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Abstract
High throughput and low latency stream aggregation is essential for many applications
that analyze massive volumes of data in real-time. Incoming data need to be stored in
a single sliding-window before processing, in cases where incremental aggregations
are wasteful or not possible at all. However, storing all incoming values in a single-
window puts tremendous pressure on the memory bandwidth and capacity. GPU and
CPU memory management is inefficient for this task as it introduces unnecessary data
movement that wastes bandwidth. FPGAs can make more efficient use of their memory
but existing approaches employ only on-chip memory and therefore, can only support
small problem sizes (i.e. small sliding windows and number of keys) due to the limited
capacity. This thesis addresses the above limitations of stream processing systems by
proposing techniques for accelerating single sliding-window stream aggregation using
FPGAs to achieve line-rate processing throughput and ultra low latency. It does so first
by building accelerators using FPGAs and second, by alleviating the memory pressure
posed by single-window stream aggregation. The initial part of this thesis presents
the accelerators for both windowing policies, namely, tuple- and time- based, using
Maxeler’s DataFlow Engines (DFEs) which have a direct feed of incoming data from
the network as well as direct access to off-chip DRAM. Compared to state-of-the-art
stream processing software system, the DFEs offer 1-2 orders of magnitude higher
processing throughput and 4 orders of magnitude lower latency. The later part of
this thesis focuses on alleviating the memory pressure due to the various steps in
single-window stream aggregation. Updating the window with new incoming values
and reading it to feed the aggregation functions are the two primary steps in stream
aggregation. The high on-chip SRAM bandwidth enables line-rate processing, but
only for small problem sizes due to the limited capacity. The larger off-chip DRAM
size supports larger problems, but falls short on performance due to lower bandwidth.
In order to bridge this gap, this thesis introduces a specialized memory hierarchy
for stream aggregation. It employs Multi-Level Queues (MLQs) spanning across
multiple memory levels with different characteristics to offer both high bandwidth
and capacity. In doing so, larger stream aggregation problems can be supported
at line-rate performance, outperforming existing competing solutions. Compared to
designs with only on-chip memory, our approach supports 4 orders of magnitude larger
problems. Compared to designs that use only DRAM, our design achieves up to 8×
higher throughput. Finally, this thesis aims to alleviate the memory pressure due to the
window-aggregation step. Although window-updates can be supported efficiently using
MLQs, frequent window-aggregations remain a performance bottleneck. This thesis
addresses this problem by introducing StreamZip, a dataflow stream aggregation engine
that is able to compress the sliding-windows. StreamZip deals with a number of data
and control dependency challenges to integrate a compressor in the stream aggregation
pipeline and alleviate the memory pressure posed by frequent aggregations. In doing
so, StreamZip offers higher throughput as well as larger effective window capacity to
support larger problems. StreamZip supports diverse compression algorithms offering
both lossless and lossy compression to fixed- as well as floating- point numbers.
Compared to designs using MLQs, StreamZip lossless and lossy designs achieve up to
7.5× and 22× higher throughput, while improving the effective memory capacity by
up to 5× and 23×, respectively.
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Chapter 1

Introduction

The number of connected devices grows rapidly along with the amount of data they
produce and exchange. Processing such big data brings tremendous opportunities
in various domains (e.g. financial, transportation) enabling real-time sophisticated
decisions that were never possible before. However, analysing unbounded streams is
challenging, it requires high processing throughput to cope with massive volumes of
data and if real-time processing is expected, calls for low latency to respond fast.

Stream aggregation is one of the fundamental and computationally challenging
types of stream processing [1]. Streams of values (tuples) are handled in windows
of a particular size, WS, which are “slid” by a particular window advance, WA.
Then, an aggregation output is produced per window, computed based on a function
that uses as input the window values. The result of a Sliding-Window AGgregation
(SWAG) is a stream of aggregated values [2]. Often values in a stream are grouped-by
a key, then, values of different keys are processed separately. SWAG may follow
a tuple-based windowing policy, meaning WS and WA are measured in terms of
the count of elements. They are suitable for applications with fixed data rates and
have a fixed memory footprint. An example of tuple-based SWAG is depicted in
Figure 1.1. An alternative windowing policy is the time-based, where the WS and
WA are defined by time intervals. Time-based SWAG allows varying data-arrival
rates which naturally fits the time-series data produced by most Internet-of-Things
(IoT) devices [3–5]. Nevertheless, the number of tuples contained in a time-based
window can vary making the memory and compute resources needed to produce the
aggregation result unpredictable.

