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Low Complexity Joint Impairment Mitigation of
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Yibo Wu, Student Member, IEEE, Ulf Gustavsson,
Alexandre Graell i Amat, Senior Member, IEEE, and Henk Wymeersch, Senior Member, IEEE

Abstract—Neural networks (NNs) for multiple hardware im-
pairments mitigation of a realistic direct conversion trans-
mitter are impractical due to high computational complexity.
We propose two methods to reduce the complexity without
significant performance penalty. First, propose a novel NN with
shortcut connections, referred to as shortcut real-valued time-
delay neural network (SVDEN), where trainable neuron-wise
shortcut connections are added between the input and output
layers. Second, we implement a NN pruning algorithm that
gradually removes connections corresponding to minimal weight
magnitudes in each layer. Simulation and experimental results
show that SVDEN with pruning achieves better performance for
compensating frequency-dependent quadrature imbalance and
power amplifier nonlinearity than other NN-based and Volterra-
based models, while requiring less or similar complexity.

I. INTRODUCTION

Radio frequency (RF) direct conversion transceivers suffer
from multiple hardware impairments due to analog hardware
imperfections [2] such as non-ideal digital-to-analog convert-
ers (DACs), nonlinear active lowpass filters (LPFs), imperfect
local oscillators (LOs), and nonlinear power amplifiers (PAs).
These impairments induce various signal distortions which de-
grade the quality of the transmitted signal, leading to reduced
performance in terms of throughput [3]. These impairments
can be mitigated separately by different algorithms, but sepa-
rate optimization of each algorithm makes their combination
not globally optimal.

PA nonlinearity is one of the major hardware impair-
ments [4]. In the frequency domain, PA nonlinearity materi-
alizes as in-band errors and out-of-band emissions due to in-
termodulation and harmonic products [5]. PAs further exhibit
memory effects during operation over large bandwidths [6],
i.e., past input signals have nonlinear effects on the instanta-
neous output of the PA. To linearize the PA, it is customary
to apply digital predistortion (DPD) [7], which compensates
for the signal distortion caused by the PA nonlinearity, so
that the cascade of the DPD and the PA is a linear system.
Quadrature (I/Q) imbalance is another major impairment [8],
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which commonly reflects as gain and phase mismatches,
where the gain mismatch is introduced by the gain difference
of DACs and LPFs between the in-phase (I) and quadrature
(Q) branches, and the phase mismatch is caused by the LO
imperfection during up- and down-conversions. Similar to
the PA, the I/Q imbalance introduces nonlinear distortions
with memory effects due to the nonlinear LPFs and DACs.
Separate impairment mitigation of the PA and I/Q modulator
has some shortcomings, as nonlinear mixing of the individual
effects occurs. While some methods have been proposed to
mitigate both impairments jointly, they suffer from either
limited performance or high computational complexity [9],
[10].

Several methods have been proposed to mitigate the I/Q
imbalance and PA nonlinearity: Volterra series-based [8], [9],
[11]–[16], NN-based [1], [10], [17]–[22], and finite impulse
response (FIR) filter-based [23], [24] methods. The works [8],
[23], [24] only focus on I/Q imbalance, while [11]–[13], [15],
[16], [25] propose simplified versions of Volterra series [26]
focusing only on the PA nonlinearity. Their performance is
limited when both impairments occur [9]. Joint impairment
mitigation of both the I/Q modulator and PA is investi-
gated in [9], which extends the parallel Hammerstein (PH)
method [11] by the FIR I/Q imbalance model so that the
extended PH allows to jointly mitigate both I/Q modulator
and PA impairments. Its performance, however, is limited
for highly nonlinear PAs and I/Q modulators due to the
simplification of the Volterra series and the linearity of FIR fil-
ters. All above mentioned Volterra-based models can improve
performance by increasing the nonlinear order and memory
length, but at the expense of an exponentially increasing
complexity, which limits their utilization in practice [14].

As an alternative to Volterra-based methods, NNs for I/Q-
PA impairments mitigation are studied in [1], [10], [17]–[22].
Among them, the multilayer perceptron (MLP) is mostly cho-
sen due to easy deployment and training. Based on the MLP,
the real-valued time-delay neural network (RVTDNN) was
proposed for PA behavioral modeling [17]. It allows to learn
nonlinearities with memory effects by feeding real-valued
I and Q components of the original complex-valued signal
with time-delays. Various variants of the RVTDNN have been
later proposed [1], [10], [19]–[22]. The works [1], [19], [20]
only focus on the PA nonlinearity, while [10], [21] and [22]
consider both frequency-flat I/Q imbalance and PA nonlin-
earity in single-input single-output (SISO) and multiple-input
multiple-output (MIMO) transmitters, respectively. Specifi-
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cally, our recent work [1] combines residual learning with
RVTDNN, which is demonstrated to improve performance
for PA nonlinearity mitigation as well as reduce complexity
compared with other RVTDNN variants. Similar performance
improvements of using residual learning NNs are also shown
in [27] for DPD, and [28] for compensating nonlinearities of a
fiber-optic link. None of these NN-based models consider the
mitigation of nonlinear frequency-dependent I/Q imbalance,
which is considerable in practice [8]. More importantly, the
high-complexity problem of NN-based models is not tackled
except in our previous work [1], which limits their usages in
practice.

In this paper, we investigate the performance and complex-
ity of impairment mitigation models for the direct conversion
transceiver with multiple hardware impairments. Particularly,
we consider the joint mitigation of nonlinear frequency-
dependent I/Q imbalance and PA nonlinearity. Our contribu-
tions are summarized as follows:
• We propose a shortcut connection NN based on the

RVTDNN [17], referred to as shortcut real-valued time-
delay neural network (SVDEN), to compensate for signal
distortions caused by multiple hardware impairments,
including PA nonlinearity and nonlinear frequency-
dependent I/Q imbalance. Experimental results show that
SVDEN yields better performance compared to state-
of-the-art methods, while simultaneously exhibiting less
complexity.

