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Low-Complexity Downlink Channel Estimation in
mmWave Multiple-Input Single-Output Systems
Alessio Fascista, Member, IEEE, Alessandro De Monte, Angelo Coluccia, Senior Member, IEEE, Henk

Wymeersch, Senior Member, IEEE, and Gonzalo Seco-Granados, Senior Member, IEEE

Abstract—This paper tackles the problem of channel estima-
tion in mmWave multiple-input single-output systems, where
users are equipped with single-antenna receivers. By leveraging
broadcast transmissions in the downlink channel, two novel low-
complexity estimation approaches are devised, able to operate
even in presence of a reduced number of transmit antennas or
limited bandwidth. Numerical results show that the proposed
algorithms provide accurate estimates of the channel parameters,
achieving at the same time about 50% complexity reduction
compared to existing approaches.

Index Terms—channel estimation, mmWave, MIMO, MISO,
downlink, 5G, cellular networks

I. INTRODUCTION

The use of multiple antennas in mobile cellular communi-
cations is one of the key enablers for the fifth generation (5G)
and beyond [1], [2]. mmWaves significantly shrink the antenna
array size and enable very narrow-beam spatial multiplexing
[3], [4]. Current systems are however asymmetric, with many
antennas at the base stations (BSs) and one or very few
antennas at the user equipments (UEs). This is evidenced by
the multiple-input multiple-output (MIMO) literature, where
also the single-antenna receiver setup, namely multiple-input
single-output (MISO), is very relevant [5]–[7].

The most common channel estimation approaches exploit
the uplink (UL) channel, which has the advantage of many
antennas and large computational capabilities at the BS side.
On the other hand, UL channel estimation requires dedicated
pilots per each UE, possibly leading to pilot contamination [8].
mmWave downlink (DL) channel estimation is more scalable
with the number of UEs, since the channel parameters of
multiple (potentially unlimited) UEs can be estimated through
broadcast signals once precoding matrices are set, with no
additional system overhead. This also provides timely esti-
mates of delays and angles, which is crucial for positioning
and mapping applications, among others [9], [10].

Different algorithms have been proposed based on the Com-
pressive Sensing (CS) [11], to exploit the sparsity of mmWave
channels. Bayesian learning has been also considered [12]. In
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[13], the use of the space-alternating generalized expectation-
maximization (SAGE) algorithm is proposed to reduce the
cost involved in the estimation of the whole multipath MIMO
channel. However, the estimation task is more challenging in
the MISO case: in fact, the angle of arrival (AOA) cannot
be estimated, and the angle of departure (AOD) need to be
determined from scalar data due to the lack spatial diversity.
Furthermore, the limited processing capabilities available at
the UE becomes a bottleneck, which calls for the need of
low-complexity estimators.

In [14] a cascade approach for the MISO scenario is
developed, in which the DL channel parameters, namely
AOD and delay, are estimated in two subsequent stages. In
particular, two separate 1D optimizations are performed: a
first one on a non-linear unstructured maximum likelihood
(UML) cost function for delay estimation, followed by a
second one on a 1D-ML cost function for AOD estimation.
This approach avoids the 2D optimization of the ML estimator,
which searches for the AOD-delay pair that maximizes the
compressed ML cost function after plugging the estimates of
complex channel gain and noise power. The method can attain
the Cramér-Rao lower bound (CRLB) for sufficient bandwidth;
otherwise, the first stage may provide an insufficiently accurate
delay estimate to the second stage, ultimately undermining the
performance of the whole procedure. Moreover, although the
full optimization of the optimal 2D-ML estimator is avoided,
still two separate 1D optimizations of highly non-linear cost
functions are involved, resulting in high complexity at the UE.

In this work, we provide two novel cascade estimation
approaches to overcome the limitations of [14]. In the first
one, a suitable reinterpretation of the received signal model
in the fast Fourier transform (FFT) domain is exploited to
directly obtain a delay estimate; the latter is subsequently
plugged into the optimal 2D-ML estimator (which reduces to
1D) to produce an AOD estimate. The second approach is a
cascade estimator that conversely starts with AOD estimation,
by elaborating on the unstructured estimation idea as in [14],
but following a completely different path. Then, instead of
plugging the obtained estimate into the 2D-ML estimator (to
finally estimate the delay), we propose for such a second stage
a low-complexity FFT-based estimator, thus avoiding one of
the two 1D non-linear optimizations.