Some aggregation functions can be computed incrementally using either multiple
windows [6] or panes [7, 8]. Incremental aggregation computes and stores partial
results, rather than storing all the incoming values of a window before computing the
full function. In doing so, usually memory pressure is reduced (both bandwidth and
capacity) and performance is improved [9]. However, for some queries, especially with
small WA and multiple aggregation functions, incremental aggregation has the opposite
effect causing an excessive number of memory accesses that limit performance [9],
e.g., cases of processing geo-tagged data [5], social media data [10] or manufacturing
equipment data [11]. Then, Single Sliding-Window AGgregation (Single-SWAG)
which is a non-incremental approach that explicitly stores all the incoming values in
a single-window before processing is more efficient [9]. More importantly, storing
values in a single-window is unavoidable when computing holistic functions; these

1
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
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Figure 1.1: Sliding-window stream aggregation with Window Size (WS)=8 tuples
and Window Advance (WA) = 2 tuples for a input data stream, e.g. a vehicular
sensor emitting tuples t1, t2, . . . with each tuple containing a timestamp, vehicle-ID
and speed. For simplicity, only tuples from a single vehicle (key) are shown. The grey
tuples indicate the aggregate output generated when the sliding-window gets full. (e.g.
top-3, average, and median speed).

are functions that have no constant bound on the size required to store a partial result,
such as median [12].

In general, non-incremental, Single-SWAG is more suitable for general data min-
ing and machine learning functions such as classification (e.g., decision trees, random
forest, support vector machines, KNN), as well as for most of the inductive machine
learning algorithms [4]. However, temporarily storing all incoming values during
processing puts tremendous pressure to the memory, which often becomes the bot-
tleneck. For each incoming tuple, the single sliding-window of the respective key is
updated with the newly arrived value(s). In addition, every time the window advances,
its entire contents need to be read and fed to the aggregation function(s) to produce
a result. These two Single-SWAG steps, window-update and window-aggregation,
generate tremendous memory pressure, the latter especially for queries with frequent
aggregations (small WA).

This thesis addresses the overheads and limitations of stream processing systems
by proposing techniques for accelerating single-window stream aggregation using
FPGAs, thereby supporting holistic aggregation functions with high throughput and
low latency.

The rest of this introductory Chapter is organized as follows: The problem state-
ment is presented in Section 1.1 followed by a discussion of the objectives and
contributions of this thesis in Section 1.2.

1.1 Problem Statement

Single Sliding-Window AGgregation (Single-SWAG) supporting holistic aggregation
functions is data-intensive and becomes a major performance bottleneck for stream
processing systems. Below follows the list of inefficiencies observed in existing
literature, and tackled in this thesis.

Unnecessary data movement costs performance: Stream processing and stream ag-
gregation systems in particular, have been implemented on various compute platforms.
Multicore CPU and GPU systems are able to sustain high processing throughput but
fall short in delivering low latency [13]. They require redundant memory accesses
managed by an operating system to store incoming tuples in DRAM even before
processing starts. This, besides the long latency, wastes a significant fraction of valu-
able memory bandwidth reducing performance. This performance gap provides an
opportunity to consider FPGAs to implement customized dataflow engines which
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Figure 1.2: Processing throughput as a percentage of incoming tuple network line-rate
vs. problem size for an FPGA-based Single-SWAG at 156.25 MHz using only BRAMs
(2 MB) or only DRAM (24 GB). WS= 2-96K values; WA=WS; 128K keys and tuple’s
value size of 2 bytes.

naturally match the stream processing characteristics to provide both high processing
throughput and low latency.

Unsupported holistic functions and small problem sizes: Existing FPGA solutions
focus on incremental aggregation approaches using multiple window or pane-based
designs [6–8]. As a consequence, queries that require holistic functions or small WA
have poor performance or are not supported at all. Moreover, most existing FPGA
designs do not use external DRAM and therefore support only small problem sizes
(WS × number of keys), which are not practical for many real stream processing
problems [5, 10, 11]. This lack of support for holistic functions and larger problem
sizes provides an opportunity for building Single-SWAG accelerators using FPGA,
and by utilizing the DRAM available in the FPGA platform, to support larger problem
sizes.

Memory pressure due to window-update step: For every incoming tuple of a key,
the value(s) need to be updated in the single-window corresponding to that key. As
illustrated in Figure 1.2, for a particular stream aggregation query, with predominantly
window-updates (tumbling windows with WA=WS), running on a FPGA based Single-
SWAG system, the higher bandwidth and limited capacity of on-chip BRAM enables
line-rate processing but supports only small problem sizes. The larger but lower
bandwidth off-chip DRAM can handle larger problems, but with limited performance.
This performance gap provides an opportunity to utilize multiple levels of memory
hierarchy available in the platform for structuring the single-window per key. The
thesis aims to bridge this gap to perform faster window-updates by tapping the benefits
of the various levels in the memory hierarchy, and thereby improving the processing
throughput of the system.

