,𝐾𝐾𝐾𝐾

𝑦𝑦,𝐼𝐼𝐼𝐼𝐼𝐼+1 − 𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽−1/2,𝐾𝐾𝐾𝐾
𝑦𝑦,𝐼𝐼𝐼𝐼𝐼𝐼+1 � 

  +
1

𝛥𝛥𝛥𝛥𝐾𝐾𝐾𝐾
�𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾+1/2
𝑧𝑧,𝐼𝐼𝐼𝐼𝐼𝐼+1 − 𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾−1/2

𝑧𝑧,𝐼𝐼𝐼𝐼𝐼𝐼+1 � + 𝛴𝛴𝑡𝑡,𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑,𝐼𝐼𝐼𝐼𝐼𝐼+1 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1 

= �𝛴𝛴𝑠𝑠,𝑔𝑔′→𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1 𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1

𝑔𝑔′
 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑,𝐼𝐼𝐼𝐼𝐼𝐼+1�𝜈𝜈𝜈𝜈𝑓𝑓,𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+1 𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1

𝑔𝑔′
+ 𝑆𝑆𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾                                             (4.34) 

The unknown to be determined from the CMFD equation is the scalar quantity 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1.  

To obtain a CMFD solution that can accelerate the discrete ordinates scheme, the treatment of 
the current and the calculations of the group constants appearing in Eq. (4.34) need to 
preserve the heterogeneous transport solution. The currents related to the surfaces of the 
coarse cells, 𝐽𝐽𝑔𝑔

𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1 ,  𝐽𝐽𝑔𝑔
𝑦𝑦,𝐼𝐼𝐼𝐼𝐼𝐼+1  and 𝐽𝐽𝑔𝑔

𝑧𝑧,𝐼𝐼𝐼𝐼𝐼𝐼+1  are approximated using the Fick’s Law with a 
transport correction term. For instance, the current in the 𝑥𝑥-direction is given as: 

𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1 = −𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼 − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐹𝐹𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼� 

−𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼� (4.35) 
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Similar relationships are written for the other directions. Following the standard CMFD 
formulation, the coupling coefficient 𝐷𝐷�  and the correction factor 𝐷𝐷�  in Eq. (4.35) are 
respectively expressed as: 

𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 =
2𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼+1𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 + 𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
(4.36) 

𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 = −
𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1/2 + 𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+1/2 − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1/2 �

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1/2 + 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+1/2 (4.37) 

The coarse mesh diffusion coefficients in Eq. (4.36) are calculated using the fine mesh static 
fluxes 𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0 , i.e.: 

𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 =  
∑ 𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

3∑ 𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾,0
𝑚𝑚=0 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

(4.38) 

In Eq. (4.37), the quantities 𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1/2  and 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+1/2  are computed based on the 
transport estimation obtained from the 𝐼𝐼𝐼𝐼𝐼𝐼 + 1/2 -th inner-outer iteration within the full 
𝐼𝐼𝐼𝐼𝐼𝐼 + 1-th iteration. The coarse mesh scalar neutron noise 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+1/2  is homogenized 
according to: 

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+12 =

∑ 𝛿𝛿𝜙𝜙𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+12𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)
(4.39) 

The current on the surface of the coarser mesh 𝐽𝐽𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+1/2  is computed by: 

𝐽𝐽
𝑔𝑔,𝐼𝐼𝐼𝐼+12,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝑥𝑥,𝐼𝐼𝐼𝐼𝐼𝐼+12 =
∑ ∑ �𝑤𝑤𝑛𝑛′𝜇𝜇𝑛𝑛′𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛′,𝐼𝐼+12,𝐽𝐽,𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+12 ∆𝑦𝑦𝐽𝐽∆𝑧𝑧𝐾𝐾�𝑛𝑛′(𝐽𝐽,𝐾𝐾)∈(𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ ∆𝑦𝑦𝐽𝐽∆𝑧𝑧𝐾𝐾(𝐽𝐽,𝐾𝐾)∈(𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)
(4.40)

 

The coarse mesh group constants are also evaluated on the fly during each iteration, using the 
scalar neutron noise 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2, i.e.: 

𝛴𝛴𝑡𝑡,𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑,𝐼𝐼𝐼𝐼𝐼𝐼+1 =

∑ �𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾 + 𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

� 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

(4.41) 

𝛴𝛴𝑠𝑠,𝑔𝑔→𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1 =

∑ 𝛴𝛴𝑠𝑠0,𝑔𝑔→𝑔𝑔′,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐶𝐶,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

(4.42) 



Chapter 4. Acceleration 

30 
 

𝜈𝜈𝜈𝜈𝑓𝑓,𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1 =

∑ 𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1/2𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

(4.43) 

The preparation of fission spectrum term is more involved and is given as: 

𝜒̅𝜒𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑,𝐼𝐼𝐼𝐼𝐼𝐼+1 =

∑ ∑ 𝜒𝜒𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑 𝜈𝜈𝜈𝜈𝑓𝑓,𝑔𝑔′,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+12𝐺𝐺
𝑔𝑔′=1(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ ∑ 𝜈𝜈𝜈𝜈𝑓𝑓,𝑔𝑔′,0,𝐼𝐼,𝐽𝐽,𝐾𝐾𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+12𝐺𝐺

𝑔𝑔′=1(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

(4.44) 

The source term is calculated in the scalar form: 

𝑆𝑆𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔) = −δ𝛴𝛴𝑡𝑡,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω)𝜙𝜙𝑙𝑙=0,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾,0
𝑚𝑚=0 + �δ𝛴𝛴𝑠𝑠0,𝑔𝑔′→𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾(𝜔𝜔)𝜙𝜙𝑙𝑙=0,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0

𝑔𝑔′

 

+
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑 �𝜈𝜈𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾(ω)𝜙𝜙𝑙𝑙=0,𝑔𝑔′,𝐼𝐼,𝐽𝐽,𝐾𝐾,0

𝑚𝑚=0

𝑔𝑔′
 (4.45) 

Then the homogenization over the coarser mesh is performed: 

𝑆𝑆𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 =
∑ 𝑆𝑆𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)

∑ 𝑉𝑉𝐼𝐼,𝐽𝐽,𝐾𝐾(𝐼𝐼,𝐽𝐽,𝐾𝐾)∈(𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾)
(4.46) 

An equivalent CMFD equation to the transport equation is thus derived and takes the form of 
a finite differenced diffusion equation. From the spatial discretization, a system of linear 
equations is constructed and solved using a suitable numerical method, e.g., LU 
decomposition. The results of the CMFD problem are used to update the fine-mesh noise 
moments δ𝜙𝜙𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚  in the inner-outer iterations, as: 

𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+1 = 𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12
𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+12

               𝑓𝑓𝑓𝑓𝑓𝑓 (𝐼𝐼, 𝐽𝐽,𝐾𝐾) ∈ (𝐼𝐼𝐼𝐼, 𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾) (4.47) 

When reflective conditions are specified at the boundaries of the system, the incoming 
angular neutron noise is also updated. For instance, if a reflective boundary condition is 
imposed at the surface with 𝑥𝑥 = 1/2, then the angular flux for incoming directions is updated 
according to: 

𝛿𝛿𝛿𝛿
𝑔𝑔,𝑛𝑛𝑖𝑖𝑖𝑖,12,𝐽𝐽,𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+1 = 𝛿𝛿𝛿𝛿

𝑔𝑔,𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,12,𝐽𝐽,𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+12
𝛿𝛿𝛿𝛿𝑔𝑔,1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1

𝛿𝛿𝛿𝛿𝑔𝑔,1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+12

              𝑓𝑓𝑓𝑓𝑓𝑓 (𝐽𝐽,𝐾𝐾) ∈ (𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾) (4.48) 

The inward direction 𝑛𝑛𝑖𝑖𝑖𝑖 is the reflected direction of the outward direction 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 at the surface.  

In this framework, the neutron noise quantities are calculated as complex values and they can 
be expressed in terms of amplitude and phase. The update process based on Eqs. (4.47) and 
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(4.48) is equivalent to rescale the amplitude of the noise and adjust linearly the phase. For 
instance, Eq. (4.47) can be rewritten as: 

�𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+1�𝑒𝑒𝑖𝑖∙𝑎𝑎𝑎𝑎𝑎𝑎(𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+1) 

= �𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12�

�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1�

�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+12 �

𝑒𝑒
𝑖𝑖∙�𝑎𝑎𝑎𝑎𝑎𝑎�𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12�+𝑎𝑎𝑎𝑎𝑎𝑎�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1�−𝑎𝑎𝑎𝑎𝑎𝑎�𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼+12 ��
(4.49) 

where |⋯ | and 𝑎𝑎𝑎𝑎𝑎𝑎(⋯ ) denote the amplitude and the phase of the complex neutron noise, 
respectively.  

The overall performance of the CMFD-accelerated scheme can be further improved as 
follows: 

• For the initial transport iteration, a diffusion guess can be obtained from the solution 
of the CMFD equation with the correction factor 𝐷𝐷� equal to zero and with the coarse-
mesh group constants evaluated from the static flux.  

• The CMFD equation can be solved over the fine transport mesh (at the expense of 
requiring larger computational resources) instead of choosing a coarser mesh. This is 
beneficial since, according to the convergence analysis, a finer mesh can result in a 
more rapid and, in some cases, a more stable convergence of the CMFD calculation. 

 

The CMFD-accelerated scheme for neutron noise calculations is summarized in Algorithm 3. 