Remarkably, the two proposed approaches exhibit good
estimation performance, even in presence of multipath propa-
gation and wideband channel effects such as the beam-squint,
and provide about 50% reduction in the computational burden
thanks to the suitably-designed FFT-based estimation steps.
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II. SIGNAL AND CHANNEL MODELS

A single BS at known position pBS = [0 0]T, equipped
with NBS antennas, transmits G orthogonal frequency division
multiplexing (OFDM) signals towards a single-antenna UE
at unknown position p = [px py]

T. Each OFDM signal is
transmitted at time g over each subcarrier n = 0, . . . , N − 1,
as zg[n] = Fg[n]xg[n], where xg[n] ∈ CM×1 is the vector of
the transmitted symbols (with power Pt = E

[
‖xg[n]‖2

]
) and

Fg[n] ∈ CNBS×M denotes the precoding matrix (either analog
or hybrid) applied at the transmit side [15], [16], whose entries
satisfy the total power constraint ‖Fg[n]‖F = 1 [17].

The general channel model consists of a line-of-sight (LOS)
path and P non-line-of-sight (NLOS) paths generated by local
scatterers or reflectors. The channel parameters for each path
include the AOD θi and the delay τi (accounting for the time-
of-flight and the clock synchronization offset). We denote by
i = 0 the LOS link, while i > 0 are NLOS paths. Assuming
DL communications at a frequency fc with bandwidth B, the
complex channel vector over each subcarrier n is given by

hT[n] = ΓT[n]AT
BS[n]. (1)

ABS[n]=[aBS(θ0)[n] · · ·aBS(θP )[n]] is the frequency-dependent
array response matrix, Γ[n] = [α0e

−j2πnτ0
NTs · · · αP e

−j2πnτP
NTs ]T

where αi = hi/
√
ρ
i
, with ρi denoting the path loss and hi the

complex channel gain of the i-th path, respectively. To formu-
late the channel estimation problem, we exploit the fact that,
under typical mmWave conditions, the channel is sparse and
all the paths are resolvable either in the time or space domains,
with negligible overlap among them. Therefore, the NLOS
paths can be identified and treated separately with respect to
the LOS [10], [18], and multipath parameter estimation can
be then reduced to single-path estimation, that is, the channel
vector given in (1) can be simplified to

hT[n] = αe
−j2πnτ
NTs aT

BS(θ)[n] (2)

with α
def
= α0, τ def

= τ0, and θ
def
= θ0 the sole LOS parameters.

This work aims at tackling the problem of DL channel estima-
tion (namely, estimation of θ and τ ) based on all the OFDM
signals received by the UE at each time instant g = 1, . . . , G
over each subcarrier n = 0, . . . , N − 1, i.e.,

yg[n] = h
T[n]zg[n] + νg[n] (3)

with νg[n] the additive circularly complex Gaussian noise with
zero mean and variance σ2.

III. LOW-COMPLEXITY CHANNEL ESTIMATION

In the following, we neglect the frequency dependency in
the array steering vector for the sake of mathematical tractabil-
ity1 (ABS[n] ≈ ABS). We will assess later in Sec. IV-B2 the sen-
sitivity of the designed algorithms to actual frequency-selective
channels. We also consider a uniform linear array (ULA) with
steering vector aBS(θ) = [1 ej

2π
λc
d sin θ · · · ej(NBS−1) 2π

λc
d sin θ]T.

1This is a typical assumption in practice since the associated beam-squint
effect is non-negligible only for very large bandwidths and array dimensions.

A. Delay-before-Angle (DbA) Estimator

In this section, we derive a two-stage low-complexity esti-
mator that exploits a reinterpretation of (3) in the FFT domain
to directly provide an estimate of the delay in the first stage,
followed by a single 1D search in the optimal 2D-ML cost
function to finally obtain an AOD estimate. In the following we
denote this approach as delay-before-angle (DbA) estimator.

