
Refining Privacy-Aware Data Flow Diagrams

Downloaded from: https://research.chalmers.se, 2025-06-18 04:36 UTC

Citation for the original published paper (version of record):
Alshareef, H., Stucki, S., Schneider, G. (2021). Refining Privacy-Aware Data Flow Diagrams.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 13085 LNCS: 121-140.
http://dx.doi.org/10.1007/978-3-030-92124-8_8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Refining Privacy-Aware Data Flow Diagrams?

Hanaa Alshareef1, Sandro Stucki1[0000−0001−5608−8273], and
Gerardo Schneider2[0000−0003−0629−6853]

1 Chalmers University of Technology, Gothenburg, Sweden
2 University of Gothenburg, Gothenburg, Sweden

{hanaa,sandros,gersch}@chalmers.se

Abstract. Privacy, like security, is a non-functional property, yet most
software design tools are focused on functional aspects, using for instance
Data Flow Diagrams (DFDs). In previous work, a conceptual model was
introduced where DFDs were extended into so-called Privacy-Aware Data
Flow Diagrams (PA-DFDs) with the aim of adding specific privacy checks
to existing DFDs. An implementation to add such automatic checks has
also been developed. In this paper, we define the notion of refinement
for both DFDs and PA-DFDs as a special type of structure-preserving
map (or graph homomorphism). We also provide three algorithms to
find, check and transform refinements, and we show that the standard
diagram “transform→refine / refine→transform” commutes. We have im-
plemented our algorithms in a proof-of-concept tool called DFD Refinery ,
and have applied it to realistic scenarios.

Keywords: Privacy by design · DFDs · GDPR · Refinement.

1 Introduction

Privacy compliance has become a primary concern for most companies since the
enactment of strong and demanding regulations on personal data protection,
such as the European General Data Protection Regulation (GDPR) introduced
few years ago [16]. Enforcing privacy compliance, however, is not easy. Indeed,
privacy refers to a whole family of properties, including confidentiality, secrecy,
data minimization (DM), privacy impact assessment (PIA), user consent, the
right to be forgotten, purpose limitation, and more. Furthermore, even for spe-
cific properties, privacy compliance is in general undecidable [30, 28].

A good practice to handle the “privacy problem” is to follow the Privacy by
Design (PbD) principle [11], where privacy is taken into account from the very
beginning of the software development process. This approach has been shown
to make the problem of privacy compliance more tractable [13].
? This is a postprint version of a paper presented at the 19th International Conference
on Software Engineering and Formal Methods (SEFM 2021). The original publi-
cation is available from Springer at https://doi.org/10.1007/978-3-030-92124-8_8.
This research has been partially supported by the Cultural Office of the Saudi Em-
bassy in Berlin, Germany and by the Swedish Research Council (Vetenskapsrådet)
under Grant 2018-04230 “Perspex”.

https://doi.org/10.1007/978-3-030-92124-8_8

2 H. Alshareef et al.

One such PbD approach was introduced by Antignac et al. [6, 7], who pro-
posed a technique based on model transformation for automatically adding pri-
vacy checks to Data Flow Diagrams (DFDs). They considered an extension of
DFDs called Business-oriented Data Flow Diagrams (B-DFDs) and further ex-
tended them with checks for specific privacy concepts, namely retention time
and purpose limitation. These checks are automatically added for each operation
on sensitive (personal) data (storage, forwarding, and processing of data). The
enhanced diagram is called a Privacy-Aware Data Flow Diagram (PA-DFD). In
that proposal, the software engineer designs a B-DFD, pushes a button to obtain
a PA-DFD, inspects it manually, with the aim to generate a program template
from the PA-DFD to guide the programmer in the concrete implementation of
the privacy checks. Antignac et al. outlined their transformation from B-DFDs
to PA-DFDs through set of high-level graphical “rules”. A full algorithm and
reference implementation were later provided by Alshareef et al. [5].

B-DFDs have been shown to be useful for software engineers when designing
functional properties, and the privacy-enhanced PA-DFDs are a step towards
adding specific non-functional aspects to such designs.

One issue with B-DFDs (and PA-DFDs) is that they may become big when
modeling real-life systems. The traditional solution to pragmatically circumvent
this problem is to either compose smaller processes, following a bottom-up ap-
proach, or to start from a high-level design consisting of composite processes that
are later refined into more detailed processes, following a top-down approach.
In both cases, there is a need to relate different levels of abstraction. To do so
we should have a precise definition of refinement, and a rigorous methodology
to check and obtain suitable refinements preserving relevant properties.

In this paper, we are concerned with the formal refinement of both B-DFDs
and PA-DFDs. Concretely, we make the following contributions:

1. We propose a notion of refinement for both B-DFDs and PA-DFDs, for-
malizing the comparison of different levels of abstractions of such diagrams.
Our notion of refinement is declarative and applies both to top-down and
bottom-up refinement; for PA-DFDs, it preserves privacy and types. Fur-
thermore, our notion of refinement has the property that it commutes with
transformation (from B-DFDs to PA-DFDs). Although many informal rules
and conditions for DFD refinement have been proposed and discussed in the
software engineering literature, ours is, to the best of our knowledge, the first
formal definition of DFD refinement. Though we are primarily interested in
its applications to B-DFDs and PA-DFDs, we think that it is flexible enough
to be extended to many other flavors of DFDs. (Section 3.)

2. We provide three algorithms:
(a) Refinement Checking. Given abstract and concrete B-DFDs, and a can-

didate mapping, our refinement checking algorithm assesses whether the
mapping is a refinement according to our formal definition. (Section 3.2.)

(b) Refinement Search. This algorithm takes partial (incomplete) mappings
and proposes possible extensions to produce a complete refinement. When

Refining Privacy-Aware Data Flow Diagrams 3

Customer
Browsing
Amazon
Products

Create
Amazon
Account

Get Customer
Information

Supplier Item
Inventory

C
us

to
m

er
 In

fo

Product Info
Product InfoR

eq
uest

Create Account

Product Info
Request

(a) Original B-DFD.

Get Customer
Information

Cr
ea

te
 A

cc
ou

nt
 ?

Request
P

Log

Log

pol

Create
Amazon
Account

Limit
Create Account

p
ol

p
ol

Customer

LimitRequest
P

Log

Log

Cu
st

om
er

 In
fopol

pol

Customer Info ?

pol
Custom

er Info,

pol, v
Reason Get
Customer

Information
P

Reason
Create

Amazon
Account

P

C
ustom

er Info,
p
ol, v

Create Account,
pol, v

C
re

at
e

A
cc

ou
nt

,
p
ol

,
v

(b) Part of the resulting PA-DFD.

