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Abstract
We propose algorithms based on a multi-level
Thompson sampling scheme, for the stochastic
multi-armed bandit and its contextual variant with
linear expected rewards, in the setting where arms
are clustered. We show, both theoretically and em-
pirically, how exploiting a given cluster structure
can significantly improve the regret and computa-
tional cost compared to using standard Thompson
sampling. In the case of the stochastic multi-armed
bandit we give upper bounds on the expected cumu-
lative regret showing how it depends on the quality
of the clustering. Finally, we perform an empiri-
cal evaluation showing that our algorithms perform
well compared to previously proposed algorithms
for bandits with clustered arms.

1 Introduction
In a bandit problem, a learner must iteratively choose from
a set of N actions, also known as arms, in a sequence of T
steps as to minimize the expected cumulative regret over the
horizon T [Lai and Robbins, 1985]. Inherent in this setup is
an exploration-exploitation tradeoff where the learner has to
balance between exploring actions she is uncertain about in
order to gain more information and exploiting current knowl-
edge to pick actions that appears to be optimal.

In this work, we consider versions of the standard multi-
armed bandit problem (MAB) and the contextual bandit with
linear rewards (CB) where there is a clustering of the arms
known to the learner. In the standard versions of these prob-
lems the cumulative regret scales with number of arms, N ,
which becomes problematic when the number of arms grows
large [Bubeck and Cesa-Bianchi, 2012]. Given a clustering
structure one would like the exploit it to remove the explicit
dependence on N and replace it with a dependence on the
given clustering instead. A motivating example is recom-
mender systems in e-commerce where there may be a vast
amount of products organized into a much smaller set of cate-
gorizes. Users my have strong preferences for certain catego-
rizes which yields similar expected rewards for recommend-
ing products from the same category.

∗Contact Author

Our Contributions. We propose algorithms based on a
multi-level Thompson sampling [Thompson, 1933] scheme
for the stochastic multi-armed bandit with clustered arms
(MABC) and its contextual variant with linear expected re-
wards and clustered arms (CBC). For the MABC, we pro-
vide regret bounds for our algorithms which completely re-
moves the explicit dependence on N in favor for a depen-
dence on properties of the given clustering. We perform an
extensive empirical evaluation showing both how the quality
of the clustering affects the regret and that our algorithms are
very competitive with recent algorithms proposed for MABC
and CBC. Noteworthy is that the empirical evaluation shows
that our algorithms still performs well even in the case where
our theoretical assumptions are violated.

2 Stochastic Multi-armed Bandit with
Clustered Arms

We consider the MABC. As in the standard MAB problem we
have a set of armsA of cardinalityN . At each time step t > 0
the learner must pick an arm at ∈ A after which an instant
stochastic reward, rt(at), drawn from some distribution, rt ∼
Dat

, with an unknown mean EDat
[rt] = µat

. The goal of the
learner is to maximize its expected cumulative reward over
a sequence of T time steps or equivalently, to minimize its
expected cumulative regret E[RT ] w.r.t the optimal arm a∗ =

arg maxa∈A µa in hindsight, RT :=
∑T

t=1 rt(a
∗)− rt(at).

In the MABC, the learner has, in addition, access to a clus-
tering of theN arms which may be used to guide exploration.
We will consider two types of clustering:

Disjoint Clusters The N arms are partitioned into a a set of
clusters K such that each arm a ∈ A is associated to
exactly one cluster.

Hierarchical Clustering The N arms are organized into a
tree T of depth L such that each arm is associated with
a unique leaf of the tree.

We will show in Section 2.2 and 2.4 that when rewards
are drawn from Bernoulli distributions, rt ∼ B(µa), with
unknown parameters µa, the learner can exploit the known
clustering to greatly improve the expected cumulative regret
compared to the regret achievable with no knowledge of the
cluster structure (under certain assumptions on the quality of
the clustering).
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Algorithm 1 TSC

Require: A, K
Set S0 = F0 = 1 for all a and C.
for t = 1, ..., T do

For each cluster C sample θC ∼ Beta(St(C), Ft(C))
and pick Ct = arg maxC∈K θC
For each a ∈ Ct sample θa ∼ Beta(St(a), Ft(a)).
Play arm at = arg maxa∈Ct

