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Abstract

In this benchmark proposal, we present a set of large specifications stated in Signal
Temporal Logic (STL) intended for use in falsification of Cyber-Physical Systems. The
main purpose of the benchmark is for tools that monitor STL specifications to be able to
test their performance on complex specifications that have structure similar to industrial
specifications. The benchmark itself is a Git repository which will therefore be updated
over time, and new specifications can be added. At the time of submission, the repository
contains a total of seven Simulink requirement models, resulting in 17 generated STL
specifications.

1 Introduction

We present a set of large specifications stated in Signal Temporal Logic (STL [5]) intended
for use in falsification of Cyber-Physical Systems. In the research area of falsification, earlier
benchmarks typically consist of potentially complex systems, but where the specifications are
small and easy to get an overview of [3, 4, 2]. To contrast this, the specifications we present
in this benchmark are complex and difficult to get an overview of without examining them
extensively. The specifications are inspired by specifications used in Model-in-the-loop (MIL)
and Software-in-the-Loop (SIL) testing at Volvo Car Corporation.
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Due to the proprietary nature of the specifications at Volvo Car Corporation, the specifica-
tions we share are modified and anonymized by remodeling them for use with the Automatic
Transmission model (originally from Mathworks [6]) that has been used in previous benchmarks
[3]. Even though we cannot share exactly how the proposed specifications differ from those at
Volvo Car Corporation, we believe they are still useful to the falsification community because
of the following points.

1. The specifications exemplify how one can model specifications in a graphical way (using
Simulink);

2. The STL specifications are generally much larger than specifications proposed in previous
benchmarks; and

3. The overall structure of the specifications are similar to specifications found at Volvo Car
Corporation.

The specifications in Simulink are automatically translated to STL specifications by use of
the tool specTransformer

1
. For further details on how this translation is performed, we refer to

our previous work [1]. Because of the size of the generated specifications, one potential use for
them is to test how robust a monitoring tool is to large formulas. It should be noted that the
generated STL formulas use past temporal operators, e.g. once and historically. For further
details on STL, including future and past operators, we refer to [5].

The benchmark is available as a public Git repository
2
. It is a living repository which can and

will receive updates to the current requirement models and parameters, and new requirements
can be added over time as well.

2 Requirement Models

In this section we first briefly introduce Signal Temporal Logic, then we describe the overall
structure of the requirement models included in the benchmark. The reason for using require-
ment models modeled in Simulink at Volvo Car Corporation is both because the engineers are
typically well-versed in the tool for modelling purposes, but also because this automatically
allows evaluation of the requirements every time the entire system is simulated.

2.1 Signal Temporal Logic

The grammar of STL formulas is defined as

ϕ ∶∶= π
µ ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ □[a,b] ψ ∣ ϕ U[a,b]ψ ∣ □⋅ [a,b]ψ.

Here, π
µ

is an atomic predicate, and ϕ and ψ are STL formulas. The truth value of π
µ

is determined by the sign of a real-valued function µ. ∧ denotes logical and, □[a,b] is the
timed globally (or always) operator, U[a,b] is the timed until operator, and □⋅ [a,b] is the timed
historically (or past always) operator. We define logical or ϕ ∨ ψ as ¬(¬ϕ ∧ ¬ψ), the timed
eventually operator ◊[a,b]ϕ as ¬(□[a,b]¬ϕ), and the timed once operator ◊⋅ [a,b]ϕ as ¬(□⋅ [a,b]¬ϕ).
Similarly to earlier works [7], we define the validity of a formula ϕ with respect to the signal x
at time tk as

1
https://github.com/JohanEddeland/specTransformer

2
https://github.com/decyphir/ARCH20_ATwSS

268

https://github.com/JohanEddeland/specTransformer
https://github.com/decyphir/ARCH20_ATwSS


Industrial Temporal Logic Specifications Lidén Eddeland, Donzé, Miremadi and Åkesson
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Figure 1: An example of the requirement structure used in the benchmark. Each requirement
model contains one safety specification, here AT1 req, and one or more activation specifications,
here AT1 act.