Fig. 1: Excerpts from DFDs modeling an e-store ordering system.

starting from an empty mapping, it produces all possible refinements be-
tween the abstract and concrete B-DFDs. (Section 3.2.)

(c) Refinement Transformation. It is essential that privacy checks are pre-
served by refinements of PA-DFDs. Our third algorithm takes a (cor-
rect) mapping between abstract and concrete B-DFDs, and transforms
it into a refinement between the corresponding PA-DFDs obtained by
transforming the abstract and concrete B-DFDs. The resulting refine-
ment ensures that all privacy checks between the abstract and concrete
PA-DFDs are preserved. (Section 3.3.)

3. We have implemented the above algorithms in Python as part of a proof-of-
concept tool called DFD Refinery (Section 4), and have applied it to a case
study on an automated payment system. (Section 5.)

2 Preliminaries

GDPR The European General Data Protection Regulation (GDPR) contains
99 articles regulating personal data processing. It is organized around a number
of key concepts, most notably its seven principles relating to personal data pro-
cessing, the rights of data subjects and six lawful grounds for data processing
operations. Relevant to this paper are the principles of purpose limitation (data
may only be used for purposes to which the data subject consented) and account-
ability, as well as the right to be forgotten and the lawful ground of consent. See
[16] and [23] for more details on the GDPR.

Data Flow Diagrams (DFDs) A data flow diagram (DFD) is a graphical rep-
resentation of how data flows among software components. As shown in Fig. 1,
DFDs are composed of activators and flows. Activators can be external enti-
ties (rectangles), processes (ellipses) and data stores (double horizontal lines).
Processes may represent detailed low-level operations or complex high-level func-
tionality that could be refined into sub-processes (the latter are drawn as double-
lined ellipses). Data flow is represented by arrows.

Antignac et al. [6, 7] extended DFDs with a data deletion type of flow and a
data structure to specify personal data: (i) the owner of personal data, (ii) the

4 H. Alshareef et al.

type:in

dExternal
Entity

Process

type:out

d
Process

External
Entity

type:comp

d
Process Process

type:store

d
DataProcess

d
,p

ol,v

Data

d

pol

d ?
d,pol,v

pol

Limit

Log

Request
P

Reason
P

Log

Process

Policy

Clean
P

p
ol

re
f

d
,p

ol,v

type:read

ProcessData
d

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request
P

Reason
P

Log

Policy

Data Process

type:delete

ref
DataProcess

ref

pol

p
ol

ref ?
ref,pol,v

pol

Limit

Log

Request
P

Reason
P

Log

Policy

DataProcess

ref,p
ol,v

p
ol

d

External
Entity

Process

Limit

Request
P

Log

pol

p
ol

d ?

d
,p

ol,v

d,pol,v

Log

pol Reason
P

External
Entity

d

pol

p
ol

d ?

d
,p

ol,v

d,pol,v

pol

Limit

Log

Request
P

Reason
P

Log

Process

d
,p

ol,v

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request
P

Reason
P

Log

Process Process’

Reason’
P

Fig. 2: Selection of B-DFD flow types and corresponding transformation rules [5].

purpose for which the data can be used as consented by the data subject, and
(iii) the retention time for the data. This extension is referred to as Business-
oriented DFD (B-DFD). Note that the data structure associated with B-DFDs
is not relevant here.

Adding privacy checks to DFDs Antignac et al. [6, 7] further extended
B-DFDs with privacy checks for purpose limitation and retention time, as well
as privacy mechanisms to ensure accountability and policy management. The
resulting diagrams are called Privacy-Aware Data Flow Diagrams (PA-DFDs).
Building on that work, we defined and implemented an algorithm for transform-
ing B-DFDs into PA-DFDs [5]. The transformation is rule-based, with one rule
for every type of B-DFD flow.

Fig. 2 shows a subset of basic B-DFD flow types and the corresponding
transformation rules. (The remaining rules, which cover composite activators,
are given in Appendix A.) The right-hand side of each rule shows the PA-DFD
corresponding to the original B-DFD flow; it extends the original flow with new
activators and flows implementing the necessary privacy mechanisms.

To represent these mechanisms, the set of activator types in PA-DFDs is aug-
mented with five novel “Process” subtypes: “Limit”, “Reason”, “Request”, “Log”
and “Clean”. “Limit” activators implement the principle of purpose limitation:
they inspect whether the consent given by the data subject is compatible with
the action of a downstream process and discard data values for which this is not
the case. The corresponding policy is supplied by a “Request” activator. “Log”
activators store the decisions of “Limit” activators (and the associated data) in
a dedicated data store, ensuring the principle of accountability. The “Reason”
activator is used to get an updated policy “pol” corresponding to a newly com-
puted data value. Finally, “Clean” ensures that personal data is eliminated from
the data store upon expiry, guaranteeing data retention policy.

Refining Privacy-Aware Data Flow Diagrams 5

To illustrate our transformation, consider the B-DFD shown in Fig. 1a and
(part of) its corresponding PA-DFD in Fig. 1b. The two rules for the flow types
in and comp have been applied to a subset of the B-DFD in Fig. 1a (the part
inside the dashed line). Consider the in flow labeled “Customer Information”,
and the corresponding PA-DFD elements shown in the right half of Fig. 1b. In
addition to the original “Customer Info” data, the external entity “Customer” in
the PA-DFD now also provides an associated privacy policy information “pol”.
The data flows to the “Limit” process which verifies that the data subject has
consented to the use of “Customer Info” for downstream processing. The consent
is specified in the policy “pol”, received via the “Request” process. The data
value, its policy and the verdict (“v”) of the “Limit” process are all logged by the
“Log” process in the “Log” store. If the verdict is positive, the data and policy
are forwarded to the process “Get Customer Information” and its associated
“Reason” process, respectively. The latter computes the updated privacy policy
information associated with the output flow “Create Account”.

For details about PA-DFDs and our transformation, see Alshareef et al. [5].

Hierarchical modeling (refinement of DFDs) Refinement is a method
used to relate the abstract model of a software system to another more concrete
model while maintaining the abstract model’s properties [1]. It is applicable to
system artifacts ranging from modeling and design levels to implementation and
programming levels. It is typical to specify invariants that define the properties
of the system being modeled at the most abstract level. These invariants must
be preserved by all the refined versions of the model.