θa and collect reward rt.
Update St+1(at) = St(at) + rt , Ft+1(at) = Ft(at) +
(1− rt).
Update St+1(Ct) = St(Ct) + rt and Ft+1(Ct) =
Ft(Ct) + (1− rt).

end for

2.1 Thompson Sampling for MABC
In the celebrated Thompson sampling (TS) algorithm for
MAB with Bernoulli distributed rewards a learner starts at
time t = 0 with a prior belief Beta(1, 1) over possible ex-
pected rewards, θa ∈ [0, 1], for each a ∈ A. At time t, hav-
ing observed St(a) number of successful (r = 1) plays and
Ft(a) the number of unsuccessful (r = 0) plays of arm a,
the learner’s posterior belief over possible expected rewards
for arm a is Beta(St(a), Ft(a)), where S0(a) = F0(a) = 1.
At each time step t, the learner samples an expected reward
for each arm θa ∼ Beta(St(a), Ft(a)) and then acts greed-
ily w.r.t. the sample means, i.e. the learner plays the arm
at = arg maxa∈A θa. Given a reward rt the learner updates
the posterior of the played arm at as St+1(at) = St + rt and
Ft+1(at) = Ft(at) + (1 − rt),. The posteriors of the arms
not played are not updated.

Given a clustering of the arms into a set of clusters K,
we introduce a natural two-level bandit policy based on TS,
Algorithm 1. In addition to the belief for each arm a,
Beta(St(a), Ft(a)), the learner also keeps a belief over pos-
sible expected rewards Beta(St(C), Ft(C)) for each cluster
C ∈ K. At each t, the learner first use TS to pick a cluster -
that is, it samples θC ∼ Beta(St(C), Ft(C)) for each cluster
C ∈ K and then considers the cluster Ct = arg maxC∈K θC .
The learner then samples θa ∼ Beta(St(a), Ft(a)) for each
a ∈ Ct and plays the arm at = arg maxa∈Ct

θa. Given a
reward rt the learner updates the beliefs for at and Ct as fol-
lows St+1(at) = St(at) + rt , Ft+1(at) = Ft(at) + (1− rt),
St+1(Ct) = St(Ct) + rt and Ft+1(Ct) = Ft(Ct) + (1− rt).

We extended this two-level scheme to hierarchical cluster-
ing of depth L, by recursively applying TS at each level of the
tree, in Algorithm 2. The learner starts at the root of the hi-
erarchical clustering, T , and samples an expected reward for
each of the sub-trees, T i

1 spanned by its children, i = 1, ...,
from Beta(St(T i

1 ), Ft(T i
1 )). The learner now traverses down

to the root of the sub-tree satisfying T i
1,t = arg maxT i

1
θT i

1
.

This scheme is recursively applied until the learner reaches a
leaf, i.e. an arm at, which is played. Given a reward rt, each
belief along the path from the root to at is updated using a
standard TS update.

Algorithm 1 and 2 are not restricted to Bernoulli distributed
rewards and can be used for any reward distribution with
support [0, 1] or for unbounded rewards by using Gaussian

Algorithm 2 HTS

Require: A, T
Set S0(T i

l ) = F0(T i
l ) = 1 for each sub-tree T i

l .
for t = 1, ..., T do

Set Tt = T .
while Tt is not a leaf do

For each sub-tree T i
l spanned by the children of Tt

sample θT i
l
∼ Beta(St(T i

l ), Ft(T i
l )).

Set Tt = arg max θT i
l

.
end while
Play the arm at corresponding to the leaf Tt and collect
the reward rt.
Perform a TS update on each St(T i

l ), Ft(T i
l ) on the path

to at.
end for

prior and likelihood in TS, as done for the standard MAB in
[Agrawal and Goyal, 2017].

