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Abstract
We minimize the stray electric field in a linear Paul trap quickly and accurately, by applying
interferometry pulse sequences to a trapped ion optical qubit. The interferometry sequences are
sensitive to the change of ion equilibrium position when the trap stiffness is changed, and we use
this to determine the stray electric field. The simplest pulse sequence is a two-pulse Ramsey
sequence, and longer sequences with multiple pulses offer a higher precision. The methods allow
the stray field strength to be minimized beyond state-of-the-art levels. Using a sequence of nine
pulses we reduce the 2D stray field strength to (10.5 ± 0.8) mV m−1 in 11 s measurement time.
The pulse sequences are easy to implement and automate, and they are robust against laser
detuning and pulse area errors. We use interferometry sequences with different lengths and
precisions to measure the stray field with an uncertainty below the standard quantum limit. This
marks a real-world case in which quantum metrology offers a significant enhancement. Also, we
minimize micromotion in 2D using a single probe laser, by using an interferometry method
together with the resolved sideband method; this is useful for experiments with restricted optical
access. Furthermore, a technique presented in this work is related to quantum protocols for
synchronizing clocks; we demonstrate these protocols here.

1. Introduction

In a Paul trap ions are confined using an oscillating electric quadrupole field. Ideally the equilibrium
position of a single trapped ion will coincide with the null of the oscillating quadrupole field. Stray electric
fields as well as trap fabrication imperfections introduce a quasi-static dipole electric field E at the null of
the oscillating quadrupole field, which displaces the ion equilibrium position from the oscillating field null.
This results in an oscillating dipole field at the ion equilibrium position, which drives oscillatory ion
motion, called excess micromotion [1].

The oscillating dipole field causes a Stark shift and the excess micromotion causes a Doppler shift, both
effects impact precision spectroscopy [2], and the Stark shifts are particularly troublesome in experiments
using highly-polarizable Rydberg ions [3, 4]. Furthermore, the energy stored in excess micromotion is an
obstacle to studies of quantum interactions in hybrid systems of neutral atoms and trapped ions [5–8]. The
Stark shift and the excess micromotion can be diminished by applying a static electric dipole field to
counter the unwanted quasi-static dipole field E. This opposing electric field is usually produced by
applying voltages to dedicated compensation electrodes.

Although a host of techniques have been developed to determine appropriate compensation electrode
voltages [1–3, 8–23], there is a demand to improve upon the existing techniques, so that trapped ions can
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Figure 1. At the minimum (position 0) of a Paul trap’s effective RF potential (blue solid lines) there is no oscillating dipolar
electric field. A static dipolar offset field E (corresponding to the orange dashed potential) displaces the trapping
pseudopotential, causing an ion trapped at the displaced minimum (xA in (a), xB in (b)) to experience an oscillating dipolar
electric field which drives excess micromotion. The offset field E is the same in both plots. The displacement from 0 is larger in
(b) than in (a) because the trap stiffness is weaker in (b). By changing the trap stiffness and measuring the change of a trapped
ion’s position information is gained about E (see equation (2)).

be controlled ever more precisely. Some of the most popular methods for minimising excess micromotion
rely on the impact of micromotion on an ion’s absorption or emission spectra, through the Doppler effect
[1, 2, 9–11]. For instance, micromotion introduces spectral sidebands which are separated from carrier
transitions by the frequency of the trap’s oscillating quadrupole field [1, 2]. It also modulates the ion’s
scattering rate at the frequency of the trap’s oscillating quadrupole field [1, 2].

Other techniques rely on measuring the change of a trapped ion’s equilibrium position when the trap
stiffness is changed [1, 8, 12–14, 24]; the methods we present here also work in this fashion. These
techniques are explained as follows: the unwanted quasi-static dipole field E at the position of the trap’s
oscillating field null displaces the equilibrium position of a trapped ion from the null by r, where [1]

ri =
qEi

mωi
2

(1)

and q is the ion charge, m is the ion mass, the three spatial directions indexed by i are defined by the ion’s
secular motion, and ωi is the trap stiffness (the frequency of the trapping pseudopotential) in the i
direction. When the trap stiffness is changed ωAi → ωBi the ion equilibrium position is displaced by rAB,
which has the components

rABi =
qEi

m

(
1

ωBi
2
− 1

ωAi
2

)
. (2)

This is represented in figure 1.
By measuring effects sensitive to rAB ion trappers gain information about E. The displacement rAB is

commonly monitored by imaging a trapped ion [1, 8, 12, 13, 24]. It can also be detected by measuring the
strength with which transitions are driven when there is an optical field gradient [14] or a magnetic field
gradient [8]. These methods are limited by the imaging resolution, by optical diffraction limits and laser
powers, and by achievable magnetic field gradients respectively.

In this work we use interferometry to measure rAB with a resolution much less than an optical
wavelength. This allows us to reduce |E| beyond state-of-the-art levels in a short time, and thereby diminish
excess micromotion. We apply different Ramsey-interferometry pulse sequences to a single trapped ion to
probe rAB. Using a sequence of two π/2 pulses resonant to an optical transition we determine the projection
of rAB along one direction with resolution ≈ λ

2π
√

N
, where λ is the wavelength of the laser field and N is the

number of experimental cycles. We improve on this resolution using sequences of M + 1 coherent pulses,
which offer an M-fold precision enhancement. The pulse sequences are described in section 2.

In section 3 we demonstrate fast and accurate minimization of E, and discuss the impact that changing
the RF power supplied to the trap has on the trap temperature.

In section 4 we show that by conducting interferometry pulse sequences of different lengths rAB and E
can be probed with an uncertainty below the standard quantum limit. The pulse sequences can be designed
so that the results are robust against pulse area errors and laser detuning; we demonstrate this in section 5.
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In section 6 we apply the methods to minimize micromotion in 2D and 3D. We also demonstrate 2D
micromotion minimization using just a single laser beam, by using the interferometry method together
with the commonly-used resolved sideband technique [1].

As well as enabling micromotion minimization, one of the pulse sequences presented here demonstrates
clock-synchronization protocols which involve exchange of a ticking qubit [25, 26]. This is described in
section 7.

2. Pulse sequences

In this section we present methods to minimize |E| using interferometry sequences, but first we introduce
some key concepts: the action of a sequence of laser pulses on a transition |g〉 ↔ |e〉 between two states of
an ion can be described by a sequence of rotations on the Bloch sphere spanned by |g〉 and |e〉. When the
laser field driving the pulses is resonant to the |g〉 ↔ |e〉 transition, the rotation axes lie on the Bloch
sphere’s equator. The phase of the laser field during each pulse, within the ion’s rotating frame, determines
the azimuthal angle of each rotation axis.