Concerning refinement in DFDs, several works discuss leveling (hierarchical
modeling) and informal consistency rules [14, 29, 33]. The highest level of DFD
shows all external entities and the primary data flows between the external
entities and a system, represented as one composite process. This level is called
Context Diagram. It is typically decomposed into a lower-level diagram, called
the Level 0 DFD, which can be further decomposed into a Level 1 DFD, and so
on. There are two standard rules for ensuring consistency. First, every process,
data store and external entity on an abstract level is shown on a refined level
(balancing rule). Second, the input and output data flows specified in an abstract
level must hold on its refined version (preservation of connectivity). We formalize
these rules (and others) in the next section.

3 Refining B-DFDs and PA-DFDs

3.1 Refinement of Attributed Multigraphs

Following our previous work on PA-DFDs [5], we formally represent DFDs as
attributed multigraphs with activators as nodes and flows as edges.

Definition 1. An attributed multigraph (or simply graph) G is a tuple G =
(N,F,A,V, s, t, `N , `F) where N, F, A and V are sets of nodes, edges, attributes

6 H. Alshareef et al.

P1.1

CP1.2
E1 E2

d.1

d.2

d.3

d.4

G1

P1.1

E1 E2
d.1

d.2

d.3

d.4

P1.2.1 P1.2.2

DB1

d.5

d.6

E1 E2
d.1

d.2

d.3

d.4
CP1

G2

P1.1

CP1.2
E1 E2

d.1

d.2

d.3

d.4G2

G3

Fig. 3: Example of B-DFDs levels

and attribute values, respectively; s, t : F → N are the source and target maps;
`N : N → (A⇀V) and `F : F → (A⇀V) are attribute maps that assign values
for the different attributes to nodes and flows, respectively.

Examples of attributed multigraphs are shown in Fig. 3. The graph G1 has nodes
N = {E1,E2,CP1} and edges F = {d.1, . . . ,d.4}. G1 is a multigraph since both
edges d.1 and d.2 connect the same source and target nodes: s(d.1) = s(d.2) = E1
and t(d.1) = t(d.2) = CP1. Attributes allow us to specify properties of activators
and flows, such as their type or associated privacy information. For example, the
graph G1 has two kinds of nodes, external entities and composite processes. We
formalize this by defining its attribute and value sets as A = {type} and V =
{ext, cproc}, and its node attribute map as `N(E1)(type) = `N(E2)(type) = ext
and `N(CP1)(type) = cproc. Note that the attribute maps are partial, i.e., nodes
and edges may lack values for certain attributes. If we extend the value set V
with types for processes (proc) and data stores (db), we can encode the graphs
G2 and G3 shown in Fig. 3 similarly.

Henceforth, we use the letters n, m to denote nodes and e, f to denote edges.
We write e : n m to indicate that e has source s(e) = n and target t(e) = m.
For example, we have d.1 : E1 CP1 in G1. We use “.” to select attributes,
writing n.a for `N(n)(a) and f.a for `F(f)(a). For example, E1.type = ext in G1.
The set S(G) ⊆ N of source nodes in G is defined as S(G) = {n | ∃e.s(e) = n};
similarly, T (G) denotes the set of target nodes in G.

The characteristic property of a refinement is that it preserves the essential
structure of some abstract object in a more concrete (or refined) object. Since we
model DFDs as graphs, it is therefore natural to represent refinements of DFDs
as structure preserving maps, so-called graph homomorphism, between concrete
and abstract graphs.

Definition 2. Let G and H be attributed multigraphs with the same sets of
attributes AG = AH and values VG = VH . A homomorphism h : G → H from
G to H is a pair of maps hN : NG → NH and hF : FG → FH , such that, for all
nodes n, edges e and attributes a,

hN(sG(e)) = sH(hF(e)) hN(tG(e)) = tH(hF(e)) (1)
n.a = hN(n).a e.a = hF(e).a (2)

Refining Privacy-Aware Data Flow Diagrams 7

cproc

ext proc db

(a) � on node types

ccompc

cout inc cdelete cstore ccomp compc readc

out in delete store comp read

(b) � on flow types

Fig. 4: The subtyping preorder �

Condition (1) says that h preserves the connective structure of G in H; condi-
tion (2) says that h preserves attributes.

Conditions (1) and (2) are a bit too restrictive to represent DFD refinements.
To see this, consider again the graphs G1, G2 and G3 shown in Fig. 3. Intuitively,
G2 refines G1 and G3 refines G2, so we would like to show that there are homo-
morphisms g : G3 → G2 and h : G2 → G1. But this is not the case. There are
obvious candidate maps hN and hF , represented using dotted arrows in Fig. 3,
but the map hN violates condition (2) because it does not strictly preserve the
type of P1.1. Concretely, we have CP1.type = cproc 6= proc = hN(P1.1).type.
There is a similar problem if we try to map the lower processes and data store in
G3 to the composite process in G2 as shown in the figure. In addition, there is no
way to map the bold flows (d.5 and d.6) in G3 to flows in G2 without violating
condition (1). It may be tempting to define gN(P1.2.1) = gN(P1.2.2) = CP1.2,
as shown via the dotted arrows, but by (1) this would require hF(d.5) : CP1.2
CP1.2, which is impossible since the node CP1.2 has no loops, i.e., edges con-
necting CP1.2 to itself. (Indeed loops are forbidden in DFDs).

We address these two issues separately. First, we relax condition (2). We want
to allow refinements to weakly preserve attributes (such as types). Concretely,
we wish to treat processes and databases as subtypes of composite processes. To
this end, we define a preorder � ⊆ V × V on the set of types, according to the
Hasse diagram shown in Fig. 4a, and weaken condition (2) in Definition 2 to

n.a � hN(n).a e.a � hF(e).a (3)

for all nodes n, edges e and attributes a. Note that this condition extends to
attributes other than types, provided the preorder� is extended appropriately. A
homomorphism h : G→ H is called lax if it fulfills (3) and strong if it fulfills (2).
Clearly, every (strong) homomorphism is also a lax homomorphism.

To allow “internal” edges like d.5 and d.6 in refinements without adding
explicit loops in DFDs, we further adjust the definition of homomorphisms by
introducing implicit loops.

Definition 3. Let G and H be attributed multigraphs with the same sets of
attributes AG = AH and values VG = VH , and let � ⊆ VG × VG be a preorder
on values. An abstraction α : G → H from G to H consists of a total map

8 H. Alshareef et al.

αN : NG → NH and a partial map αF : FG⇀FH , such that, for all n, e and a,

αN(sG(e)) = sH(αF(e)) and αN(tG(e)) = tH(αF(e)) if e ∈ dom(αF),

αN(sG(e)) = αN(tG(e)) otherwise. (4)
n.a � αN(n).a and e.a � αF(e).a if e ∈ dom(αF). (5)

An abstraction is balanced if αN and αF are surjective.

