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A B S T R A C T   

The total number of road crashes in Europe is decreasing, but the number of crashes involving cyclists is not 
decreasing at the same rate. When cars and bicycles share the same lane, cars typically need to overtake them, 
creating dangerous conflicts—especially on rural roads, where cars travel much faster than cyclists. In order to 
protect cyclists, advanced driver assistance systems (ADAS) are being developed and introduced to the market. 
One of them is a forward collision warning (FCW) system that helps prevent rear-end crashes by identifying and 
alerting drivers of threats ahead. 

The objective of this study is to assess the relative safety benefit of a behaviour-based (BB) FCW system that 
protects cyclists in a car–to–cyclist overtaking scenario. Virtual safety assessments were performed on crashes 
derived from naturalistic driving data. A series of driver response models was used to simulate different driver 
reactions to the warning. Crash frequency in conjunction with an injury risk model was used to estimate the risk 
of cyclist injury and fatality. 

The virtual safety assessment estimated that, compared to no FCW, the BB FCW could reduce cyclists’ fatalities 
by 53–96% and serious injuries by 43–94%, depending on the driver response model. The shorter the driver’s 
reaction time and the larger the driver’s deceleration, the greater the benefits of the FCW. The BB FCW also 
proved to be more effective than a reference FCW based on the Euro NCAP standard test protocol. The findings of 
this study demonstrate the BB FCW’s great potential to avoid crashes and reduce injuries in car–to–cyclist 
overtaking scenarios, even when the driver response model did not exceed a comfortable rate of deceleration. 
The results suggest that a driver behaviour model integrated into ADAS collision threat algorithms can provide 
substantial safety benefits.   

1. Introduction 

According to the Global Status Report 2018 from the World Health 
Organization, vulnerable road users (VRU), such as pedestrians and 
cyclists, constitute 26% of road traffic deaths (WHO, 2018). In Sweden 
in 2017, 84% of the severe–to–fatal bicycle crashes reported by the 
police were collisions with motor vehicles, of which 70% were 
car–to–cyclist collisions (Trafikverket, 2020). Most of these crashes 
occur at intersections or in situations where the car and the bicycle share 
the road and are going in the same direction (Isaksson-Hellman & 
Werneke, 2017; Wisch et al., 2017). Similar findings have been reported 
in several studies using different crash databases across different coun
tries. The analyses of data from several countries (France, Germany, 

Italy, Netherlands, Sweden, and UK) all show that the most prevalent 
scenario is that in which the cyclist crosses the road in an approximately 
perpendicular direction towards the passenger car (Op den Camp, 
Ranjbar, Uittenbogaard, Rosen, & Buijssen, 2014). Longitudinal sce
narios in which the car and the cyclist travel in the same direction and 
the cyclist is impacted from behind by the car also comprise a substantial 
portion of car-to-cyclist crashes. More specifically, these longitudinal 
scenarios account for 10–49% of all fatal crashes between cars and bi
cyclists; for crashes with serious injuries, they account for 7–29%. (The 
exact percentages depend on the country). For France, Germany, and 
Sweden, in the longitudinal scenarios, 40–50% of the crashes with 
serious injuries and 75–85% of the fatal crashes occurred in rural areas 
and on straight roads (Uittenbogaard et al., 2016a; Fredriksson et al., 
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2014; Uittenbogaard et al., 2016b). The longitudinal scenarios made up 
the largest share (ranging from 25 to 64%) of cyclist fatalities in car-to- 
cyclist crashes in Germany, Hungary, and Sweden; the high fatality rates 
were linked to the higher car impact speeds observed on rural roads 
(Wisch et al., 2017). In Japan, the longitudinal scenarios represent 
approximately 8% of all car-to-cyclist crashes and 48% of fatal car-to- 
cyclist crashes (ITARDA, 2018). In the US, longitudinal scenarios rep
resented approximately 9% of all car-to-cyclist crashes and 11% of those 
crashes which resulted in injury, but 45% of fatal car-to-cyclist crashes, 
according to MacAlister and Zuby (2015). The MacAlister and Zuby 
(2015) study further showed that the speed limit was greater than 64 
km/h in 74% of the longitudinal-scenario fatal crashes. Furthermore, 
Uittenbogaard et al. (2016a) reported that both fatal crashes and crashes 
with serious injuries in the longitudinal car-to-cyclist scenarios typically 
occur on roads with a higher speed limit than other crash scenarios (i.e., 
40–85% of the longitudinal scenarios occurred on roads with a speed 
limit of 70–90 km/h). They further found that the initial vehicle speed 
was approximately 40–45 km/h and 70–80 km/h for the 50th and 90th 
percentiles, respectively (Uittenbogaard et al., 2016a). Similarly, a study 
by Kuehn et al. (2015) reported 51 km/h. The initial cyclist speed, for 
both fatalities and serious injuries, was about 15 km/h and 20–25 km/h 
for the 50th and 90th percentiles, respectively (Uittenbogaard et al., 
2016a). The fatal crashes occurred at higher initial vehicle speeds than 
the crashes with seriously injured cyclists, while the cyclist speed was 
not shown to influence the severity level (Uittenbogaard et al., 2016a). A 
few studies have reported the actual speed of the car at the time of 
collision in this scenario, although the results were not separated by 
road type. For example, Lindman et al. (2015) reported that the car’s 
average collision speed was 44 km/h, and Kovaceva et al. (2018a) re
ported that it was 43 km/h (with a range of 10–80 km/h). The cyclist’s 
average speed at collision was 15 km/h, similar to the cyclist’s initial 
speed (Kovaceva et al., 2018a). 

In summary, although car–to–cyclist collisions are more frequent in 
crossing situations, the risk of a severe–to–fatal injury is significantly 
higher for collisions in the same–direction situation (Isaksson-Hellman 
& Werneke, 2017; Wisch et al., 2017). When cars and cyclists share the 
same lane, cars typically need to overtake cyclists, creating dangerous 
conflicts—especially on rural roads, where cars travel much faster than 
cyclists. Collisions with large speed differences often result in severe 
injuries or even fatalities. Preventing same-direction collisions with 
vehicles or mitigating their violence would greatly reduce the number of 
cyclist fatalities and severe injuries. 

Advanced driver assistance systems (ADAS) have the potential to 
reduce the number of these collisions and mitigate their outcomes. As an 
example, forward collision warning (FCW) systems are implemented in 
modern vehicles to warn the driver (with a visual, auditory, or tactile 
cue) when a collision with a leading vehicle is imminent. FCW systems 
are usually designed to warn the driver as close in time to the collision as 
possible, so that the warning does not activate if the driver can still avoid 
the collision with a corrective manoeuvre. Improved FCWs that can 
detect and signal a pending collision with a cyclist are being developed 
and are expected to penetrate the market in the near future; it is 
important to quantify and optimise the expected safety benefit before 
then. The European New Car Assessment Program (Euro NCAP) has 
recently started to assess cyclist FCW systems (Euro NCAP, 2019). 