Within the ion’s rotating frame, the phase of the laser field is fixed in time (unless a controlled phase
shift is introduced), and it varies in space according to

ΦαA = kα · rA +Φα0, (3)

where kα is the wavevector of the laser field, Φα0 is a constant phase offset, and Greek letters are used to
index different laser beams along different directions while Roman letters are used to index different trap
stiffness settings and the corresponding ion positions. The laser phase experienced by the ion depends on
the ion position. This means the rotation axis of a laser pulse and the impact the pulse has on the ion’s state
also depend on the ion’s position. By applying a sequence of pulses and measuring the ion’s state we can
probe the change of ion position rAB when the trap stiffness is changed from setting A → B.

We use Ramsey pulse sequences, comprising two π/2 pulses, as well as longer sequences with several π
pulses between two π/2 pulses. In general the sequences comprise M + 1 pulses and have pulse areas Mπ,
where M is an integer and M � 1.

During the pulse sequences the phase of the laser field at the ion position is changed between pulses.
This is accomplished by changing the phase of the laser beam which drives the pulse, or by using a different
laser beam from a different direction, or by moving the ion from one position to another. We write the laser
phase experienced by the ion during the jth pulse as φj + θj, where φj depends on both the ion position and
the laser beam used to drive the pulses according to equation (3), while the controlled shift θj results from
adding a phase shift to the laser field, using, for example, an acousto-optical modulator. {φj} are general
phases, later we will substitute in specific phases using equation (3). If the ion is initially in state |g〉, after
applying the pulse sequence the probability of measuring the ion in state |e〉 is

p =
1

2
[1 + cos (φT + θT)] , (4)

where

φT = φ1 + 2
M∑

j=2

(−1)j−1φj + (−1)MφM+1 (5)

θT = θ1 + 2
M∑

j=2

(−1)j−1θj + (−1)MθM+1 + ξM , (6)

and where ξM = π(0) if M is even (odd). The phase φT reveals information about the ion position, or
change of position. By repeatedly applying the sequence and measuring the state of the ion, the probability
p can be estimated, from which φT can be estimated (the controlled phase shift θT is known). An estimate of
φT using a single p estimate and equation (4) is sensitive to pulse area errors and decoherence. More robust
estimates of φT use two measurements of p using two different θT values. One can use [27]

φT = arcsin
p
(
θT = − π

2

)
− p

(
θT = π

2

)
C
[
p
(
θT = − π

2

)
+ p

(
θT = π

2

)] , (7)
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Figure 2. Method A involves a sequence in which the trap stiffness is changed between each coherent laser pulse. If there is an
unwanted field E, changing the trap stiffness causes the ion to change position and experience a different laser phase. The
probability of measuring the ion in |e〉 depends on the laser phases during the pulses, and thus on E. The areas of the coherent
pulses (red) are indicated. The sequences in (a) and (b) are used when M is odd and even respectively. The shortest sequence is a
Ramsey sequence with M = 1.

where C accounts for reduction of the contrast of the oscillation in equation (4), or one can use the
two-argument arctangent function [28]

φT = arctan 2

[
p
(
θT = −π

2

)
− 1

2
, p(θT = 0) − 1

2

]
(8)

Equation (7) performs well when φT ≈ 0, and returns an estimate within a range of π, while equation (8)
returns an estimate of φT within a range of 2π. When N experimental runs are conducted, N

2 using each
value of θT, the statistical uncertainties of the φT estimates are ≈ 1√

N
; the statistical uncertainties depend

on the magnitude of φT, as shown in the supplemental material (https://stacks.iop.org/NJP/23/123028/
mmedia) [29].

Pulse area errors and detuning of the laser field from resonance introduce systematic errors to estimates
of φT. Systematic errors can be reduced by appropriately choosing the control phases {θj}, as shown in
section 5.

The pulse sequences presented here build on the sequence presented in reference [28]. In method A the
coherent pulses are driven using a single laser beam and the trap stiffness is changed between pulses. In
method B two laser beams are used and the trap stiffness is not changed between coherent pulses. In the
supplemental material [29] we describe method C, which involves multiple laser beams with trap stiffness
changes between the pulses.

2.1. Method A: sequence using a single laser beam
In the first method the laser pulses are driven by a single laser beam and the trap stiffness is alternated
between stiffness A and stiffness B between laser pulses. The sequence is presented in figure 2. The trap
stiffness changes cause the ion position to alternate between two positions, rA and rB, and the
position-dependent phase φj alternates between two values ΦαA and ΦαB. Using equation (3), the difference
between the phase values is

ΦαA − ΦαB = kα · (rA − rB) (9)

and from equations (5) and (2)

φT = M (ΦαA − ΦαB) (10)

= Mkα · (rA − rB) (11)

= M
∑

i

qkαiEi

m

(
1

ωAi
2
− 1

ωBi
2

)
. (12)

From equation (11) we see φT reveals the change in equilibrium position along the direction of kα, and
from Equation (12) we see φT is sensitive to E along the direction d, which has the components

di = kαi

(
1

ωAi
2
− 1

ωBi
2

)
. (13)

Thus, by probing and minimizing φT, the component of E along d can be minimized.
For convenience we define φPD ≡ ΦαA − ΦαB; the phase difference φPD depends on the path length

difference from the laser source to rA and from the laser source to rB. From equations (4), (10) and (12)

4

https://stacks.iop.org/NJP/23/123028/mmedia
https://stacks.iop.org/NJP/23/123028/mmedia


New J. Phys. 23 (2021) 123028 G Higgins et al

Figure 3. Micromotion minimization using method A. (a) The population measured in |e〉 depends sinusoidally on the offset
voltage applied to a micromotion compensation electrode and the offset field strength. (b) The phase difference φPD depends
linearly on the offset voltage, and is zero when micromotion is minimized. The green small-stiffness-change dataset was
calculated from the datasets in (a) using equation (8). φPD responds more strongly to the offset field when the trap stiffness is
changed by a larger amount. The solid lines in (a) and (b) are respectively sinusoidal and linear fits to the data. Error bars
represent quantum projection noise (1σ confidence interval). The error bars are often smaller than the marker size.

p =
1

2
[1 + cos (MφPD + θT)] (14)

=
1

2

{
1 + cos

[
M
∑

i

qkαiEi

m

(
1

ωAi
2
− 1

ωBi
2

)
+ θT

]}
. (15)

With increasing M the precision of a φPD estimate is improved, at the expense of reducing the range within
which φPD can be determined. φPD can be efficiently determined with a Heisenberg scaling by conducting
measurements using different values of M; this is discussed further in section 4.