• We find that during the training of SVDEN, neurons in
the first hidden layer fed by shorter lag input signals con-
tribute more to the output with larger weight magnitudes.

• We propose and analyze a NN connection pruning algo-
rithm to reduce complexity. Unimportant neural connec-
tions, i.e., those with weights with small magnitude, are
gradually removed during the pruning process. Results
show that pruning allows SVDEN to achieve better
mitigation performance with less complexity.

• We evaluate the mitigation performance of different
methods for a large complexity range. Experimental
results illustrate that SVDEN with proper pruning factor
performs the best over all complexity levels.

This paper extends [1] by generalizing to a multiple hardware
impairments system including the PA and I/Q modulator.
The weighted shortcut connections and pruning algorithm are
novel.

II. SYSTEM MODEL

The block diagram of a direct conversion transmitter is
shown in Fig. 1. The hardware impairments of the DACs,
LPFs, LO, and the PA introduce I/Q imbalance and PA nonlin-
earity, which the DPD placed before the hardware components
tries to compensate. We now describe I/Q imbalance, PA
nonlinearity, and DPD in detail.

A. I/Q Imbalance

As shown in Fig. 1, considering a discrete-time baseband
signal x(n) to be modulated by the I/Q modulator, its real

and imaginal parts, xI(n) and xQ(n) are sent to the I
and Q branches of the modulator, respectively. We consider
both wideband and frequency-dependent I/Q imbalances. The
wideband I/Q imbalance is due to memoryless nonlinearities
of non-ideal DACs caused by quantization noise and clipping,
while the frequency-dependent I/Q imbalance is due to non-
linearities with memory effects of imperfect and non-equal
LPFs. The combination of DAC and LPF is represented by
the nonlinear function fI : RL1+1 → R and fQ : RL1+1 → R
for the I and Q branches, respectively, where L1 is the memory
length. Denote the output of the DAC-LPF for the I and Q
branches as sI(n) and sQ(n), respectively. Their input-output
relations can be expressed as

sI(n) = fI(xI(n), . . . , xI(n− L1)) = fI(x
L1

I ), (1)

sQ(n) = fQ(xQ(n), . . . , xQ(n− L1)) = fQ(xL1

Q ), (2)

where xL1

I = [xI(n), . . . , xI(n − L1)]T, and xL1

Q =

[xQ(n), . . . , xQ(n− L1)]T.
The DAC-LPF outputs are up-converted by mixers, where a

phase imbalance φ is introduced, caused by LO imperfection.
The output of the I/Q modulator is

z(n) = zI(n) + zQ(n), (3)

where zI(n) = sI(n) − sin(φ)sQ(n) and zQ(n) =
cos(φ)sQ(n). Equation (3) can be rewritten as

z(n) = sI(n)− sin(φ)sQ(n) +  cos(φ)sQ(n)

= sI(n) + eφsQ(n)

= fI(x
L1

I ) + eφfQ(xL1

Q ), (4)

Due to the difference between DACs and LPFs of the I and
Q branches, fI and fQ present different nonlinearities and
memory effects, which leads to I/Q imbalances with both
frequency-independent and frequency-dependent components.
For ease of notation (4), we use a single function fIQ :
CL1+1 → C with memory length L1 to represent the I/Q
modulator system, so (4) can be rewritten as

z(n) = fIQ(x(n), . . . , x(n− L1)) = fIQ(xL1), (5)

where xL1 = [x(n), . . . , x(n − L1)]T. Note that for an ideal
I/Q modulator φ = 0, L1 = 0, and z(n) = x(n).

B. PA Nonlinearity

The modulated signal z(n) is amplified by the PA, which
behaves as a nonlinear system with memory effects, i.e.,
the PA output at any time instant depends on the current
instantaneous input and previous inputs. Memory effects are
mainly due to the frequency-dependent behavior of the PA
and thus more considerable for wideband signals. We define
the PA as a function fPA : CL2+1 → C with input z(n) and
output y(n), and memory length L2,

y(n) = fPA(z(n), . . . , z(n− L2)) = fPA(zL2), (6)

where zL2 = [z(n), . . . , z(n−L2)]T. For an ideal PA, L2 = 0
and y(n) = Gz(n), G being the PA gain.
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Fig. 1: Block diagram of the DPD-I/Q-PA system. The DPD block compensates for signal distortions caused by multiple hardware impairments in the direct
conversion transmitter including non-ideal DACs, nonlinear LPFs, imperfect LO, and nonlinear PA.

C. Digital Predistortion
The DPD is represented by the function fDPD : CL3+1 → C

with memory length L3 and input signal u(n),

x(n) = fDPD(u(n), . . . , u(n− L3)) = fDPD(uL3), (7)

where uL3 = [u(n), . . . , u(n− L3)]T.
Substituting (5) into (6), we can rewrite y(n) as

y(n) =fPA(fIQ(xL1), . . . , fIQ(xL1

n−L2
))

=fIQ-PA(x(n), . . . , x(n− L1 − L2))

=fIQ-PA(xL1+L2), (8)

where the function fIQ-PA : CL1+L2+1 → C represents the
I/Q-PA system. The system resulting from the cascade of the
I/Q modulator and the PA has memory length (L1 + L2).

The input-output relation of the whole system is obtained
by substituting (7) into (8) as

y(n) =fIQ-PA(fDPD(uL3
n ), . . . , fDPD(uL3

n−L1−L2
))

=fDPD-IQ-PA(uL1+L2+L3), (9)

where the function fDPD-IQ-PA ∈ CL1+L2+L3 → C denotes the
DPD-I/Q-PA system with memory length (L1 + L2 + L3).