2.2 Regret Analysis TSC
Assume that we have a clustering of N Bernoulli arms, into a
set of clusters K. For each arm a, let µa denote the expected
reward and let a∗ be the unique optimal arm with expected
reward µ∗. We denote the cluster containing a∗ as C∗. We
denote the expected regret for each a as ∆a := µ∗ − µa and
for each cluster C ∈ K, we define µC = maxa∈C µa, µ

C
=

mina∈C µa and ∆C = µ∗ − µC .
For each cluster C ∈ K we define distance dC to the opti-

mal cluster C∗ as dC = mina∈C∗,â∈C µa−µâ and the width
wC as wC = µC−µC

, let w∗ denote the width of the optimal
cluster.
Assumption 1 (Strong Dominance). For C 6= C∗, dC > 0.

This assumption is equivalent to what is referred to as tight
clustering in [Bouneffouf et al., 2019] and strong dominance
in [Jedor et al., 2019]. In words, we assume that, in expecta-
tion, every arm in the optimal cluster is better than every arm
in any suboptimal cluster.

In order to bound the regret of TSC we will repeatedly use
the following seminal result for the standard MAB case (with-
out clustering) from [Kaufmann et al., 2012]. Here, we de-
note the Kullback-Leibler divergence between two Bernoulli
distributions with means µ1 and µ2 as D(µ1, µ2) and the nat-
ural logarithm of T as log T .
Theorem 1 ([Kaufmann et al., 2012]). In the standard multi-
arm bandit case with optimal arm reward µ∗, the number of
plays of a sub–optimal arm a using TS is bounded from above,
for any ε > 0, by

(1 + ε)
1

D(µa, µ∗)
(log T + log log T ) +O(1).

Our plan is to apply Theorem 1 in two different cases: to
bound the number of times a sub-optimal cluster is played and
to bound the number of plays of a sub-optimal arm in the op-
timal cluster. However, the theorem not directly applicable to
the number of plays of a sub-optimal cluster, NC,T , since the
reward distribution is drifting as the policy is learning about
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the arms withinC. Nevertheless, we can use a comparison ar-
gument to bound the number of plays of a sub-optimal cluster
by plays in an auxiliary problem with stationary reward dis-
tributions and get the following lemma.
Lemma 2. For any ε > 0 and assuming strong dominance,
the expected number of plays of a sub-optimal cluster C at
time T using TSC is bounded from above by

E[NC,T ] ≤ 1 + ε

D(µC , µC∗)
(log T + log log T ) +O(1).

We can use Lemma 2 to derive the following instance-
dependent regret bound for TSC.
Theorem 3. For any ε > 0, the expected regret of TSC under
the assumption of strong dominance is bounded from above
by

(1 + ε)

 ∑
C 6=C∗

∆C

D(µC , µC∗)
+
∑
a∈C∗

∆a

D(µa, µ∗)

 log T+

+ o(log T ).

We can derive an instance-independent upper bound from
Theorem 3 which only depends on number of clusters, num-
ber of arms in the optimal cluster and the quality of the clus-
tering . Now, define γC as the ratio between width of the
optimal cluster and the distance of C to the optimal cluster:

γC :=

{
w∗/dC , C 6= C∗

0, otherwise

and let γ :=
∑

C γC/K. We arrive at the following result.
Theorem 4. Assume strong dominance and let A∗ be the
number of arms in the optimal cluster and K the number of
sub-optimal clusters. The expected regret of TSC is bounded
from above by E[RT ] ≤ O

(√
(A∗ +K(1 + γ))T log T

)
.

Clustering Quality and Regret. As a sanity check, we
note that if the expected rewards of all arms in the optimal
cluster are equal we have γ = 0 and the bound in Theorem
4 reduces to the bound for the standard MAB in [Agrawal
and Goyal, 2017] with K + 1 arms. On the other hand, if
the optimal cluster has a large width along with many sub-
optimal clusters with a small distance to the optimal cluster
γ becomes large and little is gained from the clustering. Two
standard measures of cluster quality are the (a) the maximum
diameter/width of a cluster and (b) inter-cluster separation.
We see that for our upper bound, only the width of the optimal
cluster and the separation of other clusters from the optimal
cluster are important. These dependencies are consistent with
the observations in [Pandey et al., 2007, Section 5.3], which
suggest that high cohesiveness within the optimal cluster and
large separation are crucial for achieving low regret. How-
ever our analysis is more precise than their observations and
we also provide rigorous regret bounds.