So far, safety benefit of ADAS has been assessed, in general, retro
spectively and prospectively. A retrospective assessment is based on 
observed real-world data after the systems are available in vehicles 
(Cicchino, 2017; Doyle, Edwards, & Avery, 2015; Isaksson-Hellman & 
Lindman, 2016; Kuehn, Hummel, & Bende, 2009). For evaluating new 
systems that are not yet on the market, a prospective assessment may be 
performed virtually (see, for example, Page et al. (2015)). In a virtual 
assessment, often taking the form of counterfactual simulations, a re- 
analysis of real-world data (crashes or near-crashes) is typically per
formed (Alvarez et al., 2017; Bärgman, Lisovskaja, Victor, Flannagan, & 
Dozza, 2015; Sander, 2018). These simulations assess the extent to 

which a new safety system (for instance, an FCW) would be able to 
reduce the number and/or severity of crashes. The real-world data 
typically used as input provide baseline events, without the ADAS under 
assessment (Alvarez et al., 2017). The baseline events can be derived 
from real-world crash events (Kusano and Gabler, 2012; Lindman et al., 
2010; Sander and Lubbe, 2016) or modified real-world events (Bärgman 
et al., 2017a; McLaughlin et al., 2008; Seacrist et al., 2020). The crash 
events are typically reconstructed from in-depth crash databases 
(Chajmowicz, Saadé, & Cuny, 2019; Char, Serre, Compigne, & Guillen, 
2020; Lindman et al., 2010). In contrast, the modified real-world events 
may also use safety–critical events (e.g., crashes and near-crashes) from 
naturalistic driving (ND) data (Bärgman et al., 2017a; McLaughlin et al., 
2008; Seacrist et al., 2020; Victor et al., 2015; Zhao, Ito, & Mizuno, 
2019). The advantage of ND data is that everyday driving behaviour 
with vehicle kinematics and the interactive behaviour of road users, can 
be observed. This information is usually not available in in-depth 
reconstructed crash data, which are typically reconstructed for the 
road users involved in the crash or for stationary objects. The dynamic 
surroundings, such as other moving road users interacting with the road 
users involved in the crash, are often missing (Erbsmehl, 2009). 
Furthermore, the usual procedures for reconstructing crashes (e.g., on- 
site investigation, or retrospective investigation based on court cases) 
are difficult to apply in collisions when one of the involved road users is 
a VRU. There are several reasons for this (Bakker et al., 2017; Barrow 
et al., 2018; Dekra, 2020; Simms & Wood, 2009). First, it is often 
impossible to determine the exact location of the collision, as the 
involved road users may have cleared the area by the time the police (or 
the crash investigation team) arrive. Second, the final relative positions 
of the road users involved in the collision are difficult to assess, since 
there are rarely tire marks or other indications showing precisely where 
the cyclist travelled (the cyclist may have ridden on the road, mixed 
road/bicycle path, or bicycle path). If the final position cannot be 
identified exactly, then the final position of the bicycle is based on 
witness statements or interviews with the road user (if the crash was not 
fatal). Third, a calculation of the collision speed, which is based on the 
damage to the vehicles, is often impossible for collisions involving bi
cycles, due to the bicycle’s relatively low speed; impacted structures are 
rarely deformed. As a result, it is difficult to know how accurate in-depth 
crash databases from reconstructions are (Bakker et al., 2017; Barrow 
et al., 2018; Dekra, 2020). 

When detailed information about the pre-crash road user kinematics 
is limited, as is the case in car-to-cyclist collisions, complementary in
formation, such as car and cyclist trajectories and cyclist speeds, can be 
retrieved from ND studies (Fitch & Hanowski, 2012). Several large-scale 
ND studies have been conducted to date, such as SHRP2 (Hankey, Perez, 
& McClafferty, 2016; SHRP2 TRB, 2015), which is the largest in the 
world, UDRIVE, which is the largest in Europe (van Nes, Bärgman, 
Christoph, & van Schagen, 2019), and CNDS in Canada (Harbluk et al., 
2018). However, very few car-to-cyclist crashes are available for anal
ysis. For example, in SHRP2, 65 events (three crashes and 62 near- 
crashes) were categorised as vehicle-cyclist conflicts, of which 10% 
were car-to-cyclist longitudinal rear-end interactions (Haus & Gabler, 
2018). In CNDS, out of 83 crashes with the instrumented passenger 
vehicles, 2% were crashes with pedestrian and pedelecs—in which no 
separation has been made for car-to-cyclist crashes (Harbluk et al., 
2018). In the UDRIVE study, no car-to-cyclist crashes were reported 
(Ehsani et al., 2021; van Nes et al., 2019). Other studies have been 
conducted in which the required real-world crash data were not avail
able, or the quality of the crash parameters was not sufficient. In these 
studies, crash data were extrapolated from ND data, such as near-crashes 
and everyday driving, but no crashes. Many researchers, such as 
Woodrooffe et al. (2012, 2013a), McLaughlin et al. (2008), Fitch and 
Hanowski (2012), and Bärgman et al. (2017a), have argued that such 
data are useful for the design, testing, and evaluation of ADAS. 

In counterfactual simulations, the assessment of the safety benefit of 
FCW systems has mainly focussed on car–to–car crashes (Bärgman et al., 
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2017a; Kusano & Gabler, 2012). However, some attempts have been 
made to assess the safety benefit of FCW for car–to–cyclist crashes. 
Recently, theoretical FCW systems with different sensor parameters 
were assessed for car–to–cyclist crashes (Char et al., 2020). However, 
that study examined only the reduction in number of crashes, not the 
reduction in cyclists’ injuries. Other recent research highlights that not 
only improved sensor parameters, but also the inclusion of driver 
behaviour models in the FCW systems, may be crucial to improve the 
intervention timing, which in turn may increase FCW effectiveness 
(Dozza, Schindler, Bianchi Piccinini, & Karlsson, 2016; Lubbe & 
Davidsson, 2015). A behaviour-based (BB) FCW system which uses a 
novel driver behaviour model (Rasch & Dozza, 2020) in the collision 
threat algorithm (Thalya, Lubbe, Knauss, & Dozza, 2020) has been 
designed for car-overtaking-cyclist scenarios. This system takes into 
account the interaction between a cyclist and an oncoming vehicle, 
when present (Thalya et al., 2020). The safety benefit of this BB FCW 
system has, however, not yet been assessed. 

The safety benefit of FCW, in terms of avoided crashes, depends on 
the driver’s response to the warning. Thus it is unsurprising that the 
choice of driver response model in counterfactual simulations has a large 
effect (Bärgman et al., 2017a). A driver response model can include the 
driver’s reaction time or a model thereof (Markkula, Engström, Lodin, 
Bärgman, & Victor, 2016) and the driver’s evasive manoeuvre (e.g., 
braking) or a model thereof. 

Driver reaction time is defined as the time from the event (e.g., lead 
vehicle braking or onset of an FCW) to when the driver applies the 
brakes (M. Green, 2000; SAE International, 2015; Sivak, Olson, & 
Farmer, 1982). Numerous studies have measured the influence of FCW 
on the driver reaction time in car-to-car rear-end scenarios (for reviews, 
see Campbell et al., 2007; Green et al., 2008). A common approach in 
these studies, usually performed in a simulator, is to compare the 
average driver reaction times with and without FCW when the driver is 
exposed to a critical lead-vehicle braking event (Abe & Richardson, 
2005, 2006; Bueno, Fabrigoule, Ndiaye, & Fort, 2014; J. D. Lee, 
McGehee, Brown, & Reyes, 2002; Scott & Gray, 2008). Previous research 
has shown the FCW’s ability to speed up the driver response process 
(Bueno et al., 2014; J. D. Lee et al., 2002; Ljung Aust, Engström, & 
Viström, 2013; Scott & Gray, 2008). The mean reaction times for car-to- 
car rear-end scenarios in several studies, which investigated different 
conditions, varied from 0.623 s to 2.11 s (Abe & Richardson, 2005; J. D. 
Lee et al., 2002; Lylykangas et al., 2016; Yue et al., 2021). After the 
driver has started braking, the braking manoeuvre may be represented 
by a braking profile which includes the maximum deceleration (Brach, 
2005; Lechner & Ferrandez, 1990) and the jerk required to reach the 
maximum deceleration (Brännström, Coelingh, & Sjöberg, 2014). Both 
controlled and naturalistic studies have reported that drivers will brake 
progressively harder until they reach a certain deceleration (Fambro 
et al., 2000; J. D. Lee et al., 2002), which is often close to the vehicle 
limits given the specific road conditions (Fambro, Koppa, Picha, & 
Fitzpatrick, 2000; J. D. Lee, McGehee, Brown, & Marshall, 2006; 
Mcgehee, 1999). Furthermore, Markkula et al. (2016) show that the 
braking profile (typically a piecewise linear function of the deceleration) 
appears to be a good fit for data from real-world crashes and near- 
crashes. These three parameters, driver brake reaction time, brake 
deceleration, and jerk, are particularly crucial in the assessment of 
FCW’s collision reduction (Brown, Lee, & McGehee, 2001; Haus, Sher
ony, & Gabler, 2019; Kusano & Gabler, 2012; McLaughlin et al., 2008; 

Woodrooffe et al., 2013b). However, ensuring that these parameters 
accurately reflect driver behaviour in car-to-cyclist interactions is 
challenging because real-world data are sparse. Previous studies 
addressing the influence of drivers’ responses to the FCW on crash 
avoidance have focussed mostly on rear–end car–to–car crashes 
(Bärgman et al., 2017a; Koustanaï, Cavallo, Delhomme, & Mas, 2012; 
Wu, Boyle, & Marshall, 2017). Some car-to-cyclist driver response 
models have been derived, albeit mainly for crossing scenarios (Boda, 
Lehtonen, & Dozza, 2019). Although a recent study by Aderum et al. 
(2020) describes the driver response process when overtaking cyclists on 
rural roads in a naturalistic setting, a quantitative model for this sce
nario has not yet been developed. The effect of the driver’s response 
model on the effectiveness of FCW for car–to–cyclist overtaking crashes 
has not previously been estimated. 