Given an abstraction α : G → H, we call G the concrete graph and H the
abstract graph of α, and we say that G refines H or that G is a refinement of H.
Unless otherwise noted, we assume that all abstractions are balanced. If αF is
undefined for an edge e, i.e., e /∈ dom(αF), we say that e is internal. Intuitively,
an internal edge e : n1 n2 in G is mapped to an abstract edge “inside” the
node m = αN(n1) = αN(n2) in H. For example, in Fig. 3, the internal edge d.5
in G3 is mapped to an abstract edge hidden inside the composite process CP1.2.

It is easy to verify that every graph G refines itself via the identity abstrac-
tion idG = (idNG

, idFG
), and that the composition of the maps underlying two

abstractions α : G→ H and β : H → I induces an abstraction (β ◦ α) : G→ I.

A note on terminology. We deliberately chose the term abstraction rather than
refinement for α : G → H to avoid confusion. Although every abstraction cor-
responds to a refinement, some readers may find it more intuitive to think of a
“refinement from G to H” as a process that takes an abstract G and produces
a concrete refinement H of G with a corresponding abstraction α : H → G. In
other words, abstractions go in the opposite direction of refinements. We con-
tinue to use the term “refinement” informally when there is no risk of confusion
(e.g., to say that G is a refinement of H) but avoid its use in formal statements.

3.2 B-DFD Refinement

A B-DFD is an attributed multigraph with a fixed choice of attributes A =
{type} and values V = Tdn] Tdf . The set of data node types Tdn, the set of
data flow types Tdf and the associated subtyping order � are shown in Fig. 4.
Since the type attribute plays an important role in B-DFDs (and PA-DFDs), we
introduce shorthands for typing activators and flows. We write n : t to abbreviate
n.type = t, and f : n t m to indicate that f : n m and f.type = t.

We require that B-DFDs be well-formed. First, the type t of a flow f : n t m
determines the types n.type and m.type of its source and target activators. The
valid combinations of source, target and flow types are shown on the left-hand
side of Figs. 2, 8 and 9. In addition to these flow typing constraints, we adopt
the standard rules from the DFD literature for well-formed B-DFDs: diagrams
should not contain loops (flows with identical source and target activators), acti-
vators cannot be isolated (disconnected from all other activators), and processes
must have at least one incoming and outgoing flow (see e.g., [18, 15]).

Definition 4. A well-formed B-DFD is an attributed multigraph G, where AG =
{type} and VG = Tdn] Tdf . In addition, for all flows f and activators n, m,

Refining Privacy-Aware Data Flow Diagrams 9

– n.type ∈ Tdn and f.type ∈ Tdf ;
– if f : n in m then n : ext and m : proc;
– if f : n out m then n : proc and m : ext;... (12 more flow typing conditions, as shown in the LHS of Figs. 2, 8 and 9)
– if f : n comp m or f : n ccompc m then n 6= m;
– if n : cproc or n : proc then n ∈ S(G) and n ∈ T (G)
– if n : ext or n : db then n ∈ S(G) or n ∈ T (G)

An abstraction α : G → H between B-DFDs G and H is just an abstraction
of the underlying attributed multigraphs with the additional condition that the
source (and target) of internal edges need to be composite processes,

αN(s(f)).type = cproc and αN(t(f)).type = cproc if f /∈ dom(αF).

In earlier work, we described a Type-inference algorithm for checking the well-
formedness of B-DFDs [5]. Here we introduce algorithms for checking the validity
of a given abstraction map between abstract and concrete B-DFDs and for find-
ing all possible abstraction maps between a pair of B-DFDs.

Checking refinements Assume we are given a pair of well-formed B-DFDs G and
H, and we wish to establish that G refines H. How might we proceed? We may
start by defining a pair αN , αF of maps relating the concrete B-DFD G to the
abstract B-DFD H. To guarantee the preservation of the connective structure
and types, we need to check that the given maps form an abstraction. This is
the purpose of the Refinement Checking algorithm (Alg. 1).

Our tool detects and reports any violations of the abstraction conditions (4)
and (5). In addition, DFD Refinery can suggest corrections for broken abstrac-
tion maps based on the given abstract and concrete B-DFDs.

Algorithm 1: Refinement Checking
input : B-DFDs G, H and maps αN : NG → NH , αF : FG⇀FH .
output : An error message in case of failure.

1 foreach f : m n ∈ FG do
2 m′ ← αN(m); n′ ← αN(n);
3 if f /∈ dom(αF) then
4 if n′ 6= m′ ∨ n′.type 6= cproc then
5 Error: "mapping of internal f is not internal";

6 else
7 f ′ ← αF(f);
8 if sH(f ′) 6= m′ ∨ tH(f ′) 6= n′ then
9 Error: "mapping f to αF(f) does not preserve connections";

10 else if f.type 6� f ′.type ∨m.type 6� m′.type ∨ n.type 6� n′.type then
11 Error: "mapping f to αF(f) does not preserve types";

10 H. Alshareef et al.

Function ExtendPartial(G,H,αN , αF , U) – extend partial abstractions.
input : B-DFDs G and H, partial maps αN : NG⇀NH , αF : FG⇀FH , and

a set of unmapped flows U ⊆ FG.
output : A set of abstractions from G to H.

1 if U = ∅ then — have all flows been mapped?
2 return {(αN , αF)}
3 else
4 f : m n← an arbitrary flow in U ;
5 U ′ ← U \ {f};
6 L← ∅; — initialize result set
7 foreach m′ ∈ NH do — find extension where f is internal

— check if the candidate conflicts with existing mappings of m and n
8 if (m ∈ dom(αN)∧αN(m) 6= m′)∨ (n ∈ dom(αN)∧αN(n) 6= m′) then
9 continue;

— check types
10 if m′.type 6= cproc ∨m.type 6� cproc ∨ n.type 6� cproc then
11 continue;

12 α′
N ← αN ∪ {m 7→ m′, n 7→ m′}; — compute updated node map

13 L′ ← ExtendPartial(G,H,α′
N , αF , U

′); — extend the new mapping
14 L← L ∪ L′;

15 foreach f ′ : m′ n′ ∈ FH do — find candidates in H for mapping f
— check if the candidate conflicts with existing mappings of m and n