(x, tk) ⊧ πµ ⇔ µ(xk) > 0

(x, tk) ⊧ ¬ϕ ⇔ ¬((x, tk) ⊧ ϕ)
(x, tk) ⊧ ϕ ∧ ψ ⇔ (x, tk) ⊧ ϕ ∧ (x, tk) ⊧ ψ
(x, tk) ⊧ ϕ ∨ ψ ⇔ (x, tk) ⊧ ϕ ∨ (x, tk) ⊧ ψ
(x, tk) ⊧ □[a,b]ϕ ⇔ ∀tk′ ∈ [tk + a, tk + b], (x, tk′) ⊧ ϕ
(x, tk) ⊧ ◊[a,b]ϕ ⇔ ∃tk′ ∈ [tk + a, tk + b], (x, tk′) ⊧ ϕ
(x, tk) ⊧ ϕ U[a,b]ψ ⇔ ∃tk′ ∈ [tk + a, tk + b] (x, tk′) ⊧ ψ

∧∀tk′′ ∈ [tk, tk′], (x, tk′′) ⊧ ϕ
(x, tk) ⊧ □⋅ [a,b]ϕ ⇔ ∀tk′ ∈ [tk − b, tk − a], (x, tk′) ⊧ ϕ
(x, tk) ⊧ ◊⋅ [a,b]ϕ ⇔ ∃tk′ ∈ [tk − b, tk − a], (x, tk′) ⊧ ϕ

2.2 Simple requirement model example

Each Simulink requirement model contains at least two outputs, where each of these outputs
is Boolean (either true or false) and corresponds to an STL formula. To be more specific, each
requirement model contains exactly one safety requirement and one or more activation require-
ments – this is inspired by how testing of requirements is performed at Volvo Car Corporation.
The safety requirement must hold at all times, meaning that the corresponding STL formula
is of the form ϕreq ∶= □ϕinnerreq . An activation requirement is supposed to give complemen-
tary information for a safety requirement by telling the user whether a specific requirement
has been tested or not (interpreted by the modeller of the requirement). This means that if a
given activation requirement is ever true during a simulation of the system, the requirement is
considered to be activated – hence, for falsification purposes it is desired to find input param-
eters that do not satisfy the following formula, ϕact ∶= ¬◊ϕ

inner
act (or equivalently formulated

ϕact ∶= □(¬ϕinneract )).
To clarify the basic structure of a Simulink requirement model, we show a small example.

The example is a modified version of φ
AT
1 which has been used in previous benchmarks [3], with

the addition of an activation specification. The Simulink implementation is shown in Figure 1.
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The interpretation of the safety specification is that the engine speed never reaches 120,
while the activation specification states that the requirement has been activated if the speed
ever goes above 100. The purpose of adding this activation specification is for example to
create regression testing suites – even though we may not be able to falsify each and every
safety specification, a good test suite should at least fulfill each activation specification. In
practice, this becomes a three-valued logic with the following cases (for a given test case).

1. If the safety specification is falsified, there is a fault in the system which should be rectified;

2. If the safety specification is satisfied and the activation specification is fulfilled, there is
no identified fault in the system, but the given test case is considered to have “activated”
the requirement and is therefore useful to include in a test suite; and

3. If the safety specification is satisfied and the activation specification is not fulfilled, the
given test case is of no particular interest when evaluating the given requirement.

For the example in Figure 1, assuming a simulation in the time range [0, T ] and with v

denoting the speed signal, the corresponding STL specifications are ϕ
AT1
req ∶= □[0,T ](v < 120)

and ϕ
AT1
act ∶= □[0,T ](¬(v > 100)). This means that a simulation corresponds to case 1 above

if the speed is ever greater than 120, the simulation corresponds to case 2 if the speed is ever
greater than 100 but never above 120, and the simulation corresponds to case 3 if the speed
is never greater than 100. Note that for this specific example, the activation specification is
always fulfilled whenever the safety specification is satisfied, however this is not always the case.
When the safety specification is falsified, it does not matter whether the activation specification
is fulfilled or not, since there exists a fault in the system which should be dealt with.