The aim of this study is to assess the safety benefit of a recently 
developed BB FCW system (Thalya et al., 2020) that protects cyclists as 
drivers approach to overtake them, using the same baseline data to 
compare the safety benefits of the BB FCW and a reference system. The 
comparison is made using counterfactual simulations based on crashes 
derived from ND data. Each derived crash was simulated under three 
different conditions: the vehicle was equipped with the BB FCW, a 
reference FCW, or no FCW. Different driver response models, expressed 
through different values of the three parameters, have established pre
cedents in previous research (Bärgman et al., 2017a; Brännström et al., 
2014; Haus, Anderson, Sherony, & Gabler, 2021; Kusano & Gabler, 
2011; Woodrooffe et al., 2013a). Each model was implemented for each 
condition, providing a sensitivity analysis of the two FCWs by demon
strating the differences in safety benefits with different driver response 
model parameters. The safety benefits were assessed by estimating the 
reduction in the number of crashes, the crashes’ severity, and cyclists’ 
injury risks. 

2. Method 

An overview of our methodology is shown in Fig. 1. This method
ology used vehicle time-series data from car–to–cyclist overtaking 
events extracted from ND data (Bärgman et al., 2017b). These events 
included normal driving situations in which the driver did not impact 
the cyclist. The events were modified by removing the drivers’ responses 
(e.g., steering or braking) to simulate situations in which the drivers did 
not steer or brake because, for example, they were inattentive and failed 
to see the cyclist. All of the modified events, with no FCW, resulted in 
rear–end collisions with the cyclist. The counterfactual simulations 
applied the FCW systems to these events. The system warning would 
trigger a driver reaction as the vehicle got closer to the cyclist, helping 
the driver avoid the rear–end collision. The safety benefit of the system 
(in terms of the injury risk—number of lives saved and the reduction in 
injuries) was estimated from the output of the simulations: the number 
of avoided or mitigated (i.e., reduced-collision-speed) crashes. 

2.1. Extracting overtaking events from naturalistic driving data 

Overtaking events in which a car driver overtakes a single bicyclist 
on a straight rural road were extracted from the ND data, collected in 
France for the UDRIVE project (Bärgman et al., 2017b). A data acqui
sition system (DAS) was installed in the vehicles, registering seven 
camera views (front left, front centre, front right, cabin view, cockpit 

Fig. 1. Methodology overview for safety benefit estimation of FCW for car–to–cyclist crash avoidance in overtaking manoeuvres.  
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view, driver face, and pedals), CAN bus data (e.g., vehicle speed, ac
celeration, steering wheel angle, and yaw rate), and GPS position 
(enriched through map matching). Furthermore, the DAS also recorded 
continuous signals from a smart camera system, MobilEye (Shashua 
et al., 2004), which included information about the presence of cyclists 
and their position (lateral and longitudinal) relative to the instrumented 
vehicle. The details about the identification of the overtaking manoeu
vres in the ND data are described in Kovaceva et al. (2018b); a summary 
is provided in the Appendix. Each of the events was divided into four 
overtaking phases in accordance with Dozza et al. (2016) and Kovaceva 
et al. (2018b). In this study, we analysed the data from the first two 
phases, approaching and steering away. 

2.2. Removing driver response 

In order to investigate what would happen if the driver did not steer 
or brake (for instance, because of failure to see the cyclist), the events 
were counterfactually modified. That is, the driver’s response to the 
presence of a cyclist ahead and the resulting vehicle kinematics were 
removed from the data. Thus, each counterfactual event maintained the 
drivers’ lateral position and speed at the onset of the original response 
manoeuvre, which occurred during the approaching phase. The point in 
time when the driver responded (braked or steered) is hereafter called 
the response point. For the events in which drivers braked during the 
approaching phase, the brake onset was identified from the brake pedal 
signal (brake pedal pressed). Then, from that time, the speed was kept 
constant (Bärgman et al., 2017a). For the events in which drivers steered 
at the end of the approaching phase, the steering away onset was 
identified by video annotations (Kovaceva et al., 2018b). In these events, 
the driver’s steering response was removed; the drivers were assumed to 
keep the same lane position until they crashed with the cyclist. 

The counterfactual event kept the cyclist’s (and the oncoming ve
hicle’s, when present) actual time-series data up to the driver’s response 
point, after which they were assumed to maintain the same lateral po
sition and speed. After this procedure, all extracted overtaking events 
resulted in rear–end crashes (the car impacted the cyclist). These crash 
events were then used as baseline events, without FCW; the two FCW 
systems under assessment were applied to them through counterfactual 
simulations. The differences in outcome (number of avoided crashes, 
collision speed, injury risk and lives saved) were compared for the three 
sets of events. 

2.3. Running counterfactual simulations 

The input to each counterfactual simulation was a vector of mea
surements (from the start of the approaching phase to the time of the 
crash) including 1) the longitudinal distances between the vehicle and 
the cyclist and the vehicle and any oncoming vehicle, 2) the lateral 
distance between the cyclist and any oncoming vehicle, and 3) the 
speeds, positions, and headings of both the vehicle and the cyclist. This 
input was then processed by the FCW system under assessment. The 
FCW computed an output binary signal that indicated the status of the 
warning to the driver (on or off) over time. The driver reaction to the 
warning, simulated according to different driver response models (fully 
reported below), set an acceleration output which was then integrated to 
calculate the future speed and position of the vehicle. If the vehicle 
stopped before reaching the cyclist (i.e., the distance between the 
vehicle and the cyclist was greater than zero) then the crash was avoi
ded; otherwise, the crash remained, and the collision speed was 
recorded. 

2.4. Collision warning systems 

The two FCW systems examined were: a reference FCW based on the 
EuroNCAP protocol for ADAS for VRU testing (Euro NCAP, 2019) and a 
BB FCW first presented in Thalya et al. (2020). Applying these two FCW 
systems to the same baseline events allowed us to compare the estimated 
safety benefits that each system could offer. 

The algorithms that are responsible for the activation of a commer
cial FCW system usually depend on the manufacturer and are often se
cret. However, a simple metric that has been generally used to judge the 
collision threat is time to collision (TTC) (Jansson, 2005; Kiefer, Flan
nagan, & Jerome, 2006; van der Horst & Hogema, 1993). In this study 
TTC is defined as the ratio of the distance between car and cyclist and 
their relative speed. Recently, the Euro NCAP started testing FCW sys
tems in rear–end scenarios with cyclists and rewarding systems that 
activate before the TTC to the cyclist becomes 1.7 s (Euro NCAP, 2019). 
This simple threshold was used to define the reference FCW in this 
paper: the system calculates the TTC and issues a warning at TTC = 1.7 s. 