16 if (m ∈ dom(αN)∧ αN(m) 6= m′)∨ (n ∈ dom(αN)∧ αN(n) 6= n′) then
17 continue;

— check types
18 if f.type 6� f ′.type ∨m.type 6� m′.type ∨ n.type 6� n′.type then
19 continue;

20 α′
N ← αN ∪ {m 7→ m′, n 7→ n′}; — compute updated maps

21 α′
F ← αF ∪ {f 7→ f ′};

22 L′ ← ExtendPartial(G,H,α′
N , α

′
F , U

′); — extend the new mapping
23 L← L ∪ L′;

24 return L;

Finding refinements The Refinement Checking algorithm works when abstrac-
tion maps are already available. However, defining such maps manually is a
tedious and error-prone task, especially for large systems. Hence, rather than
leaving it to software designers, we automate it. In general, there are several
ways to relate an abstract model to a concrete model while maintaining the ab-
stract model’s properties. An refinement search algorithm should thus report all
possible refinements and allow the designer to select the right one.

The Refinement Search algorithm takes a pair of abstract and concrete B-
DFDs and computes the full set of abstractions between them. We first define
a helper function (ExtendPartial) to extend partial abstractions. The function
takes a pair of B-DFDs G,H, a pair of partial abstraction maps αN , αF and a set

Refining Privacy-Aware Data Flow Diagrams 11

U ⊆ FG of unmapped flows, i.e., those flows for which we wish to find candidate
mappings. The function returns the set of all possible abstractions from G to
H that extend (αN , αF). It does so using a naive, depth-first branch-and-bound
strategy: it picks an unmapped flow f ∈ U , finds all candidate mappings for
f , adds them to αN , αF , and recursively extends them. The Refinement Search
algorithm then consists of a single call to ExtendPartial(G,H, ∅, ∅,FG),

Note that the ExtendPartial function does not check whether the resulting
abstractions are balanced (i.e., that all the maps involved are surjective). Hence,
there is no guarantee that all nodes and flows in the abstract B-DFD actually
have a refinement in the concrete B-DFD – the concrete diagram could just be a
refinement of a subset of the abstract diagram. However, a balance check can eas-
ily be added via a post-processing phase that removes non-balanced abstractions
(and we have implemented such a check in DFD Refinery).

3.3 PA-DFD Refinement

The primary difference between B-DFDs and PA-DFDs is that the latter contain
additional activators and flows that implement privacy checks. We distinguish
between three kinds of PA-DFD activators and flows: those that were already
present in B-DFDs, called data flows and nodes (e.g., processes and data stores);
those that handle and carry policy information, called policy flows and nodes
(e.g., limit and reason processes); and those that track and manage system events,
called admin flows and nodes (e.g., log processes and data stores). Some types
of activators play multiple roles, e.g., a limit process is both a data and a policy
node since it handles both data and policy information.

As with B-DFDs, we use attributed graphs to represent PA-DFDs formally.

Definition 5. Define the set Tpn = {limit, request, reason, policy-db} of policy
node types and the set Tan = {log, log-db, clean} of admin node types. A PA-
DFD is an attributed graph G, where A = {type, partner} and V = Tdn] Tpn]
Tan] {pf, df}] N. In addition, the following must hold:
– n.type ∈ Tdn] Tpn] Tan and f.type ∈ {pf, df};
– if n.partner is defined, then n.partner ∈ N.

The partner attribute is used by the transformation algorithm and can be
ignored for the purposes of this paper (cf. [5]). In principle, the flows of PA-
DFDs ought to be subject to similar typing conditions as those for well-formed
B-DFDs. Following the principle used for well-formed B-DFDs, we could type
each flow based on the types of its source and target. For example, the flows
connecting request to limit activators could be given type reqlim. This would
result in twenty-two new flow types. To simplify presentation, we instead use
just two flow types for PA-DFDs: plain flows (pf) and deletion flows (df).

All the new node types are special kinds of processes or data stores and, as
such, are considered subtypes of composite processes. To reflect this, we extend
the subtyping relation as follows:

n � n n � cproc for all n ∈ Tpn] Tan.

12 H. Alshareef et al.

An abstraction α : G→ H between PA-DFDs G and H is just an abstraction on
the underlying attributed multigraphs with the extra condition that, if f : m n
in G is internal, then αN(m) = αN(n) : cproc.

Transforming refinements Having defined algorithms to check and find refine-
ments between B-DFDs in the previous section, we could now do the same for
refinements of PA-DFDs. However, the changes to the algorithms would be min-
imal and largely uninteresting. After all, PA-DFDs are still just a special type of
attributed graph, and the definition of abstractions is robust against changes in
the choice of attributes and values. Furthermore, we neither expect nor intend
software engineers to manipulate PA-DFDs manually: they should be automati-
cally generated from B-DFDs. The same principle should apply to refinements of
PA-DFDs: rather than manually refining an automatically generated PA-DFD,
we expect software engineers to refine an abstract B-DFD H into a concrete B-
DFD G and then automatically transform the latter into a (concrete) PA-DFD
G′. For this process to make sense, we require that the resulting PA-DFD G′ be
a refinement of the PA-DFD H ′ obtained by transforming the original abstract
B-DFD H. Diagrammatically,

(B-DFD) (PA-DFD)

(abstract) H H ′

(concrete) G G′

transform

transform

∀ α ∃ α′

In fact, the process of finding a PA-DFD abstraction α′ : G′ → H ′ corresponding
to a B-DFD abstraction α : G → H is itself a transformation (of abstractions)
that can be automated. We have defined and implemented an algorithm for this
transformation. Space constraints prevent us from reproducing the full algorithm
here, so we give instead a high-level outline and illustrate the main ideas.

To track the relationship between the nodes and flows of the original B-DFDs
G, H and the resulting PA-DFDs G′, H ′, the refinement transformation takes,
as additional inputs, four maps:

oNG
: NG′ → NG, oFG

: NG′] FG′ → FG,
oNH

: NH′ → NH , oFH
: NH′] FH′ → FH .

The maps keep track of which B-DFD nodes and flows resulted in the creation of
a given PA-DFD node or flow. For instance, oNG

maps every proc or reason node
n in the concrete PA-DFD G′ to the corresponding original proc node oNH

(n) in
the concrete B-DFD G. Conversely, the inverse image o−1NG

(m) of a node m : proc
in G is a set {m1,m2} containing the pair of nodes m1 : proc and m2 : reason
created during the transformation of n. The four maps can easily be generated
as an output of the DFD transformation algorithm.