2.3 Lower Bounds for Disjoint Clustering
In the case of Bernoulli distributed rewards we can derive the
following lower bound for the instance dependent case using
the pioneering works of [Lai and Robbins, 1985].

Theorem 5. The expected regret for any policy, on the class
of bandit problems with Bernoulli distributed arms clustered
such that strong dominance holds, is bounded from below by

lim
T−→∞ inf

E[RT ]

log T
≥
∑
a∈C∗

∆a

D(µa, µ∗)
+
∑

C 6=C∗

∆C

D(µ
C
, µ∗)

We compare the lower bound in Theorem 5 to our instance-
dependent upper bound in Theorem 3 and we see that the
regret suffered in TSC from playing sub-optimal clusters
asymptotically differs from the corresponding term in the
lower bound by a factor depending on the width of the clus-
ters since

D(µC , µC∗) = D(µ
C

+ wC , µ
∗ − w∗) ≤ D(µ

C
, µ∗).

Thus, as the width of the clusters goes to zero, the regret of
TSC approaches the lower bound. However, as also discussed
in [Jedor et al., 2019] it is unclear whether the lower bound
derived in Theorem 5 can be matched by any algorithm since
it doesn’t depend at all on the quality on the given cluster-
ing and assumes the optimal policy to always play the worst
action in sub-optimal clusters.

The following minimax lower bound follows trivially from
the Ω(

√
NT ) minimax lower bound for standard MAB [Auer

et al., 1998] by considering the two cases: where all clusters
are singletons and all arms are in one cluster.

Theorem 6. LetK be the number of sub-optimal clusters and
let A∗ be the number of arms in the optimal cluster. The ex-
pected regret for any policy, on the class of bandit problems
with Bernoulli distributed arms clustered such that strong
dominance holds, satisfies E[RT ] ≥ Ω(

√
(A∗ +K)T ).

Let d > 0 be the smallest distance between any
sub-optimal and the optimal cluster. We compare The-
orem 6 to the upper bound in Theorem 4 and ob-
serve that

√
(A∗ +K)T ≤

√
(A∗ + (1 + γ)K)T ≤√(

1 + 1
d

)√
(A∗ +K)T . Hence, our upper bound in The-

orem 4 matches the lower bound up to logarithmic factors
and a constant depending on the separation of the clusters.

2.4 Regret Analysis HTS
Assume we haveN Bernoulli arms clustered into a tree T and
for simplicity we assume it to be perfectly height-balanced.
We denote the sub-tree corresponding to node j on level i as
T j
i and on each level i we denote the sub-tree containing the

optimal arm as T ∗i . Let T j
i+1, j ∈ [1,K∗i ], denote sub-trees

spanned by the child nodes of the root in T ∗i , where K∗i is
the number of children of the root in T ∗i . W.l.o.g let j = 1
be the sub-tree, T 1

i+1, that contains the optimal action. For
each sub-tree T j

i we define ∆j
i := µ∗ − maxa∈T j

i
µa and

dij := mina∈T ∗
i
µa −maxa∈T j

i
µa.

Assumption 2 (Hierarchical Strong Dominance). We assume
dji > 0, ∀i, j except for T ∗i .

Under this assumption the results in Theorem 3 can be nat-
urally extended to HTS by recursively applying Theorem 3.
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Theorem 7. Assuming hierarchical strong dominance. For
any ε > 0, the expected regret of HTS is upper bounded by

(1 + ε)

L−1∑
i=0

K∗
i∑

j=2

∆j
i

(dij)
2

+
∑
a∈T ∗

L

1

∆a

 log T + o(log T ).

For L = 0 Theorem 2.4 reduces to the instance-dependent
bound for standard TS and for L = 1 it reduces to the bound
for TSC presented in Theorem 3. Hierarchical structures and
bandits have previously been studied in the prominent works
[Coquelin and Munos, 2007] and [Bubeck et al., 2011] which
assumes there is a known smoothness. Here we do not make
such assumptions and Theorem 7 instead relies on an assump-
tion regarding the ordering of the tree.

Plausibility of Hierarchical Strong Dominance. The hier-
archical strong dominance assumption is perhaps too strong
for a general hierarchical clustering but it might be reasonable
for shallow trees. One example is in e-commerce where prod-
ucts can be organized into sub-categories and later categories.
A user might have a strong preference for the sub-category
“Football” in the category “Sports”.