 

Algorithm 3: CMFD scheme for frequency-domain neutron noise calculations 
1: Begin with initial CMFD guess by solving Eq. (4.34) with 𝐷𝐷� = 0 
2:  while  ℜ𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜 ℑ𝑒𝑒𝑒𝑒𝑒𝑒  > 𝜀𝜀 
3:   for outer iteration count ≤ 𝑁𝑁𝑂𝑂 do 
4:    for 𝑔𝑔=1 to 𝑔𝑔 = 𝐺𝐺 do 
5:     for inner iteration count ≤ 𝑁𝑁𝐼𝐼 do 
6:      Sweep through the angular directions and spatial domain 
7:      Update moments and self-scattering term  
8:     end for 
9:    end for 
10:    Update fission source term 
11:   end for 
12:   Solve Eq. (4.34) for 𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
13:   Adjust noise moments and incoming angular flux according to Eqs. (4.47) and  
   (4.48), update both the scattering and fission source term 
14:  end while 
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4.2.2 Artificial Diffusion CMFD 

The artificial diffusion CMFD (adCMFD) method is a modified version of the regular CMFD 
method, which aims at obtaining an unconditional stable behavior [36]. This method is 
implemented in NOISE-SN and tested for neutron noise calculations in the frequency domain. 
The method is such that the coupling coefficient 𝐷𝐷� given in Eq. (4.36) is artificially increased 
by 1/4, i.e.: 

𝐷𝐷�𝑔𝑔,𝐼𝐼𝐼𝐼+1/2,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 =
2𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼+1𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾 + 𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼𝐷𝐷𝑔𝑔,𝐼𝐼𝐼𝐼+1,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
+

1
4

(4.50) 

The standard CMFD equations with these modified coupling coefficients are algebraically 
equivalent to the pCMFD equations, and the stable convergence behavior of the pCMFD 
method may be emulated. 

4.2.3 Linear Prolongation CMFD method 

The lpCMFD method is another available option to improve the stability of the convergence 
of CMFD [38]. The implementation in NOISE-SN is such that the method can only be applied 
to two-dimensional problems and to the calculation of the scalar neutron noise, i.e., the zeroth 
moment neutron noise 𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1.  

According to this method, the update process is modified using a linear additive approach 
similar to DSA. Eq. (4.47) is then replaced with: 

𝛿𝛿𝛿𝛿𝑙𝑙=0,𝑔𝑔,𝐼𝐼,𝐽𝐽
𝑚𝑚=0,𝐼𝐼𝐼𝐼𝐼𝐼+1 = 𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽

𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12 + 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼,𝐽𝐽
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+12 (4.51) 

The correction quantity at the centers of the fine cells 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼,𝐽𝐽
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+12 is obtained by bilinear 

interpolation of the differences between the CMFD solution and the homogenized transport 
solution at the vertices of the coarser mesh. These differences are calculated, e.g., as: 

𝛿𝛿𝛿𝛿
𝑔𝑔,𝐼𝐼+12,𝐽𝐽+12

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐼𝐼𝐼𝐼𝐼𝐼+12 =
1
4
� � �𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼+1 − 𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽
𝐼𝐼𝐼𝐼𝐼𝐼+12�

𝐽𝐽𝐽𝐽+1

𝐽𝐽𝐽𝐽=𝐽𝐽𝐽𝐽

𝐼𝐼𝐼𝐼+1

𝐼𝐼𝐼𝐼=𝐼𝐼𝐼𝐼

(4.52) 

The details of the bilinear interpolation and the treatment of reflective boundaries are given in 
[38]. 

4.2.4 Stabilization of the CMFD algorithm 

To better stabilize the CMFD algorithm, two procedures are used in this work. The first is to 
increase the number of inner and outer transport iterations before each CMFD calculation. 
The second is to under-relax the CMFD update of the fine-mesh transport solutions. 
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Following the under-relaxation approach, a factor 𝜃𝜃 that can vary between zero and unity is 
introduced in Eq. (4.47) and Eq. (4.48). For example, Eq. (4.47) is modified as: 

𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+1 = (1 − 𝜃𝜃)𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾

𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12 + 𝜃𝜃𝛿𝛿𝛿𝛿𝑙𝑙,𝑔𝑔,𝐼𝐼,𝐽𝐽,𝐾𝐾
𝑚𝑚,𝐼𝐼𝐼𝐼𝐼𝐼+12

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾
𝐼𝐼𝐼𝐼𝐼𝐼+12

(4.53) 

The unaccelerated scheme is obtained when 𝜃𝜃 = 0. The standard CMFD update is recovered 
when 𝜃𝜃 = 1. 

 

4.3 Comparison of the acceleration methods 
The convergence of the iterative schemes implemented in NOISE-SN is compared based on 
two neutron noise problems defined in the C3 and C4V benchmark configurations. In this 
section, only the convergence properties are presented, following the discussion in Paper III. 
The numerical results of both problems can be found in, e.g., Paper IV and Paper V. 

Both C3 and C4V systems consist of a 2 × 2 assembly arrangement. Two UO2 assemblies are 
located North-West and South-East and two MOX assemblies are located North-East and 
South-West [39]. Each fuel assembly contains 17 × 17 squares that represent homogenized 
fuel cells or guide tubes. The C3 test case has reflective boundary conditions on all sides of 
the system, while the C4V test case has both reflective and vacuum boundary conditions. The 
macroscopic cross sections are given for two-energy groups. 

In both the C3 and C4V systems, the neutron noise source is assumed to be a stationary 
fluctuation of the capture cross section in both energy groups. The source is placed at the fuel 
cell with position indexes (16,19), in the North-East MOX fuel assembly. The amplitude of 
the perturbation is taken equal to 5% of the nominal values of the capture cross section in 
each energy group. The frequency of the perturbation is set to 1 Hz. In addition, a 
homogeneous 𝛽𝛽  value equal to 0.0049 and a 𝜆𝜆 value equal to 0.0797 s-1 are chosen. The 
layout of the benchmark problems with the location of the noise source shown in red is given 
in Fig. 4.3. 

In the calculations presented in this section, the transport sweeps are carried out over a fine 
mesh in which each fuel cell of size 1.26×1.26 cm is discretized with 3×3 equally sized 
squares, and a Level-symmetric S8 quadrature set is applied. Numerical tests with other 
orders of discrete ordinates such as S16 and S20, lead to similar convergence behavior. For 
the CMFD calculations, the coarse mesh size corresponds to the size of each fuel cell. The 
convergence tolerance 𝜀𝜀 is set to 10−6 for both static and neutron noise calculations. 
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Figure 4.3 System configuration of C3 and C4V benchmark problems and location of the 
neutron noise source (in red) 

 

4.3.1 Static calculations 

The static calculations in C4V configuration are performed with the unaccelerated scheme, 
the DSA method, and the adCMFD method with one inner-one outer transport iteration 
(denoted as adCMFD(1)). For the C3 configuration, an additional one inner-two outer 
adCMFD(2) calculation is performed. The effective multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 obtained from 
the different simulations are compared with the reference values (taken from [39]) in Table 
4.1. The algorithms estimate similar results and the differences with the reference are small, 
i.e., a maximum difference of 23 pcm is found for the C3 configuration and a maximum of 24 
pcm for the C4V system. The static fluxes computed by the different schemes are also in good 
agreement and the maximum difference between the results is less than 0.3%. 

Table 4.1 effective multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 calculated by the static module 

Problem No Acceleration DSA adCMFD(1) adCMFD(2) Reference 

C4V 0.91744 0.91743 0.91734 -- 0.91720 

C3 1.01801 1.01801 1.01788 1.01772 1.01795 

 
The number of total transport sweeps required for each group to reach the convergence 
criterion is given in Table 4.2. The maximum relative differences between the scalar flux 
computed in two consecutive iterations are plotted in Fig. 4.4.  
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In the C4V system, both DSA and the CMFD methods significantly decrease the iteration 
number. However, in the C3 system, the adCMFD scheme suffers from some instabilities 
when approaching the convergence criterion. As observed in Table 4.2 and Fig. 4.4, the 
convergence of the adCMFD scheme can be improved by performing more transport sweeps 
before the CMFD calculation and update step.  
 
Table 4.2 Number of transport sweeps in each group required for convergence of the static C3 

and C4V calculations 

Problem No Acceleration DSA adCMFD(1) adCMFD(2) 

C4V 473 58 15 -- 

C3 384 34 212 86 

 

 

Figure 4.4 Convergence of the static calculation for C4V (left) and C3 (right) systems 

 

4.3.2 Neutron noise calculation in C4V 

The frequency-domain neutron noise calculations in the C4V system are accelerated by: 

• the DSA method with one inner iteration,  

• the original CMFD method with one inner-one outer iteration (CMFD(1)), 

• the original CMFD method with one inner-two outer iteration (CMFD(2)),  

• the adCMFD method with one inner-one outer iteration (adCMFD), 

• the lpCMFD method with one inner-one outer iteration (lpCMFD). 

The number of transport sweeps in each group required for convergence is reported in Table 
4.3. Compared to the static calculations, the unaccelerated scheme requires a very high 
number of iterations for the frequency domain neutron noise calculations. The DSA method 
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reduces the iterations by a factor of almost 20, but it still takes more than 1000 iterations to 
converge. The CMFD methods outperform the DSA method and allow to decrease the 
number of iterations to less than 50. The maximum pointwise relative difference between the 
real and imaginary parts of the scalar neutron noise computed in two consecutive iterations is 
plotted in Fig. 4.5. 

Table 4.3 C4V system - Acceleration of frequency domain neutron noise calculation with 
DSA and CMFD methods 

Acceleration 
Method 

No 
Acceleration 

DSA CMFD (1) CMFD (2) adCMFD (1) lpCMFD 

Number of 
transport sweeps 

22655 1262 12 14 18 44 

 

Figure 4.5 C4V system - Convergence of the real (left) and imaginary (right) part of the 
calculated neutron noise 

 

4.3.3 Neutron noise calculation in C3 

Instabilities in the simulation of the C3 system are observed. Thus, additional calculations are 
performed in which the update process in CMFD(1) is under-relaxed, with 𝜃𝜃 being 0.5 and 
0.18. The number of total transport sweeps required for each group to reach the convergence 
criterion is given in Table 4.4. The convergence of the real and imaginary parts for this case is 
shown in Fig. 4.6. 

Similar to the static calculations, due to the different boundary conditions, the CMFD 
methods suffer from instabilities in the C3 system when approaching the convergence 
criterion of 10−6. The stability can be enhanced using stabilization techniques and methods.  