1) FFT-based Estimation of Delay: By considering the
practical case in which the precoding matrices Fg[n] and the
data symbols xg[n] do not change across the different subcar-
riers n, the observation vectors yg = [yg[0] · · · yg[N − 1]]T,
g = 1, . . . , G, can be expressed in the more convenient form2

yg = lg(τ, θ) + νg (4)

where νg = [νg[0] · · · νg[N − 1]]T, and

lg(τ, θ) = pg(θ)s(τ) (5)

with pg(θ) = zTg aBS(θ) a complex scalar that do not change
over the different subcarriers n (since zg[n] = zg ∀n) and
s(τ) = [1 e

−j2πτ
NTs · · · e

−j2π(N−1)τ
NTs ]T is the sole vector depend-

ing on the unknown delay τ . To obtain a low-complexity
estimate of τ , we exploit the fact that the elements of lg(τ, θ)
in (5) can be interpreted as discrete samples of a complex
exponential with normalized frequency νo = − τ

NTs
. This

allows to estimate τ by searching for the dominant peak in
the FFT of yg, g = 1, . . . , G. By defining fg = FFT(yg) as
the FFT-transformed observations on NF points, we first seek
for the index of the maximum element in the cost function

k̂ = argmax
k

[
G∑
g=1

|fg[k]| : 0 ≤ k ≤ NF − 1

]
(6)

with |fg[k]| denoting the absolute value of the k-th element of
fg . Since the first NF /2 + 1 elements correspond to positive
values of the normalized frequency νo ∈ [0, 1/2], while the
remaining NF /2− 1 are associated to the negative part of the
spectrum, i.e., νo ∈ (−1/2, 0), the sought estimate is

τ̂FFT =

{
− k̂
NF

NTS if 0 ≤ k̂ ≤ NF /2(
1/2− k̂

NF

)
NTS if NF /2 + 1 ≤ k̂ ≤ NF − 1

.

(7)
This approach directly estimates the delay τ without requiring
knowledge of the AOD θ, as the corresponding terms pg(θ)
are constant over the different subcarriers, hence do not affect
the FFT-based step. Furthermore, the complexity of the FFT
peak search is far lower than the 1D optimization of the highly
non-linear cost function in the UML approach in [14].

2) 1D-ML Estimation of AOD: In the second stage, we plug
the above estimate τ̂FFT into the optimal 2D-ML estimator
derived in [14] (which then reduces to a 1D-ML) and solve it
for the unknown AOD by performing a single 1D optimization.
The value estimated through this procedure will be denoted as
θ̂1D-ML(τ̂FFT), to better highlight its dependency on τ̂FFT.

2The same approach can be applied when xg [n] = q[n]xg , with q[n] ∈ C;
to ease the notation, hereafter we consider the case of q[n] = 1 ∀n.
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B. Angle-before-Delay (AbD) Estimator
In this section, we derive a two-stage low-complexity chan-

nel estimator that leverages a proper unstructured transforma-
tion of (2) to estimate the AOD, followed by an FFT-based
estimation of the delay. Due to the order of the estimated
parameters, we call it angle-before-delay (AbD) estimator.

1) Unstructured ML-based Estimation of AOD: We start
by briefly recalling the unstructured transformation adopted in
[14], which will be useful for the subsequent derivations. By
stacking all the received signals from (3), we obtainy1...

yG

 = α

S(τ)Z
T
1

...
S(τ)ZT

G


︸ ︷︷ ︸

A(τ)∈CNG×NBS

aBS(θ) +

ν1...
νG

 (8)

where Zg = [zg[0] · · · zg[N − 1]] ∈ CNBS×N , and S(τ) =
diag (s(τ)) is a diagonal matrix with s(τ) as its diagonal
elements. By relaxing the dependency of (8) on the AOD θ
and using an unstructured model for b = αaBS(θ) ∈ CNBS×1

we can rewrite (8) in a more compact form as

y = A(τ)b+ ν (9)

where y = [yT
1 · · · yT

G]
T and ν = [νT

1 · · · νT
G]

T. The model
in (9) is used in [14] to obtain an UML estimator of τ .

In this paper, we take a different path and propose an
alternative decoupling of the dependencies of (2) on τ and
θ, which allows us to rewrite the received signal model asy1...

yG

 = α

Ψ1(θ)
...