3 Contextual Bandit with Linear Rewards
and Clustered Arms

In this section, we consider the MABC problem in its con-
textual variant with linear expected rewards (CBC). As in the
classic CB, there is for each arm a ∈ A an, a priori, un-
known vector θa ∈ Rd. At each time t, the learner observes
a context vector xt ∈ Rd and the expected reward for each
arm a at time t, given that the learner has observed xt, is
E[rt(a)|xt] = x>t θa. Similar to MABC, the learner has, in
addition, access to a clustering of the N arms and for CBC
we assume the arms to be clustered into a set of K disjoint
clusters.

For the CBC we extend TSC, Algorithm 1, to LinTSC, as
defined in Algorithm 3. At each level of LinTSC, we use the
Thompson sampling scheme developed for standard CB in
[Agrawal and Goyal, 2012].

Algorithm 3 LinTSC

Require: v > 0
Set Bc = 1d, fc = 0d, µc = 0d, Bc,i = 1d, fc,i = 0d,
µc,i = 0d

for t = 1, ..., T do
Observe context xt
Sample θc ∼ N (µ>c xt, vx

>
t B
−1
c xt)

Consider cluster k = arg maxc θc
Sample θk,i ∼ N (µ>k,ixt, vx

>
t B
−1
k,ixt)

Play arm a = arg maxi θk,i
Observe reward rt and updateBk = Bk+xtx

>
t ,Bk,a =

Bk,a + xtx
>
t , fk = fk + rxt, fk,i = fk,i + rxt, µk =

B−1k fk and µk,i = B−1k,i fk,i .
end for

4 Experimental Results
4.1 Stochastic Multi-armed Bandit
Strong Dominance. We generate synthetic data, for which
strong dominance holds, in the following way: We have N
arms and each arm i is Bernoulli distributed with reward
probability pi. The arms are clustered into K clusters and
we have A∗ arms in the optimal cluster. For the remaining
N − A∗ arms we assign each arm to one of the sub-optimal
clusters with uniform probability. We set the reward probabil-
ity of the best arm in the optimal cluster to be 0.6 and for the
worst arm in the optimal cluster we set it to be 0.6 − w∗.
For the remaining A∗ − 2 arms in the optimal cluster we
draw the reward probability from U(0.6 − w∗, 0.6) for each
arm. In each sub-optimal cluster we set the probability of
the best arm to be 0.6 − w∗ − d and for the worst arm to
be 0.5 − w∗ − d, the probability for the remaining arms are
drawn from U(0.5 − w∗ − d, 0.6 − w∗ − d). The optimal
cluster will then have a width of w∗ and the distance from
each sub-optimal cluster to the optimal cluster will be d. In
Figures 1a–1e, we run TS and TSC on the same instances for
T = 3000 time steps, varying the different instance param-
eters and plotting the cumulative regret of each algorithm at
the final time step T . For each set of parameters we evaluate
the algorithms using 50 different random seeds and the error
bars corresponds to ±1 standard deviation.

In Figures 1a and 1b, we observe that the cumulative regret
scales depending on the clustering quality parameters d and
w∗ as suggested by our bounds in Section 2.2—that is, the cu-
mulative regret of TSC decreases as d increases and increases
as w∗ increases. In Figure 1c, we observe that the linear de-
pendence inN for TS is changed to a linear dependence inK
and A∗, Figures 1d and 1e, which greatly reduces the regret
of TSC compared to TS as the size of the problem instance
increases. In Figure 1e we also see that as the number of
arms in the optimal cluster, A∗, increases to be a substantial
amount of the total number of arms, the gain from using TSC
compared to TS vanishes.