We experimentally demonstrate the workings of this method using a single 88Sr+ ion confined in a
linear Paul trap. A 674 nm laser field couples a Zeeman sublevel of the 52S1/2 ground state |g〉 with a
Zeeman sublevel of the metastable 42D5/2 state |e〉. To initialise the ion in |g〉 we employ Doppler cooling as
well as optical pumping on a transition between 52S1/2 and 42D5/2 sublevels. In some experiments we also
employ sideband cooling. State detection involves probing the ion with 422 nm laser light near-resonant to
the 52S1/2 ↔ 52P1/2 transition. The trap stiffness is changed between the laser pulses by changing the
amplitude of the RF signal applied to the trap electrodes and thus changing the amplitude of the trap’s
oscillating quadrupole field. The electronics are described in detail in the supplemental material [29].

A component of E is varied by changing the voltage applied to a compensation electrode, and the effect
on p is measured in a two-pulse Ramsey sequence (M = 1). The results are shown in figure 3(a). As
expected from equation (15) p shows a sinusoidal dependence on the changes made to E.

Figure 3(a) shows p values when two different values of θT were used. From this data and using
equation (8) φPD was calculated; the results are shown in figure 3(b). The figure shows that φPD has a linear
dependence on a component of E, and that φPD = 0 when the compensation electrode offset voltage is zero.
The point where the offset voltage is zero was independently determined using the resolved sideband
technique [1]. Throughout this work compensation electrode offset voltages are shown relative to the
optimal values as determined using the resolved sideband method.

The figure also shows the linear dependence of φPD on a component of E is stronger when the change of
the trap stiffness is larger, as expected from the (ωAi

−2 − ωBi
−2) term in equation (12). The measurements

involved reducing the radial secular frequencies from ∼2π × 1.5 MHz to ∼2π × 600 kHz for the green

5
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Figure 4. Method A becomes more sensitive to the compensation electrode offset voltage and to the offset field E with increasing
sequence length M. Solid lines represent sinusoidal fits to the data. The oscillation contrast decreased as M was increased due to
the short coherence time of our system. The M = 2 dataset had a negative gradient at zero offset voltage because it was measured
with θT = π

2 while the other measurements used θT = − π
2 ; for better comparison of the datasets in the figure we have inverted

the x-axis of the M = 2 dataset. Error bars represent quantum projection noise (1σ confidence interval).

Figure 5. Method B involves coherent pulse sequences in which alternate pulses are driven by two different laser beams (with
wavevectors kα and kβ), while the trap stiffness is fixed. The probability of measuring the ion in |e〉 reveals the phase difference
between the laser fields at the ion position. We measure the phase differences φA

PD and φB
PD at the ion equilibrium positions rA and

rB when two different trap stiffness settings (A and B) are used. The quantity φA
PD − φB

PD depends on rAB and E. The sequences in
(a) and (b) are used when M is odd and even respectively. The shortest sequence is a Ramsey sequence with M = 1.

small-stiffness-change dataset and to ∼2π × 400 kHz for the purple large-stiffness-change dataset. The axial
secular frequency was fixed ∼2π × 1.0 MHz. Because equation (15) is cyclic it is possible to achieve
φPD = 0 when |E| is not minimized, as seen for the purple large-stiffness-change dataset near ±2 V. To
check that |E| is truly minimized, one can check that φPD remains zero when different trap stiffness changes
are used.

The probability p of measuring the ion in |e〉 becomes more sensitive to φPD, and thus to a component
of E, as the sequence length M is increased. To show this we measured the dependence of p on the
compensation electrode offset voltage with sequences of different lengths M; the results are shown in
figure 4. The oscillation contrast decreased with increasing M, due to the limited coherence time in our
experiment (∼500 μs [30]).

2.2. Method B: sequence using a fixed trap stiffness
In the sequence described in this section the trap stiffness is fixed while the coherent pulses are applied, and
alternate pulses are driven by two different laser beams. This is represented in figure 5.

If the ion is at position rA and alternate pulses are driven by two different laser beams, with wavevectors
kα and kβ , the phase φj alternates between two values ΦαA and ΦβA. Using equation (3), the difference
between these phase values is

ΦαA − ΦβA =
(

kα − kβ

)
· rA +Φα0 − Φβ0. (16)

If the two laser beams are derived from the same source, the phase difference depends on the path length
difference from the point where the beams are split to the ion position rA. For convenience, we define
φA

PD ≡ ΦαA − ΦβA. From equation (5)

φT = M
(
ΦαA − ΦβA

)
(17)

φT = MφA
PD. (18)

6
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If the sequence is conducted using the fixed trap stiffness B then

φT = M
(
ΦαB − ΦβB

)
(19)

= M
[(

kα − kβ

)
· rB +Φα0 − Φβ0

]
(20)

= MφB
PD, (21)

where φB
PD ≡ ΦαB − ΦβB. By conducting the sequence using each of the two trap stiffness settings, the

phases φA
PD and φB

PD can be estimated, and therefrom the quantity

φA
PD − φB

PD =
(

kα − kβ

)
· (rA − rB) (22)

= M
∑

i

q(kαi − kβi)Ei

m

(
1

ωAi
2
− 1

ωBi
2

)
, (23)

where, in the second line, equation (2) is used. φA
PD − φB

PD reveals the difference between the ion
equilibrium positions rAB along the direction kα − kβ . Thus, φA

PD − φB
PD is sensitive to E along the direction

d which has components

di = (kαi − kβi)

(
1

ωAi
2
− 1

ωBi
2

)
. (24)

We demonstrated this method in our system, the results are shown in figure 6. The two laser beams are
derived from the same source, they are each passed through a separate acousto-optic modulator (allowing
each beam to be separately switched on and off, and allowing controlled phase shifts {θj} to be introduced),
then each beam is guided through an optical fiber before it is focussed onto the ion. The path length
difference from the point where the beams are separated to the experimental chamber, varies in time, due to
temperature fluctuations and mechanical vibrations. Because of this

(
Φα0 − Φβ0

)
and thus φA

PD and φB
PD

vary in time. We measured the drift of φA
PD and φB

PD in time using the sequence of figure 5 with M = 1 by
interleaving measurements using trap settings A and B, and control phases θT = 0 and − π

2 , and using
equation (8). The results are shown in figure 6(a).