The BB FCW, on the other hand, is not triggered by a TTC value; 
instead, it is triggered by a collision threat algorithm, which integrates a 
driver behaviour model recently developed specifically to improve the 
timing of the warning (see the flow chart of the BB FCW in the Appen
dix). The model predicts the probability that the driver will brake and/ 
or steer as the driver approaches the cyclist. As the probability gets 
higher, a mismatch between the behaviour model’s prediction and the 
driver’s actual braking and steering actions (as measured from the 
vehicle network) generates a threat. The threat leads to a decision about 
whether to trigger a warning, according to a threshold-based strategy. 
The threshold is an upper limit—the highest acceptable probability (0.9, 
for example) before a warning is issued. This threshold is set by the 
system designer to optimize the true positive activation rate by trying to 
ensure that the warning occurs outside the comfort zone of most drivers. 
The concept of driver comfort zones explains that drivers minimize their 
risk by choosing to stay far enough away from potential hazards to feel 
safe and comfortable (see Summala (2007) for a full description). Once 
drivers exceed their comfort zone boundary, they experience a feeling of 
discomfort, which is likely to justify a system intervention such as FCW 
(Ljung Aust & Engström, 2011). In the ideal collision threat algorithm, 
the model’s threshold is exceeded (and the warning is triggered) just 
after the driver’s comfort boundary has also been exceeded. Thus, the 
balance of driver acceptability and time to avoid a crash is optimized. 
Detailed descriptions of the driver behaviour model and the BB FCW can 
be found in Rasch et al. (2020) and Thalya et al. (2020), respectively. 

2.5. Modelling driver response input 

The effectiveness of an FCW largely depends on the response of the 

Fig. 2. Driver braking profile, where Tw is the warning activation time, Tr is the 
driver reaction time, ac is the constant deceleration, and jc is the constant jerk. 
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driver to the warning. In this paper, we use two different types of driver 
models. The first type of model is the driver behaviour model by Rasch 
et al. (2020) that predicts the probability that the driver will brake or 
steer as the driver approaches the cyclist. This model, based on driver 
comfort zone boundaries, was included in the BB FCW algorithm by 
Thalya et al. (2020) to define the time the warning is given to the driver 
(described in the section Collision warning systems). The second is a 
driver response model after the FCW is activated. This model includes a) 
the driver’s brake onset timing after the FCW is activated and b) the 
driver’s braking manoeuvre. The brake onset timing is realized as one 
simple driver reaction time (defined as the time from the warning to 
when the driver applies the brakes). The driver braking manoeuvre is 
represented as a piecewise linear function parameterized through 
maximum deceleration and jerk (see Fig. 2). 

The driver reaction time was extracted from a distribution of driver 
brake reaction times from Sivak et al. (1982) which has been applied in 
several studies (Haus et al., 2019; Kusano & Gabler, 2012; McLaughlin, 
Hankey, Dingus, & Klauer, 2009). The distribution was assumed to be 
log–normal, X = eμ+σZ, with a mean reaction time (μ) of 1.21 s and a 
standard deviation (σ) of 0.63 s: see Fig. 3. From this distribution, we 
extracted reaction times that correspond to drivers whose reactions are 
immediate (without RT), fast (0.57 s), medium (1.07 s) and slow (1.48 
s), an adaptation from a previous study (Kusano & Gabler, 2012). As 
drivers approach the cyclist from behind, they have to decide whether to 
brake or steer away to avoid a rear-end collision. This decision can be 
argued to be comparable to the decision to brake in a car-following 
situation (D. N. Lee, 1976; Yilmaz & Warren, 1995), because the 

driver is on a rear-end collision course with the cyclist. Thus, the choice 
of the driver reaction time values, which were adopted from Sivak et al. 
(1982), was motived by previous research that evaluated the effective
ness of FCW for the car-to-car rear-end scenario (Kusano & Gabler, 2012; 
McLaughlin et al., 2009). Specifically, Kusano and Gabler (2012) used 
these values to characterise fast, medium, and slow driver reaction times 
in response to an FCW that warns the driver at a TTC of 1.7 s. 

The driver braking profile was a piecewise linear function (Fig. 2) 
which assumed that the driver would apply the brakes to reach a level of 
deceleration, ac, in response to the warning. This profile has been used in 
many previous studies that estimate the benefits of FCW and AEB 
(Bärgman et al., 2017a; Chajmowicz et al., 2019; Kusano & Gabler, 
2012; Lubbe and Kullgren, 2015; Sander & Lubbe, 2018). Two different 
deceleration values (ac) were used: one is the driver comfort boundary, 
ac = 4 m/s2, from Bärgman et al. (2015), and the other is an average of 
the maximum deceleration from SHRP2 crash data, ac = 6.79 m/s2 

(Bärgman et al., 2017a). Similarly, two values for constant jerk were 
selected: jc = 10 m/s3, based on Lubbe and Kullgren (2015), and jc =

26.14 m/s3, from SHRP2 crash data (Bärgman et al., 2017a). Two driver 
braking profiles were created from these values, corresponding to 
comfortable braking (C: ac = 4 m/s2 and jc = 10 m/s3) and maximum 
braking (M: ac = 6.79 m/s2 and jc = 26.14 m/s3). 

Combining the four reaction times and the two driver braking pro
files resulted in eight driver response models (Table 1). The first part of 
the name for each model reflects the reaction time (without RT, fast, 
medium, or slow), and the second part reflects the driver braking profile 
(C or M). As noted, different driver models can greatly affect the out
comes of counterfactual simulations (Bärgman et al., 2017a). Our use of 
different models, representing responses from immediate and aggressive 
to slow and comfortable, provides an opportunity to illustrate a range of 
outcomes. These results can serve as a sensitivity analysis of the FCW, 
indicating how sensitive it is to different driver responses and helping 
distinguish between the effect of the FCW system and the effect of the 
driver response in avoiding collisions. 

2.6. Estimating safety benefit 

The safety benefit, in terms of number of people suffering injuries of 
a given severity, was estimated using a dose–response model (Bálint 
et al., 2013; Korner, 1989; Kullgren, 2008). This model estimates the 
number of cyclists sustaining an injury of a given severity (fatal, serious, 
or slight), denoted by Es, as follows: 

Es =

∫ L

0
f (v)rs(v)dv (1) 

where v is the speed of the vehicle at the time of collision measured in 
kilometres per hour; f(v) is the crash frequency at v (the number of crashes 
occurring at collision speed v); rs(v) is the risk of sustaining an injury of the 
given severity level s (fatal, serious, or slight); and L is the largest value v 
such that f(v) > 0 (i.e., the highest collision speed recorded in the 
events). 

When the FCW systems are implemented in the simulations, some 
crashes are avoided; for those that are not, a decrease in collision speeds 
may be observed. For the system assessment, the original crash fre
quency function f0(v) was replaced by a new crash frequency function 
fw(v) with the system implemented. Both functions were calculated from 
the output of the counterfactual simulations. Estimates corresponding to 
Es with and without the systems were computed using the injury risk 
function rs(v), constructed for cyclists’ fatal, serious, and slight injuries 
(from the research of Kovaceva, Bálint, Schindler & Schneider (2020)). 
The function was constructed with an order probit model by applying 
the inverse standard normal distribution of the probability as a linear 
combination of the predictor (here, collision speed) on car–to–cyclist 
crashes from GIDAS data. The order probit model is given as 

y* = xT β+ ∊ 

Fig. 3. Probability density function (pdf, in blue), cumulative probability 
density function (cdf, in red) of driver reaction times from Sivak et al (1982) 
and the selected reaction times (RT) for the counterfactual simulations. The 
selected RTs 0.57 s, 1.07 s, 1.48 s represent 10%, 50%, and 75% of the driver 
reaction times, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Driver response models with the model parameters.  

Driver response model Reaction time (s) Braking profile   
Deceleration (m/s2) Jerk (m/s3) 

Without RT-C 0 4 10 
Fast-C 0.57 4 10 
Medium-C 1.07 4 10 
Slow-C 1.48 4 10 
Without RT-M 0 6.79 26.14 
Fast-M 0.57 6.79 26.14 
Medium-M 1.07 6.79 26.14 
Slow-M 1.48 6.79 26.14  
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y* = s, if μs− 1 < y* ≤ μs (2) 

where y* is the injury severity level, x is a vector of predictors, β is a 
vector of estimated coefficients, ∊ is normally distributed with zero 
mean and unit variance, s is the injury severity level (i.e., fatal, serious, 
or slight), and μs is the estimated threshold for each level of severity. In 
this paper, the injury severity is based on police-coded injury severities 
from GIDAS data. 

The injury risk function coefficients estimating the injury severity for 
the cyclist are provided in Table 2. 