Hierarchical Strong Dominance. We generate a bandit
problem by first uniformly sample N Bernoulli arms from
U(0.1, 0.8) followed by recursively sorting and merging the
arms into a balanced binary tree, which has the hierarchical
strong dominance property. In Figure 1f, we ran the algo-
rithms for T = 3000 over 50 random seeds and illustrated
how the cumulative regret at time T of HTS changes as we
alter the depth L of the given tree and the total number of
arms N . Note that L = 0 corresponds to TS and L = 1
corresponds to TSC. We observe that as the size of the prob-
lem instance grows, i.e increasingN , using more levels in the
tree becomes more beneficial due to aggressive exploration
scheme of HTS. Hence, once we realize that one sub-tree is
better than the other we discard all arms in the corresponding
sub-optimal sub-tree. Connecting back to Theorem 7 we see
that HTS gets only a dependenceO(log2N) in the number of
arms when using the full hierarchical tree in Figure 1f.

Violation of Assumptions. In a real world setting, assum-
ing that strong dominance and especially hierarchical strong
dominance holds completely is often too strong. We thus
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Figure 1: Strong and Hierarchical Strong Dominance.

evaluate our algorithms on instances for which these assump-
tions are violated. We generate N arms by for each arm i we
sample a value xi ∼ U(0, 1). We cluster the arms into K
clusters, based on the values {xi}, using K-means. The re-
ward distribution of each arm i is a Bernoulli distribution with
mean f(xi) where f(x) = 1

2 (sin 13x sin 27x+1). This func-
tion is illustrated in the supplementary material, Appendix A,
and has previously been used to evaluate bandit algorithms
in [Bubeck et al., 2011], the smoothness of the function en-
sures arms within the same cluster to have similar expected
rewards, on the other hand the periodicity of sin yields many
local optima and the optimal cluster won’t strongly dominate
the other clusters. On these instances, we benchmark TSC
against two another algorithms proposed for MABC, UCBC
[Pandey et al., 2007, Bouneffouf et al., 2019] and TSMax
[Zhao et al., 2019]. We also benchmark against UCB1 [Auer
et al., 2002] and TS which both considers the problem as a
standard MAB, making no use of the clustering. We run the
algorithms on two different instances, one with N = 100 and
K = 10 and the other one with N = 1000 and K = 32. For
each instance we run the algorithms on 100 different random
seeds and we present the results in Figure: 2a and 2b, the error
bars corresponds to ±1 standard deviation. TSC outperforms
the other algorithms on both instances and especially on the
larger instance where there is a big gap between the regret of
TSC and the regret of the other algorithms. In order to test
HTS we generate an instance, as above, with N = 5000 and
K = 15 and construct a tree by recursively breaking each
cluster up into 15 smaller clusters using k-means. In Figure
2c we show the performance of HTS for two different lev-
els, L = 2, 3, compared to TSC using the clusters at level
L = 1 in the tree and also compared to the UCT-algorithm
[Kocsis and Szepesvári, 2006] using the same levels of the

tree as HTS. We averaged over 100 random seeds. The HTS
performs well on this problem and is slightly better than TSC
while both HTS and TSC outperforms UCT. We present more
empirical results for MABC in the supplementary material.

4.2 Contextual Bandit
We generate contextual data in the same way as in [Bounef-
fouf et al., 2019]. We have K clusters and N arms. Each
arm j is randomly assigned to a cluster i. For each cluster i
we sample a centroid θci ∼ N (0,15) and define a coefficient
for each arm j in the cluster as θj = θci + εv, v ∼ N (0,15).
We take the reward of an arm to be U(0, 2θᵀj x) where x is the
given context. The reward becomes linear and we can control
the expected diameter of a cluster by varying ε.

We benchmark LinTSC against the UCB-based counter-
part LinUCBC [Bouneffouf et al., 2019] and the standard al-
gorithms LinTS [Agrawal and Goyal, 2012] and LinUCB [Li
et al., 2010], which treats the problem as a standard CB. We
ran the algorithms on three different instances presented in
Figures 2d, 2e and 2f, over 25 different random seeds and
the error bars corresponds to ±1 standard deviation. We run
all algorithms with there corresponding standard parameter
(v = 1 for LinTS and LinTSC, c = 2 for LinUCB and Lin-
UCBC). We see a clear improvement between not using the
clustering (TS) and using the clustering (TSC). LinTSC per-
forms slightly better than LinUCBC as the problem becomes
larger w.r.t number of arms and clusters, Figures 2e and 2f.