Because φA
PD and φB

PD do not drift too fast, and because the difference between the ion equilibrium
positions rAB is stable, the difference between the estimates φA

PD − φB
PD is stable in time, as shown in

figure 6(a).
We varied the voltage applied to a compensation electrode and measured the linear response of

φA
PD − φB

PD, this is shown in figure 6(b). This result is consistent with equation (23), which describes a linear
relationship between φA

PD − φB
PD and a component of E. Thus, the quantity φA

PD − φB
PD can be used for

minimizing micromotion.
Longer pulse sequences (with larger M) offer more precise measurement of φA

PD − φB
PD, though they also

require better interferometric stability between the two beams. We expect the interferometric stability in our
system is limited by fiber noise, which can be diminished using fiber noise cancellation [31].

3. Fast and accurate micromotion minimization

Using method A with M = 8 we minimized the strength of the offset field E quickly and accurately. This is
shown by the data in figure 7. The experiment runs alternated between using two different laser beams from
two different directions; in this way we probed E in two dimensions, i.e. the plane of the oscillating field of a
linear Paul trap. We see that with increasing measurement time t the residual electric field strength
decreased as t−1/2, until around 100 s when drifts kicked in. The drifts were likely caused by changes in the
offset field E and instability of the voltage sources used to apply voltages to the compensation electrodes.

We obtained the data as follows: first we measured the rate of change of φPD with respect to
compensation electrode voltage, in much the same way as shown in figure 3(b). We did this for φPD

measurements using the two different laser beams and two different compensation electrodes. Then we
repetitively measured φPD using the two different laser beams, and every 11 s we updated the voltages of the
two compensation electrodes so as to minimize |E| in two dimensions. We measured repetitively over 18
minutes. By analysing data collected over this time, we see how well the magnitude of the electric field E can
be minimised with different measurement times. The analysis is much the same as that used to calculate the
overlapping Allan deviation of fractional frequency data from a clock.

After 75 s of measurement the 2D residual static field strength was (3.5 ± 0.3) mV m−1, which is, as far
as we are aware, lower than the residual static field strength achieved using any other micromotion
minimization technique, and also lower than the residual field achieved in a system of optically-trapped
ions [32]. The field uncertainty decreased with increasing measurement time as (31.1 ± 1.0) mV m−1 s1/2.

7
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Figure 6. Demonstration of method B. (a) φA
PD and φB

PD were repeatedly measured over 100 s. The phase difference φA
PD − φB

PD is
stable in time, despite the drift of φA

PD and the drift of φB
PD. (b) φA

PD − φB
PD has a linear dependence on the offset voltage applied to

a micromotion compensation electrode. Error bars representing quantum projection noise (1σ confidence interval) are generally
smaller than the marker size.

Figure 7. Using method A we minimized the magnitude of the offset field E quickly and accurately. With increasing
measurement time t the residual field strength decreased as t−1/2, until around 100 s when drifts caused the accuracy to worsen.
Dashed lines are t−1/2 fits. Error bars represent the standard error of the mean (1σ confidence interval).

The horizontal component of E was minimised faster than the vertical component, since the beam probing
the horizontal component has a larger projection onto the plane of the oscillating field than the beam
probing the vertical component.

On the second y-axis of figure 7 we show the corresponding strength of the residual oscillating dipole
field experienced by the ion, which arises because the offset field E displaces the ion from the oscillating

8
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Figure 8. To mitigate unwanted changes of the trap temperature, the average RF power used during the interferometry
sequences should equal the RF power used during normal trap operation. The RF power profiles sketched here are suitable for
use with method A and M = 8.

quadrupole field null. This assumes that there is no additional oscillating dipole field in our system which
arises from a phase mismatch of the voltages applied to the trap electrodes (quadrature micromotion) [1].
It is worth noting that a horizontal (vertical) offset field E causes the ion to experience a vertical
(horizontal) oscillating dipole field (see figure 15).

The experiments were evenly split between using two different laser beams and four different sets of
control phases {θj}. The use of four sets of controllable phases diminished systematic errors, as is described
in section 5. During these measurements we reduced the ion’s radial secular frequencies from
2π × 1.5 MHz to 2π × 840 kHz, while keeping the axial secular frequency at 2π × 350 kHz. The oscillating
quadrupole field’s frequency was 2π × 18.1 MHz.

Faster minimization of E could be achieved using a larger change of the trap stiffness or by using a
longer sequence (with higher M). A phase estimation sequence with over 1000 pulses has been conducted in
an experimental setup with a longer coherence time than ours [33]. With such long sequences care must be
taken to mitigate heating of the ion’s motion caused by the trap stiffness changes. Ion heating causes pulse
area errors, which in turn can cause systematic errors in φPD estimates. This can be mitigated by changing
the trap stiffness sufficiently slowly, or by employing sympathetic cooling [9, 34]. Alternatively E can be
probed using method B, which does not involve changes of the trap stiffness between the pulses.

3.1. Changing the RF power applied to the trap electrodes affects the trap temperature
After just 11 s measurement time we achieve a low residual oscillating dipole field, which would cause a
second-order Doppler shift on the 88Sr+ clock transition below the 10−22 level [1, 2]. And so, the
micromotion minimization methods presented here stand to benefit precision spectroscopy experiments.
However, in precision spectroscopy experiments, care should be taken to mitigate unwanted changes of the
trap temperature.

Changing the trap stiffness by changing the RF power supplied to the trap electrodes affects the RF
power dissipated in the system, which, in turn, affects the trap temperature. Changes of the trap
temperature affect the blackbody radiation field experienced by the ion. Further, thermal expansion can
shift the relative positions of trap electrodes and affect E [13], and also cause beam-pointing errors. During
the measurements used to produce the data shown in figure 7 we did not make efforts to mitigate trap
temperature changes. During these measurements the RF signal applied to the trap electrodes was reduced
4% of the time. We estimate that the decrease of the average RF power caused the temperature of the ion’s
surroundings to decrease by ∼10 mK [35], causing a blackbody radiation shift on the 88Sr+ clock transition
∼10−19 [36].