Memory pressure due to window-aggregation step: For queries with frequent
aggregations (small WA), previous Single-SWAG approaches suffer from low process-
ing throughput due to the memory bandwidth bottleneck posed by the large volume
of window-aggregation traffic. Existing studies on real-world streaming datasets
have shown that a dominant part of them consisting of performance counters, sen-
sor, geolocation and other time-series data have significant redundancy that can be
exploited through data compression [14]. As an example, Figure 1.3 illustrates the
tremendous potential gains in Single-SWAG processing throughput for frequent ag-
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Figure 1.3: Processing throughput in million tuples per second vs. WS in tuples for
an FPGA-based Single-SWAG dataflow engine [15] at 156.25 MHz with varying
tuple’s value sizes from 8 bytes to 2 bits and WA=1 tuple, showing the potential for
data-compression.

gregation queries (WA=1) by reducing the tuple’s value size, e.g., up to 28× higher
throughput with a 32× data reduction. However, compression complicates window
management and introduces dependencies. Moreover, due to the on-the-fly processing,
high throughput, and low latency requirements of stream processing, sophisticated
compression schemes cannot be afforded due to their high complexity and high latency.
This thesis aims to mitigate the memory pressure due to window-aggregations by
incorporating efficient compression schemes in Single-SWAG, thereby, improving the
overall performance of the Single-SWAG engine.

1.2 Thesis Objectives and Contributions
The primary objective of this thesis is to mitigate the performance bottleneck of the
data-intensive Single-SWAG. We first aim to alleviate the unnecessary data movement
seen in CPU/GPU systems by building an accelerator using FPGA to achieve high
throughput and low latency Single-SWAG. In order to support larger problem sizes, we
aim to utilize the external DRAM available in the FPGA platform. Subsequently, the
performance of the accelerator is improved by using a specialized memory hierarchy for
stream aggregation. Finally, we aim to improve the overall performance of the Single-
SWAG accelerator by targeting the window-aggregation step using data-compression.
Below follows a more detailed description of the objectives with some related work
and the approach pursued in this thesis.

1.2.1 High Throughput & Low Latency Single-SWAG Accelera-
tion

The first objective of the thesis is to build the Single-SWAG accelerator by alleviating
the performance bottleneck due to unnecessary data movement and to support large
problem sizes. To this end, two designs are discussed below for supporting the two
windowing policies, namely, tuple-based and time-based.

Tuple-based windowing policy: The first design aims to achieve high throughput
and low latency tuple-based SWAG. The objectives of this design are to:

• Support holistic functions;

• Support aggregation queries with large WS, small WA, and multiple aggregation
functions;
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• Minimize memory accesses to maximize processing throughput;

• Utilize dataflow computing to maximize processing throughput; and

• Utilize direct network and off-chip memory connectivity to minimize latency and
support large problem sizes.

Time-based windowing policy: The second design described in this thesis is to
support time-based Single-SWAG. This design has the following objectives in addition
to the ones presented in the previous design:

• Support fluctuating data arrival rates for time series data; and

• Alleviate memory pressure of the single-window approach especially for skewed
data distributions.

Related Work: Generic software approaches, such as Apache Flink, Spark, and
Storm, running on general-purpose CPU offer a wide range of stream processing
capabilities, including support for time-based and holistic aggregations with ease of
deployment but have limited throughput and high latency [16–18]. Other CPU-based
sliding-window aggregation algorithms use data structuring and algorithmic techniques
such as DABA [2] and MTA [19] and improve latency of in-memory aggregation but
are constrained to associative aggregation functions.

One of the best systems that uses GPUs is SABER, a relational stream process-
ing system targeting heterogeneous machines equipped with CPUs and GPUs [20].
SABER achieves high throughput but at high latency of hundreds of milliseconds for
aggregation queries. Moreover, it supports only incremental aggregate computations
utilizing the commutative and associative property of some aggregation functions
and therefore can implement only distributive (count, sum) and algebraic (average)
functions. Another work that uses GPUs is Gasser [4]. As opposed to SABER, Gasser
supports holistic functions at high processing throughput by offloading batches con-
taining, in the order of thousands of windows to the GPU, which negatively impacts the
processing latency. Moreover, Gasser supports only a single key and only tuple-based
windowing policy.