Having specified all functions as above, the reduction in number of 
injuries of severity s was calculated as 

Rws =
Eos − Ews

Eos
× 100 (3) 

where Eos is the original number of cyclists at injury severity level s,
and Ews is the expected number of cyclists at injury severity level s with 
the system implemented. If the crash was avoided, it was assumed that 

the cyclist was uninjured. 

3. Results 

The datasets for this study consisted of 73 crash events distributed 
among 21 drivers. The average age of drivers was 44 years (standard 
deviation (SD) = 12 years). The average collision speed was 69 km/h 
(SD = 13). The average bike speed was 22 km/h (SD = 8). All crash 
events occurred in daylight and on dry roads. In these crashes (without 
any FCW system), the estimated numbers of cyclist fatalities, serious 
injuries, and slight injuries were 8, 49, and 16, respectively. 

In each simulation with an FCW applied, either the collision was 
avoided, or the collision speed was reduced. The number and percentage 
of avoided crashes for each FCW system and each driver model config
uration are shown in Table 3. The BB FCW outperformed the reference 
FCW at reducing the number of crashes. However, the extent of the 
safety benefit also depended on the driver model parameters. The 
configuration Without RT–M provided, as expected, the largest safety 
benefits: that is, the number of avoided crashes was largest when driver 
response was immediate and braking was maximal for both FCW 

Table 2 
Coefficients for the injury risk function based on previous work 
(Kovaceva et al., 2020).   

Coefficient estimate 

Vehicle collision speed  0.0319 
Intercept slight to serious  1.3679 
Intercept serious to fatal  3.5633  

Table 3 
Number and percentage (in parentheses) of avoided crashes (out of the 73 
original crashes) for each system and configuration.  

Driver response model Reference FCW BB FCW 

Without RT-C 23 (31.5%) 59 (80.8%) 
Fast-C 5 (6.8%) 46 (63.0%) 
Medium-C 0 (0%) 36 (49.3%) 
Slow-C 0 (0%) 29 (39.7%) 
Without RT-M 67 (91.8%) 67 (91.8%) 
Fast-M 36 (49.3%) 62 (84.9%) 
Medium-M 4 (5.5%) 52 (71.2%) 
Slow-M 0 (0%) 42 (57.5%)  

Fig. 4. Percentage of avoided crashes for the two FCW systems and eight driver model configurations.  

Table 4 
Estimates of the percentage of injury reduction, Rws, for the two systems and the 
different driver model configurations compared to baseline events. A negative 
percentage means an increase in the number of injuries.   

Driver response model Slight (%) Serious (%) Fatal (%) 

Reference FCW Without RT-C  − 45.3  47.8  82.4 
Fast-C  − 48.5  16.9  54.7 
Medium-C  − 24.8  3.9  24.8 
Slow-C  − 3.8  0.6  3.8 
Without RT-M  84.1  93.5  96.2 
Fast-M  − 11.4  62.7  86.5 
Medium-M  − 37.1  12.6  46.0 
Slow-M  − 5.8  0.9  6.2 

BB FCW Without RT-C  70.2  82.7  90.0 
Fast-C  35.9  68.8  80.6 
Medium-C  24.9  54.2  67.5 
Slow-C  21.8  43.3  52.9 
Without RT-M  84.1  93.5  96.2 
Fast-M  77.8  86.2  91.1 
Medium-M  51.5  75.8  81.7 
Slow-M  38.7  61.8  68.1  
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systems, which performed equally, avoiding 67 crashes (see also Fig. 4). 
Unsurprisingly, as the driver’s reaction time increased, the safety benefit 
decreased, and as the driver’s maximum deceleration increased, the 
safety benefit of the system increased, too. These results indicate that 
more alert drivers (with faster reaction times) and drivers who brake 
harder (with larger decelerations) are more likely to avoid rear–end 
collisions. 

Table 4 shows the estimated reduction in the percentage of injured 
cyclists by injury level for both FCW systems. It can be observed that all 
injury types decreased when the BB FCW was applied. In contrast, for 
the reference FCW, the proportion of slight injuries (out of all injuries) 
increased, shown by the negative numbers in Table 4. The numbers 
indicate a shift towards lower severities; some of the serious and fatal 
injuries have become slight injuries, since the collision speed was 
decreased (never increased) with the application of the reference FCW. 
Although serious and fatal injuries decreased by 1–94% and 4–96%, 
respectively, these reductions are lower than those of the BB FCW. 

Overall, with the BB FCW, the reduction in fatalities was 53–96%, in 
serious injuries 43–94%, and in slight injuries 22–84%. (The percent
ages reflect the range of results across the different driver response 
models.) 

Fig. 5 compares the collision speed distributions for the baseline 
(without FCW) and the two FCWs for the configuration Medium–C. The 
BB FCW reduced the number of collisions by 49% and the collision speed 
for the remaining 37 crashes by, on average, 56.7%, although approxi
mately 27% of the remaining crashes (14% of all crashes) had collision 
speeds similar to those of the reference FCW. For the reference FCW, all 
73 original crashes still occurred, but their collision speeds were reduced 
(on average by 8.2%). The average collision speeds were 69.4 km/h, 
63.7 km/h, and 30.1 km/h, for events without FCW, with reference 
FCW, and with BB FCW, respectively. 

The cumulative distributions of the probabilities for the three injury 
levels for the different systems are shown in Fig. 6 for the configuration 
Medium-C. The application of the BB FCW decreased the probability of 
slight, serious, and fatal injuries (but with a shift towards lower sever
ities; see Table 4). The application of the reference FCW decreased the 
probability of serious and fatal injuries for the remaining crashes. As 
noted, the decreased probability of fatal and serious injuries resulted in 
an increased probability of slight injuries (visible in Fig. 6, where the 
curve ‘Reference FCW: slight injuries’ is to the right of the curve ‘w/o 
FCW: slight injuries’). 

4. Discussion 

This paper assesses the potential safety benefit of a BB FCW system, 
with an improved collision threat algorithm integrating driver behav
iour model, relative to a reference FCW, using counterfactual simula
tions of crashes derived from ND data, with the original driver responses 
removed. 

Results show that the BB FCW was able to reduce the severity of most 
of the collisions in the baseline (original) events. Among the remaining 
crashes, the BB FCW still reduced the collision speed and concomitant 
cyclist fatalities and serious and slight injuries with respect to the total 
number in the baseline events (8, 49, and 16, respectively). Specifically, 
the reductions in the number of serious injuries (43% to 94%) and slight 
injuries (22% to 84%) were lower than that of fatalities (53% to 96%); 
the range of percentages reflects the smallest and largest reductions 
obtained as a result of different driver response models (‘Slow-C’ and 

Fig. 5. Cumulative distribution of the collision speeds for different systems 
with driver model parameters from configuration Medium-C. 

Fig. 6. Cumulative distributions of the probability of injury (fatal, serious, and slight) for different systems with driver model parameters for configuration Me
dium-C. 
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‘Without RT-M’, respectively). 
The reduction of injury risk is different for different driver response 

models used in the simulation. In this study, the driver response model 
was defined by a reaction time to the warning and a braking profile 
characterised by a limit on maximum deceleration. Naturally, as the 
reaction time increased, the safety benefit of the systems decrea
sed—and as the maximum driver deceleration increased, the safety 
benefit increased. These findings were as expected and follow a trend 
established in previous studies (Bärgman et al., 2017a; Haus & Gabler, 
2019; Kusano & Gabler, 2012). Char et al. (2020) have shown that FCW 
could reduce or mitigate 84% of car–to–cyclist longitudinal crashes in 
counterfactual simulations using in-depth crash data from France and 
Germany. The same authors highlighted that, in this scenario, the 
drivers’ reaction time to the FCW warning was one of the most impor
tant factors influencing crash avoidance. Notably, automated emergency 
braking (AEB) also relies on deceleration values in the braking profile. 
Chajmowicz et al. (2019) investigated the effectiveness of different AEB 
sensors and system parameters for avoiding/mitigating frontal 
car–to–cyclist crashes (using in-depth crash data from France). They 
showed that the AEB system’s maximum deceleration was the most 
influential parameter at reducing cyclist injuries and fatalities. 