To mitigate trap temperature changes the average RF power used during the micromotion minimization
sequences should equal the RF power used during the trap’s normal operation [13], for instance as sketched
in figure 8. Alternatively, the trap stiffness can be changed during the micromotion minimization sequences
by changing the amplitude of the trap’s static quadrupole field [12, 13]. This relies on a perfect overlap
between the nulls of the trap’s oscillating and the static quadrupole fields, however, design errors and
machining imprecision will cause the nulls to be separated.

4. Micromotion minimization with sub-standard quantum limit scaling using a
binary search algorithm

In this section we use a binary search algorithm (based on the robust phase estimation technique [28]) to
efficiently measure φPD of method A with an uncertainty below the standard quantum limit (SQL). The
same methodology can be used together with methods B or C (supplemental material [29]). This phase
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Figure 9. Illustration of the binary search algorithm (based on the robust phase estimation technique [28]). By conducting
measurements using different sequence lengths φPD can be determined efficiently. The shaded regions of width π/M indicate
values of φPD consistent with the measurement results. Shorter sequences allow φPD to be reckoned from within a larger range,
but they are less precise. Longer sequences are more precise, but they allow φPD to be reckoned from within only a narrow range.
By combining the results φPD can be determined with high precision from a broad range. The orange arrows indicate the range of
φPD values consistent with all the measurement results.

estimation technique can be used to achieve Heisenberg scaling, it is easy to implement, the data analysis is
straightforward and the protocol is non-adaptive. While adaptive phase estimation techniques allow for
more accurate phase measurements at the Heisenberg limit [37, 38], they require measurement settings to
be updated on the fly, which is not possible with our current control system [39–41].

The binary search algorithm works as follows: starting with an unknown phase φPD from within the
range [−π,π], a set of measurements are first conducted using a sequence with M = 1 to limit φPD to a
range of width π, then a set of measurements with M = 2 narrow the range to π/2, then a set of
measurements with M = 4 narrow the range to π/4, and so on. The jth set of measurements use a sequence
with Mj = 2j−1 to narrow the range to a width of π/2j−1. The technique is illustrated in figure 9.

We demonstrated the efficiency of this protocol as follows: we carried out 59 000 measurement runs,
split evenly between five sequence lengths M ∈ {1, 2, 4, 8, 16}. The measurements were also split between
using two different θT values. We then analysed the estimates of φPD given by sub-sampled datasets. If we
consider first the results using only M = 1 data, the error in the estimates of φPD decreased with the number
of measurements in the sample N as N−1/2. This is shown by the data marked by blue circles in figure 10(a).
The binary search algorithm allows improved estimates to be achieved using fewer measurements, as shown
by the data marked by orange crosses. The first orange cross datapoint describes the error in estimates of
φPD using 40 measurements split evenly between different sequence lengths M ∈ {1, 2}. The second cross
datapoint describes the error in estimates using 60 measurements split evenly between sequence lengths
M ∈ {1, 2, 4}. And so on for the third and fourth cross datapoints. The scaling of the data marked by
orange crosses with the number of measurements is well described by a power law. The deviation from the
power law for the final datapoint (using sequences with up to M = 16) is due to the limited coherence time
of our experiment and also because of the non-zero probability of error in the results of the measurements
with M < 16, which contribute to the overall estimate. The ‘true’ value of φPD was estimated using all
59 000 measurements.

The duration of each experimental run was dominated by cooling and fluorescence detection, rather
than the duration of the coherent pulses. Thus, the x-axis in figure 10(a) reflects the total measurement
time. For long sequences with large M the total measurement time would be better represented by the total
area of coherent pulses A than by the number of measurements [42]. And so we rescale the x-axis of
figure 10(a) to view the scaling of the same data with the pulse area, this is shown in figure 10(b). Here we
see that the binary search algorithm allows us to estimate φPD with an error below the SQL

√
π
A [43]. A

better scaling would be achieved in an experimental setup with a longer coherence time. Also, to achieve
Heisenberg scaling the different measurement sets (parameterised by j) need to use different numbers of
measurements Nj [28].

10
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Figure 10. φPD can be efficiently measured using a binary search algorithm. Combining the results of measurements using
different sequence lengths (data marked by orange crosses) is more efficient than using a fixed sequence length (data marked by
blue circles). This is true both when the number of measurements conducted is considered, as in (a), and when the total pulse
area is considered, as in (b). Using the binary search algorithm a φPD-uncertainty lower than the standard quantum limit (SQL)
is achieved. Error bars represent the standard error of the mean (1σ confidence interval). The secondary y-axes show the
uncertainty in the strength of the offset field E along one direction.

For readers interested in using the binary search algorithm in their systems we reproduce an algorithm
for combining the results of different measurement sets from [33] in the supplemental material [29].

5. Robust estimates of φT using suitable control phases {θj}

Changing the overall control phases θT (equation (6)) shifts the dependence of p on φT, as can be
appreciated from equation (4) and figure 3(a). By appropriately choosing the individual phases θj,
estimates of φT can be made robust against laser detuning and pulse area errors. Pulse area errors can arise
if the sequence includes fast changes of the trap stiffness, which can cause motional heating, which in turn
modifies the |g〉 ↔ |e〉 coupling strength. They can also be caused by the change in laser light intensity
when the ion changes position within a tightly-focussed laser beam.

We used simulations to test different sets of control phases {θj} when the pulse sequences from methods
A and B are used, and we found control phase settings which allow φT (and thus φPD, φA

PD and φB
PD) to be

robustly estimated in the presence of these errors when φT is small. We refer to the control phase settings as
settings I: {θe = 0, θo = − π

2 } and settings II: {θe = 0, θo = π
2 }, where

θj =

{
θe even j

θo odd j, 1 < j < M + 1
(25)

as shown in figure 11. Both settings use θ1 ∈ {π, π
2 }, θM+1 = π and even values of M. Using these settings

φT can be estimated using
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Figure 11. Pulse sequences showing control phases θe and θo used in control phase {θj} settings I, II and III. (a) and (b) Show
the sequences used for methods A and B respectively.