Despite the instabilities, the neutron noise calculated in both the C3 and C4V systems with 
different schemes provided consistent results. A maximum difference of less than 0.1% is 
found for both systems. 
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Table 4.4 C3 system - Acceleration of frequency-domain neutron noise calculation with DSA 
and CMFD methods 

Acceleration Method 
Number of transport 

sweeps 
No Acceleration 22877 

DSA 1228 
CMFD (1) 242 
CMFD (2) 180 
adCMFD 298 
lpCMFD 51 

CMFD (𝜃𝜃 = 0.5) 116 
CMFD (𝜃𝜃 = 0.18) 73 

 

 

Figure 4.6 C3 system - Convergence of the real (left) and imaginary (right) part of the 
calculated neutron noise 

 

4.3.4 Dependence on the frequency of the perturbation 

As discussed in Section 4.1, the convergence rate of the unaccelerated and DSA schemes is 
affected by the frequency of the noise source. Therefore, the behavior of the CMFD methods 
is also investigated for different values of this parameter. For the C4V system, the original 
CMFD(1) calculation is selected, while for the C3 system, the lpCMFD is used since it leads 
to the fastest convergence rate. The total number of transport sweeps necessary for 
convergence are summarized in Table 4.5. 
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Table 4.5 Number of transport sweeps of the CMFD method for different frequencies of the 
noise source 

Frequency [Hz] 0.001 0.01 1 100 1000 
C4V 16 12 12 12 18 
C3 640 51 51 118 -- 

 

For the C4V system, the acceleration effect provided by the standard CMFD method is merely 
influenced by the frequency of the noise source. A good performance is also obtained at 
extremely low frequencies, which have been found to be numerically challenging for the DSA 
method. For example, the DSA method would require more than 3000 iterations at 0.001 Hz.  

In the C3 case, the lpCMFD method performs well in the plateau region with frequencies 
ranging from 0.01 to 100 Hz. However, when the frequency is outside the plateau region, the 
acceleration deteriorates. For very high frequencies (e.g., 1000 Hz), all CMFD methods failed 
to converge. 
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Chapter 5  
 

Ray effects in neutron noise calculations 
 

 

In Section 5.1, the issue of ray effect in the discrete ordinates method is introduced. In Section 
5.2, the fictitious source method implemented in NOISE-SN for the mitigation of ray effect is 
described. In Section 5.2 and Section 5.3, two neutron noise problems are used to investigate 
the impact of the order of discrete ordinates and of the fictitious source method on the 
mitigation of possible ray effects. The discussion is based on Paper I. 

 

5.1 Ray effect 
The ray effect is a well-known numerical issue of the discrete ordinates method. It may cause 
unphysical distortions of the calculated spatial distribution of the scalar and angular flux. The 
cause of ray effect is due to the discrete ordinates formulation itself. Although the neutrons 
can travel in all possible directions within a system, the discrete ordinates method is such that 
the neutron flux is only evaluated along a discrete number of directions. If the number of 
discrete directions is taken too small as compared to the number of spatial regions, the angular 
and scalar fluxes may not be accurate or even correct. Previous analyses (e.g., [40]) has 
shown that ray effects are most severe for problems where localized sources are present or 
where the effect of scattering is small. 

The possible distortions can be reduced without the modification of the basic SN equations. 
One strategy is to increase the number of discrete directions used in the SN calculations, but it 
may lead to a significant increase in the computational effort. Alternatively, the angular flux 
can be computed by averaging or interpolating differently oriented, relatively low-ordered 
quadrature sets to obtain more accurate solutions [41, 42]. Mitigation of ray effect can also be 
achieved using advanced quadrature sets [43].  

Another approach that can be followed to minimize the issue of ray effect is to solve a 
different version of the SN equations. Previous works explored the use of an angular 
discretization based on the angular finite element method [44] or the addition of a fictious 
source term in the equations. In the second case, the fictitious source term is designed to 
transform the SN equations to spherical harmonic-like equations that preserve the rotational 
invariance of the transport equation [45, 46, 47]. This method can be integrated into the 
standard sweeping procedure without significant changes, but the resulting calculations 
usually require significantly more iterations to converge. 
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The investigation of ray effect and its mitigation has been mainly focused on real-valued 
static and time-dependent calculations. In the current research, the impact of the order of 
discrete ordinates and the application of a fictitious source method is studied for complex-
valued neutron noise calculations. 

5.2 Fictitious source method in NOISE-SN 
The two-dimensional fully discretized SN equation with a fictitious source for ray effect 
mitigation can be written as: 

𝜇𝜇𝑛𝑛
∆𝑥𝑥𝐼𝐼

�𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼+1/2,𝐽𝐽(𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼−1/2,𝐽𝐽(𝜔𝜔)� +
𝜂𝜂𝑛𝑛
∆𝑦𝑦𝐽𝐽

�𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽+1/2(𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽−1/2(𝜔𝜔)�  

+ �𝛴𝛴𝑡𝑡,𝑔𝑔,0,𝐼𝐼,𝐽𝐽 +
𝑖𝑖𝑖𝑖
𝑣𝑣𝑔𝑔,𝐼𝐼,𝐽𝐽

� 𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽(𝜔𝜔) = ��(2𝑙𝑙 + 1)𝛴𝛴𝑠𝑠𝑠𝑠,𝑔𝑔′→𝑔𝑔,0,𝐼𝐼,𝐽𝐽 � 𝑅𝑅𝑙𝑙
𝑚𝑚(𝜴𝜴𝒏𝒏)δ𝜙𝜙𝑙𝑙,𝑔𝑔′,𝐼𝐼,𝐽𝐽

𝑚𝑚 (𝜔𝜔)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

𝐿𝐿

𝑙𝑙=0𝑔𝑔′

 

+
1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝜒𝜒𝑔𝑔,𝐼𝐼,𝐽𝐽
𝑑𝑑𝑑𝑑𝑑𝑑�𝜈𝜈𝛴𝛴𝑓𝑓,𝑔𝑔′,0,𝐼𝐼,𝐽𝐽𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼,𝐽𝐽(ω)

𝑔𝑔′
+ 𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽(ω) + 𝛾𝛾𝛾𝛾𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝜔𝜔) (5.1) 

The fictitious source is denoted as 𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and is multiplied by a factor 𝛾𝛾 which can take values 

between 0 and 1. The choice of the factor 𝛾𝛾 allows to tune the strength of the fictitious source 
and improve the convergence properties of the iterative scheme by choosing values for 𝛾𝛾 that 
are less then unity. If 𝛾𝛾 = 0, the original discrete ordinate equation is solved. If 𝛾𝛾 = 1, the 
mitigation of ray effects is expected to be maximum, but the convergence rate is the worst. 

The construction of the fictitious source is based on the “Miller-Reed Source” proposed in 
[47]. The introduction of such a term into the discrete ordinates equations allows to obtain a 
set of spherical-harmonics-like equations. The complete fictitious source contains four terms. 
However, it is found through numerical tests that this source causes convergence problems of 
the unaccelerated or CMFD-accelerated schemes. Hence, in NOISE-SN, the fictitious source 
contains only the following two terms: 

𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (ω) = 

� ����𝑌𝑌𝑙𝑙′
𝑚𝑚′

(𝜴𝜴𝒏𝒏) � 𝑎𝑎𝑛𝑛′,𝑙𝑙′
𝑚𝑚′

𝜇𝜇𝑛𝑛′𝑌𝑌𝑁𝑁2𝑚𝑚−1(𝜴𝜴𝐧𝐧′)
N(N+2)/2

n′

𝑙𝑙′

m′

N−1

l′=0

��
𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁
2𝑚𝑚−1(𝜔𝜔)�

𝐼𝐼,𝐽𝐽

�
N/2

m=1

 

+ � ����𝑌𝑌𝑙𝑙′
𝑚𝑚′

(𝜴𝜴𝒏𝒏) � 𝑎𝑎𝑛𝑛′,𝑙𝑙′
𝑚𝑚′

𝜂𝜂𝑛𝑛′𝑌𝑌𝑁𝑁2𝑚𝑚−1�𝜴𝜴𝒏𝒏′�
N(N+2)/2

n′

𝑙𝑙′

m′

N−1

𝑙𝑙′=0

��
∂
∂y
𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁

2𝑚𝑚−1(𝜔𝜔)�
𝐼𝐼,𝐽𝐽

�
N/2

m=1

(5.2) 

This source is algebraically equivalent to the source developed by Lathrop [46], but its 
formulation and implementation follow the procedure proposed by Miller and Reed [47].
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The parameter 𝑁𝑁 is the order of SN chosen for each numerical calculation. The terms 𝑌𝑌𝑙𝑙𝑚𝑚 are 
the spherical harmonics, and they are related to the real spherical harmonics 𝑅𝑅𝑙𝑙𝑚𝑚 through: 

𝑌𝑌𝑙𝑙𝑚𝑚 = �(2𝑙𝑙 + 1)
2𝜋𝜋

𝑅𝑅𝑙𝑙𝑚𝑚 (5.3) 

The spatial derivatives in Eq. (5.2) are computed with a central finite difference scheme in 
each computational cell: 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁
2𝑚𝑚−1(𝜔𝜔)�

𝐼𝐼,𝐽𝐽

=
𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁,𝐼𝐼+1/2,𝐽𝐽

2𝑚𝑚−1 (𝜔𝜔)− 𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁,𝐼𝐼−1/2,𝐽𝐽
2𝑚𝑚−1 (𝜔𝜔)

∆𝑥𝑥𝐼𝐼
(5.4) 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁
2𝑚𝑚−1(𝜔𝜔)�

𝐼𝐼,𝐽𝐽

=
𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁,𝐼𝐼,𝐽𝐽+1/2

2𝑚𝑚−1 (𝜔𝜔) − 𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁,𝐼𝐼,𝐽𝐽−1/2
2𝑚𝑚−1 (𝜔𝜔)

∆𝑦𝑦𝐽𝐽
(5.5) 

The moments at the surfaces are computed according to a quadrature formula, i.e.: 