ΨG(θ)


︸ ︷︷ ︸

Ψ(θ)∈CNG×N

s(τ) +

ν1...
νG

 (10)

where Ψg(θ) = diag(aT
BS(θ)Zg). By relaxing the dependency

of (10) on τ and using an unstructured model for the vector

t = αs(τ) ∈ CN×1 (11)

we can express (10) in the more compact form

y = Ψ(θ)t+ ν. (12)

Starting from this model, the UML estimator of θ is given by

θ̂UML = argmin
θ

[
min
t
‖y −Ψ(θ)t‖2

]
(13)

whose inner minimization is solved in closed-form as

t̂(θ) = (ΨH(θ)Ψ(θ))−1ΨH(θ)y. (14)

Interestingly, the proposed unstructured transformation can
avoid the inversion of the NG-dimensional matrix in (14), due
to the peculiar structure of Ψ(θ) which is a stack of diagonal
matrices; in fact, through some basic manipulations, (13) can
be more conveniently expressed as

θ̂UML = argmax
θ

yHΨ(θ)(ΨH(θ)Ψ(θ))−1ΨH(θ)y

= argmax
θ

∥∥∥(ΨH(θ)Ψ(θ))−1/2
G∑
g=1

ΨH
g (θ)yg

∥∥∥2
= argmax

θ
‖r(θ)‖2 (15)

where r(θ) = D(θ)
∑G
g=1Ψ

H
g (θ)yg , D(θ) =

diag(ξ
− 1

2
0 (θ), . . . , ξ

− 1
2

N−1(θ)), ξn(θ) =
∑G
g=1

∣∣aT
BS(θ)zg[n]

∣∣2 .
Eq. (15) yields the UML estimator of θ, which can be
implemented with a 1D search over a quantized interval3.

2) FFT-based Estimation of Delay: By recognizing the
interesting analogy between (11) and the peculiar structure
of the vectors in (5), the entries of the unstructured vector t
can be reinterpreted as discrete samples of a complex expo-
nential function having normalized frequency νo = − τ

NTS
.

Accordingly, an estimate of τ can be obtained by searching
for the normalized frequency ν̂o corresponding to the dominant
peak in the FFT of the vector t̂(θ̂UML) built by plugging the
AOD estimate provided by the UML in (15) back into (14).
Specifically, by defining f(θ̂UML) = FFT(t̂(θ̂UML)), we first
seek for the index corresponding to the maximum in f(θ̂UML)

k̂(θ̂UML) = argmax
k

[
|f(θ̂UML)[k]| : 0 ≤ k ≤ NF − 1

]
. (16)

Then, the index k̂(θ̂UML) can be mapped to the corresponding
estimate τ̂FFT(θ̂UML) according to (7).

IV. SIMULATION RESULTS

A. Simulation Setup

We consider a UE at [9 5]T [m], a carrier frequency fc = 60
GHz typical of mmWave communications, G = 10 OFDM
symbols, and N = 20 subcarriers [13]. The elements of the
precoding matrices Fg are generated as complex exponential
terms ejφ with random phases uniformly distributed in [0, 2π),
assuming M = NBS. The same applies to the transmitted
symbols, which for simplicity are also kept the same over
all the subcarriers. The Root Mean Squared Error (RMSE)
is adopted as metric to assess the estimation performance,
computed based on 2000 independent Monte Carlo trials.
For comparison, the performance provided by each individual
estimator (of either θ or τ parameters) in the two proposed
cascade approaches are reported. Moreover, it is shown the
performance of the optimal 2D-ML estimator from [14] imple-
mented using a gradient-based optimization, when initialized
with the pair (τ̂ , θ̂) obtained from the two-stage estimators.4

B. Results and Discussion

1) Analysis under Matched Conditions: We start by con-
sidering NBS = 64 antennas and bandwidth limited to B = 5
MHz. In Fig. 1, we show the evolution of the RMSEs on the
estimation of τ (reported in terms of distance as d = cτ )
and θ as a function of the SNR, also in comparison to the
theoretical lower bounds derived in [14]. As Fig. 1a shows,
the FFT-based estimator d̂FFT = cτ̂FFT (4, ref. Sec. III-A1)
of the DbA approach suffers from the lower time resolution
due to the limited signal bandwidth, and indeed exhibits larger
errors than the d̂FFT(θ̂UML) = cτ̂FFT(θ̂UML) (�, ref. Sec. III-B2)

3Notice that the computation of r(θ) involves only diagonal matrices, hence
can be very efficiently implemented via element-wise vector multiplications.