2.3 Requirement models in the benchmark

The requirement models presented in the benchmark contain more complex structures and many
more blocks than the example in Figure 1. The name of each requirement model is a three letter
abbreviation, e.g. ADA or BTL, which has no other meaning than to differentiate the different
models from each other. To be able to simulate the requirement models, there are many pa-
rameter values that need to be set (which are manifested in the models as values in “Constant”
blocks). An example of this can be seen in Figure 2, which shows an excerpt of the require-
ment model BTL from the benchmark. To be able to simulate the BTL requirement, there
needs to be values set to the variables BTL preconditionSpeedLim, BTL preconditionGear,
BTL preconditionSub1Value, and BTL preconditionSub1Value2.

It is important to note that the requirement models are not designed to make sense for
the particular model – there has been no attempt to interpret the benchmark requirements in
natural language. The point of the proposed benchmark is not to have a set of specifications
that the Automatic Transmission model should reasonably fulfill, but rather to have a set of
complicated requirements that can also have instances, i.e. parameter valuations, that make
the requirements difficult but possible to falsify. A further discussion of these instances can be
found in Section 3.
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Figure 2: An excerpt of the requirement model BTL in the benchmark. Specifically, what is
shown is the subsystem called Preconditions, which is a conjunction of conditions that need to be
fulfilled to both falsify the safety specification BTL req and satisfy the activation specifications
BTL act1, BTL act2.

3 Instance Tuning Method and Organization

As mentioned in Section 2.3, certain parameters need to have values set to be able to simulate the
different requirements in the benchmark. As there typically exists a large number of parameters
for each requirement model, there are many possible parameter combinations, each of which
will potentially yield different falsification rates.

For testing at Volvo Car Corporation, the satisfaction of all requirements is monitored
for each executed test case. If we wanted to consider the problem of falsification in a similar
fashion, it would correspond to including a conjunction of all the specifications derived from the
requirement models. However, we also note that there is no interaction between the different
requirement models in the benchmark, meaning that each specific parameter is part of exactly
one requirement model. As such, we could also consider the specifications corresponding to
a single requirement model to be its own falsification problem, meaning that the process of
falsifying all requirement models would be stated as many different falsification problems in
total.

3.1 Parameter instances

In the benchmark repository, we provide a base instance of parameter values that aims to yield
falsification rates above 0% and below 100% for each requirement, in 1100 simulations. In
this case, the falsification rates are calculated for a specific input parametrization, in order to
represent the input to the system with a discrete set of parameter values. More specifically, the
input throttle has 7 control points distributed evenly over the simulation time, while the input
brake has 3 control points distributed evenly over the simulation time. Each control point for
the throttle has a value in the range [0, 100], while each control point for the brake has a value
in the range [0, 325]. The simulation time is 30 seconds, and the input values are interpolated
between control points using MATLAB’s pchip setting.
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To calculate the falsification rate for a set of parameters, we sample parameters in two
different ways; by corner samples, and by pseudo-random samples. Corner samples are inputs
for which the control points only take extreme values. We also provide hard instances for
several of the specifications; for a hard instance, one or several requirement parameters have
been changed to make it more difficult to falsify the specification. Specifically, the changed
parameters yield zero or close-to-zero falsification rates, which means that the parameter set
can be used for a somewhat interesting falsification problem. Note that to get these falsification
rates, we ran 100 corner samples and 1000 pseudo-random samples using one specific seed. To
get more reliable falsification rates, one would need to repeat this procedure for many different
seeds, which is something we aim to do in the future.

3.2 Instance tuning method

To start with
3
, the parameters of all requirement models had values that were in respective

signals ranges. To clarify, consider a parameter speed parameter used to compare against
the signal speed, yielding a predicate speed > speed parameter. By running 100 simulations
using the stated input parametrization, we observed the minimum and maximum values of the
speed signal, and started with speed parameter having a value in this range. For temporal
parameters (such as a time horizon for a temporal operator), the minimum value was the
simulation step time, and the maximum value was chosen to make sure that the specification
could be monitored within the simulation time of the system.

This initialization process was repeated for all parameters, after which we could calculate
initial falsification rates for each requirement. Following this, we repeatedly simulated and
observed signal values in order to find out which parameters needed to be changed to get a
falsification rate above 0% and below 100% (ideally aiming for a rate between 1% and 10%).