Existing FPGA-based stream processing systems supports sliding-window aggre-
gation for distributive (count, sum, min, max) and algebraic (average) aggregation
functions [6, 8, 21–24] . Nevertheless, the existing FPGA designs use only the on-chip
BRAMs for storing aggregation states and therefore supports only smaller problem
sizes. Moreover, they do not support holistic functions, as it relies on incremental
aggregation.

In summary, existing CPU and GPU fall short on performance due to unnecessary
data movement and existing FPGA solutions support only smaller problem sizes and
do not support Single-SWAG for holistic functions.

Thesis Approach: Chapters 2 and 3 in this thesis addresses the above limitations
describing, FPGA-based Single-SWAG for tuple-based and time-based windowing
policies, respectively.

Chapter 2 describes tuple-based Single-SWAG using FPGA which is a Dataflow
Engine (DFE) implemented in a Maxeler N-series FPGA card [25]. The DFE is fed
with incoming tuples through a direct network connection and provides direct access
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to DRAM through its own memory controller. With the single-window approach, the
DFE is able to implement challenging realistic queries of any holistic, distributive
or algebraic aggregation functions and using external DRAM, the DFE is able to
support large number of keys and window sizes. The single-window design provides
high throughput and the DFE’s direct network connection and access to external
DRAM, enables it to achieve ultra low latency compared to other software and GPU
implementations.

Chapter 3 addresses the two additional challenges of time-based single-window
stream aggregation [26]. First, the unbounded number of tuples in a time-based
sliding-window is facilitated by a flexible circular buffer that stores the window values.
We apply the idea of panes [7] to a single-window [9] creating a circular buffer
that supports bulk evictions. In addition, this buffer can be expanded dynamically
with one or more unused identical buffers originally meant for other keys. Thereby,
time-based windows of varying size can be stored. Second, the memory pressure of
single-windows, caused by their need to store all incoming data, is alleviated with a
caching scheme which is used to merge multiple requests to the same DRAM location
without limiting performance in skewed key distribution.

Contributions: We introduce the first FPGA-based accelerator for single-window
stream aggregation. Our approach:

• supports realistic aggregation queries with distributive, algebraic, and holistic
functions for both tuple-based and time-based windowing policies and large
problem sizes;

• achieves 1-2 orders of magnitude higher processing throughput than a state-of-
the-art stream processing software system;

• offers ultra low processing latency of less than 10 µs, at least 4 orders of
magnitude faster than software; and

• is at least 1 order of magnitude more energy efficient than a state-of-the-art
stream processing software;

1.2.2 Alleviating Memory Pressure due to Frequent Updates

The next design described in this thesis is to improve the processing throughput
of Single-SWAG DFE described in the previous section by mitigating the memory
pressure due to the window-update step. For each incoming tuple, the memory needs
to be accessed to update the window. FPGAs can make more efficient use of their
memory but existing approaches employ either, only on-chip memory (i.e. SRAM)
or the designs in the previous section use only off-chip memory (i.e. DRAM) to
store the aggregated values. The high on-chip SRAM bandwidth enables line-rate
processing, but only for small problem sizes due to the limited capacity. The larger
off-chip DRAM size supports larger problems, but falls short on performance due to
lower bandwidth. This design aims to utilize the best of both worlds and the objectives
are to:

• Prevent slow and bandwidth wasteful read-modify-writes in DRAM during
window-updates;
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• Utilize the high on-chip SRAM bandwidth to ensure that the window is always
updated at line-rate; and

• Utilize the large off-chip DRAM size to support larger problems.

Related Work: The DRAM-only designs described in the previous section (Chapters
2 and 3) requires slow and bandwidth wasteful read-modify-writes in DRAM during
window-updates, since value size is typically smaller than DRAM line. Queue buffers
composed of two memory types have been designed in the past. More precisely, about
two decades ago, 2-level hybrid SRAM/DRAM packet buffers were introduced for
network processing [27–31] offering SRAM speed and DRAM capacity. Although
our approach is in the same direction, there are several fundamental differences.
Firstly, the SRAM/DRAM packet buffers implement queues that support read and
write operations at the granularity of a single element and this is less bandwidth
demanding compared to the stream aggregation. In addition, a network packet size
is at least equal to a DRAM line (64 bytes) and therefore fits DRAM better than
the stream aggregation accesses which are often finer and hence require expensive
read-modify-write operations. Finally, the hybrid packet buffers were limited to two
levels.