4Notice that, differently from a direct resolution of the 2D-ML estimation
problem which requires an exhaustive 2D grid search, the gradient-based
optimization can be efficiently performed in a short time, as it involves a
few iterations to obtain a solution starting from the initial point (τ̂ , θ̂).
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Fig. 1: RMSEs on d = cτ and θ estimation compared to the CRLBs
as a function of the SNR, for NBS = 64 and B = 5 MHz.

which instead benefits from a much more accurate estimate of
the AOD provided by the UML-based estimator θ̂UML in the
first stage of the AbD approach (3, ref. Sec. III-B1). Indeed,
as visible in Fig. 1b, the proposed UML estimator exhibits
very good performance already at SNR of 0 dB and, despite
its suboptimality, is able to attain the corresponding bound
starting from an SNR of about 5 dB. Oppositely, the larger
error of d̂FFT negatively impacts onto the performance of the
θ̂1D-ML(τ̂FFT) used in the second stage of the DbA approach
(O, ref. Sec. III-A2), despite the sufficiently high number of
available antennas for AOD estimation.

Fig. 1 also shows the improved performance that can be ob-
tained when the proposed estimators are used to initialize the
iterative (gradient-based) optimization of the optimal 2D-ML
estimator. Remarkably, the RMSEs for the initialization pair
(d̂FFT(θ̂UML), θ̂UML) (curves marked by × and +, respectively,
in Figs. 1a and 1b) quickly attains the theoretical bounds as
the SNR increases, so achieving the same accuracy of the
approach in [14], which however requires two separate one-
dimensional non-linear optimizations. Conversely, the RMSEs
for the initialization pair (d̂FFT, θ̂1D-ML(d̂FFT)) (curves marked
by ◦ and ∗, respectively, in Figs. 1a and 1b), although lower
than those of the plain estimators, are not able to attain the
bounds unless the SNR is significantly higher.

We now consider a different scenario with only NBS = 8
antennas but B = 50 MHz bandwidth. Fig. 2 shows that
considerations analogous to Fig. 1 can be made by exchanging
the role of the two proposed approaches. Specifically, best
performance are obtained by the d̂FFT (4) and subsequently by
the θ̂1D-ML(d̂FFT) (O), thanks to the larger available bandwidth:
in fact, the better accuracy in the FFT-based estimation of
the delay in the first stage can compensate for the reduced
spatial resolution in the second stage of the DbA approach
(due to the small number of antennas). For the same reason,
instead, θ̂UML (3) suffers in this scenario, as visible in Fig. 2b,
and negatively impacts on the performance of d̂FFT(θ̂UML) (�,
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(a) RMSE on the estimation of d = cτ .

−5 0 5 10 15
10−1

100

101

SNR [dB]

R
M
S
E
(θ̂
)

[d
eg

]

AbD: θ̂UML

DbA: θ̂1D−ML(d̂FFT )

AbD: θ̂ML(d̂FFT (θ̂UML), θ̂UML)

DbA: θ̂ML(d̂FFT , θ̂1D−ML(d̂FFT ))√
CRLB(θ)
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Fig. 2: RMSEs on d = cτ and θ estimation compared to the CRLBs
as a function of the SNR, for NBS = 8 and B = 50 MHz.

Fig. 2a) in the second stage of the AbD approach. Similarly,
all estimators improve when refined through iterations of the
optimal 2D-ML, but the relative ranking remains; indeed, the
initialization pair (d̂FFT, θ̂1D-ML(d̂FFT)) (◦ and ∗) quickly leads
to attaining the bounds already around 0 dB, while the pair
(d̂FFT(θ̂UML), θ̂UML) (× and +) requires at least 10 dB of SNR.