Drivers are different in terms of reaction time and braking profile 
(Ljung Aust et al., 2013; Wu et al., 2017). A fast reaction time may be 
seen as the braking preparation and initiation time for attentive drivers 
and drivers that have experienced FCW (Guillen and Gohl, 2019). A slow 
reaction time may be related to inattentive (e.g., distracted, drowsy, or 
impaired) driving (Bueno et al., 2014; Harbluk, Noy, Trbovich, & 
Eizenman, 2007; J. D. Lee et al., 2006). To address driver variability, we 
used different driver response models that provided a range of typical 
driver responses within which most responses would fall. This range 
shows how important the choice of driver response model is. The values 
we chose could have been replaced by other values, either from the 
distribution in Fig. 3 (e.g., fast, medium, or slow from the distribution in 
Sivak et al. (1982)) or from studies that provide a mean reaction time to 
FCW. For example, we could have used the mean reaction times of 2.1 s 
and 1.35 s for late and early FCW responses, respectively; these values 
were reported by Lee et al. (2002), who measured actual reaction times 
to an FCW. As an additional sensitivity analysis, we conducted simula
tions with these reaction time values as well, and the conclusions of our 
study still held. (See Supplementary material for the details.) Since the 
reported mean reaction times to FCW differ in different studies, one 
should consider them with care when comparing and using them 
(Engström, 2011; M. Green, 2000; Markkula et al., 2016). That is, the 
observed brake reaction time in one scenario under certain experimental 
conditions may not generalize well to other scenarios (Engström, 2011; 
Ljung Aust et al., 2013; Markkula et al., 2016). We chose the response 
time values from Kusano & Gabler (2012), as that study assesses the 
safety benefit of an FCW similar to the reference FCW used in this paper; 
further, the work has been cited extensively. 

The driver’s reaction may also depend on the warning’s modality 
(visual, auditory, or tactile), according to Lylykangas, Surakka, Salmi
nen, Farooq, & Raisamo (2016). They found that tactile and visual- 
tactile modalities help drivers react faster to the FCW than a visual- 
only modality. Thus, determining the appropriate warning modality to 
get the optimal driver reaction to a critical situation should be consid
ered in the design of future ADAS. Depending on the driver’s inattention 
level, FCW may incur decelerations that are too large or too small, thus 
making the driver uncomfortable or the vehicle unsafe (Fancher, Bare
ket, & Ervin, 2001; Harbluk et al., 2007; Moon & Yi, 2008). The two 
levels of deceleration and jerk used in this study represent comfortable 
braking during normal driving, on one hand, and the average maxima 
during crashes, on the other (Bärgman et al., 2015, 2017a; Lubbe and 
Kullgren, 2015). 

We observed that when the driver’s reaction time was the slowest, 
FCW alone was not always able to avoid rear–end collisions with cy
clists, even with the faster, less comfortable maximum deceleration. (As 

noted, the two maximum decelerations were 4 m/s2 and 6.79 m/s2 (from 
Bärgman et al. (2015) and Bärgman et al. (2017a), respectively). 
Furthermore, the sensitivity analysis of possible driver responses (with 
all three parameters: driver reaction time after FCW and the jerk and 
maximum deceleration in the brake profile), representing a spectrum of 
drivers, shows how different driver response behaviours affect the 
outcome of the FCW within and between the two FCWs. 

There are additional ways to improve braking: FCW can also pre- 
charge the brakes, systems such as brake assist (Dahl, De Campos, Ols
son, & Fredriksson, 2019) can help the driver brake harder (and with 
more jerk), and AEB can further increase safety. It is likely that a com
bination of these solutions is the best for collision avoidance and injury 
mitigation (Boda et al., 2018; Cicchino, 2017). However, since AEB in
creases system deceleration and jerk, having AEB may increase the 
likelihood that the vehicle is struck from behind, compared to a vehicle 
that only has FCW (Cicchino, 2017) – potentially resulting in occupant 
injury (Graci et al., 2019). Further, AEB systems are designed not to 
intervene until very late, when the crash is imminent. If the road con
ditions do not allow large decelerations (e.g., due to ice or snow), having 
the driver decelerate earlier, but at a lower rate, may be beneficial—
which is what FCW supports. The results from the implemented BB FCW 
suggest that the current 1.7 s TTC threshold from the NCAP protocol is 
not long enough. If the TTC threshold for the reference FCW were higher 
than 1.7 s (e.g., 2.1 s), more crashes would probably be avoided. (See 
Supplementary material for details on the results from an additional 
sensitivity analysis performed with two more activation thresholds, TTC 
= 1.3 s and TTC = 2.1 s, for FCW system that is triggering on TTC.) 
However, there would also likely be more false positives, which the 
driver would not appreciate. As the threshold for FCW activation in
creases (e.g., the warning comes while the driver still has a plan to avoid 
the situation through everyday driving manoeuvres), the probability 
that the driver does not appreciate the warning increases. In fact, the 
driver may turn off the system, eliminating its safety benefit entirely. 
The main reason to use a driver model that includes driver behaviour, 
including comfort zone boundaries, in the threat assessment FCW al
gorithm is that the driver is much more likely to accept an earlier 
warning if the warning is issued after the comfort zone boundary is 
crossed. By incorporating comfort zone boundaries into its driver model, 
the BB FCW can issue earlier warnings that are nonetheless outside of 
the driver’s comfort zone (i.e., they would have taken action if they had 
been attentive to the situation as it unfolded). Using a driver behaviour 
model in the FCW (realized in this paper as the BB FCW) to enable earlier 
interventions without nuisance warnings is clearly beneficial. 

The estimated safety benefits in this study indicate the substantial 
potential of FCW for both avoiding crashes and reducing injuries in the 
car–to–cyclist overtaking scenario. Even when driver braking was 
limited to comfortable deceleration, half of the collisions were avoided 
by the BB FCW. This finding may be considered in the design of future 
systems, which will likely include automated braking in addition to the 
warning if the drivers do not have the opportunity to avoid the collision 
by braking within their comfort deceleration. 

In this study, a dose–response model was used to estimate the safety 
benefit across three injury severity levels, as in several previous studies 
(Bálint et al., 2013; Kullgren, 2008; Kullgren et al., 2019; Lindman et al., 
2010). The input parameters of the model are the crash frequency and 
injury risk functions, which can easily be updated if new data becomes 
available. It has been shown that safety benefit results may differ when 
using different injury risk functions (Rosen et al., 2010). For example, 
the safety benefit results for AEB and steering systems in car–to–cyclist 
crashes for two injury risk functions were compared. One function was 
constructed using logistic regression and the other was an order probit 
model (as used in this work); they showed similar benefits, except that 
the reduction of fatalities using the former function was somewhat 
higher (Kovaceva et al., 2020). 

The safety benefit results from this study are specific to car- 
overtaking-cyclist crashes (i.e., not all car–to–cyclist crashes). Yet, 
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they are consistent with the findings by Ohlin et al. (2017), Rosen 
(2013), and Yue, Abdel-Aty, Wu, & Wang (2018), which demonstrate 
the great positive impact that ADAS can have on cyclist safety. 
Furthermore, recently proposed AEB and steering systems for longitu
dinal car-to-cyclist scenarios reported a 71–90% crash reduction, ac
cording to counterfactual simulations (Kovaceva et al., 2020). On the 
other hand, a retrospective safety benefit assessment using insurance 
data showed smaller reductions in car–to–car rear–end striking crash 
rates: 27% for FCW, 43% for low-speed AEB, and 50% for FCW and AEB 
(Cicchino, 2017), probably due to different sensors in the vehicle. These 
differences may be explained by Sander (2017), who compared results 
from prospective counterfactual simulations with those of retrospective 
analyses. The author suggested that, for AEB that addresses car–to–car 
rear–end crashes, the prospective assessment may overestimate the 
benefits by 50%, perhaps due to idealised conditions (sensors or envi
ronments) in the simulations. One should therefore consider the results 
from our study with this possibility in mind. The results will need to be 
confirmed by retrospective studies. Once sufficient real-world data 
become available, the effectiveness of the actual system can be 
evaluated. 