𝛿𝛿𝛿𝛿𝑔𝑔,𝑁𝑁,𝐼𝐼±1/2,𝐽𝐽
2𝑚𝑚−1 (𝜔𝜔) = � 𝑎𝑎𝑛𝑛′,𝑁𝑁

2𝑚𝑚−1𝛿𝛿𝛿𝛿𝑔𝑔,𝑛𝑛′,𝐼𝐼±1/2,𝐽𝐽

N(N+2)/2

n′
(𝜔𝜔) (5.6) 

The coefficients 𝑎𝑎𝑛𝑛,𝑙𝑙
𝑚𝑚   in both Eqs. (5.2) and (5.6) are related to the quadrature selected for the 

calculation. According to Eq. (5.2), the coefficients should be evaluated for all directions 
specified in the quadrature set. In one of the directions, a total number of 𝑁𝑁0 moments for 
each coefficient need to be calculated. For instance, the moments of the 𝑛𝑛-th direction are 
arranged in a column vector: 

𝑎𝑎�𝑛𝑛 = �𝑎𝑎𝑛𝑛,0
0 ,𝑎𝑎𝑛𝑛,1

0 ,𝑎𝑎𝑛𝑛,1
1 , … ,𝑎𝑎𝑛𝑛,𝑙𝑙

𝑚𝑚 , … , 𝑎𝑎𝑛𝑛,𝑁𝑁
𝑁𝑁−1�

𝑇𝑇 (5.7) 

Then they are determined by solving the following linear system of equations: 

𝑌𝑌�𝑎𝑎�𝑛𝑛 = 𝑏𝑏�𝑛𝑛 (5.8) 

The 𝑁𝑁0 × 𝑁𝑁0 matrix 𝑌𝑌� is given as: 

𝑌𝑌�= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌𝑌0

0(𝜇𝜇1, 𝜂𝜂1)         𝑌𝑌10(𝜇𝜇1, 𝜂𝜂1)        …       𝑌𝑌𝑁𝑁𝑁𝑁−2(𝜇𝜇1,𝜂𝜂1)          𝑌𝑌𝑁𝑁𝑁𝑁−1(𝜇𝜇1, 𝜂𝜂1)
𝑌𝑌00(𝜇𝜇2, 𝜂𝜂2)        𝑌𝑌10(𝜇𝜇2,𝜂𝜂2)         …       𝑌𝑌𝑁𝑁𝑁𝑁−2(𝜇𝜇2,𝜂𝜂2)          𝑌𝑌𝑁𝑁𝑁𝑁−1(𝜇𝜇2,𝜂𝜂2)

⋮                             ⋱               ⋱                     ⋱                              ⋮
𝑌𝑌00(𝜇𝜇𝑛𝑛, 𝜂𝜂𝑛𝑛)        𝑌𝑌10(𝜇𝜇𝑛𝑛, 𝜂𝜂𝑛𝑛)         …       𝑌𝑌𝑁𝑁𝑁𝑁−2(𝜇𝜇𝑛𝑛,𝜂𝜂𝑛𝑛)          𝑌𝑌𝑁𝑁𝑁𝑁−1(𝜇𝜇𝑛𝑛, 𝜂𝜂𝑛𝑛)

⋮                             ⋱               ⋱                     ⋱                              ⋮
𝑌𝑌00�𝜇𝜇𝑁𝑁0 , 𝜂𝜂𝑁𝑁0�   𝑌𝑌10�𝜇𝜇𝑁𝑁0 , 𝜂𝜂𝑁𝑁0�       …     𝑌𝑌𝑁𝑁𝑁𝑁−2�𝜇𝜇𝑁𝑁0 , 𝜂𝜂𝑁𝑁0�      𝑌𝑌𝑁𝑁𝑁𝑁−1�𝜇𝜇𝑁𝑁0 , 𝜂𝜂𝑁𝑁0�⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (5.9) 

and the column vector 𝑏𝑏�𝑛𝑛 is given as: 

𝑏𝑏�𝑛𝑛 = �1,
0,

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛 − 𝑡𝑡ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

(5.10) 
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Since the fictitious source given in Eq. (5.2) is computed from the angular neutron noise, it is 
updated in each group similar to the self-scattering term.  

The current selection of the fictitious source is compatible with the CMFD method presented 
in Chapter 4. The CMDF equation does not need to be modified as the fictitious source term 
vanishes after angle integration. The only modification required is an additional update for the 
term using the CMFD solutions before the start of a new full iteration: 

𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼𝐼𝐼+1(𝜔𝜔) = 𝑆𝑆𝑔𝑔,𝑛𝑛,𝐼𝐼,𝐽𝐽

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔)
𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐼𝐼𝐼𝐼𝐼𝐼

𝛿𝛿𝛿𝛿𝑔𝑔,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽
𝐼𝐼𝐼𝐼𝐼𝐼+12

               𝑓𝑓𝑓𝑓𝑓𝑓 (𝐼𝐼, 𝐽𝐽) ∈ (𝐼𝐼𝐼𝐼, 𝐽𝐽𝐽𝐽) (5.11) 

The two-dimensional neutron noise calculation scheme with fictitious source correction can 
thus be incorporated into the CMFD accelerated scheme with minor modifications, as 
summarized in Algorithm 4. 

 

Algorithm 4: CMFD scheme with fictitious source correction for the dynamic module 
1: Begin with initial CMFD guess by solving Eq. (3.34) with 𝐷𝐷� = 0 
2:  while  ℜ𝑒𝑒𝑒𝑒𝑒𝑒  𝑜𝑜𝑜𝑜 ℑ𝑒𝑒𝑒𝑒𝑒𝑒  > 𝜀𝜀 
3:   for outer iteration count ≤ 𝑁𝑁𝑂𝑂 do 
4:    for 𝑔𝑔=1 to 𝑔𝑔 = 𝐺𝐺 do 
5:     for inner iteration count ≤ 𝑁𝑁𝐼𝐼 do 
6:      Sweep through the angular directions and spatial domain 
7:      Update moments and self-scattering term  
8:      Compute and update fictitious source term 
9:     end for 
10:    end for 
11:    Update fission source term 
12:   end for 
13:   Solve Eq. (4.34) for 𝛿𝛿𝛿𝛿𝑔𝑔′,𝐼𝐼𝐼𝐼,𝐽𝐽𝐽𝐽,𝐾𝐾𝐾𝐾

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
14:   Adjust noise moments, incoming angular flux, and fictitious source according to  
   Eqs. (4.47), (4.48) and (5.11) 
15:   Update both the scattering and fission source term 
16:  end while 
 

5.3 Neutron noise problem in the C4V system 
A first test is carried out using the neutron noise problem in the C4V system that is described 
in Section 4.3. The impact of the order of discrete ordinates on the NOISE-SN neutron noise 
calculations is investigated. In addition, the correct implementation and the performance of 
the fictitious source are also verified. 
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The calculations are performed over a 170 × 170 grid of square meshes equal in size (i.e., 
∆𝑥𝑥 = ∆𝑦𝑦 = 0.252 𝑐𝑐𝑐𝑐). Thus, each fuel or guide tube cell of the C4V system is divided into 
5 × 5 identical, homogeneous squares. For acceleration, the original CMFD method is used, 
and the CMFD equations are discretized over a coarser grid whose computational cells 
correspond to the size of the fuel and guide tube cells. Each full iteration includes one inner 
iteration and one outer iteration. 

In Fig. 5.1, the neutron noise amplitude and phase are plotted along the right boundary of the 
system (see Fig. 4.3). The mesh index in the figure is counted from the top to the bottom. The 
figure is based on calculations with S8 and S32 PN-TN quadrature sets without fictitious 
source, and calculations using S8 PN-TN quadrature set with the fictitious source of strength 
0.9 and 1. 

The neutron noise results in this problem do not suffer from any severe ray effect. 
Nevertheless, minimal numerical oscillations can be observed in the amplitude and phase of 
the S8 calculation without any fictitious source. By increasing the order of SN, the oscillations 
can be eliminated while almost identical amplitude and phase results can be obtained. 

The application of the fictitious source also reduces the small oscillations. While the 
smoothening effect is similar for both strength of the fictitious source, a minor shift in both 
the amplitude and phase can be observed. The shift becomes larger as the strength increases 
since the solution takes more the characteristic of a spherical-harmonic solution. These results 
thus confirm the correct implementation of the fictitious source. 

The calculations shown in Fig. 5.1 are also examined in terms of the efficiency of the iterative 
schemes. For a convergence criterion of 1× 10−6, the number of full iterations required for 
convergence and the related wall clock time are reported in Table 5.1. The computational 
work is performed with a 1×10-core Intel Xeon E5-2630v3 processor. 

If the strength of the fictitious source is equal to 1.0, the number of iterations is very high, and 
the computational time is longer than what needed for the S32 calculation. By reducing the 
strength, such an increase in the number of iterations can be substantially limited. 
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Figure 5.1 Simulation of C4V neutron noise problem; fast noise amplitude (top-left) and 
phase (top-right), thermal noise amplitude (bottom-left) and phase (bottom-right) 

 

Table 5.1 Number of iterations and wall clock time required for convergence in the C4V 
neutron noise problem 

SN 8 32 
𝛾𝛾 0 0.9 1.0 0 

Number of 
iterations 19 55 585 19 

Wall clock 
time [mins] ~7.1 ~23 ~231 ~78 

 

5.4 Neutron noise problem in the C5G7 system 
Ray effects are further studied on a neutron noise problem defined in a more complex 
configuration, i.e., the C5G7 benchmark system [48]. In this case the ray effects are found to 
be severe, therefore the application of a mitigation strategy is essential. 
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5.4.1 Problem specifications 

The C5G7 configuration is a 2-dimensional system that includes four fuel assemblies 
arranged in a 2 × 2  grid and a water reflector/moderator region on the east and south 
peripheries (see Fig. 5.2). Two UO2 fuel assemblies are in the north-west and south-east 
positions of the 2×2 grid, and two MOX fuel assemblies are in the north-east and south-west 
positions. Each fuel assembly consists of  17 × 17 square cells that are equal in size and have 
a side length of 1.26 cm. These physical cells include a central circular region with a radius of 
0.54 cm and a surrounding region. The circular region is either a fuel-clad element, a guide 
tube, or a fission chamber, while the surrounding region is moderator. A set of seven-energy 
group cross sections is assigned to each kind of composition. The cross sections, the neutron 
kinetic parameters and the data for eight families of delayed neutron precursors are specified 
in [49].  