2) Analysis under Mismatched Conditions: We assess the
performance under different, gradually introduced mismatches
on the assumed model, representative of the main phenom-
ena found in mmWave communications. We compare our
approaches against the state-of-the-art method adopted in the
3GPP standard, known as grid-of-beams (GoB) [19]. The GoB
estimates the AOD by measuring the power of each received
beam. The beam associated to the maximum power is retained
as AOD estimate (denoted as θ̂MP) and is subsequently plugged
into the 2D-ML estimator to obtain an estimate of the delay.
The analysis is carried out by considering NBS = 64 and
B = 200 MHz, and an increased number of transmissions
G = NBS so that the GoB method can achieve its maximum
spatial resolution (while we recall that our approaches already
achieved a good accuracy with a much smaller G). The
performance are evaluated by considering another realistic
mmWave setup operating at fc = 38 GHz, which represents
the upper limit of the FR2 band used by 5G New Radio (NR).

We start by evaluating the beam-squint effect of frequency-
selective OFDM channels, i.e., the actual array response
is frequency-dependent while the estimators neglect such a
dependency at the design stage, a scenario labeled “beam-
squint, LOS-only”. The obtained results, represented by the
first two groups of bars in Fig. 3, reveal that the AbD exhibits
good robustness against this effect. To further challenge the
estimators, in a second scenario “beam-squint, multipath”
we consider the simultaneous presence of beam-squint and
multipath propagation. Specifically, we introduce an additional
NLOS path generated by a scatterer located at (unknown)
position [15 3]T [m], with |αi|2 = (λc/4π)

2σ2
RCS/(d1,id2,i)

2
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(a) RMSE on the estimation of d = cτ .

(b) RMSE on the estimation of θ.

Fig. 3: RMSEs on d = cτ and θ estimation compared to the GoB
approach in different mismatched scenarios, for SNR = 5 dB.

and σ2
RCS = 10 m2 radar cross section (to emulate a moderate

multipath propagation) and di = d1,i+d2,i = cτi [18]. Results
reported in the third group of bars in Fig. 3 demonstrate that
the proposed AbD algorithm is effective also in this scenario,
with only a slight performance degradation. Remarkably, the
AbD approach significantly outperforms the GoB method in all
the three considered scenarios, with a gap that becomes more
pronounced as the mismatches are progressively included.

3) Complexity Comparison: Asymptotically, the complex-
ity in performing the two 1D optimizations required by [14]
is O(QG(NNBSM +N2)), with Q the number of evaluation
points per dimension (delay or AOD), which is the same of the
two proposed approaches. However, the big-O notation hides
constants that significantly impact onto the actual computa-
tional cost. We thus compared the average runtimes normalized
by the overall average runtime of the cascade approach in [14].
It turns out that the complexity of the proposed algorithms is
dominated by either the first (UML estimation) stage in the
AbD or the second (1D-ML estimation) stage in the DbA,
since they involve a 1D search to optimize their respective
nonlinear cost functions. On the other hand, the FFT-based
estimation stages can be efficiently performed in less than 5%
out of the total execution time. The approach in [14] has the
highest complexity, being the two involved estimation stages
as complex as the sum between the first UML estimation stage
in the AbD and the second 1D-ML estimation stage in the
DbA. Overall, the proposed two-stage channel estimators saves
about 50% computational cost compared to [14].

V. CONCLUSIONS

The paper addressed the problem of delay and AOD estima-
tion in a mmWave MISO system. A first proposed approach
exploits a reinterpretation of the observations in the FFT
domain to directly estimate the delay, then plugged into the op-
timal 2D-ML estimator to finally obtain an AOD estimate, by
means of a single 1D search. The second approach leverages
a proper unstructured transformation of the channel model to
estimate the AOD, followed by an FFT-based estimation of the

delay. The proposed algorithms turn out to provide accurate
channel estimates and, remarkably, allow to save about 50% of
computational cost compared to state-of-the-art algorithms. As
future work, it would be worth investigating scenarios where
the beam-squint effect is dominant, namely massive number
of antennas combined with very broad bandwidths.
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