Thesis Approach: Chapter 4 introduces Multi-level Queues (MLQ), the first memory
hierarchy specialized for stream aggregation systems aiming to alleviate their memory
bandwidth bottleneck [15]. The proposed memory system offers a higher and better
utilized bandwidth as well as off-chip DRAM capacity to enable higher processing
throughput for larger problem sizes, i.e., WS × number of keys. Multiple memory
levels are used to form logical queue buffers, each buffer storing the contents of a
sliding-window for a particular key. Each multi-level logical queue needs to support
(i) single element write and (ii) all elements read operations for window-updates and
window-aggregations, respectively. More precisely, for a window-update, a new value
needs to be enqueued. The head of the MLQ can be at any memory level, but the
tail is always at the fastest (and smaller) first level which is the on-chip SRAM. This
ensures that the window is always updated at the highest speed in the fastest level-1
which offers single cycle access and therefore does not require the slow and bandwidth
wasteful read-modify-writes to DRAM. Moreover, the more recently received values of
each key are at the lower levels supporting better performance. Then, when the window
advances, the contents of the entire window are read utilizing the aggregate bandwidth
of all memory levels and subsequently, WA number of elements are discarded by just
updating the head pointer. Another advantage of this compared to DRAM-only designs
is that it handles skewed key distributions without additional support. Compared to a
BRAM-only design, MLQ offers higher capacity. Compared to a DRAM-only design,
it offers faster window-updates at on-chip SRAM speed as well as faster aggregation
using the aggregate bandwidth of all levels, rather than only the DRAM one.

Contributions: We introduce Multi-Level Queues (MLQs), a specialized memory
hierarchy for Single-SWAG. Our approach:

• uses multiple memory levels to form logical queues that offer on-chip SRAM
(BRAM) bandwidth for window-updates and DRAM capacity;

• supports 4 orders of magnitude larger problems compared to BRAM-only
designs; and
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• achieves up to 8× higher throughput compared to DRAM-only designs.

1.2.3 Alleviating Memory Pressure due to Frequent Aggregations
The final design described in this thesis is to improve the overall Single-SWAG pro-
cessing throughput by reducing the memory pressure due to the window-aggregation
step. Upon aggregation trigger, the entire single-window is read from memory. This
generates tremendous memory pressure especially for queries with frequent aggre-
gations (small WA). For queries with frequent aggregations, as the dominant part of
the single-window rests in the farthest and slowest memory, previous MLQ approach
suffer from low processing throughput due to the memory bandwidth bottleneck posed
by the large volume of window aggregation traffic. This design aims to alleviate this
bottleneck and the objectives of this design are to:

• Improve processing throughput of the MLQ system for queries with frequent
aggregations; and

• Exploit the redundancy in time-series data to reduce the aggregation traffic.

Related Work: The MLQ system in Chapter 4 [15] cannot take advantage of the
aggregated bandwidth offered by BRAM and off-chip SRAM especially when the
dominant portion of the window is stored in DRAM, which becomes the bottleneck.
One way to alleviate the window-aggregation memory bottleneck is to compress the
sliding-window. In the past, compression has been proposed for stream processing in
TerseCades [14]. However, TerseCades only supports batch-processing of separate
non-overlapping tumbling windows, i.e., WA=WS, rather than true stream processing
with WA≤WS, therefore it avoids data overlap between different window instances
and hence avoids the greatest challenge of applying compression to SWAG. In addi-
tion, TerseCades is software-based and requires data to be stored in memory before
processing, introducing significant latency.

Thesis Approach: Chapter 5 introduces StreamZip, the first true stream processing
engine with compression support for sliding-windows and WA≤WS [32]. StreamZip
is based on previous FPGA-based multi-level queue (MLQ) DFE for SWAG systems
(Chapter 4) and is able to support lossless and lossy compression algorithms aiming
to mitigate the memory bandwidth bottleneck of window-aggregations. StreamZip
achieves this by addressing a number of concurrency control challenges introduced by
the addition of the compression and decompression steps to the pipeline. First, the inter-
(de)compressor pipeline dependency is solved in StreamZip using multiple sub-streams
per key and careful memory packing and alignment of compressed data. Second,
intra-compressor-decompressor dependency is solved by speculatively buffering the
incoming tuples and bypassing the compressor stage to directly feed the computation
of the aggregation functions. Thirdly, the dependency between stream aggregation
and the decompressor latency is solved by keeping a tab on outstanding aggregations
and feeding the decompressor with this information to aid in exact bulk-eviction of
the invalid tuples upon window-slide.