In much the same way that the transformation algorithm on DFDs first
transforms nodes and then flows, the refinement transformation first transforms
node mappings (n 7→ m) ∈ αN and then the flow mappings (e 7→ f) ∈ αF .

Refining Privacy-Aware Data Flow Diagrams 13

1. The transformation of the node mappings proceeds by case analysis on the
types n.type and m.type. Only a few combinations are valid. For example, if
n : proc then either m : proc or m : cproc. If m : proc, we must have o−1NG

(n) =

{n1 : proc, n2 : reason} and o−1NH
(m) = {m1 : proc,m2 : reason}. This results

in two new PA-DFD node mappings n1 7→ m1 and n2 7→ m2. If m : cproc
instead, then o−1NH

(m) = {m′ : cproc}, resulting in the two new mappings
n1 7→ m′ and n2 7→ m′. The other cases are similar.

2. In a second step, we transform all the flow mappings. Because the number of
(combinations of) flow types is larger, the process is more tedious but equally
straightforward. We iterate over all e : n1 n2 ∈ FG and check whether e
is internal. If so, e has no counterpart in the abstract B-DFD H and hence
there is no edge there to transform. Intuitively, the edge is “hidden” inside
a composite process in the abstract B-DFD H, and all the new edges and
privacy checks from the concrete PA-DFD G′ will also be “hidden” inside a
new composite process in the abstract PA-DFDH ′. Concretely, we know that
there is a nodem = αN(n1) = αN(n2) withm : cproc in G. Hence, o−1NH

(m) =

{m′ : cproc} in H, and we add mappings n′ 7→ m′ for all nodes n′ ∈ o−1FH
(e)

while leaving all edges e′ ∈ o−1FH
(e) unmapped (they are internal).

If e is not internal, the transformation of the associated edge mapping e 7→ f
resembles that for a node mapping. By case analysis on the types e.type and
f.type, we determine how the edges e and f were transformed. For example,
if e.type = store then we must have f.type ∈ {store, compc, cstore, ccompc}.
In each sub-case, o−1FG

(e) is the set of nodes and flows produced by the store
transformation rule, while o−1FH

(f) is a similar set of nodes and flows associ-
ated with the transformation rule for the type f.type. In each case, there is a
straightforward mapping between the corresponding nodes and flows, based
on their type.

Our tool DFD Refinery implements the above algorithms.3

4 DFD Refinery

We have proposed a refinement framework comprising three algorithms, imple-
mented in our DFD Refinery tool: Refinement Checking, Refinement Search and
Refinement Transformation. DFD Refinery also includes an updated version of
our previous tool for transforming B-DFDs into PA-DFDs [5, 4].

DFD Refinery uses draw.io, a user-friendly, easy-to-use, cross-platform and
open source third-party application for drawing DFDs. We use Henriksen’s open
source library [22] to provide additional support for manipulating DFDs. Since it
is easy to import and export diagrams from/to XML format in draw.io, our tool
processes DFD diagrams represented in an XML format and generates PA-DFD
diagrams in the same format.

The abstraction maps for B-DFDs and PA-DFD produce CSV/Text files.
Our tool is implemented in Python and has been tested on a MacBook Pro.3

3 Source code available at https://github.com/alshareef-hanaa/Refining_PA-DFD.

https://github.com/alshareef-hanaa/Refining_PA-DFD

14 H. Alshareef et al.

Status

Project Status
 Information

Project
Database

BIM
Tracked
Progress

Valid Installation Validate
Completed

Works

Auto-
assign

Status Data

Invalid Installation

Project Status
 Information

Project
Database

BIM
Tracked
Progress

Va
lid

 In
st

al
la

tio
n

 Auto-
assign

Status Data

Invalid Installation

 Certify Works
Onsite via

Oracle

 Certify and
Validate ITP

Remove Smart
Sensor

Inspection Test
Plan (ITP)

Certified ITP

Fig. 5: Part of an Automated Payment System DFD: Level 0 (left) and Level 1
(right).

5 Case Study

To validate our algorithms, we have applied DFD Refinery to a realistic ap-
plication: an automated payment system. The DFD (context diagram, Level 0
and Level 1) for this system is due to Chong and Diamantopoulos [12]; it has
been reviewed by domain experts and models a system for making automatic
payments to subcontractors in a construction project. Here we consider Levels 0
and 1 of the DFD.

We start our evaluation by applying the Type-inference and Transforma-
tion algorithms from our previous work [5] to check that the input B-DFD is
well-formed and to obtain the corresponding PA-DFD. Had the designers of the
Automated Payment System provided CSV files specifying abstractions for the
three B-DFDs, we could have directly applied our Refinement Checking algo-
rithm to verify their correctness. In the absence of such files, we instead apply
our Refinement Search algorithm to the B-DFDs for Levels 0 and 1 (see Fig. 5).

The algorithm returns only one (balanced) abstraction since there is only
one proper way to map the activators and flows of Level 1 to cover those on
Level 0 according to our refinement framework. The resulting abstraction maps
the processes (“Certify Works Onsite via Oracle”, “Certify and Validate ITP”,
“Remove Smart Sensor”) on Level 1 to the composite process “Validate Com-
pleted Works” on Level 1. Then, we apply our Transformation algorithm to each
level of B-DFDs to obtain the corresponding PA-DFDs (see Figs. 6 and 7). Dur-
ing the transformation, we (automatically) create auxiliary maps to track the
relationship between B-DFDs’ activators and flows and the resulting PA-DFDs.
For instance, the process “Auto-assign Status Data” is transformed into a process
and its partner, “Reason Auto-assign Status Data”. Likewise, the flows in the B-
DFDs have their targets in the corresponding PA-DFDs. For example, “Tracked
progress flow”, which is typed as read, has seven target flows (e.g., “Tracked

Refining Privacy-Aware Data Flow Diagrams 15

Project
DataBase Policy

 Reason
Auto-assign
Status Data

Pol

Limit1 Reques
t1

Pol

Pol

Status ?

Log1

Log

Status,
Pol,v

Status,
Pol,v

BIMPolicy

Validate
Complete
d Works

Pol Limit2Request
2

Pol

Log2

Pol,v

Tracked Progress

 Auto-assign
Status Data

Tracked
Progress,

Tracked
Progress ?

Limit3 Request
3Log3

Log

Project Status Info?

Pol

Pol

Pol

Status

Pol

Pol

Project
Status
Info,

Project
Status Info ,Pol,v

Clean 1Pol

,Pol,v

Tracked Progress, Pol, v

Limit4 Log4

Request
4

ref(Project Status Info)

Pol

V
alid

 Installation

Valid Installation ?