Ideally, the DPD would make the cascade DPD-I/Q-PA
linear, in which case (9) would reduce to a linear function.
Unfortunately, this is infeasible in practice due to the presence
of hardware impairments such as PA clipping and thermal
noise, which can not be compensated for. DPD methods
aim, therefore, to make the DPD-I/Q-PA system as linear
as possible by minimizing the mean squared error (MSE)
between the PA output y(n) and DPD input u(n),

f̂DPD = arg min
fDPD

E[|fDPD-IQ-PA(uL1+L2+L3)− u(n)|2], (10)

where E[·] denotes expectation.

Example (I/Q imbalance). If we only consider frequency-
independent I/Q imbalance introduced by a phase imbalance
φ and ignore nonlinearities, memory effects, and the PA gain
in the I/Q-PA system, fIQ-PA reduces to a linear function as

y(n) = xI(n)− sin(φ)xQ(n) +  cos(φ)xQ(n),

and its inverse, f−1
IQ-PA, can be explicitly calculated as

x(n) = yI(n) +
sin(φ)

cosφ
yQ(n) + 

1

cos(φ)
yQ(n).

Predistorter
fθDPD

IQ
Modulator
fIQ

−

PA
fPA

Postdistorter
fθDPD

u(n) x(n) z(n) y(n)

Feedback

x̂(n)

Copy parameters

Postdistorter
f̂DPD ≈ f−1

IQ-PA

Predistorter
fDPD

Fig. 2: Block diagram of the ILA. To learn the inverse behavior of the I/Q-PA
system, f−1

IQ-PA, the postdistorter is learned by minimizing the error between
its output, x̂(n), and the input of the IQ modulator, x(n). The learned
postdistorter is then utilized as the predistorter.

III. PRELIMINARIES

A. DPD-parameter Identification by ILA

In practice, estimating the parameters of the DPD function
fDPD through (10) is troublesome as the I/Q-PA system is gen-
erally a combination of black boxes, i.e., unknown fIQ-PA. The
direct learning architecture (DLA) [29] solves this problem by
approximating fIQ-PA as a differential model, which allows
to iteratively identify DPD parameters through a gradient-
based method. However, the accuracy of the identified DPD is
seriously affected by the accuracy of the approximated fIQ-PA,
and the identification process of DLA is highly complex due
to numerous updating iterations.

Instead, the indirect learning architecture (ILA) [26] indi-
rectly estimates the DPD parameters by learning the inverse
behavior of the I/Q-PA system, i.e., f−1

IQ-PA, referred to as
the postdistorter, which is then used as the predistorter for
DPD [30]. The block diagram of the ILA is depicted in
Fig. 2. The parameters of the postdistorter are optimized
by minimizing the MSE between the postdistorter output
signal, x̂(n), and the IQ modulator input signal, x(n). The
optimization problem becomes

f̂DPD = arg min
f−1

IQ-PA

E[|f−1
IQ-PA(yL1+L2)− x(n)|2], (11)

where yL1+L2 = [y(n), ..., y(n−L1−L2)]T. ILA is the most
used identification method due to simple implementation and
excellent performance [31]. Therefore, we consider ILA as
the identification method for DPD in this paper.
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B. Shortcut Connections

Shortcut connections for NNs have been widely used to ad-
dress vanishing/exploding gradients for deep networks [32]–
[34]. Consider a stack of NN layers without shortcut con-
nections to fit an underlying mapping f(·) with input x and
output y, i.e., y = f(x). Adding shortcut connections allows
the input of the first layer, x, to bypass several layers and
directly contribute to the output of the last layer, y, with
matrix weight W . This input-output relation of the shortcut
network can be expressed as

y = Wx︸︷︷︸
fshort(x)

+ f(x)−Wx︸ ︷︷ ︸
fremain(x)

, (12)

where we refer to the shortcut component Wx as the shortcut
function, denoted by fshort, and the remaining component
f(x)−Wx as the remaining function, denoted by fremain(x).

Many variants of shortcut connections have been stud-
ied [27], [28], [32]–[34]. Works [27], [28] considered an
identity mapping between the network input and output layers,
while the authors in [32] used a similar identity mapping for
intermediate layers. These works reduce W to an identity
matrix or a linear projection matrix for matching dimension.
In this case, (12) corresponds to residual learning, and the
corresponding NN is known as a residual network. Sim-
ilarly, [33] proposed shortcut connections for intermediate
layers with two gate parameters that control both fshort and
fremain to allow flexible residual learning, where W reduces to
a diagonal matrix for gating. The work [34] used the inception
layer consisting of a shortcut branch and other deep learning
branches.

IV. SHORTCUT NEURAL NETWORKS FOR DPD

In this section, we introduce the proposed SVDEN to
mitigate impairments of the I/Q-PA system and NN pruning
to reduce computational complexity.

A. Shortcut Connections for I/Q-PA System

Using the ILA, the postdistorter learns the inverse behavior
of the IQ-PA system, i.e., f−1

IQ-PA. We apply the shortcut
connection to f−1

IQ-PA, in which case f−1
IQ-PA is decomposed into

a linear and a nonlinear part. Consider f−1
IQ-PA as the underlying

mapping f in (12) for a NN-based postdistorter to learn.
Considering shortcut connections, the mapping f to be fitted
can be reformulated as

x(n) = W sy
L1+L2 + f−1

IQ-PA(yL1+L2)−W sy
L1+L2 , (13)

where W s denotes the complex-valued shortcut matrix weight
and (13) is complex-valued.