Contributions: We introduce, StreamZip, the first true stream processing dataflow en-
gine with compression support for sliding-windows and any WA using reconfigurable
hardware. Compared to the MLQ design in Chapter 4, StreamZip:
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• achieves substantial reduction of aggregated data volumes by supporting both
lossy and lossless compression algorithms and applied to both fixed- and floating-
point numbers;

• achieves up to 7.5× and 22× higher throughput; and

• improves the effective memory capacity by up to 5× and 23×, for lossless and
lossy designs, respectively.

1.3 Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 presents the design
and evaluation of tuple-based single-window stream aggregation. Chapter 3 presents
the design and evaluation of Time-SWAD, a dataflow engine for time-based single-
window stream aggregation. Chapter 4 presents the design and evaluation of the
specialized memory hierarchy for stream aggregation. Chapter 5 presents the design
and evaluation of StreamZip, a dataflow engine with compressed sliding-windows for
stream aggregation. Finally, the conclusions of this thesis are presented in Chapter 6.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Single Window Stream
Aggregation using
Reconfigurable Hardware

With the recent technological advances the number of connected devices grows rapidly
along with the total amount of data they produce. New emerging applications analyze
unbounded streams of such big data in various domains (e.g. financial, transportation)
to make fast, sophisticated decisions. However, real-time analytics of large data
streams require high processing throughput to cope with massive volumes of data as
well as low latency to respond in real-time.

Stream aggregation is one of the most challenging and computationally intensive
analysis tasks in stream processing. This can be handled by applying the traditional
relational database aggregation semantics to a sliding window of a particular size
(Window Size - WS). Such window can then be “slid” by a particular number of
elements (Window Advance - WA) as to produce new aggregated values. The result is
a stream of aggregated values. Incremental aggregation – using multiple windows or
panes [6–8] to compute and store partial results rather than storing all the incoming
values – has been employed to improve performance and reduce memory pressure
(both capacity and bandwidth). However, for some queries, especially with small
WA, incremental aggregation has the opposite effect causing an excessive number of
memory accesses that limit performance. This is for instance the case in streaming
applications processing geo-tagged data [5], social media data [10] or manufacturing
equipment data [11]. In such cases, a single window approach that explicitly stores
all the incoming values in a single window before processing is more efficient. More
importantly, storing values in a single window is unavoidable when computing some
holistic functions; these are functions that have no constant bound on the size required
to store a partial result, such as median [12].

Stream processing and stream aggregation systems in particular have been im-
plemented on various compute platforms. Multicores and GPU are able to sustain
high processing throughput but fall short in delivering low latency [13]. They require
redundant memory accesses managed by an operating system to store incoming tuples
in DRAM even before processing starts. This, besides the long latency, wastes a
significant fraction of valuable memory bandwidth reducing performance. On the con-

11
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trary, FPGAs provide both high processing throughput and low latency. Customized
dataflow engines, which naturally match the stream processing characteristics, can be
implemented in reconfigurable hardware achieving high throughput [13]. Furthermore,
incoming tuples can be fed to an FPGA through a direct network connection with low
latency, avoiding unnecessary DRAM accesses.

So far, current FPGA solutions focus on incremental aggregation approaches using
multiple window or pane-based designs [6–8]. As a consequence, queries that require
small WA or use holistic functions have poor performance or are not supported at
all. Moreover, most existing FPGA designs do not use external DRAM and therefore
support a single key or at most a handful of keys, and small window sizes, which are
not practical for many real stream processing problems, such as the ones mentioned
before [5, 10, 11].

This work addresses the above limitations describing, to the best of our knowledge,
the first FPGA-based design for single window tuple based stream aggregation. A
Maxeler N-series card is used for the design of a stream aggregation dataflow engine
(DFE) [25]. The DFE is fed with incoming tuples through a direct network connection
and provides direct access to DRAM through its own memory controller. The main
contributions of this work are the following:

• The first FPGA-based design for single window stream aggregation, which

– uses a Maxeler’s Dataflow Engine and deep pipelining to provide process-
ing throughput of up to 8 million tuples per second (1.1 Gbps), and

– has a direct network connection to feed incoming tuples as well as direct
access to DRAM offering ultra low end-to-end latency of up to 4 µsec.

• An implementation of the above design able to support multiple challenging
realistic streaming queries with

– holistic and arbitrary user-defined aggregation functions, as well as dis-
tributive and algebraic ones;

– up to 1 million concurrently active keys;

– large window sizes storing up to 6144 values per key.

The remainder of this chapter is organized as follows. Sections 2.1 and 2.2 offer
background on data stream aggregation and present related work, respectively. Section
2.3 describes the proposed design for single window FPGA-based stream aggregation.
Section 2.4 presents the evaluation results. Finally, Section 2.5 summarizes our
conclusions.