4.1. Limitations and future work 

In this study, several assumptions have been made on the driver 
reaction to the warning. First, we assumed that all drivers reacted to the 
warning to avoid the impending collision. In reality, some drivers simply 
do not react to it. Second, the counterfactual simulations did not include 
driver responses other than braking: steering, for instance, would be a 
reasonable manoeuvre to avoid the collision when no oncoming vehicle 
is present (Scanlon, Kusano, & Gabler, 2015; Wu et al., 2017). Third, the 
use of brake reaction times instead of more complex driver response 
models in simulations which estimate the safety benefit of FCW systems, 
although ubiquitous (Chajmowicz et al., 2019; Haus et al., 2019; Kusano 
& Gabler, 2012; McLaughlin et al., 2009; Woodrooffe et al., 2013b), may 
be overly simplistic. Alternatives which use perceptual cues as input 
exist, such as accumulation models and threshold models (e.g., Mark
kula et al. (2016) and Svärd et al. (2020)), but to date these models are 
rarely used in safety benefit studies found in the literature. Fourth, the 
driver braking profile assumes that braking increases at a constant rate 
and remains constant at a specified magnitude. This simplification also 
has established precedents in previous studies (Brown et al., 2001; Haus 
et al., 2019; Kusano & Gabler, 2012; McLaughlin et al., 2009; Wood
rooffe et al., 2013b). In practice, driver deceleration magnitude can 
change during braking: Markkula et al. (2016) showed that driver 
braking is highly dependent on the situation’s urgency. Although the 
accumulation-based models seem to have good validity for car-to-car 
rear-end situations, it is not obvious that the parameterization avail
able in the literature applies to car-to-cyclist overtaking. Accumulation- 
based models are even less used for brake control than for brake onset. 
Since one of our aims was to demonstrate the difference in the magni
tude of the benefit of BB FCW for different driver response models 
(driver reaction time after FCW and the jerk and maximum deceleration 
in the brake profile), we did not use more complex models of the driver 
brake response, such as the accumulation model in Svärd et al. (2021; 
2020), which is based on event urgency rather than simple reaction 
times. To keep our model comparison simple, we elected not to include 
event urgency as a factor. Fifth, friction was not taken into account in 
this study, because most same-direction car–to–cyclist crashes occur in 
good weather on dry ground, and friction has not been shown to be a 
main cause of crashes of this type (Diaz Fernández, Isaksson-Hellman, 
Jeppsson, Kovaceva, & Lindman, 2020). We assumed dry road condi
tions. In future implementations, the variability in braking magnitude 
due to friction and different driver response models (e.g., urgency- 
based) could be included in the simulations to make them more realistic. 

Another limitation is the crash generation process by which the 
events were derived from everyday driving in UDRIVE. While this is an 

inherent limitation, the car-overtaking-cyclist scenario on straight roads 
is a fitting use of ND data, as it is particularly difficult to perform high- 
quality reconstructions of crashes involving vulnerable road users 
(Bakker et al., 2017; Barrow et al., 2018; Dekra, 2020; Simms & Wood, 
2009). Further, for the car-overtaking-cyclist scenario, the difference 
between a crash and a non-crash is typically whether the driver brakes 
or steers away; if the driver fails to perform one of these manoeuvres 
successfully, the cyclist is impacted in the rear. MacAlister and Zuby 
(2015) reported that the vehicle did not brake in 94% of all longitudinal 
car-to-cyclist crashes and in 93% of fatal ones. The failure to brake may 
be due to lack of attention to the roadway ahead (or failure to see the 
cyclist). In fact, one of the most frequent factors in vehicle-to-cyclist 
crashes is driver inattention (Schramm, Rakotonirainy, & Haworth, 
2008). A recent systematic review reported that inattention has been 
frequently listed in study reviews as a cause of these crashes (Prati, 
Puchades, De Angelis, Fraboni, & Pietrantoni, 2018). Inattention and 
distraction have been described as two of the ten most frequent causes of 
vehicle-to-cyclist fatal crashes (ERSO, 2018). Furthermore, the 
longitudinal-scenario car-to-cyclist crashes were often caused by inat
tention (Stoll et al., 2016) and often occurred when the driver failed to 
notice the bicycle (ITARDA, 2018). As long as factors such as the car and 
bicycle travelling speeds are accurate, simulating crash events by simply 
removing the driver’s behaviour (overtaking) in the original event 
should provide pre-crash kinematics relatively similar to real-world 
crashes (and no worse than reconstructions from in-depth crash in
vestigations). Most car-overtaking-cyclist crash scenarios have occurred 
on straight rural roads with high speed limits and cyclist speeds which 
did not vary much (Fredriksson et al., 2014; Isaksson-Hellman & Wer
neke, 2017; Lindman et al., 2015; MacAlister & Zuby, 2015; Op den 
Camp et al., 2014; Uittenbogaard, Op den Camp, & Montfort, 2016; 
Wisch et al., 2017). Tests for assessing FCW incorporate these pre-crash 
characteristics: occurring in rural areas with vehicle speeds of 65–80 
km/h and cyclist speeds of 20 km/h (Uittenbogaard, Op den Camp, & 
van Montfort, 2016). As a result, Euro NCAP started to assess cyclist 
FCW systems for the same scenario with vehicle speeds of 50–80 km/h 
and cyclist speeds of 20 km/h (Euro NCAP, 2019). The generation of 
crashes from naturalistic events is justified, because a) whether an event 
becomes a crash or not depends only on whether the car driver performs 
an overtaking or not (e.g., brakes/steers), and b) the pre-crash param
eters such as speed and context (e.g., a rural road) are sufficiently similar 
to real crashes and to the Euro NCAP protocol for ADAS for VRU testing 
(Euro NCAP, 2019). 

Although UDRIVE was a valuable resource for assessing the safety 
benefit of the BB FCW compared to a reference FCW, the sample size 
available for the scenario studied here was relatively small. In the future, 
larger datasets that include a variety of situations (different approaching 
speeds and road profiles, curvatures, or gradients could be taken into 
account), assuming that the FCW models can account for these inputs. 
Furthermore, the safety benefit analyses focused on true positives and 
neglected false positives. A possible consequence is an overestimation of 
the safety benefit, as a real system would have to balance the two 
(Alvarez et al., 2017). The quantification of false positives is a necessary 
step in optimizing an FCW, in order to maximize real-world effectiveness 
and minimize negative consequences, but the assessment of false- 
positive activations was not possible with the data in this study, since 
only data on true conflicts were available to us. More ND data is needed 
to validate the models and run more accurate safety benefit analyses, 
which would need to include an assessment of false positives as well. 

This study can serve as a helpful diagnostic step and proof of concept 
in understanding the potential benefit of the BB FCW. System designers 
can use our results and further iterate system designs using similar 
methodologies before the new system is prototyped. Future studies 
should then aim to estimate the absolute benefit of the system. However, 
given the difficulties in reconstructing car-to-bicycle crashes (Bakker 
et al., 2017; Dekra, 2020; Simms & Wood, 2009), it is not obvious that 
benefit estimates using other, currently available, data sources will be 
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substantially better than the estimates made here for the specific sce
nario studied here. However, at the very least, complementary studies 
using data from in-depth crash databases should be run to assess the 
safety of the BB FCW; those results should be compared with the current 
study. Further, as with any simulation, all conclusions are only as valid 
as the data and the underlying models (Stellet et al., 2015). After the 
simulation step, to develop a production system, prototypes of the sys
tem should be tested and validated in a controlled environment (Ried
maier, Ponn, Ludwig, Schick, & Diermeyer, 2020). In addition, 
counterfactual simulation results can also be combined with real-world 
test-track results to overcome some of the challenges inherent in 
methods based on one data type only (Kovaceva et al., 2020). To 
quantify the real-world safety benefit of the system for a target popu
lation or region (e.g., Europe), the results would need to be extrapolated 
(Chen, Kusano, & Gabler, 2015; Seaman & White, 2013). However, it is 
not obvious that the baseline events used in this study are representative 
of the whole of Europe, so extrapolating them would be of dubious 
benefit. Therefore, the results should only be viewed as relative com
parisons, rather than as absolute benefits. 