Valid
Installation

,Pol,v ,Pol,v

Valid
Installation

Limit5

Request
5

Pol

Pol

Pol

Invalid Installation ?

Invalid Installation

Log5 Log
Invalid

Installation,
Pol,v

Invalid
Installation,

Pol,v

Clean
2

Pol

Pol

ref(Invalid)

ref(valid)

Fig. 6: Part of Automated Payment System PA-DFD level 0

Project
DataBase Policy

 Reason
Auto-assign
Status Data

Pol

Limit1 Reques
t1

Pol

Pol

Status ?

Log1

Log

Status,
Pol,v

Status,
Pol,v

BIMPolicy

Pol

Limit2

Request
2

Pol

Log2

Pol,v

Tracked Progress

 Auto-assign
Status Data

Tracked
Progress,

Tracked
Progress ?

Limit3 Request
3Log3

Log

Project Status Info?

Pol

Pol
Pol

Status

Pol

PolProject Status Info,

Project Status
Info,Pol,v

Clean 1Pol

,Pol,v

Limit4 Log4

Request
4

ref(Project Status Info)

Pol

Valid Installation

Valid Installation ?
Valid

Installation

,Pol,v ,Pol,v

Valid
Installation

Limit5

Request
5

Pol

Pol

Pol

Invalid Installation ?

Invalid Installation

Log5 Log

Invalid Installation, Pol,v

Clean
2

Pol
Pol

ref(Invalid)

ref(valid)

 Certify and
Validate ITP

 Remove
Smart Sensor

 Certify
Works Onsite

via Oracle

 Reason
Certify w..

Pol

,Pol,v

Tracked
Progress,

 Reason
Certify ITP

Limit6

Request
6

ITPITP ?

Pol
Pol

Log6
ITP,Pol,v

ITP,Pol,v

 Certified ITP

Pol

Invalid
Installation, Pol,v

 Reason
Remove

SS

Limit7Request
7

Pol

Pol

Pol

 Certified
ITP ?

Log7
 Certified

ITP
,Pol,v

 C
er

tifi
ed

IT

P,
 P

ol
, v

Fig. 7: Part of Automated Payment System PA-DFD level 1

16 H. Alshareef et al.

progress ?” and “Tracked progress,pol,v”) and four activators (e.g., “Limit2”,
“Request2”). These tracking maps and the abstraction between the B-DFDs are
used by the Refinement Transformation algorithm to construct a valid abstrac-
tion between the PA-DFDs at Level 1 and Level 0. For instance, the B-DFD
abstraction shows that the internal flow “Certified ITP” on Level 1 is mapped
to (a hidden flow inside) the composite process “Validate Completed Works”.

6 Related Work

The notion of refining abstract specifications into more concrete models, and
even to executable code, is not new. Refinement has been advocated for the B
method and variants like Event-B [1, 2, 3], for the Z method (e.g., [32]) and VDM
(e.g., [25]), as well as for many other formal specification languages. In many
such languages, notably B and Z and the refinement calculus [8], the support for
refinement is considered a very important feature of the language and its design
methodology. Refinement has also been introduced for other “diagrammatic”
modeling languages, including class and use-case diagrams in UML [17].

There have been earlier attempts to formalize DFDs to reduce ambiguity and
detect inconsistency and incompleteness (e.g., [27, 21, 19, 9, 20, 26]), and some
works provide formal techniques to support the definition of hierarchical DFDs
(e.g., [31, 10, 27, 24]). Representing DFDs in different levels of abstraction does
not automatically guarantee consistency between the different abstract models.
Lee and Tan [27] model DFDs using Petri Nets, and thus are able to check
consistency of the DFDs by enforcing constraints on their Petri Net model.
Though theoretically interesting, we believe the approach is not of practical
use for software engineers as Petri Nets are more complicated to handle and
understand than DFDs.

The only work we are aware of that defines a notion of refinement for DFDs
is that by Ibrahim et al. [24]. Indeed, they have formalized some of the standard
structured DFD rules to check the consistency of different models but only be-
tween the context and Level 0 DFDs. Our refining framework has a simple set of
rules, including all the standard structured DFD rules, for checking if a concrete
B-DFD is consistent with its abstraction. Ours is a rule-based approach built on
the rigorous mathematical theory of graph homomorphisms, and can be applied
to any two B-DFDs at different levels of abstraction.

To the best of our knowledge, no previous work has provided a formal def-
inition of refinement for DFDs for arbitrary number of levels. Also, the notion
of refinement for PA-DFDs is completely original, preserving not only structural
and functional properties but also the underlying privacy concepts.

7 Conclusions

We have introduced abstractions as a new, formal notion of refinement for both
DFDs and PA-DFDs and showed that the standard diagram relating transfor-

Refining Privacy-Aware Data Flow Diagrams 17

mations and refinements commute. We have provided three different algorithms
for checking, finding and transforming refinements.

The Refinement Checking algorithm evaluates whether a pair of maps be-
tween an abstract and concrete B-DFD form an abstraction. The second al-
gorithm takes a partial (or empty) abstraction between two B-DFDs and pro-
duces all possible extensions that form valid abstractions. Finally, the Refine-
ment Transformation algorithm takes an abstraction witnessing that a concrete
B-DFD refines an abstract one as its input and transforms it into an abstraction
between the corresponding PA-DFDs obtained by transforming the abstract and
concrete B-DFDs. The resulting PA-DFD abstraction witnesses that all privacy
checks between the abstract and concrete PA-DFDs are preserved.

We have implemented the refinement algorithms and evaluated them on a
case study. As future work, we intend to further extend our transformation (and
refinement) so that it also covers accountability and policy management.

A Additional transformation rules

type:compc

d Composite
ProcessProcess

d
,p

ol,v

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request

Log

Process

Reason

Composite
Process

Composite
Process

type:ccompc

d
Composite

Process

d
,p

ol,v

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request

Log

Composite
ProcessComposite

Process

Fig. 8: B-DFD flow types and corresponding transformation rules – Part 2.