The neutron noise source is defined as a perturbation in one of the MOX fuel pins, whose 
location is shown in Fig. 5.2. The perturbation is a fluctuation of the neutron capture cross 
section over all the energy groups. Its amplitude is 5% of the static value of the cross section 
and the frequency is equal to 1 Hz. 

 

Figure 5.2 C5G7 system configuration with the location of the noise source 

 

5.4.2 Modelling 

The transport calculations are accelerated by the CMFD method. Accordingly, a fine grid is 
used for the transport sweeps and a coarse grid for the CMFD calculation. 

In the fine grid for the transport sweeps, a fuel, guide tube, or fission chamber cell is divided 
into 4 × 4 computational cells, see Fig. 5.3. The central four computational cells are identical 
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in size, and they approximate the circular fuel pin, guide tube, or fission chamber, preserving 
the actual area. The same spatial discretization is used for the reflector water region. 
Therefore, the fine grid for the entire system consists of 204 × 204 computational cells. 

For the CMFD calculation, the coarse grid is given by 51 × 51 computational cells. The size 
of the computational cells is equal to the size of the fuel, guide tube and fission chamber cells. 

For the static calculations, one inner iteration and one outer iteration are performed before the 
adCMFD acceleration. For the neutron noise calculations, each full iteration consists of the 
original CMFD method with two inner iterations and one outer iteration. The convergence 
criterion is set to 1× 10−6 for both modules. 

 

 

Figure 5.3 Discretization of the fuel, guide tube, or fission chamber; fine mesh for the 
transport sweeps 

 

5.4.3 Order of discrete ordinates 

The neutron noise problem defined in the C5G7 system is first simulated with different orders 
𝑁𝑁 of discrete ordinates, i.e., equal to 16, 32 and 64, to analyze the possible impact on the 
results. 

Static calculation 

The static solutions are first determined. The results for 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 are given in Table 5.2. Although 
the circular fuel pins are represented by a relatively coarse mesh, the values of 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 are in 
good agreement with the reference value [48]. The largest discrepancy with respect to the 
reference is found for the S64 case to be 105 pcm. In Table 5.2, the number of iterations 
required for convergence and the wall clock time are also reported. The same number of 
iterations is required for all calculations while the computational time increases with the 
higher SN approximations. 
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Table 5.2 Effective multiplication factor, number of iterations and wall clock time in the 
C5G7 static calculations 

 Reference S16 S32 S64 
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 1.18655 1.18617 1.18723 1.18760 

Number of iterations -- 38 38 38 
Wall clock time [hours] -- ~2.5 ~6.2 ~12.6 

 

In Fig. 5.4, the static fluxes computed with S16, S32 and S64 approximations are plotted 
along the diagonal that crosses the MOX fuel assemblies and that includes the perturbed fuel 
cell. The x-axis labels of the plot are such that the mesh index counts, along the diagonal, the 
computational cells starting from the bottom-left corner. The values are taken for the first and 
the seventh energy group, which are representatives of the fast and thermal energy groups, 
respectively. In the first group, the solutions agree well, and the largest differences are 
observed in the computational cells associated with the water surrounding the fuel pins. In the 
seventh group, the calculations yield consistent static fluxes. 

 

Figure 5.4 Static flux with different orders of discrete ordinates along the diagonal that 
crosses the MOX fuel assemblies in the C5G7 system; first energy group (left) and seventh 

energy group (right) 

 

Neutron noise calculation 

Figure 5.5 shows the neutron noise amplitude along the diagonal of the MOX fuel assemblies. 
The results are again taken from the first and seventh groups. The neutron noise amplitude 
resembles the static flux because the system is small and tends to respond to small 
perturbations in a point-kinetic manner. Yet, a local effect is found at the location of the 
neutron noise source. The variation of the amplitude with respect to the SN order is similar to 
what is observed for the static fluxes, with the largest differences found for the amplitudes of 
the first group in the computational cells associated with the water surrounding the fuel pins. 
The phase along the diagonal is not affected by the SN order, see Fig. 5.6. 
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Figure 5.5 Neutron noise amplitude with different orders of discrete ordinates along the 
diagonal that crosses the MOX fuel assemblies in the C5G7 system; first energy group (left) 

and seventh energy group (right) 

 

Figure 5.6 Noise phase calculated with different orders of discrete ordinates along the 
diagonal that crosses the MOX fuel assemblies in the C5G7 system; first energy group (left) 

and seventh energy group (right) 

 

Although the spatial distributions of the neutron noise calculated with different orders of 
discrete ordinates are consistent in most of the points of the system, numerical issues are 
identified in the reflector region. In some cells located in the bottom-right corner, the S16 
approximation predicts the noise phase for the first energy group to be equal to 0 degrees, 
which is unphysical, see top-right plot in Fig. 5.7. The noise phase is expected to be ~180° 
because a variation of the number of neutron captures induces an opposite variation in the 
neutron flux. In the other energy groups, some numerical distortions of the phase are also 
found, although they are much smaller than those in the first group (for instance, barely 
visible in Fig. 5.7, the phase in the seventh group has a relatively large deviation in the 
bottom-right corner cell). 

The selection of a higher order of discrete ordinates such as 𝑁𝑁 = 64 improves the results, as 
shown in Fig. 5.8. In this case, a similar spatial distribution of the amplitude and qualitatively 
correct phase values in the first group can be obtained. Nevertheless, small distortions can still 
be identified in the bottom-right corner of the system. The improvement indicates that the 
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unphysical values predicted by S16 calculations are due to ray effects. The localized noise 
source and the small scattering in the first energy group contribute to these ray effects. To 
obtain more accurate results, higher orders of SN or a fictitious method should be considered. 

 

 

 

 

 

 

Figure 5.7 Neutron noise calculated with the S16 approximation in the C5G7 system: first-
energy group amplitude (top-left) and phase (top-right) and seventh-energy group amplitude 

(bottom-left) and phase (bottom-right) 
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Figure 5.8 Neutron noise calculated with the S64 approximation in the C5G7 system; first 
energy group amplitude (top-left) and phase (top-right) and seventh energy group amplitude 

(bottom-left) and phase (bottom-right) 

 

5.4.4 Fictitious source method 

The neutron noise problem is solved combining the fictitious source method and the S16 
approximation. The strength of the fictitious source is selected to be 0.8 and 0.9.  

The analysis is focused on the neutron noise calculated in a column of computational cells 
along the lower part of the right boundary of the system, in the reflector region, where the S16 
approximation predicts unphysical values of the noise phase. In Fig. 5.9, the real and 
imaginary parts of the neutron noise obtained from the fictitious source method, the normal 
S16, and the normal S64 are compared. The indices used in the x-axes of Fig. 5.9 correspond 
to the Y-direction mesh indices used in Fig. 5.8, the X-direction mesh being equal to 204. 

The normal S16 calculation shows that the unphysical phase values are due to the large 
oscillations of the real and imaginary parts. By increasing the SN order or by using the 
fictitious source method, the oscillations are significantly reduced. The mitigation effects 
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achieved in the fictitious source calculations are more significant than the S64 calculation. 
The larger the strength of the fictitious source is, the more substantial improvement is gained. 

 

Figure 5.9 Effect of the different strength γ of the fictitious source on the S16 calculations; 
real (left) and imaginary (right) part of the neutron noise for the first energy group plotted 

along the right boundary of the system 

In Fig. 5.10, the spatial distributions of the neutron noise for the first and seventh energy 
group, over the entire system, are shown for the 𝛾𝛾 = 0.9 calculation. Compared to Fig. 5.8, 
very similar results are obtained, and the phase takes physical, correct values. 

 

 

Figure 5.10 Neutron noise calculated using the S16 approximation and a fictitious source of 
strength 𝛾𝛾 = 0.9; first-energy group amplitude (top-left) and phase (top-right) and seventh-

energy group amplitude (bottom-left) and phase (bottom-right) 
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5.4.5 Convergence of the scheme with fictitious source 

Concerning the use of the fictitious source, tests are carried out to optimize the numerical 
performance of the solver for the simulation of the C5G7 neutron noise problem.  

The fictitious source of strength 𝛾𝛾 = 1.0 causes extremely slow convergence rate, and it is 
estimated to require more than 1000 iterations. According to the experience in the C4V case, 
the choices such as 𝛾𝛾 = 0.8 or 𝛾𝛾 = 0.9 improve the convergence and are thus selected.  

A certain number of ordinary full iterative loops before introducing the fictitious source into 
the solution scheme is necessary to avoid numerical instabilities. In the current case, the initial 
seven iterative loops are run without the fictitious source. 

Given a convergence criterion with 𝜀𝜀 equal to 1× 10−6, the number of iterations and the wall 
clock time (using 2×10-core Intel Xeon E5-2630v3 processors) required for the convergence 
of the neutron noise calculations in the C5G7 system are summarized in Table 5.3. 

 

Table 5.3 Number of iterations and wall clock time required for the C5G7 neutron noise 
calculations 

SN 16 32 64 
𝛾𝛾 0 0.8 0.9 0 0 

Number of 
iterations 

33 55 100 33 32 

Wall clock 
time [hours] 

~4.8 ~8.7 ~15.8 ~12.4 ~26.6 

 

The increase of the fictitious source strength leads to slightly higher numbers of iterations, but 
these iterations take less computational time than the S64 calculation while attaining better 
mitigation effects. Therefore, the fictitious source method is shown to mitigate ray effect with 
a limited increase of the overall computational effort.  