For the choice of W s, we propose to only bypass the
memoryless part of yL1+L2 , i.e., shortcut connecting y(n), in
which case W s reduces to a complex scalar ws. This choice is
substantiated by practical considerations of the inverse of the
I/Q-PA system, in which case only the linear relation between
y(n) and x(n) is directly passed. This linear input-output
relation exists in many other behavioral models such as the
memory polynomial model, where this relation can be found

by the first order polynomial with memoryless input [13, Eq.
(19)].

Substituting the reduced shortcut weight ws into (13), we
have

x(n) = wsy(n)︸ ︷︷ ︸
f−1

short,IQ-PA(y(n))

+ f−1
IQ-PA(yL1+L2)− wsy(n)︸ ︷︷ ︸

f−1
remain,IQ-PA(yL1+L2 )

, (14)

where f−1
short,IQ-PA and f−1

remain,IQ-PA denote the shortcut and
remaining functions for the inverse of the I/Q-PA system
f−1

IQ-PA.
With shortcut connections, learning the original unknown

f−1
IQ-PA reduces to learning the remaining nonlinear behavior
f−1

remain,IQ-PA. We remark that the use of shortcut connections
is different from the residual learning in [32], as we only
extract a specific part of the input signal, i.e., the current input
signal y(n), instead of the whole input sequence. Note that
the remaining function f−1

remain,IQ-PA has a physical meaning:
it represents the remaining linear and nonlinear behaviors of
the inverse of the I/Q-PA system (whereas the residual func-
tion [32] does not). We only apply the shortcut connections
between the input and output of the network, whereas the
work [32] uses it between several intermediate layers.

Example (I/Q imbalance). Considering only phase imbalance
as in (II-C) and (II-C), we can calculate ws by setting the right
hand side of (II-C) equal to wsy(n) as

ws =
1 + sin(φ) + cos(φ)

2 cos(φ)
+ 

1− sin(φ)− cos(φ)

2 cos(φ)
. (15)

Similarly, considering no hardware impairments in the I/Q-
PA system and ignoring the PA gain would lead to ws = 1.
These values of ws can be used for parameter initialization
depending on the prior knowledge of the I/Q-PA system.

B. SVDEN Architecture

Based on the MLP, we propose a novel NN by considering
shortcut connections (14) for the inverse of the I/Q-PA system,
referred to as SVDEN, and Fig. 3 shows the block diagram of
SVDEN with arbitrary connections pruned by the NN pruning
algorithm (dotted lines), which is described in Section IV-C.
SVDEN consists of K fully connected layers with (K − 2)
hidden layers. The number of neurons in layer k is denoted by
Dk. The input vector of layer k is denoted by sk ∈ RDk−1 for
k > 1. The input and output vectors of the input and output
layers are s1 and sK+1. Depending on the use of SVDEN as
the postdistorter for parameter estimation or the predistorter
for DPD deployment, the input-output of SVDEN will be
interchanged. As shown in Fig. 2, during the DPD parameter
estimation, y(n) corresponds to s1 and x(n) corresponds
sK+1, and vice versa when SVDEN is deployed as DPD.

Define a complex-valued signal with sample sin(n) =
sI

in(n) + sQ
in(n) at time instant n as the input of SVDEN.

The real-valued input vector s1 is formed by concatenating
the current and previous time instants of the input signal,

s1 = [sI
in(n), sQ

in(n), . . . , sI
in(n−M), sQ

in(n−M)]T, (16)
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Fig. 3: Architecture of the proposed SVDEN with arbitrary connections
being pruned. Dotted and solid lines between neurons represents pruned
and remained connections. Fed by the real-valued I and Q components of
the current and historical time instant signals, SVDEN returns estimations
of the real-valued I and Q components of the current time instant output
signal. When using ILA to estimate DPD parameters, sin(n) = y(n) and
sout(n) = x(n).

where M denotes the number of time delays for the input
signal. The time-delayed inputs allow SVDEN to capture the
memory effects of the transmitter, and separating the real-
valued signals allows the use of a simple real-valued training
algorithm. In total, the number of neurons for the input layer
is D1 = (2M + 2).

We denote the weight matrix that connects layer k− 1 and
k by W k ∈ RDk×Dk−1 , for k > 1, the jth column weight
vector of W k by [W k]j ∈ RDk , and the corresponding bias
vector by bk ∈ RDk . For k > 1, layers k − 1 and k are fully
connected as

sk+1 = σ(W ksk + bk), (17)

where σ denotes the element-wise activation function. To
output a full range of values, the output layer is a linear layer,
i.e., function σ for the output layer is an identity mapping
function, with number of neurons DK = 2 corresponding to
the I and Q output signals.

The shortcut connections in (14) are implemented in SV-
DEN by weighted shortcut connections between the instanta-
neous input and output signals as

f−1
short,IQ-PA = W̃ s[s

I
in(n), sQ

in(n)]T, (18)

where the trainable weight matrix W̃ s ∈ R2×2 corresponds to
the complex-valued ws in (14). Without any prior knowledge
of the I/Q-PA system impairments, we can initialize W̃ s as an
identity matrix I ∈ R2×2 since ws = 1. Assuming we know
a prior, the phase imbalance φ, of the I/Q-PA system, we can
initialize

W̃ s =

[
1 sinφ/ cosφ
0 1/ cosφ

]
(19)

with ws given in (15). The shortcut connections are shown
by red lines in Fig. 3. The remaining function in (14) is

Algorithm 1 : Magnitude-based pruning for layer k.
Input: Total training step N . Pruning interval ∆N .