In addition, future studies should use a more specific injury risk 
function derived from car–to–cyclist overtaking scenarios, rather than 
the generic function (which includes all crash scenarios between cars 
and cyclists) used in this study. A more specific function would account 
for scenario-specific deviations from the average relationship described 
by the generic function and may include additional predictors, such as 
cyclist age (Rosén and Sander, 2009) and gender, provided that suffi
cient data are available for each of the predictors. 

In this study, we focused on the safety benefit assessment of FCW, a 
system that supports the driver in the approaching phase, when there is 
a risk of a rear–end collision with the cyclist. The system relies on the 
driver to brake to avoid a collision with the cyclist. However, assuming 
the system can predict the cyclist’s future behaviour from sensor data (e. 
g., the cyclist increases the distance to the overtaking vehicle), then the 
system could extend the time horizon for threat assessment and may 
make it possible to predict the driver’s response to the cyclist behaviour 
and adapt the system activation (e.g., earlier or later activation 
depending on the cyclist behaviour). The BB FCW should be able to 
detect the cyclist at a TTC of 6 s, which corresponds to a range of 116 m, 
while the sensor range to oncoming traffic should be at least 250 m 
(Rasch & Dozza, 2020). Unfortunately, 250 m is outside the limit of 
about 150–175 m of the radar sensors that have been on the market for 
the last two decades (Blanc, Aufrère, Malaterre, Gallice, & Alizon, 2004; 
Hammarstrand, Fatemi, García-Fernández, & Svensson, 2016; Mukhtar, 
Xia, & Tang, 2015). However, our analysis does not rely on any unrea
sonable technological developments, since recent research shows that 
sensor technology is continuously improving, and a range of 250 m for 
radar sensors is on the horizon (BOSCH, 2021; Continental, 2021). 
Furthermore, wireless communication is also a reality; as a result, ve
hicles could be aware of oncoming vehicles even when visibility is 
reduced (Belyaev et al., 2013). 

The models used in this paper, the driver behaviour model (Rasch & 
Dozza, 2020) that was integrated into the BB FCW system (Thalya et al., 
2020), do not directly address automated driving. It is worth noting, 
however, that future models may be able to understand situations that 
autonomous vehicles encounter when deployed in real traffic and may 
support automated driving by improving the safety of cyclist in
teractions. The autonomous vehicle can use the information from the 
models to predict the intent of other road users, so that it acts in a way 
that neither scares nor injures the cyclist while being comfortable and 
acceptable for the driver. Furthermore, new collision scenarios arise as 
the overtaking manoeuvre progresses, such as head-on collisions with 
oncoming traffic and sideswipes of the cyclist in the passing and 
returning phases. In these scenarios, new ADAS that also take lateral 
control (Brännström et al., 2014; Nilsson, Brännström, Fredriksson, & 
Coelingh, 2016) into consideration may be needed. Assessing the safety 
benefit of new ADAS that can support the driver during the whole 

cyclist-overtaking manoeuvre should be explored in future studies. 
Furthermore, a collision may be unavoidable even with ADAS, due to 
more critical vehicle kinematics and distances between the road users 
after the approaching phase, as shown in Dozza et al. (2016). In these 
cases, a passive safety system may complement the ADAS. Passive sys
tems include pop-up hoods and external airbags to mitigate collisions 
with the cyclist (Fredriksson, Håland, & Yang, 2001; Fredriksson, 
Ranjbar, & Rosen, 2015) as well as cyclist-friendly vehicle designs that 
have low-impact stiffness and large deformation spaces to avoid bot
toming out (Hu & Klinich, 2015). Finally, in the future, a method to 
combine the effects of ADAS and passive safety systems could be 
investigated to assess the benefits of an integrated system. 

5. Conclusion 

In this paper, the relative safety benefit of a BB FCW system that 
supports a driver in the approaching phase of a cyclist-overtaking 
manoeuvre on rural roads was compared with a reference system. A 
comparison of this type, using virtual simulations of car-overtaking- 
cyclist crashes derived from naturalistic driving data, has not been 
performed before. The simulations included several driver response 
models, with responses representing different levels of comfort, alert
ness, or even impairment. Variations in driver responses should be taken 
into account to optimise the warning timing of future ADAS. 

The results of our virtual assessment show that the BB FCW provides, 
in general, larger safety benefits than the reference system. The BB FCW 
reduced fatalities by 53–96% and serious injuries by 43–94%, depending 
on the driver response model (reaction time and brake profile). Even 
with a slow driver reaction time and a braking profile with low jerk and 
comfortable deceleration, the BB FCW managed to reduce the crashes by 
49%. However, this result shows that FCW alone may not be sufficient to 
avoid all rear–end collisions with cyclists; an autonomous emergency 
braking system may be a complementary solution. 

In this study, the safety benefit from FCW might be overestimated, 
due to the focus on the true positives. More real-world data, including 
crashes, is needed to validate the models and verify the estimated safety 
benefit. Nevertheless, the comparison with the reference FCW, based on 
Euro NCAP, clearly shows the potential improvements in safety benefit 
when a driver behaviour model is integrated in the collision threat al
gorithm of the BB FCW. Future work should focus on extending the 
virtual safety assessment to new ADAS (accounting for both lateral and 
longitudinal control) to support the driver in all phases of the overtaking 
manoeuvre. 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aap.2021.106513. 

Appendix 

Data description 

Overtaking events (N = 73) in which a car driver overtakes a single 
bicyclist on a straight rural road were extracted from the UDRIVE 
naturalistic driving (ND) data. In this study, data were extracted only for 
rural roads (excluding highways) that have two lanes: one in each di
rection. The lane width was 3.2 m (SD = 0.3). For the extracted (normal 
driving) events, the average vehicle speed was 65 km/h (SD = 14). The 
average oncoming vehicle speed was 68 km/h (SD = 16). The average 
cyclist’s speed was 22 km/h (SD = 8). The width of the cyclist was 
calculated as the average value of the cyclist’s width as detected by the 
smart camera, 0.65 m. 

A smart camera recorded the cyclist’s distances (lateral and longi
tudinal) from the vehicle, and the vehicle’s distances to the lane edges 
(adjacent lane and road shoulder). The camera provided relative speed 
between the ego vehicle and the cyclist, which was used to derive the 

cyclist speed. Because the lateral position of the cyclist was relatively 
variable and the cyclist was not always visible to the smart camera, the 
cyclist’s trajectory during the overtaking manoeuvre was approximated 
with a straight line. The slope of the line, corresponding to the cyclist 
heading angle, was approximated to follow the road edge (this was a 
valid approximation, since the analyses were performed on overtaking 
manoeuvres on a straight road and the cyclist position was manually 
verified from video observations). 

Behaviour-based FCW model flow chart 

The flow chart of the behaviour-based FCW is shown in Fig. 7. This 
logic is followed for each time-step in the simulation. The car and bicycle 
were considered to be on a collision course if their future positions, 
assuming constant speeds and heading, overlap as the car approaches 
the bicycle to perform the overtaking manoeuvre. That is, if the vehicles’ 
positions overlapped at any point in the predicted trajectory, a collision 
was predicted, and the next step was to take into account the driver 
behaviour model prediction and the driver current state (the algorithm 
flow as outlined above). The BB FCW triggered a warning to the driver 
when there was a mismatch between the behaviour model prediction 
and the current driver state (i.e., braking and steering measured from 
the vehicle network). 

In the simulations, in each time step, BB FCW predicts if the vehicle 

Fig. 7. Flow chart of the BB FCW model. 
Adapted from Thalya et al. (2020) 
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and the cyclist are on a collision course for a specific prediction horizon. 
The system continuously monitors the situation, such as the driver’s 
actions (applying the brakes, or steering away from the cyclist) and 
whether the cyclist is moving away from the future vehicle’s trajectory. 
If the situation is not risky and there is no mismatch between the current 
and predicted driver’s action, the BB FCW will not warn the driver. Since 
the simulated events are crashes, the vehicle and the cyclist are on a 
collision course, and eventually BB FCW issues a warning. 
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