2.1 Background - Stream Aggregation
In this section, we present the semantics of stream aggregation and provide an overview
of the main implementation strategies discussed in the literature. In addition, we elab-
orate on the two main arguments that motivate our implementation choice among the
existing implementation strategies for stream aggregation. More precisely, we count
the memory accesses for each implementation strategy, showing that for some prob-
lems the algorithm we implement in hardware incurs the lowest DRAM Read/Write
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Figure 2.1: Example of stream aggregation over a stream of tuples composed by
schema 〈char, int〉 for parameters F=mean, WS=4, WA=2 and K=char (i) and internal
states maintained by the different implementation strategies at time instance *1 and
*2 (ii).

(R/W) operations per tuple. In addition, we explain why for some holistic functions
explicitly storing all incoming values is necessary.

A stream is an unbounded sequence of tuples t0, t1, . . . each tuple containing n
attributes 〈A1, . . . ,An〉. When aggregated, tuples are fed to one (or multiple) function F
such as sum, mean, min, max or count, among others. Since streams are unbounded,
the aggregation is performed over a sliding-window of size WS and advance WA.
Optionally, aggregation can be performed specifying a parameter K (a subset of the
tuple’s attributes, also referred to as key). In such a case, F is computed for each
distinct value observed for K (group-by). Figure 2.1 presents an example in which a
stream of tuples with schema 〈char, int〉 are aggregated using parameters F = mean,
WS = 4, WA = 2 and K = char.

Different strategies exist to implement stream aggregation’s semantics. The Multi-
Window (MW) [6] strategy maintains the partial aggregated state of all the overlapping
windows to which each tuple contributes. As shown in Figure 2.1, the partial state
for F = mean is the sum of the values observed so far, which is then divided by WS
once the window is full. When a window is full, a result is output and the window is
discarded. Each tuple contributes to dWS

WAe windows. Upon reception of a tuple, all the
overlapping window’s states are updated. When the size of the state maintained for
each window in DRAM is S, the overall bytes for a key are dWS

WAe×S. Windows are

updated upon reception of a tuple incurring d
WS
WA e×S

B R/W from DRAM, where B is the
burst size. Furthermore, for every WA tuples, one extra R/W is required to produce

the result1. The average R/W per tuple and per key is 1
WA +

dWS
WA e×S

B .
The alternative Pane-Based (PB) strategy [7, 8], partitions the window into panes

of length WA2 and maintains partial aggregated states for the latter. As shown in
Figure 2.1, the partial state for F=mean is the sum of the values observed for each pane
of WA tuples. Upon reception of a tuple that fills a window, the result is computed by
aggregating its partial states, and the stale panes of the window are then discarded (in
the example, summing each pane value and dividing by WS). Finally, the contribution
of the tuple is added to the partial aggregate state of the rightmost pane. In this case,
when the size of the state maintained for each pane is S, the overall bytes for a key
are WS

WA ×S. Upon reception of a tuple, updating the last pane incurs one R/W from

1This conservative estimation assumes one window’s state fits in a burst.
2Assuming WS is a multiple of WA.
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Figure 2.2: Average number of memory accesses (R/W) per tuple incurred in MW, PB
and SW stream aggregation implementations when computing the average, the top-3
highest, and the top-3 lowest values of a stream of values.

DRAM3. Furthermore, for every WA tuples, d
WS
WA e×S

B R/W are required to produce the

result. The average R/W per tuple and per key are then 1+ 1
WA ×

dWS
WA e×S

B .
A third strategy, the Single-Window (SW), maintains tuples rather than partially

aggregated states. With SW, WS tuples are maintained for each key (as shown in
Figure 2.1) and the results are computed every time the window is full. Being A
the size in bytes required to store the attributes to be aggregated, the state is equal
to WS×A. In the general access scheme of the DRAM memory, SW requires one
R/W for the insertion a tuple and WS×A

B R/W for the output of a result. Since the
latter happens once every WA tuples, the average R/W per tuple and per key are then
1+ 1

WA ×
WS×A

B .
Figure 2.2 shows the average memory accesses (reads and writes) per tuple incurred

by the different strategies when computing the mean, the top-3 highest and the
top-3 lowest values of a stream of integer values. For MW and PB, we maintain
the sum of the incoming values (as for the example in Figure 2.1), 3 values for the
top-3 highest and 3 values for the top-3 lowest values, thus incurring a state S
of 28 bytes. For SW, A requires 4 bytes. We assume the burst size S is of 64 bytes. As
shown, the average number of R/W is lower for SW when several functions aggregate
large windows with small advance, as is the case in this work. In the example, the
SW approach fits best large windows producing continuous up-to-date results (i.e.,
with small window advance) by incurring up to 7× fewer memory accesses (for WA=1
and the largest WS) compared to MW and PB (500 for SW instead of 3494 for MW
and PB). As explained in Section 2.4.3, even in our SW experiments, performance
is limited by DRAM bandwidth. Then, MW and PB implementations would have

3Assuming one pane fits in a burst.
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a substantially lower performance due to their need for substantially higher DRAM
bandwidth. As a consequence, SW is a faster stream aggregation choice for queries
with such WA and WS parameters.