1: for n = 1→ N do
2: if n/∆N = integer then
3: Calculate ηn using (23)
4: Calculate Np using (24)
5: Zero Np weights of smaller magnitude in Wk

6: Zero the corresponding Np masks in Mk

7: else
8: Update weights in W k with non-zero masks via

back-propagation
9: end if

10: end for
11: Remove Mk

implemented by the hidden layers of SVDEN. Thus, the
output of the output layer can be expressed as

ŝout , sK+1 = W̃ s[s
I
in(n), sQ

in(n)]T︸ ︷︷ ︸
f−1

short,IQ-PA

+WKsK + bK︸ ︷︷ ︸
f−1

remain,IQ-PA

, (20)

where ŝout ∈ R2 consists of the I and Q output signal
estimations ŝI

out(n) and ŝQ
out(n) of the complex-valued output

signal sout(n) at time instant n, respectively.
Denote all weight matrices and bias vectors as W̌ =

{W 1, . . . ,WK , W̃ s} and b̌ = {b1, . . . , bK}. W̌ and b̌ can
be learned through gradient descent by minimizing the MSE
between the estimation ŝout and observation sout,

(W̌ , b̌) = arg min
W̌ ,b̌

E[|sout − ŝout|2]. (21)

C. Neural Network Pruning

NNs have been shown to achieve good performance in
many tasks. However, the high computation cost makes the
deployment of NNs challenging in resource-constrained sce-
narios where the resource overhead for each chain, and thus
for each DPD, is limited. Hence, it is crucial to reduce the
computation cost of NNs for DPD.

To reduce the computational cost of NNs for inference,
one popular technique that has been studied in recent years
is NN pruning [35]–[38], which sets small valued weights
to zero and removes corresponding connections. The result-
ing network is commonly known as sparse NN, where the
sparsity, η ∈ [0, 1], is defined as the proportion of NN
weights that are zero valued. With pruning, the weight matrix
becomes sparse, which brings two main practical benefits: (i)
sparse NNs can be compressed to use less storage [35], and
(ii) the resulting sparse matrix-vector multiplication can be
accelerated by specialized hardware [39]–[42].

We apply the pruning method in [37] to increase the sparsity
of a pre-trained SVDEN. This pruning method is a variant
of the magnitude-based weight pruning scheme that prunes
less important weights according to their magnitude. Pruning
works on each layer by adding a binary mask with the same
size as the layer’s weight matrix, in which a zero indicates
that the weight is pruned. Let Mk ∈ RDk×Dk−1 denote the
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binary mask matrix of layer k. The connection between layer
(k − 1) and k in (17) with pruning can be rewritten as

sk+1 = σ((Mk �W k)sk + bk), (22)

where � denotes the Hadamard product operator. Note that
shortcut connections in SVDEN are not pruned so as to keep
the shortcut function f IQ-PA

short always active.
Given a total number of training steps N , weights are

pruned every ∆N steps, referred to as pruning process.
Denote the sparsity η at step n as ηn, which is gradually
increased to the desired sparsity ηd by [37]

ηn = ηd − ηd

(
1− bn/∆Nc

N

)3

. (23)

The intuition behind (23) is to prune rapidly at the beginning
and gradually prune less weights when the sparsity grows
high. After each pruning step, non-pruned weights are re-
trained for N − 1 training steps, referred to as retraining
process, to alleviate the loss caused by pruning.

The pruning for layer k of SVDEN is in Algorithm 1.
During each pruning step, ηn is calculated using (23). To
meet ηn for the layer with a total number of weights Nw,
the number of weights Np needed to be pruned is calculated
by

Np = Nw × (1− ηn). (24)

Then, weights in W k are sorted by magnitudes, and the
Np weights of smaller magnitude are masked to zero by
setting the corresponding values in Mk to zero. During
each retraining step, weights in W k are updated through
N − 1 back-propagation steps. Once pruning is done, Mk

is removed.

D. Computational Complexity

There are various ways to measure the complexity of
an algorithm, such as the Bachmann-Landau measure O(·),
running time, number of parameters, and number of float-
ing point operationss (FLOPs). While the Bachmann-Landau
measure describes the asymptotic complexity of the algorithm,
it is not accurate enough for the use of DPD in practice.
The running time for different DPD models highly depends
on both the software and hardware setups and is not a
reproducible measure. For instance, graphic processing units
(GPUs) can offer an order of magnitude improvement in
accelerating NN computation. The number of parameters has
been widely used to measure the complexity of Volterra series-
based models because it also reflects the number of memories
for hardware implementation [14]. However, it is still an
approximation of the true computational complexity, as it does
not account for any nonlinear operations in the algorithm. In
contrast, the number of FLOPs is a commonly used measure
that can accurately measure every addition, subtraction, and
multiplication operation, which are the dominating operations
for both Volterra series-based models and NNs. Hence, the
number of FLOPs has been widely utilized to measure com-
putational complexity for Volterra series-based models [14]–
[16] and various types of NNs [35]–[42]. When it comes to the

hardware implementing of DPD, the number of FLOPs is also
usually used to measure the throughput [14]. In this paper, we
therefore consider the number of FLOPs as an approximate
measure of the complexity as in [14]–[16], [35]–[42].

We focus on the running complexity [14] of the DPD,
which is defined as the number of calculations required for
the inference of each output sample. Unlike the training
complexity for estimating DPD parameters that is usually done
off-line, the running complexity is a real-time cost, which
heavily limits the system overhead. It can be quantified by
the number of multiplications and additions operated, where
each real-valued multiplication or addition accounts for one
FLOP [14, Table. I].