The maximum pointwise relative differences between the real and imaginary parts of the 
scalar neutron noise computed in two consecutive iterations are plotted in Fig. 5.11. The 
convergence of these calculations becomes smooth after some iterations. 
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Figure 5.11 Convergence of the real (left) and imaginary (right) part of the scalar neutron 
noise for the C5G7 neutron noise calculations 
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Chapter 6  
 

Simulation of numerical problems and experiments 
 

 

In order to verify NOISE-SN, numerical problems and neutron noise experiments are 
simulated. In Section 6.1, NOISE-SN is compared with other neutron noise solvers using two 
neutron noise exercises defined in a simplified nuclear fuel assembly. In Section 6.2, NOISE-
SN is used to simulate two neutron noise experiments. In Section 6.3, an example of the use 
of NOISE-SN to identify possible limitations of a low-order neutron noise method based on 
diffusion theory is reported. Part of this discussion is based on Paper II and V. 

 

6.1 Comparison between NOISE-SN and other neutron 
noise solvers 
Several neutron noise solvers based on stochastic or deterministic methods were developed in 
the CORTEX project [3, 50, 51]. Two numerical neutron noise exercises are defined in a 2-D 
simplified UOX fuel assembly and used to compare some of the solvers. The results are 
published in Paper II. Accordingly, NOISE-SN (developed in the framework of this thesis and 
in Paper II referred to as the Chalmers SN solver) is compared with: 

• A stochastic solver in the Monte Carlo code TRIPOLI-4, developed by CEA [13, 52] 

• A Monte Carlo solver, developed by KU – Kyoto University [14] 

• The deterministic Integro-Differential Transport - IDT lattice solver embedded in 
APOLLO3, developed by CEA [12] 

• The diffusion-based solver CORE SIM+, developed by Chalmers University of 
Technology [10] 

• The diffusion-based solver FEMFFUSION, developed by UPV - Universitat 
Politècnica de València [53] 

FEMFFUSION computes the solutions in the time domain while the others solve the neutron 
noise equation in the frequency domain. 

6.1.1 Description of the benchmark problems 

The simplified fuel assembly together with the reference computational spatial grid is shown 
in Fig. 6.1. The assembly contains 264 homogeneous square fuel pins, each with a size of 
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0.7314 𝑐𝑐𝑐𝑐 × 0.7314 𝑐𝑐𝑐𝑐, and 25 homogeneous water holes of the size 1.26 𝑐𝑐𝑐𝑐 × 1.26 𝑐𝑐𝑐𝑐. 
The assembly is surrounded by a thin water blade with a thickness of 0.08 𝑐𝑐𝑐𝑐, and thus the 
size of the entire system is 21.58 𝑐𝑐𝑐𝑐 × 21.58 𝑐𝑐𝑐𝑐. Reflective boundary conditions are applied 
to all four sides of the system. All the calculations are based on pre-generated two energy 
group nuclear cross sections and neutron velocities, and one family of precursor. The values 
for the nuclear data are available in Paper II. 

 

   
Figure 6.1 Simplified UOX fuel assembly (left) and the reference computational mesh for 
each fuel cell or water hole (right); fuel pins are in red, water region is in green, and the 

perturbed fuel pin is highlighted with a black circle 

 

The two neutron noise exercises are defined as the perturbation of the properties of one fuel 
pin in the assembly, with the position being the same and shown in Fig. 6.1.  

In exercise 1, a simple isotropic noise source is considered. The noise source is artificially 
given as −1 + 𝑖𝑖 in the thermal group, and the frequency is set to 3 Hz. 

In exercise 2, the noise source is defined as fluctuations in all the macroscopic cross sections 
of the fuel pin as: 

Σ𝑡𝑡,𝑔𝑔(𝑟𝑟, 𝑡𝑡) = Σ𝑡𝑡,𝑔𝑔,0(𝑟𝑟) + 0.041Σ𝑡𝑡,𝑔𝑔,0(𝑟𝑟) cos(𝜔𝜔0𝑡𝑡) (6.1) 

Σ𝑠𝑠,𝑔𝑔→𝑔𝑔′(𝑟𝑟, 𝑡𝑡) = Σ𝑠𝑠,𝑔𝑔→𝑔𝑔′,0(𝑟𝑟) + 0.034Σ𝑠𝑠,𝑔𝑔→𝑔𝑔′,0(𝑟𝑟) cos(𝜔𝜔0𝑡𝑡) (6.2) 

Σ𝑓𝑓,𝑔𝑔(𝑟𝑟, 𝑡𝑡) = Σ𝑓𝑓,𝑔𝑔,0(𝑟𝑟) + 0.021Σ𝑓𝑓,𝑔𝑔,0(𝑟𝑟) cos(𝜔𝜔0𝑡𝑡) (6.3) 

The amplitudes of the fluctuations are arbitrarily chosen, and the frequency is fixed to 1 Hz, 
i.e., 𝜔𝜔0 = 2𝜋𝜋.  

6.1.2 Static results 

The static calculations of NOISE-SN make use of S32 PN-TN quadrature set and are 
accelerated with the CMFD method, in which one inner-two outer transport iterations are 
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performed. Furthermore, the adCMFD equations are solved over the fine transport mesh (as 
presented in Fig. 6.1) for an optimized convergence rate. Only 9 iterations are required for 
convergence of the static calculation. 

The calculated values for the effective multiplication factor are summarized in Table 6.1. 
NOISE-SN computed a value of 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 that is close to the TRIPOLI-4 result taken as reference 
(the difference is 84 pcm).  

 
Table 6.1 Comparison of the multiplication factor 

Solvers 𝑘𝑘𝑒𝑒𝑓𝑓𝑓𝑓 Difference [pcm] 
TRIPOLI-4® 0.99912 ± 8 pcm Reference 

KU Monte Carlo solver 0.99919 ± 7 pcm 7 
APOLLO-3® 0.99784 -128 
NOISE-SN 0.99996 84 

CORE SIM+ 1.01309 1397 
FEMFFUSION 1.01367 1485 

 

In Figs. 6.2 and 6.3, the static fluxes for both energy groups are plotted along the diagonal of 
the system, crossing the position of the perturbed fuel pin. Taking the TRIPOLI-4 results as 
the reference, the relative differences of the fluxes are also given in these figures. In the post-
processing step, the static fluxes in both groups are normalized using the fast neutron flux 
computed in the first computational cell located at the left-bottom corner of the fuel assembly 
without the water blade. NOISE-SN predicts almost identical results as the other higher-order 
transport solvers. The maximum difference between the NOISE-SN solution and the reference 
is around 1%. 

 

   
Figure 6.2 Fast static flux (left) and relative differences with respect to TRIPOLI-4 (right), 

along the diagonal of the fuel assembly crossing the perturbed fuel pin 
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Figure 6.3 Thermal static flux (left) and relative differences with respect to TRIPOLI-4 

(right), along the diagonal of the fuel assembly crossing the perturbed fuel pin 

 

6.1.3 Neutron noise results  

Consistently with the static calculations, the neutron noise calculations performed by NOISE-
SN make use of S32 PN-TN quadrature set and are accelerated with the normal CMFD method 
with one inner - two outer transport iterations. The number of full iterations required for 
convergence is 9 and 10 for exercise 1 and 2, respectively. Although the reflective boundaries 
conditions are applied to all sides of the system, the CMFD accelerated scheme converged in 
a smooth manner, see the convergence of the real and imaginary parts for both exercises in 
Fig. 6.4.  

 

Figure 6.4 Convergence of the real and imaginary part in the neutron noise calculations; 
exercise 1 (left) and exercise 2 (right). 

 

Similar to the static case, the neutron noise amplitudes in both groups are normalized to the 
amplitude in the fast group, computed in the cell located at the left-bottom corner. The water 
blade is again neglected in the comparison. In Paper II, the relative neutron noise (i.e., the 
normalized neutron noise amplitudes divided by the respective static fluxes) is shown so that 
the local effect of the noise source can be clearly seen. 
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Exercise 1 

In Fig. 6.5, the results for exercise 1 are shown. The amplitude and phase are taken along the 
diagonal line that passes through the perturbed fuel pin. The amplitude follows the shape of 
the static flux while local peaks can be observed in the vicinity of the noise source location, 
i.e., around position index 50 (compared with Figs. 6.2 and 6.3).  

NOISE-SN estimates amplitude and phase values that are in very good agreement with the 
other higher-order transport solvers. For the amplitude, the maximum difference between the 
NOISE-SN and the reference TRIPOLI4 solution is 0.7%, and it is found in the fast group. 
For the phase results, the maximum difference is less than 0.25% for both groups. 

 

 

 

Figure 6.5 Neutron noise calculated for exercise 1: fast group amplitude (top-left) and phase 
(top-right), and thermal group amplitude (bottom-left) and phase (bottom-right) 
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Exercise 2 

The solutions of exercise 2 along the diagonal crossing the perturbed fuel pin, are shown in 
Fig. 6.6. NOISE-SN and the other higher-order solvers predict close values of neutron noise. 
Similar to Exercise 1, the differences between NOISE-SN and the reference TRIPOLI-4 are 
less than 2% in amplitude and less than 0.2% in phase. 

 

 

Figure 6.6 Neutron noise calculated for exercise 2: fast group amplitude (top-left) and phase 
(top-right), and thermal group amplitude (bottom-left) and phase (bottom-right) 

 

6.2 Simulation of neutron noise experiments 
In the CORTEX project, neutron noise experiments were performed in the CROCUS reactor 
at École Polytechnique Fédérale de Lausanne (EPFL). NOISE-SN is used to simulate two of 
these experiments and the results are compared with the experimental data. 

6.2.1 COLIBRI neutron noise experiments in CROCUS 

The CROCUS reactor is a pool type, light water moderated reactor [54]. The core shape is 
approximately cylindrical and has a diameter of about 59 cm and a height of 100 cm. The core 
is radially separated into two layers. The inner layer consists of 336 UO2 fuel rods with a 
pitch of 1.837 cm, and the outer layer is loaded with 176 U metal fuel rods with a pitch of 
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2.917 cm. The reactor can be controlled by either the control rods or by adjusting the water 
level in the reactor.  