Figure 12. Estimates of φPD (and φA
PD and φB

PD) are robust against errors when the control phase {θj} settings I and II are used.
The robustness is improved by averaging the estimates obtained using settings I and II. (a) The detuning of the laser from the
|g〉 ↔ |e〉 resonance was scanned. (b) and (c) A pulse area error on even-indexed pulses was introduced and varied, in (b) no
additional errors were added, in (c) a 10% error was introduced to the area of odd-indexed pulses. Dashed lines indicate
simulation results, which show good agreement with the experimental results; the only free parameter was a phase offset used in
(a) which accounts for a weak offset field E. Error bars represent quantum projection noise (1σ confidence interval). The results
in (b) and (c) were obtained using sequences with a fixed trap stiffness and a fixed laser field wavevector.

φT = arctan 2

{
(−1)M/2

[
p
(
θ1 =

π

2

)
− 1

2

]
, (26)

(−1)M/2

[
p (θ1 = π) − 1

2

]}
(27)

We experimentally tested the robustness of φPD estimates by introducing different errors to our system.
The results are shown in figure 12.

First we measured φPD of method A with M = 16, when different laser detunings were used. One might
expect that a detuning Δ might shift φT by Δ · T and φPD by Δ · T/M, where the duration of the coherent
pulse sequence T we used was 1.6 ms. The φPD estimates using settings I and II were much more stable than
this, as shown in figure 12(a). Furthermore, the estimate of φPD becomes still more stable by averaging the
estimates obtained with settings I and II.

Then we investigated the robustness in the presence of pulse area errors. We conducted experiments
with a pulse area error on the even-indexed pulses. The phase estimates were stable when the magnitude of
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Figure 13. Pulse area errors and laser detuning cause systematic errors in estimates of φPD, the size of the errors depend on the
control phases {θj} used and the true value of φPD. We show this using simulated experimental runs using sequences with
M = 16 in which the even-indexed pulses have a 5% pulse area error. (a) Control phase settings I were used and the pulse area
error affected the probability p of measuring the ion in state |e〉 most strongly around φPD = ± π

2 where the oscillation contrast
was reduced. (b) Estimates of φPD were generated from the simulated runs. With control phase settings I the accuracy is highest
near φPD = 0 or π, while with settings III the accuracy is highest near φPD = ±π/2.

this error was varied, as shown in figure 12(b). We additionally introduced a 10% pulse area error on the
odd-indexed pulses, and found that the robustness of the phase estimate could again be improved by
averaging the results of experiments conducted using settings I and II, as shown in figure 12(c). These
experiments used M = 8, a fixed trap stiffness and a single laser beam driving the pulses. The reason we
alternated the pulse area error between pulses is that this will happen in practice, since in method A the trap
stiffness setting is alternated, while in method B the laser beam is alternated.

The robustness properties depend on the size of the phase φPD, as shown by the simulation results in
figure 13. We simulated experimental runs using pulse sequences of length M = 16 with pulse area errors of
5% on the even-indexed pulses. The results of simulations using control phase settings I are shown in
figure 13(a); we see that the probability p of measuring the ion in state |e〉 deviates from the unity-contrast
oscillations described by equation (14), at around φPD = ± π

2 . From this data estimates of φPD were
generated, and the systematic errors in the estimates (caused by the 5% pulse area error) were largest when
the true value of φPD was around ± π

2 , as shown in figure 13(b). We also simulated measurements using
control phase settings III (described in the Supplemental Material [29]), then the systematic errors in φPD

estimates were largest when the true value of φPD was near 0 or π.
Although the robustness of phase estimates depends on the true value of the phase, this is unlikely to be

a problem when method A is used and when micromotion is nearly minimized—then φPD is small and
control phase settings I and II perform well. However, if method B is used in an experiment setup in which
the path length difference between the two laser beams is not stable, then φA

PD and φB
PD will drift over time

(as shown in figure 6(a)) and the robustness of the phase estimates will be unstable. This instability could
be mitigated by adapting the control phase values during a measurement on the fly, for instance, if the first
few measurement runs indicate φA

PD ≈ 0 or π (π2 or − π
2 ) then the control phase settings could be switched

to settings I (settings III), which perform robustly around these phase values, as shown in figure 13.
To gain an intuition of why the pulse sequences are robust against errors, we show the evolution of the

ion state during a sequence in the supplemental material [29].
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Figure 14. |E| can be minimized in 2D using a single probe laser, by using interferometry method A together with the resolved
sideband technique [1]. (a) and (b) ((c) and (d)) Use the interferometry (resolved sideband) method, (a) and (c) ((b) and (d))
use a horizontal (vertical) probe beam.

6. Micromotion minimization in 2D and 3D

6.1. Applying the interferometry methods in 2D and 3D
To counter an unwanted electric field E in 2D (3D) we produce a 2D (3D) compensating field by supplying
voltages to two (three) compensation electrodes. To determine the appropriate voltages we need to measure
φPD or φA

PD − φB
PD using two (three) laser beam configurations. First we measure the dependence of the ith

phase measurement on the jth compensation electrode voltage, in the same way as in figure 3(b) or
figure 6(b). We label the gradient of this dependence Mij. We use the four (nine) Mij values to construct a
2 × 2 (3 × 3) matrix M. Then we can minimize |E| by measuring the two (three) phase values, storing
them in a two-element (three-element) vector φ, then calculating V = M−1 · φ [44]. The two-element
(three-element) vector V describes the offsets of the compensation electrode voltages from the optimal
values. Note that the matrix M depends on the trap settings used.

If one wishes to relate φ to the offset field E, one can use equation (12) or equation (23). This requires
knowledge of the direction of the laser field wavevectors and the change of the secular frequencies.
Alternatively one can relate V to E using another micromotion minimization technique; in this work we
related V to E using the resolved sideband method [1, 2].

6.2. 2D micromotion minimization using a single probe laser beam
Micromotion can be minimized in two dimensions using a single probe laser beam by using the resolved
sideband method [1] together with interferometry method A. This is shown in figure 14. In figure 14(a) the
interferometry method is conducted using a horizontal laser beam, and φPD is sensitive to the horizontal
component of E, which is varied by changing the voltage applied to the ‘horizontal’ compensation
electrode. In figure 14(c) the resolved sideband method is conducted using the same horizontal laser beam,
and the sideband amplitude is sensitive to the vertical component of E, which is varied by changing the
voltage applied to the ‘vertical’ compensation electrode. Similar results are observed when using a vertical
laser beam in figures 14(b) and (d).