18 H. Alshareef et al.

d

External
Entity

Limit

Request

Log

pol

p
ol

d ?

d
,p

ol,v

d,pol,v

Log

pol

External
Entity

d

p
ol

d ?
d
,p

ol,v

d,pol,v

pol

Limit

Log

Request

Log

d
,p

ol,v

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request

Log

Process

Reason

d
,p

ol,v

Data

d

pol

d ?
d,pol,v

pol

Limit

Log

Request

Log

Policy

Clean

p
ol

re
f

d
,p

ol,v

d

pol

p
ol

d ?
d,pol,v

pol

Limit

Log

Request

Log

Policy

Data

ref

pol

p
ol

ref ?
ref,pol,v

pol

Limit

Log

Request

Log

Policy

Data

ref,p
ol,v

p
ol

Composite
Process

Composite
Process

Composite
Process

Composite
Process

pol

Composite
Process

Composite
Process

Process

type:inc

dExternal
Entity

Composite
Process

type:cout

d External
Entity

type:readc

Data
d

type:cdelete

ref
Data

Composite
Process

Composite
Process

Composite
Process

type:cstore

d
DataComposite

Process

type:ccomp

dComposite
Process

Fig. 9: B-DFD flow types and corresponding transformation rules – Part 3.

Bibliography

[1] Abrial, J.: The B tool (abstract). In: VDM’88. LNCS, vol. 328, pp. 86–87.
Springer (1988)

[2] Abrial, J.R., Abrial, J.R.: The B-book: assigning programs to meanings.
Cambridge university press (2005)

[3] Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation
of discrete models: Application to event-b. Fundamenta Informaticae pp.
1–28 (2007)

[4] Alshareef, H., Stucki, S., Schneider, G.: Transforming data flow diagrams
for privacy compliance (long version). CoRR abs/2011.12028 (2020)

[5] Alshareef, H., Stucki, S., Schneider, G.: Transforming data flow diagrams for
privacy compliance. In: MODELSWARD’21. pp. 207–215. SCITEPRESS
(2021)

[6] Antignac, T., Scandariato, R., Schneider, G.: A privacy-aware conceptual
model for handling personal data. In: ISoLA’16. pp. 942–957 (2016)

[7] Antignac, T., Scandariato, R., Schneider, G.: Privacy compliance via model
transformations. In: IWPE’18. pp. 120–126. IEEE (2018)

[8] Back, R., von Wright, J.: Refinement calculus, part I: sequential nondeter-
ministic programs. In: REX Workshop. LNCS, vol. 430, pp. 42–66. Springer
(1989)

[9] Bruza, P.D., Van der Weide, T.: The semantics of data flow diagrams.
Univ. of Nijmegen, Dept. of Informatics (1989)

[10] Butler, G., Grogono, P., Shinghal, R., Tjandra, I.: Analyzing the logical
structure of data flow diagrams in software documents. In: Proceedings of
the 3rd International Conference on Document Analysis and Recognition.
vol. 2, pp. 575–578. IEEE (1995)

[11] Cavoukian, A.: Privacy by design: origins, meaning, and prospects for as-
suring privacy and trust in the information era. In: Privacy Protection
Measures and Tech. in Business Org., pp. 170–208. IGI Global (2012)

[12] Chong, H.Y., Diamantopoulos, A.: Integrating advanced technologies to up-
hold security of payment: Data flow diagram. Automation in Construction
114, 103–158 (2020)

[13] Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.H., Le Métayer,
D., Tirtea, R., Schiffner, S.: Privacy and data protection by design. ENISA
Report (2015)

[14] DeMarco, T.: Structure analysis and system specification. In: Pioneers and
Their Contributions to Software Engineering, pp. 255–288. Springer (1979)

[15] Dennis, A., Wixom, B.H., Roth, R.M.: Systems analysis and design. John
wiley & sons (2018)

[16] European Commission: General data protection regulation (GDPR). Reg-
ulation 2016/679, European Commission (2016)

[17] Faitelson, D., Tyszberowicz, S.: Uml diagram refinement (focusing on class-
and use case diagrams). In: ICSE’17. pp. 735–745. IEEE / ACM (2017)

20 H. Alshareef et al.

[18] Falkenberg, E., Pols, R.V.D., Weide, T.V.D.: Understanding process struc-
ture diagrams. Information Systems 16(4), 417 – 428 (1991)

[19] France, R.B.: Semantically extended data flow diagrams: A formal specifi-
cation tool. IEEE Transactions on Software Engineering 18(4), 329 (1992)

[20] Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Informal and formal require-
ments specification languages: bridging the gap. IEEE transactions on Soft-
ware Engineering p. 454 (1991)

[21] Gao, X.l., Miao, H.k., Liu, L.: Functionality semantics of predicate data
flow diagram. Journal of Shanghai University (English Edition) pp. 309–
316 (2004)

[22] Henriksen, M.: Draw.io libraries for threat modeling diagrams (2018), https:
//github.com/michenriksen/drawio-threatmodeling

[23] Hert, P.D., Papakonstantinou, V.: The new general data protection regula-
tion: Still a sound system for the protection of individuals? Computer Law
& Security Review 32(2), 179–194 (2016)

[24] Ibrahim, R., et al.: Formalization of the data flow diagram rules for consis-
tency check. arXiv preprint arXiv:1011.0278 (2010)

[25] Jones, C.B.: Systematic software development using vdm. Prentice Hall
International Series in Computer Science (1990)

[26] de Lara, J., Vangheluwe, H.: Using AToM3 as a meta-CASE tool. In: Pro-
ceedings of the 4st International Conference on Enterprise Information Sys-
tems (ICEIS 2002). pp. 642–649 (2002)

[27] Lee, P.T., Tan, K.: Modelling of visualised data-flow diagrams using petri
net model. Software engineering journal pp. 4–12 (1992)

[28] Schneider, G.: Is privacy by construction possible? In: ISoLA’18. pp. 471–
485. Springer (2018)

[29] Tao, Y., Kung, C.: Formal definition and verification of data flow diagrams.
Journal of Systems and Software pp. 29–36 (1991)

[30] Tsormpatzoudi, P., Berendt, B., Coudert, F.: Privacy by design: From re-
search and policy to practice - the challenge of multi-disciplinarity. In:
APF’15. pp. 199–212. Springer (2015)

[31] Wing, J.M., Zaremski, A.M.: Unintrusive ways to integrate formal spec-
ifications in practice. In: International Symposium of VDM Europe. pp.
545–569. Springer (1991)

[32] Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof.
Prentice Hall (1996)

[33] Woodman, M.: Yourdon dataflow diagrams: a tool for disciplined require-
ments analysis. Information and Software Technology 30(9), 515–533 (1988)

https://github.com/michenriksen/drawio-threatmodeling
https://github.com/michenriksen/drawio-threatmodeling

	Refining Privacy-Aware Data Flow Diagrams