Different campaigns of neutron noise experiments have been carried out in CROCUS. The 
solver NOISE-SN is used to simulate experiments 12 and 13 of the first COLIBRI campaign 
[55]. In these experiments, a cluster of 18 U metal fuel rods is oscillated via the COLIBRI 
device, with an amplitude of +/− 2 mm and a frequency of 0.1 Hz in experiment 12 and 1 Hz 
in experiment 13. The top view of the CROCUS reactor and the positions of the vibrating rods 
are shown in Fig. 6.7. The reactor is equipped with neutron detectors to record the neutron 
flux variations with respect to time, see their locations in Fig. 6.7. 

 

Figure 6.7 Top view of the reactor configuration and locations of the detectors, the vibrating 
fuel rods are shown in green (courtesy of EPFL) [53]. 

 

6.2.2 Modelling 

A relatively coarse 3-D model of the CROCUS reactor is used for the simulations. The model 
consists of 4 homogeneous regions, i.e., the inner fuel region, the outer fuel region (where the 
cluster of vibrating fuel rods is located), the water reflector region, and the control rods. A set 
of two-energy group homogenized macroscopic cross sections is associated with each of the 
regions. The effective kinetic nuclear data are based on 8 families of delayed neutron 
precursors. The nuclear data are generated with the Monte Carlo code Serpent and provided 
by EPFL. 

The system is discretized with 54 axial layers: the top 3 layers have a height of 1.76433 cm, 
and the other 51 layers have a height of 1.857 cm. The total height of the modelled system is 
thus 100 cm. The radial mesh is identical for each of the axial layer and is shown in Fig. 6.8. 
It consists of equally sized square cells with a side length of 1.4585 cm, except for the 
oscillating region, where a finer mesh is needed to model the perturbation. The overall 
computational spatial grid is 88 × 108 × 54. 
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Given the model for these simulations, the cluster of vibrating fuel rods is described as one 
homogeneous region within the homogeneous outer fuel region. The vibrating region 
introduces a local perturbation in the macroscopic cross sections. Such a perturbation is 
modelled with the 𝜖𝜖/𝑑𝑑 method [56]. According to this method, a fixed grid is used and Dirac-
like perturbations are specified at the left and right boundaries of the vibrating region, which 
are perpendicular to the direction of the motion. For an accurate numerical approximation of 
the Dirac-like perturbations, the mesh must be very fine around the boundaries affected by the 
vibration, see Fig. 6.8. 

If the left boundary is considered (see plot on the right in Fig. 6.8), the macroscopic cross 
sections associated with the cells adjacent on both sides are perturbed by a value equal to the 
differences between the macroscopic cross sections of the two regions separated by the 
boundary, i.e.: 

𝛿𝛿Σ𝛼𝛼,𝑔𝑔,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = Σ𝛼𝛼,𝑔𝑔,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − Σ𝛼𝛼,𝑔𝑔,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (6.4) 

The same procedure is followed to perturb the macroscopic cross sections of the cells 
surrounding the right boundary, i.e.: 

𝛿𝛿Σ𝛼𝛼,𝑔𝑔,𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = Σ𝛼𝛼,𝑔𝑔,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − Σ𝛼𝛼,𝑔𝑔,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (6.5) 

In the equations above, 𝛼𝛼 denotes a generic macroscopic cross section since the vibration 
affects all types of cross sections. 

 
Figure 6.8 Radial mesh for the CROCUS reactor (left) and the locations of the perturbed 

computational cells (right) 
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The NOISE-SN simulations are performed using the S16 approximation and the PN-TN 

quadrature set. The static calculation is accelerated by adCMFD with one inner-two outer 
transport iterations. The frequency domain neutron noise calculations are performed with the 
normal CMFD acceleration with one inner-six outer iterations. Both static and neutron noise 
CMFD equations are discretized over the fine transport mesh.  

6.2.3 Static calculations  

For the static calculations, 25 full iterations are required for a convergence criterion of 10−6. 
The effective multiplication factor computed with NOISE-SN is equal to 1.00208 and its 
difference with respect to the reference value [55] is +42 pcm. Figure 6.9 shows the radial 
distribution of the fast and thermal static fluxes at mid-elevation of the system and Fig. 6.10 
shows the fluxes along the horizontal line that crosses the mid-elevation plane in the middle. 

 

 

Figure 6.9 Fast (left) and thermal (right) static fluxes at mid-elevation. 

 

Figure 6.10 Fast (left) and thermal (right) static fluxes along the horizontal line that crosses 
the mid-elevation plane in the middle. 
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6.2.4 Neutron noise simulations 

The neutron noise is calculated for experiments 12 and 13. In experiment 12 the amplitude of 
the vibration is +/− 2 mm, and the frequency is 0.1 Hz. In experiment 13 the amplitude is 
+/− 2 mm, and the frequency is 1.0 Hz. 

The simulations require 31 and 29 iterations to reach convergence for experiments 12 and 13, 
respectively. Both simulations are run on 2×10-core Intel Xeon E5-2630v4 processors, and 
they take approximately 60 hours in terms of wall clock time. 

For experiment 12, the noise calculated at mid-elevation is shown in Fig. 6.11. Due to the 
relatively small size of the reactor, the spatial distribution of the noise amplitudes follows the 
distribution of the static fluxes (compare Fig. 6.9 and plots on the left in Fig. 6.11). The phase 
of the thermal noise shows an out-of-phase behavior at the boundaries of the vibrating region, 
which is expected because of the oscillation of the fuel pins. 

 

     

     

Figure 6.11 Experiment 12, neutron noise calculated at mid-elevation; fast amplitude (top-
left) and phase (top-right) and thermal amplitude (bottom-left) and phase (bottom-right) 
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A similar spatial distribution and level of the noise is obtained in experiment 13. This is 
shown in Fig. 6.12, where the noise calculated in the two experiments is compared along the 
horizontal line that crosses the mid-elevation plane in the middle. This result is expected 
because the values of the frequency belong to the range corresponding to the plateau region of 
the zero-power transfer function of the reactor (see Section 2.4) and the static fluxes are the 
same for both experiments. 

 

 

 

Figure 6.12 Comparison between experiments 12 and 13; fast (top) and thermal (bottom) 
noise along the horizontal line that crosses the mid-elevation plane in the middle. 

 

6.2.5 Comparison with experimental results 

The NOISE-SN results are compared to the experimental neutron noise, which is derived 
from the detector measurements in terms of Power Spectrum Density (PSD). If this quantity 
relates the signals of two different detectors, it is called Cross-Power Spectrum Density 
(CPSD). If only one single detector is considered, it is called Auto-Power Spectrum Density 
(APSD). 
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Detectors are not modelled in the NOISE-SN simulations. However, since the CROCUS 
detectors are mainly sensitive to thermal neutrons, PSD values are estimated from the thermal 
neutron noise and the thermal static flux calculated at the locations of the detectors, i.e.: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗 = �
𝛿𝛿𝛿𝛿𝑡𝑡ℎ
𝜙𝜙0,𝑡𝑡ℎ

�
𝑖𝑖
�
𝛿𝛿𝛿𝛿𝑡𝑡ℎ
𝜙𝜙0,𝑡𝑡ℎ

�
𝑗𝑗

∗

(6.6) 

The indices 𝑖𝑖 and 𝑗𝑗 refer to the detectors 𝑖𝑖 and 𝑗𝑗 (or their locations), respectively. 

In the current study, the quantities of interest are the APSD amplitude for the generic detector 
𝑖𝑖 divided by the amplitude of the CPSD with respect to detector 5, and on the phase of the 
CPSD with respect to detector 5. The results for experiments 12 and 13 are shown in Figs. 
6.13 and 6.14, respectively. In the x-axis, the detectors are ordered from the closest to the 
perturbation to the farthest. The uncertainties associated with the experimental data are also 
included. 

The noise predicted with NOISE-SN is similar to the experimental neutron noise. The 
amplitude increases close to the vibrating region (detector 8 and 6) and decreases as the 
detector locations are further away. The phase with respect to detector 5 is small and the trend 
is relatively flat for both the calculations and the measurements. The simulations are in better 
agreement with the experimental data for Experiment 13, except for detectors 8 and 3. The 
location of detector 8 is very close to the perturbation and this may affect the accuracy of both 
the simulations and the measurements. The behavior of detector 3 may have been biased [53]. 

The results calculated with NOISE-SN have also been shown to be consistent with the results 
obtained from other neutron noise solvers. More details can be found in [53]. 

 

 

Figure 6.13 Experiment 12; relative noise amplitude (left) and noise phase (right) 
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Figure 6.14 Experiment 13; relative noise amplitude (left) and noise phase (right) 

 

6.3 Comparison with the diffusion-based solver CORE SIM+ 
The solver NOISE-SN and the diffusion-based solver CORE SIM+ [10] are compared over 
several numerical neutron noise problems (see Paper I, Paper II and Paper V). As an example, 
the neutron noise problem based on the C3 configuration and described in Section 4.3 is 
taken. The neutron noise source is defined as a perturbation of the macroscopic capture cross 
section in one fuel cell, with an amplitude of 5% and a frequency of 1 Hz. 

The comparison can provide insights into possible limitations of the lower-order diffusion 
approximation. The results for the two neutron energy groups are similar, so only the thermal 
group in which the discrepancies are larger is discussed. The complete analysis can be found 
in Paper V. 

For the NOISE-SN calculations, the S8 Level symmetric quadrature set is selected. As 
demonstrated in Chapter 5, the S8 approximation has very small ray effects and thus it can be 
considered accurate enough.  