These results can be understood with the aid of figure 15. Using a horizontal laser beam and
interferometry method A, the results are sensitive to the horizontal component of E, which displaces the ion
equilibrium position horizontally. Using a horizontal laser beam and the resolved sideband method, the
results are sensitive to the vertical component of E, which displaces the ion equilibrium position vertically,
at the new equilibrium position the ion experiences a horizontal oscillating dipole field, which drives
horizontal micromotion.
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Figure 15. Schematic of the experimental setup, showing a slice through the linear Paul trap in the plane of the oscillating
electric field. The trap’s oscillating electric quadrupole field (orange lines) is produced by applying voltages to four electrodes
(large circles). An unwanted dipolar field along the vertical direction displaces the ion equilibrium position vertically, with
displacement r from the trap centre (black cross). This can be detected using interferometry method A with the vertical laser
beam, or using the resolved sideband method with the horizontal laser beam, since at the new position the ion (blue dot)
experiences a horizontal oscillating dipole field which drives horizontal micromotion (blue arrow). Each compensation electrode
consists of a pair of rods (grey circles). The ion’s secular motion eigenmodes are orientated along x and y.

6.3. Applying the interferometry methods in linear Paul traps with non-degenerate radial frequencies
Micromotion minimization techniques that involve monitoring an ion’s position when the trap stiffness is
changed become more sensitive when larger changes of the trap stiffness are used. However, in a linear Paul
trap, if the trap stiffness is reduced to the point where the ion is barely trapped, and if non-degenerate radial
secular frequencies are used, these techniques risk becoming overwhelmingly sensitive to the offset field E
along just one direction.

We illustrate this behaviour in figure 16. The calculations show how the trap stiffnesses respond when
the amplitude of the linear Paul trap’s oscillating quadrupole field is changed, from an initial setting A, with
non-degenerate trap stiffnesses {ωAx,ωAy}/2π = {1.5, 1.6} MHz along the radial directions and
ωAz/2π = 1.0 MHz along the axial direction, to a trap setting B. As we decrease the amplitude of the trap’s
oscillating quadrupole field ωBx → 0 before ωBy → 0 and thus the quantity ω−2

Bx − ω−2
Ax diverges before

ω−2
By − ω−2

Ay diverges. These quantities describes the response of rAB to E (equation (2)) and impact the
direction d along which the interferometry method is sensitive to E (equations (13) and (24)). As a result,
when method A is used with a beam that has a projection onto both the x and y axes, and when the
oscillating quadrupole field amplitude is reduced to the point where the ion is barely trapped (ωBx ≈ 0) the
technique effectively becomes sensitive to only Ex. A much higher sensitivity to Ex than to Ey also appears if
the radial stiffnesses are reduced by increasing the amplitude of the static quadrupole field which provides
axial confinement.

We illustrate this sensitivity difference by conducting experiments using method A as Ex and Ey are
changed, using two different laser beams which each have projections onto the x and y axes. The beam
directions are shown in the schematic in figure 15. The results are shown in figure 17. In figures 17(a) and
(b) the secular frequencies are degenerate (ωx = ωy), and φPD depends on the vertical (horizontal)
component of E when a vertical (horizontal) probe beam is used; the orthogonal beams are sensitive to
orthogonal components of E. In figures 17(c) and (d) the secular frequencies are non-degenerate with
ωx < ωy and the method becomes more sensitive to Ex than to Ey. As a result, the orthogonal beams are
sensitive to non-orthogonal components of E.

If a higher sensitivity to Ex than to Ey is problematic, method C (supplemental material [29]) may be
useful; it allows the direction of sensitivity d to be tuned. Another solution is to implement method A using
a probe beam propagating along the y-axis, with no projection onto the x-axis. However, in most setups the
electrode geometry obstructs optical access along the directions of secular motion. A third solution is to
calculate superpositions of the phases measured via method A using probe beams from different directions,
for instance a weighted sum (difference) of the phases measured with the horizontal and vertical beams is
sensitive to Ex(Ey). Alternatively one can use method B, with two beams whose wavevector difference
kα − kβ has no x-component (see equation (24)).

6.4. Minimization of axial micromotion in a linear Paul trap
In an ideal linear Paul trap there is no RF electric field along the trap symmetry axis (z direction) Ẽz = 0. In
physical linear Paul traps, Ẽz is non-zero because of the finite size of the trap electrodes, among other
reasons [2, 45–47]. A non-zero Ẽz drives ion micromotion along z. Usually Ẽz vanishes only at a single
point, and with increasing distance from this point along z, |Ẽz| increases [46] and the extent of axial
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Figure 16. When the radial trapping frequencies in a linear Paul trap are non-degenerate with ωx < ωy, an offset field along the
x-direction causes a larger change of ion equilibrium position than an offset field of the same magnitude along the y-direction.
This difference diverges as the amplitude of the oscillating quadrupole field is reduced. In the figure the trap stiffness is changed
between initial settings A with {ωx,ωy,ωz}/2π = {1.5, 1.6, 1.0} MHz and settings B by changing the amplitude of the oscillating
quadrupole field. (a) As the oscillating quadrupole field amplitude during setting B is decreased, ωBx → 0 before ωBy → 0.
(b) The ion displacement rABi due to an offset field Ei depends on ω−2

Bi − ω−2
Ai (see equation (2)). This quantity diverges as

ωBi → 0. (c) The ratio of ω−2
Bx − ω−2

Ax to ω−2
By − ω−2

Ay , indicating the relative displacements caused by an offset field, diverges as the
trap stiffness during setting B is reduced and ωBx → 0.

micromotion increases. Thus, the null point can be found using, for example, the resolved sideband method
[1] with a laser beam propagating along the z direction.

Because the extent of axial micromotion and thus the kinetic energy associated with it increase with
distance along z from the null, Ẽz introduces a trapping pseudopotential along z. This pseudopotential
contributes to the axial confinement, and this means that axial micromotion can be minimised using
methods which are sensitive to the change of ion equilibrium position along z when ωz is changed [13].
And so, we demonstrated that interferometry method A can be used to minimize axial micromotion:

We varied the z-component of E (and thus we varied Ẽz) by changing the voltage applied to an endcap
electrode, and we measured the linear response of φPD using a laser beam with wavevector k largely along
the z-direction (it propagates through holes in the endcap electrodes). We changed ωz during the pulse
sequence by changing the amplitude of the oscillating electric quadrupole field. The results are shown in
figure 18. The zero-offset voltage was determined using the resolved sideband method [1]; the optimal
voltage determined using the interferometry method and the optimal voltage determined using the resolved
sideband method do not perfectly agree. This mismatch may have resulted from a small projection of the
probing laser beam onto the x and y directions (the plane of the oscillating quadrupole field) together with
non-zero x- and y-components of E.