4 Preliminary Results

In Table 1, we show statistics of the generated STL specifications, which indicate the relative
difference in complexity between the different specifications. The table shows the numbers of
operators, the nested temporal depth

4
, the average monitoring time when monitored by Breach

over 1000 simulations, and the falsification rates for the base and hard scenarios. The monitoring
time is measured on a computer with Intel Xeon E5 2.60GHz and 64 GB RAM. For this model,
each simulation takes 0.26 seconds, meaning that a majority of the total computational time
is spent monitoring STL formulas. Note that for some specifications, there exist several sets
of parameters for the hard scenario; in this case, only the falsification rate of one of those sets
are presented in the table. For other specifications, there currently exists no parameter set
for the hard scenario, something we aim to add in future versions of the benchmark. For the
specifications showing 0% falsification rate, it is as of yet unknown whether the specifications
are falsifiable using the given scenario and input parametrization.

3
Note that we do not detail the step of going from requirement models at Volvo Car Corporation to the

requirement models presented in the benchmark, since that could contain sensitive company information.
4
The nested temporal depth is defined as the maximum number of nested temporal operators in a formula.

For example, □[0,T ](v < 120) has a depth of 1, so has □[0,T ](v < 120)∧□[0,T ](rpm < 4500) but □[0,T ](◇v > 20)
has a depth of 2, etc.
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Table 1: Statistics of the generated STL specifications in the benchmark. For each specification
we show the number of operators, the nested temporal depth, the average monitoring time (when
monitored by Breach over 1000 simulations), and the falsification rates (FR) for both the base
and hard parameter sets described in Section 3.1. These falsification rates are calculated over
1100 simulations (100 corner samples and 1000 pseudo-random samples). We also include, in
parentheses, information about whether the specification was falsified by a corner sample (c),
a pseudo-random sample (r), or both (cr).

Specification #operators Temporal depth Time (s) Base FR Hard FR

AOT req 11 2 0.028 20.1% (cr) 0.18% (c)

AOT act 25 2 0.049 6.2% (cr) - (-)

AFE req 20 2 0.049 9.3% (r) 0.36% (r)

AFE act 7 1 0.024 8.6% (r) 0% (-)

ASL req 112 2 0.19 4.1% (cr) - (-)

ASL act 23 2 0.046 4.1% (r) 0.18% (r)

RFC req 233 4 0.40 5.8% (r) 0.18% (r)

RFC act 10 4 0.027 22.9% (cr) 0% (-)

ADA req 316 2 0.62 10.1% (cr) 0.09% (r)

ADA act 7 2 0.02 10.5% (r) 0.09% (r)

ADI req 896 4 2.00 7.9% (cr) - (-)

ADI act1 287 5 0.61 11.5% (r) - (-)

ADI act2 67 3 0.15 2.5% (cr) - (-)

ADI act3 17 2 0.038 34.2% (cr) - (-)

BTL req 1562 2 2.60 5.1% (cr) 0% (-)

BTL act1 191 2 0.33 4.5% (r) 0% (-)

BTL act2 191 2 0.33 4.5% (cr) 0% (-)

5 Conclusions

We presented a set of requirements expressed in STL for a standard automotive model, for the
purpose of benchmarking STL falsification and monitoring algorithms. This set complements
and differs from previous benchmarks in several ways. The requirements are directly inspired
by industrial specifications for large systems from Volvo Car Corporation, and their STL formu-
lations are typically larger and more complex. Efforts have been put in tuning the requirement
parameters so that the falsification problems are neither trivial nor seemingly impossible; the
tuning is still going on at the time of submission and future instances will be tracked with a
rigorous version control system for easier references and comparisons. The requirements were
treated in a mostly independent manner, however as mentioned in the text, in practice they are
checked together and do not all have the same function. So-called activation requirements act
as coverage criterion, in other words, they ”have” to be falsified for the testing to be deemed
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valid, whereas other requirements are actual safety requirements, i.e., falsification is indicative
of a design flaw. Another ongoing and future work is to devise efficient algorithms to treat the
set of specifications as a whole, taking into account this difference in function between safety
requirements and activation requirements.
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