The calculations with both solvers are first performed using different computational spatial 
grids. The mesh is progressively refined; the coarser mesh consists of one node per each fuel 
cell/guide tube and the finer mesh has 8 × 8 equally sized square nodes per fuel cell/guide 
tube. The thermal neutron noise amplitude calculated in the central computational node of the 
perturbed fuel cell is plotted with respect to the different mesh sizes in Fig. 6.15. The results 
become mesh-independent for resolutions higher than 5 × 5 nodes per each fuel cell/guide 
tube. Then, the mesh with 5 × 5  square nodes per fuel cell/guide tube is used for the 
comparison between NOISE-SN and CORE SIM+. 
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Figure 6.15 Effect of the spatial grid resolution on the amplitude of the thermal neutron noise 
at the location of the noise source 

 

 6.3.1 Static flux and neutron noise calculated with the 2 solvers 

The two solvers are compared in terms of the thermal static flux and the thermal neutron noise 
amplitude, see Fig. 6.16. The general agreement is relatively good, although significant 
discrepancies are found. 

Large differences are identified in the guide tube locations. The guide tubes introduce abrupt 
variations of the material properties of the system and these strong heterogeneities can be 
resolved better with higher-order transport methods than diffusion. In the case of the neutron 
noise, additional large differences are found at the location of the neutron noise source and its 
close surroundings. This is also an outcome of the benchmark exercises presented in Section 
6.1, where the biggest deviations between higher-order and diffusion-based solvers arise near 
the neutron noise source, see, e.g., Fig. 6.6. 

The relative differences for other locations in the system are very small, i.e., less than 3%. 
The phase predicted by both solvers are also very similar, with a maximum relative difference 
of 0.1%. 

 

Figure 6.16 Spatial distribution of the relative differences between the two solvers, for the 
thermal neutron static flux (left) and for the thermal neutron noise amplitude (right) 
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6.3.2 Dependence on the frequency of the neutron noise source 

To investigate further the relative differences between the two solvers, simulations are 
performed varying the frequency of the perturbation within the interval between 0.01 Hz and 
100 Hz.  

In Fig. 6.17, the thermal neutron noise amplitude and phase are shown for the central 
computational node of the perturbed fuel cell. For both solvers, the behavior of the neutron 
noise amplitude with respect to frequency is consistent with the zero-power reactor transfer 
function (see Section 2.4). The amplitude decreases as the frequency of the perturbation 
increases, except in a plateau region at intermediate frequencies where the amplitude is almost 
constant. The relative differences in the amplitude calculated at the location of the noise 
source increase significantly with higher frequencies, i.e., from ~8% at 0.01 Hz to ~24% at 
100Hz. For frequencies in the plateau region, the relative differences do not vary 
significantly. In other system locations, similar trends are observed, but they are much 
weaker, indicating a relatively good agreement between NOISE-SN and CORE SIM+ (see 
details in Paper V).  

The variation of the thermal noise phase with respect to frequency follows a bell shape, which 
is also consistent with the phase of the zero-power transfer function. In the plateau region, the 
relative differences are small (in absolute value, less than 1%). For higher or lower 
frequencies, the discrepancies increase slightly (about -3%). A similar behavior is observed 
for other locations in the system. 

 

Figure 6.17 Thermal neutron noise amplitude (left) and phase (right) calculated with the two 
solvers and relative differences, at the location of the neutron noise source. 
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Chapter 7  
 

Conclusions and recommendations for future work 
 

 

The research presented in this doctoral thesis is summarized and conclusions are provided in 
Section 7.1. Possible recommendations for future work based on the results of the research are 
discussed in Section 7.2. 

 

7.1 Summary and conclusions 
In the work reported in this thesis, a higher-order method was investigated for the numerical 
solution of the frequency-domain neutron noise transport equation. For the purpose, the solver 
NOISE-SN was developed (see Paper I, and Chapters 3 to 5). 

The solver NOISE-SN uses the discrete ordinates (SN) method for the angular discretization 
of the equation, the diamond finite difference scheme for the spatial discretization, and the 
multi-energy group formalism for the energy discretization. The numerical algorithm is based 
on an inner-outer iterative scheme: the inner iterations provide estimates of the neutron 
flux/neutron noise with respect to the spatial and angular variables within each of the energy 
groups, while the outer iterations update the fission source and the overall scattering terms. 
The solver consists of a static and a dynamic module. The static module solves the static 
neutron transport equation and provides the steady-state, critical solution for the reactor 
system of interest. The dynamic module calculates the neutron noise in the frequency domain 
based on the static solution and the prescribed noise source which is given in terms of 
perturbations of macroscopic cross sections. 

For the numerical acceleration of the algorithm (see Paper III, Paper IV, and Chapter 4), the 
Diffusion Synthetic Acceleration (DSA) method and different versions of the Coarse Mesh 
Finite Difference (CMFD) method were coded and tested using neutron noise problems 
defined in the two-dimensional, heterogeneous configurations C4V and C3, whose nuclear 
properties are described with two-energy group macroscopic cross sections. In the 
calculations of the neutron noise induced by an absorber of variable strength at the frequency 
of 1 Hz, the DSA method was shown to be stable and to reduce the number of iterations 
needed for convergence by a factor of 20 in comparison with the unaccelerated results. 
However, ~1200 iterations were required, which make the computational task still very time-
consuming. The CMFD method has better performances and reduced the number of iterations 
to less than 100. Unstable convergence behavior of the CMFD method was observed in the 
case of C3 configuration. A careful selection of the degree of underrelaxation and number of 
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transport inner-outer iterations was found to be important for the stabilization of convergence. 
The use of the linear prolongated CMFD method provided better convergence properties 
among the variants tested in this work. In addition, the CMFD method was demonstrated to be 
very effective for a wide range of frequencies, while the acceleration from the DSA method 
deteriorates as the frequency takes low values. Therefore, in the continuation of the work, 
mainly the CMFD method was used.  

For the mitigation of ray effects that may arise from the angular discretization, the impact of 
the order of discrete ordinates and a fictitious source method were evaluated (see Paper I, and 
Chapter 5). For this purpose, a neutron noise problem was considered with an absorber of 
variable strength introduced in the two-dimensional, heterogeneous configuration C5G7 
(whose macroscopic cross sections are given in 7 energy groups and the kinetic parameters 
are based on 8 families of delayed neutron precursors). The neutron noise calculations were 
found to be more prone to ray effects than the static calculations. For example, the S16 
approximation that gives static results with minor numerical distortions, is not sufficient for 
the frequency-domain neutron noise calculations because of the effect of the neutron noise 
source and/or energy groups with low scattering. The ray effects cause numerical oscillations 
in the real and imaginary parts of the computed neutron noise, which in turn give unphysical 
fluctuations of the noise amplitude and incorrect values of the noise phase. By increasing the 
order of discrete ordinates, the ray effects may be reduced, but such calculations lead to a 
substantial increase in the computer memory requirements and in the computational time. As 
an alternative, a fictitious source method was implemented. As demonstrated with the 
calculations for the C5G7 neutron noise problem, the fictitious source method can provide a 
significant mitigation of the ray effects even when a relatively low order of discrete ordinates 
is applied. This approach has then the advantage of a lower computational cost. On the other 
hand, the addition of the fictitious source in the equations to be solved makes the convergence 
rate slower. To overcome this issue, tests were performed with different strengths of the 
fictitious source and with a number of initial ordinary transport iterations (CMFD-accelerated), 
and the results showed that convergence is improved. 

To verify the correct implementation of the numerical models in NOISE-SN, numerical 
exercises and experiments were simulated (see Paper II, Section 6.1, and Section 6.2). The 
neutron noise calculated with NOISE-SN in the numerical exercises was compared to the 
results obtained from other higher-order transport solvers based on both deterministic and 
stochastic approaches, showing a good agreement. In addition, NOISE-SN was used to 
simulate COLIBRI neutron noise experiments where a cluster of fuel pins was oscillated in 
the research reactor CROCUS (EPFL, Switzerland). The calculations performed with the 3-D 
scheme of NOISE-SN and the estimations from the measurements capture similar 
characteristics of the neutron noise. 

The solver NOISE-SN was also compared with the diffusion-based neutron noise solver 
CORE SIM+, to assess possible limitations of the diffusion approximation (see Paper I, Paper 
II, Paper V, and Section 6.3). Good agreement between the two solvers was found even 
though discrepancies may arise from the heterogeneities of the system and from the spatial 
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and frequency effects of the perturbation (e.g., the differences may be more notable for 
perturbations at higher frequencies). 

7.2 Recommendations for future work 
Future work may be recommended as follows: 

• The current NOISE-SN scheme relies on transport operators constructed solely with 
the static fluxes and the effective multiplication factor associated with the unperturbed 
configuration. However, perturbations in a reactor usually introduce reactivity 
variations, which are counterbalanced by, e.g., the control rods. Yet, the level of the 
neutron flux may change. Then the modelling of this effect requires to adjust the 
transport operator so that the regulating mechanisms can be reproduced and the 
resulting variations in the reference neutron flux can be taken in account [57]. 

• For the CMFD acceleration method, a convergence analysis can be performed to better 
understand the stable converging regime of the method and to tailor specific 
improvements for its stabilization in frequency-domain neutron noise calculations. 

• The solution of the complex valued CMFD equations for problems with a large 
number of computational cells may be challenging. The application of efficient 
iterative methods (e.g., a GMRES method with preconditioning) for solving large 
linear systems associated with the CMFD equations would play a significant role in 
the overall performance of the neutron noise algorithm. 

• The fictitious source method used in this thesis is limited to two-dimensional 
calculations and may lead to unacceptable slow convergence rates if complete 
elimination of ray effects is desired. Thus, the extension of the method to the three-
dimensional case and alternative ray-effect mitigation methods that are less 
computationally expensive need to be studied. 

• In this doctoral research, most numerical verification tests were performed using the 
scenario of an absorber of variable strength, since this neutron noise source is basic 
and can be used to build more realistic neutron noise sources. Then additional 
problems with more complex neutron noise sources need to be developed to further 
explore the numerical methods of NOISE-SN and to better understand neutron noise 
characteristics and their modelling. 

• The calculations performed in this work rely on transport-corrected, isotropic 
scattering cross sections. An important aspect to be investigated is the effects of 
anisotropic scattering on neutron noise calculations. Therefore, suitable problems need 
to be defined and the modelling of anisotropic scattering in neutron noise calculations 
need to be evaluated. 
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