By applying pruning to NNs, both the storage require-
ment and the computational cost are accordingly reduced
as the network sparsity increases, where the computational
cost is customarily represented by the remaining number of
FLOPs, see, e.g., [35]–[38]. Ideally, multiplications with zero-
valued weights can be skipped [38], which can reduce the
computation cost considerably as multiplications dominate
the computational cost. In practice, this computational cost
improvement can be realized by specialized hardware [39]–
[42]. Specifically, the designed chip in [39] implements sparse
vector-matrix multiplication and achieves substantial speedups
and energy savings compared to a non-sparse NN running on
a central processing unit (CPU) and a GPU. We measure
the computational cost of SVDEN in terms of the number of
FLOPs as1

CSVDEN = 2(1− ηd)

K−1∑
k=1

DkDk+1 + 8, (25)

where the factor 8 corresponds to the number of FLOPs
introduced by the shortcut connections, and the number of
FLOPs decreases accordingly with the desired network spar-
sity ηd. The computational complexity of other RVTDNN-
based methods can be calculated in a similar way.

V. EXPERIMENTAL RESULTS

A. Setup

In this section, we describe the measurement setup of the
I/Q-PA system, two performance metrics, and detailed training
settings.

1) Measurement Setup: The measurement setup is based
on the RF WebLab [43], which can be remotely accessed
at www.dpdcompetition.com. Its block diagram is shown in
Fig. 4. The block MATLAB includes all digital signal process-
ing steps such as the DPD identification, DPD deployment,
and artificial I/Q imbalance generation. In the transmission
stage, digital signals generated by MATLAB are converted
into analog signals by a vector signal transceiver (VST) PXIe-
5646R VST, and then transmitted to the Gallium Nitride PA
DUT (Cree CGH4006-TB) with a 40 dB linear driver. In
the receiving stage, through a 30 dB attenuator, analog PA

1Depending on the hardware platform, the actual number of FLOPs may
vary. For example, it is larger on CPUs and GPUs while it can be much
smaller on specialized chips [39]–[42].
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output signals are collected by the VST and then sent back to
MATLAB.

An artificial I/Q imbalance is added before sending the
signal to the RF WebLab. The gain imbalance is 1 dB, and the
phase imbalance is φ = 8◦. Frequency-dependent I/Q imbal-
ance is introduced using two 5-th order FIR lowpass elliptic
filters in the I and Q branches with different filter parameters:
minimum stopband attenuation of 60 dB (I) and 50 dB (Q),
the peak-to-peak ripples of 0.1 dB (I) and 0.12 dB (Q), the
normalized passband edge frequencies of 0.8 (I) and 0.85 (Q).
For more details of the frequency response difference between
these two filters, refer to [44]. The measured saturation point
and measurement noise variance of the PA in RF WebLab
are 24.1 V (≈ 37.6 dBm of a 50 Ω impedance) and 0.0032,
respectively. The output signal of the PA has an average
power of 24.93 dBm, which corresponds to a theoretical
normalized mean square error (NMSE) minimum [45] of
−39.56 dB and a simulated adjacent channel power ratio
(ACPR) minimum [45] of −49.92 dBc.

2) Metrics: We measure performance in terms of NMSE
and ACPR. The NMSE is defined as

NMSE = 10 log10

E[|y(n)− u(n)|2]

E[|u(n)|2]
, (26)

and gives the all-band error in time-domain between the PA
output signal and the DPD input signal. The ACPR is defined
as

ACPR = 10 log10

∫
adj. |Y (f)|2df∫
ch. |Y (f)|2df

, (27)

where Y (f) denotes the Fourier transform of the PA output
signal. The integration in the numerator and denominator is
performed over one adjacent channel (the one with larger
integration between the lower and upper adjacent channel)
and the main channel, respectively. The ACPR evaluates the
amount of out-of-band emission.

3) Benchmarks: All models use the ILA for DPD identifi-
cation. For a fair comparison, we consider the extended PH [9]
because it is designed to jointly mitigate frequency-dependent
I/Q imbalance and PA nonlinearity. Other referred Volterra-
based models [11]–[13] fail to address both impairments.
The extended PH [9] uses the least squares algorithm for
parameter identification, and its computation complexity is
given in Appendix A.

We also consider four other RVTDNN-based models for
comparison, namely RVTDNN [17], real-valued focused
time-delay neural network (RVFTDNN) [21], augmented
real-valued time-delay neural network (ARVTDNN) [10],
and residual real-valued time-delay neural network
(R2TDNN) [1]. All RVTDNN-based models including
the proposed SVDEN use the ReLU activation function,
the MSE loss function (20), and the Adam optimizer [46]
for stochastic gradient descent with a fixed learning rate
0.001 and a mini-batch size of 256. All weights and biases
are randomly initialized, while the shortcut weight matrix
W s in SVDEN is initialized as in (19) given φ = 8◦. All
NN-based models are trained until convergence and then
tested by independent data. The training and testing data

MATLAB VS
Transceiver Driver PA

Attenuator

Transmit

Receive

Fig. 4: Block diagram of the RF WebLab. Digital signals are transmitted and
received by the block of MATLAB.

TABLE I: Number of neurons Dk in each hidden layer for RVTDNN,
RVFTDNN, ARVTDNN, R2TDNN, and the proposed SVDEN. Note that
K = 5 represents three hidden layers plus the input and output layers, and
D2 = D3 = D4. Varying Dk changes the number of FLOPs. Each value
of Dk corresponds to a marker in Fig. 5 and Fig. 6.