5 Related Work
Bandits are now a classical subject in machine learning and
recent textbook treatments are [Bubeck and Cesa-Bianchi,
2012, Slivkins, 2019, Lattimore and Szepesvári, 2020]. The
MABC and CBC can be considered as natural special cases
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(a) K-means instance withN = 100,K =
10.
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(b) K-means instance with N = 1000,
K = 32.
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(c) Hierarchical clustering with k-means.
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(d) CBC with k = 20, n = 400, ε = 0.5
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(e) CBC with k = 30, n = 900, ε = 0.5
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(f) CBC with k = 30, n = 900, ε = 0.1

Figure 2: CBC and violation of assumptions in MABC.

of the more general finite-armed structured bandit which
is studied in [Lattimore and Munos, 2014, Combes et al.,
2017, Gupta et al., 2018, Gupta et al., 2019]. To the best
of our knowledge, the idea of clustered arms was first stud-
ied in [Pandey et al., 2007] and the MABC corresponds to
their undiscounted MDP setup for which the authors propose
a general two-level bandit policy and gives theoretical justi-
fications on how the regret scales depending on the charac-
teristics of the clustering, but without stating rigorous regret
bounds. Bandits with clustered arms were also recently stud-
ied in [Bouneffouf et al., 2019, Jedor et al., 2019] and both
papers prove regret bounds for UCB-styled algorithms in the
MABC under various assumptions on the clustering. [Boun-
effouf et al., 2019] is the work most related to ours since
they consider a two-level UCB scheme and regret bounds that
exhibits similar dependence on the clustering quality as our
bounds. In [Zhao et al., 2019] the authors propose a two-
level TS algorithm where the belief of a cluster is set to the
belief of the best performing arm in the cluster so far and the
authors give no theoretical analysis of its regret. Clustered
arms also appear in the regional bandit model [Wang et al.,
2018, Singh et al., 2020] under the assumption that all arms
in one cluster share the same underlying parameter. Another
model related to our work is the latent bandit [Maillard and
Mannor, 2014, Hong et al., 2020] where the reward distribu-
tions depends on a latent state and the goal of the learner is to
identify this state.

Bandits and tree structures are studied using a UCB-styled
algorithm for Monte-Carlo-based planning in the influential
work [Kocsis and Szepesvári, 2006] and later studied for var-
ious bandit problems with smoothness in the seminal works
[Coquelin and Munos, 2007, Bubeck et al., 2011].

We have based our bandit algorithms on the classical

method Thompson sampling [Thompson, 1933] which has
been shown to perform well in practise [Chapelle and Li,
2011] and for which rigorous regret analyses recently have
been established for the standard MAB in [Kaufmann et al.,
2012, Agrawal and Goyal, 2017]. The contextual version of
Thompson sampling we use in our two-level scheme for CBC
was originally proposed and analyzed for standard CB in
[Agrawal and Goyal, 2012] and recently revisited in [Abeille
and Lazaric, 2017].

6 Conclusions
In this paper, we have addressed the stochastic multi-armed
bandit problem and the contextual bandit with clustered arms
and proposed algorithms based on multi-level Thompson
sampling. We have shown that our algorithms can be used to
drastically reduce the regret when a clustering of the arms is
known and that these algorithms are competitive to its UCB-
based counterparts. We think that the simplicity of our al-
gorithms and the fact that one can easily incorporate prior
knowledge makes them well-suited options for bandit prob-
lems with a known clustering structure of the arms. In the
future we would like to explore how the regret of TSC be-
haves under weaker assumptions on the clustering. We want
to determine what are sufficient properties of the clustering to
ensure sub-linear regret of LinTSC.
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Journal of Machine Learning Research, 12, 05 2011.

[Chapelle and Li, 2011] Olivier Chapelle and Lihong Li. An
empirical evaluation of thompson sampling. In Ad-
vances in Neural Information Processing Systems 24,
pages 2249–2257. 2011.

[Combes et al., 2017] Richard Combes, Stefan Magureanu,
and Alexandre Proutiere. Minimal exploration in struc-
tured stochastic bandits. In Advances in Neural Informa-
tion Processing Systems 30, pages 1763–1771. 2017.

[Coquelin and Munos, 2007] Pierre-Arnaud Coquelin and
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