7. Demonstration of quantum clock synchronization protocols

Method A has much in common with two quantum clock synchronization protocols [25, 26].
Synchronizing distant clocks is important for engineering and metrology. It is also of fundamental interest
in physics, falling within the field of reference frame alignment [48]. Suppose Alice and Bob want to
synchronize their clocks, which are known to tick at the same rate: Eddington’s protocol [49] involves Alice
synchronizing a watch to her clock, and then mailing the watch to Bob, who synchronizes his own clock to
the watch. Chuang [25] proposed a quantum version of Eddington’s protocol, in which Alice sends a
quantum watch to Bob, namely a ticking qubit. In this protocol Alice and Bob each apply a π/2 pulse on
the qubit before the state of the qubit is measured. Importantly, the phase of each π/2 pulse is relative to
Alice’s and Bob’s clocks respectively.

16



New J. Phys. 23 (2021) 123028 G Higgins et al

Figure 17. 2D micromotion compensation with degenerate secular frequencies compared with the case of non-degenerate
secular frequencies. In (a) ((b)) the secular frequencies are degenerate, and φPD is sensitive to the vertical (horizontal) component
of E along 1√

2
(x̂ + ŷ) ( 1√

2
(x̂ − ŷ)) when measured using a vertical (horizontal) beam. In (c) and (d) the secular frequencies are

non-degenerate, with ωx < ωy, and as a result the measurements of φPD become more sensitive to E along the x-direction, i.e. the
‘horizontal + vertical’ direction, as described by equation (13) and figure 16.

Figure 18. The interferometry sequences enable axial micromotion compensation in a linear Paul trap. The axial component of
E is varied by offsetting the voltage applied to an endcap electrode, and φPD responds linearly. φPD is measured using method A
with a beam propagating along the axial direction. Error bars represent quantum projection noise (1σ confidence interval). The
shaded area indicates the 1σ uncertainty in the estimate obtained using the resolved sideband method.

The sequence of method A with M = 1 is equivalent to Chuang’s protocol. In this sequence the trapped
ion equilibrium position changes from rA (Alice’s location) to rB (Bob’s location) when the trap stiffness is
changed. We identify the optical field at rA as Alice’s clock, and the optical field at rB as Bob’s clock (these
clocks tick incredibly fast, at over 400 THz). The asynchronicity of the clocks is due to the phase difference
φPD between the optical field at rA and the optical field at rB (see equation (11)). During the sequence we
first apply a π/2 pulses on a ticking ion qubit at position rA (the pulse phase is determined by Alice’s clock)
then we move the qubit to rB and apply another π/2 pulse (the pulse phase is determined by Bob’s clock),
before measuring the state of the qubit. Measurements allow us to calculate φPD and thus ‘synchronize the
clocks’, as shown in figure 3. In figure 19 we illustrate the relationship between method A and Chuang’s
protocol.

De Burgh and Bartlett [26] improved on Chuang’s protocol. They proposed that Alice and Bob perform
multiple exchanges of the qubit, and apply multiple pulses on the qubit, to more accurately determine φPD.
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Figure 19. Method A is related to quantum versions of Eddington’s clock synchronization protocol [25, 26]: Alice and Bob
(phantoms at rA and rB) have an unknown phase difference φPD between their clocks (the oscillating laser field at their positions).
They exchange a ticking qubit (a trapped ion), and they each perform rotations on it. By measuring the difference between their
rotation axes they learn φPD.

Method A with M > 1 is equivalent to this protocol, and the data in figures 4 and 10 demonstrates the
enhancement gained from this protocol over the two-pulse protocol6.

Within the framework developed in this section, we can describe method B as a protocol to synchronize
two oscillators (i.e. two laser fields) which are at the same position, using a ticking qubit.

8. Conclusion

We introduce and demonstrate interferometry pulse sequences for minimizing the magnitude of a stray
electric field E in a trapped ion experiment. These sequences allow |E| to be minimized to state-of-the-art
levels quickly. These methods will be particularly useful in trapped ion precision spectroscopy experiments
[2, 50], hybrids systems of neutral atoms and trapped ions [5–8], and experiments using highly-polarizable
Rydberg ions [3, 4], which are very sensitive to effects caused by stray fields.

We demonstrate that quantum phase estimation techniques can be used to minimize |E| with a scaling
below the standard quantum limit. This constitutes a real-world case in which quantum metrology provides
a significant enhancement. We also show that the results can be robust against laser detuning and pulse area
errors.

By using one of the sequences presented here together with the resolved sideband method we minimize
|E| in 2D using a single probe beam. This approach will be useful in experiments with restricted optical
access, such as cavity QED experiments [51–53] and surface trap experiments [54–59].

We reduced |E| beyond state-of-the-art levels quickly. |E| could be reduced much further and much
more quickly in a setup with a longer coherence time (allowing longer sequences) and with finer control of
the trap stiffness (allowing larger stiffness changes).

In trapped ion precision spectroscopy experiments usually just a single ion is probed. Scaling up
precision spectroscopy experiments to many ions enables faster interrogation [46, 47, 60, 61]. In a many-ion
system the offset field E would ideally be measured and countered for each of the ions. The methods
presented here will work in a system of many ions, provided that the ions do not unexpectedly switch
positions during the sequences. Further, by probing a system of entangled ions, it might be possible to
precisely measure offset fields even faster [62].

The methods we introduce can also be used when the states which get excited are separated by a Raman
transition or a multi-photon transition. To achieve the highest sensitivity the laser beams should be
orientated to give the largest effective wavevector.

The dominant cause of excess micromotion is usually a slowly-varying dipole field E at the null of the
oscillating quadrupole field. However, excess micromotion can also arise when the oscillating voltages
applied to the trap electrodes are out of phase, this is called quadrature micromotion. Measurements
sensitive to rAB, such as the techniques presented here, do not give information about quadrature
micromotion. Quadrature micromotion can instead be characterised using other methods [1, 2] and it can
be avoided by careful trap design and fabrication [45, 46, 63].

Finally, our work demonstrates quantum versions of Eddington’s clock synchronization protocol
[25, 26], linking trapped ion experiments to the problem of reference frame alignment [48].

6 Chuang’s paper [25] includes a protocol with a sub-SQL scaling, however, this protocol requires a set of ticking qubits, whose
frequencies span an exponentially-large range.
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