K Varied Dk

RVTDNN [17] 5 {2, 4, 6, 8, 10, 12, 18, 27, 36, 48, 60}
RVFTDNN [21] 4 {2, 4, 7, 10, 13, 16, 24, 36, 50, 66, 83}
ARVTDNN [10] 5 {2, 3, 5, 7, 9, 11, 16, 25, 34, 46, 57}

R2TDNN [1] 5 {2, 4, 6, 8, 10, 12, 18, 27, 36, 48, 60}
SVDEN, ηd = 0 5 {2, 4, 6, 8, 10, 12, 18, 27, 36, 48, 60}

SVDEN, ηd = 0.5 5 {2, 4, 6, 8, 10, 12, 18, 27, 36, 48, 60}

are obtained by sending independently generated orthogonal
frequency division multiplexing (OFDM) signals to the RF
WebLab with the same settings including sampling frequency
200 MHz, signal length 106, and bandwidth 10 MHz. For
all DPD schemes, we choose a memory length 3. For all
NN-based DPD schemes, we set the number of hidden layers
to 3, i.e., K = 5, except for RVFTDNN [21], which has
only two hidden layers by construction. For each NN, the
number of neurons is the same for all hidden layers, i.e.,
D2 = D3 = D4. Note that modifying the number of neurons
in the hidden layer changes the number of FLOPs.

B. Results

In this section, we investigate how the performance changes
with respect to the complexity, memory length, and pruning
rate.

1) Performance versus Complexity: Fig. 5 and Fig. 6 show
the NMSE and ACPR as a function of the number of FLOPs
for the extended PH, RVTDNN, RVFTDNN, ARVTDNN,
R2TDNN [1], the proposed non-pruned SVDEN, and SVDEN
with a pruning factor ηd = 0.5. The marks for NN-based
schemes correspond to different numbers of neurons in the
hidden layers, which are given in Table I. Pruned SVDEN
is based on the same structure of non-pruned SVDEN. The
ARVTDNN contains three augmented envelope terms of the
input signal (amplitude and its square and cube) [10, Tab. II
entry 11] at the input layer. For PH, the best results are
selected with respect to the number of FLOPs through an
exhaustive search of different values of its nonlinear order
and filter length.

The proposed SVDEN with and without pruning achieves
lower NMSE and ACPR results than all other DPD schemes
for all number of FLOPs. Specifically, the PH has limited
mitigation performance, flattens around a NMSE of −29.9
dB and an ACPR of −37.2 dBc, whereas SVDEN achieves a
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Fig. 5: NMSE as a function of the number of FLOPs for a DPD of memory
length 3. The markers for PH [9] correspond to different sets of nonlinear
order. The markers for RVTDNN [17], RVFTDNN [21], ARVTDNN [10],
and SVDEN correspond to different numbers of neurons in the hidden layers,
which are given in TABLE I. For SVDEN, K = 5 and D2 = D3 = D4.
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Fig. 6: ACPR as a function of the number of FLOPs for a DPD of memory
length 3. The markers for PH [9] correspond to different sets of nonlinear
order. The markers for RVTDNN [17], RVFTDNN [21], ARVTDNN [10],
and SVDEN correspond to different numbers of neurons in the hidden layers,
which are given in TABLE I. For SVDEN, K = 5 and D2 = D3 = D4.

NMSE of −37.0 dB and an ACPR of −45.1 dBc. Compared
with the R2TDNN [1], SVDEN yields sizable NMSE and
ACPR gains for a number of FLOPs smaller than 500, which
verifies the effectiveness of the shortcut weights in the shortcut
connections. Furthermore, SVDEN with a pruning factor ηd =
0.5 requires even less number of FLOPs to achieve the same
NMSE and ACPR compared with the non-pruned SVDEN,
though this advantage vanishes as the size of SVDEN becomes
large (FLOPs> 3000).

2) Complexity-Restricted Scenario: We compare the mit-
igation performance of different DPD schemes in a limited
complexity scenario for a number of FLOPs around 400. Fig. 7
shows the error spectrum of the PA output without DPD, with
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No DPD PH [9]
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ARVTDNN [10] R2TDNN [1]
SVDEN, ηd = 0 SVDEN, ηd = 0.5

Ideal PA

Fig. 7: Error spectrum between the actual and desired PA output signals for
different models in a computation-restricted scenario with around 400 FLOPs.

TABLE II: NMSE and ACPR results of the PH [9], RVFTDNN [21]
RVTDNN [17], ARVTDNN [10], and proposed SVDEN in Fig. 7. Note that
D2 = D3 = D4. The lower bound results are the minimum that can be
achieved at an average output power 25.19 dBm.

FLOPs K, D2 NMSE [dB] ACPR [dBc]

No DPD — — −17.84 −34.40
PH [9] 446 — −29.69 −36.76

RVTDNN [17] 416 5, 8 −31.13 −37.91
RVFTDNN [21] 462 4, 10 −30.93 −37.54
ARVTDNN [10] 464 5, 7 −27.46 −35.08

R2TDNN [1] 418 5, 8 −32.06 −38.01
SVDEN, ηd = 0 424 5, 8 −33.26 −38.97

SVDEN, ηd = 0.5 416 5, 12 −34.58 −41.82
Lower bound [45] — — −39.56 −49.92

DPD via PH, RVTDNN, RVFTDNN, ARVTDNN, SVDEN,
pruned SVDEN, and of an ideal linear PA. The corresponding
number of FLOPs, NMSE, and ACPR results are given in
Table II. The pruned SVDEN is based on an original SVDEN
with Csvden = 818 FLOPs and a pruning factor ηd = 0.5. For a
fair comparison, the memory length for all DPD schemes is set
to 3, and the number of FLOPs for each scheme is ≈ 400 by
adjusting the number of neurons in the hidden layers for NN-
based schemes and the nonlinear order for PH. Fig 8 shows
the NMSE as a function of memory length, M , for the DPD
schemes with the same structures in Fig. 7 and Table II but
different memory length.

As shown in Fig 7, without DPD, there are considerable
in-band and out-of-band distortions, which are not fully
compensated by any of the DPD schemes due to residual
unrecoverable distortions in the I/Q-PA system. The pruned
SVDEN with ηd = 0.5 achieves the best performance with
NMSE of −34.58 dB and ACPR of −41.82 dB, while
requiring a similar number of FLOPs. As shown in Fig. 8,
increasing the memory length yields NMSE improvements
for most DPD schemes except for the ARVTDNN, in which
case its performance is limited by the number of neurons in
the hidden layer instead of the memory length. The NMSE
improvement is more substantial for the proposed SVDEN,
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Fig. 9: CDFs of the weight magnitudes for neurons in the input layer of
SVDEN fed with input signals with lag 0, 1, 2, and 3 before and after pruning
(dashed and solid lines), respectively. K = 3, D2 = 512, and ηd = 0.5.
The final remaining weights have a minimal magnitude around 0.04.

with around 2 dB, than for other DPD schemes. We note that
the performances of both RVTDNN and RVFTDNN start to
degrade for M ≥ 4, while this degradation is not noticed for
shortcut connection networks, SVDEN and the R2TDNN. The
degradation can be explained, by the fact that more irrelevant
memory inputs are sent into NNs as M increases, which
actually harms the NN accuracy.

3) Interpretation of Pruning: Considering SVDEN with
K = 3, M = 3, D2 = 512, and ηd = 0.5, Fig. 9 shows the
cumulative distribution functions (CDFs) of the magnitude of
weights in the connections between the first and second layers,
i.e., |W 2|, before and after pruning. Each CDF corresponds
to the the magnitude of weights in the connections for every
two neurons in the first layer fed with input signals of lag 0, 1,
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Fig. 10: NMSE as a function of the number of FLOPs for dense and sparse
SVDENs with fixed ηd = {0, 0.5} and varied ηd = {0.9, 0.8, ..., 0}. The
markers for dense and sparse SVDENs correspond to different number of
neurons in the hidden layers as in Fig. 5 and different ηd, respectively.

2, and 3, i.e., |[W 2]1,2|, |[W 2]3,4|, |[W 2]5,6|, and |[W 2]7,8|,
respectively. The dashed and solid lines correspond to before
and after pruning, respectively. The remaining weights have
a minimal magnitude around 0.04.

Note that the weights in the connections for neurons fed
with shorter lag input signals have larger magnitudes (> 0.04)
than for neurons fed with longer lag input signals, especially
for lag 0. Thus, despite the pruning factor ηd = 0.5 for the
second layer, more weights (> 50%) are masked to zero for
neurons with longer lags than for neurons of shorter lags (<
50%). This indicates that SVDEN learns to assign more large
valued weights to its memoryless input.

4) Large Sparse versus Small Dense: The performance of
sparse and dense SVDENs is compared in Fig. 10. It illustrates
the NMSE as a function of the number of FLOPs for three
sparse SVDENs with a varied ηd = {0.9, 0.8, ..., 0} but dif-
ferent non-pruned complexity CSVDEN = {424, 1664, 5912},
and two SVDENs with fixed ηd = {0, 0.5} from Fig. 5. All
the SVDENs have the same number of layers K = 5.

For a given number of FLOPs, sparse SVDENs allow
to outperform the dense SVDENs. A larger size SVDEN
(CSVDEN = 5912) allows a larger ηd = 0.7 than that of a
smaller size SVDEN (CSVDEN = 424) with ηd = 0.5. This
indicates that there is an optimal pruning factor for a given
sized SVDEN. The SVDEN with a fixed ηd = 0.5 performs
nearly always the best over all complexities, which suggests
that it is better to train a 2× larger size dense SVDEN and
prune it to the desired complexity than using the best dense
SVDEN.

VI. CONCLUSION

We proposed a novel shortcut connection NN, referred to as
SVDEN, for low-complexity mitigation of multiple hardware
impairments in direct conversion transmitters. SVDEN keeps
the instantaneous linear input-output relation of the transmitter
by adding two trainable neuron-wise shortcut connections
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between the corresponding neurons of the input and output
layers. Furthermore, we proposed and analyzed a NN con-
nection pruning algorithm, which allows to gradually remove
weights of minimum magnitude in each layer. Experimental
results show that SVDEN with a pruning factor of 0.5 achieves
a NMSE gain > 2.5 dB and an ACPR gain > 2 dBc compared
to other RVTDNN-based models and a Volterra-based model
proposed in the literature, with less or similar complexity.

APPENDIX A
COMPUTATION COMPLEXITY OF THE PH

The extended PH [9] is based on the PH model [11] given
by the polynomials

ψp(x(n)) =
∑
k∈Ip

ak,p|x(n)|k−1x(n), p ∈ Ip, (28)

where p is the polynomial order, Ip = {1, 3, ..., p} for
only odd orders, and ak,p are the polynomial weights. The
polynomial (28) and its conjugate ψp(x∗(n)) are filtered by
FIR filters hp(n) and hq(n) of length Lp and Lq , respectively.
The output of the extended PH is

y(n) =

P∑
p=1

hp(n) ~ ψp(x
∗(n)) +

Q∑
q=1

hq(n) ~ ψq(x
∗(n)),

(29)
where P and Q are the polynomial orders for the non-
conjugate and conjugate branches and ~ denotes convolution.

The number of complex-valued weights in (28) is

NPH, poly =

(
1 +

P + 1

2

)
P + 1

4
+

(
1 +

Q+ 1

2

)
Q+ 1

4
.

(30)
8 FLOPs are required for each weight, where 6 FLOPs are
for the complex multiplication and 2 FLOPs for the complex
summation [14]. Similarly, the number of complex-valued
filter parameters is [9]

NPH, filter =
∑
p∈IP

Lp +
∑
q∈IQ

Lq + 1, (31)

which also require 8 FLOPs each. In total, the number of
FLOPs required for the PH is

CPH = 8(NPH, poly +NPH, filter)− 4 + 3 + (max(P,Q)− 1).
(32)
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