Another disadvantage of MW and PB implementation is that for holistic functions,
maintaining all input tuples is necessary independently of whether the function can
be computed incrementally. This is for instance, the case for the median function
as all the tuples contributing to the window need to be kept and sorted before the
median itself can be computed. This is due to the non-associative nature of the median
function. For such functions, a SW implementation is more efficient. MW solutions
would require storing all incoming tuples in each one of the multiple windows resulting
in many duplicates (exacerbating performance bottleneck) and PB approaches would
not be able to maintain partial results.

In summary, for small WA and large WS as well as for particular functions, SW
is more efficient for supporting stream aggregation. This motivates our algorithmic
choice, the design of which is described in Section 2.3.

2.2 Related Work

In this section, we highlight related works that use various computing platforms
for stream processing. In addition, we discuss some techniques proposed for in-
memory databases (IMDBs), which are closely related to ours, although they follow a
store-and-process paradigm rather than on-the-fly real-time stream processing. Dis-
tributed Stream Processing Engines (SPEs) running on conventional CPUs like Apache
Flink, Spark, and Storm provide generic stream processing capabilities and ease of
deployment [16–18, 33]. In particular, Apache Flink is an open-source Java based
state-of-the-art stream processing framework. These software-based distributed stream
processing engines are easy to configure, flexible to allow for a multitude of operations
and analysis on the data, and can process a large amount of data located in different
servers. Nevertheless, as with any general-purpose software implementation, their
performance depends on the underlying hardware and can never match the throughput
or latency offered by dedicated implementations (e.g. custom FPGA-based systems).
In the particular focus of this work, software approaches are not able to cope with the
challenges posed by aggregating on large windows (large WS) and at high rates (small
WA).

SABER is a relational stream processing system targeting heterogeneous machines
equipped with CPUs and GPUs [20]. SABER achieves high throughput but at high
latency of hundreds of milliseconds for aggregation queries. Moreover, it supports
only incremental aggregate computations utilizing the commutative and associative
property of some aggregation functions and therefore can implement only distributive
(count, sum) and algebraic (average) functions.

Glacier is an FPGA-based streaming query to hardware compiler which supports
sliding window aggregation for distributive (count, sum, min, max) and algebraic
(average) aggregation functions [6]. This implementation relies on a MW approach,
instantiating multiple aggregation compute modules, resulting in poor scalability in
terms of resource utilization and performance. Oge et al. improves the aggregation
logic in [6] using the PB approach [7], thereby making the design scalable with increas-
ing WS/WA ratio [8]. Nevertheless, both designs use only the on-chip BRAMs for
storing aggregation states and do not use DRAM. In turn, this prevents the design from
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performing stream aggregations of realistic sizes (number of keys, WS). Moreover,
Glacier does not support holistic functions such as median, as it relies on incremental
aggregations. Finally, Oge et al. support only a single key and do not support group-by
clauses in the query [8, 34].

A considerable number of previous works have focused on accelerating IMDB
operators using FPGAs [35]. For instance, István et al. used an on DRAM hash
table [36], which was subsequently improved using a Cuckoo hash table [37], similar
to our design. Another interesting work [38], uses an FPGA-based Convey HC-
2ex machine to support high throughput group-by in-memory DB aggregation, but
implements only the count aggregation function.

In this work, we propose a single-window stream aggregation implemented on
reconfigurable hardware. Our design achieves similar throughput and latency (millions
tuples/sec and few µsec, respectively) as other FPGA-based solutions, but is able
to produce more complex operations and with larger state. It further confirms prior
art conclusions that GPUs have in general much higher stream processing latency
than FPGAs [13], as our design achieves 3 orders of magnitude lower latency than
related GPU approaches, although none of them has the exact same query semantics
considered here. Finally, as shown in Section 2.4, our approach supports substantially
higher throughput and lower latency than software.

2.3 A Data-Flow Engine for Single Window Stream
Aggregation

Data-flow computing matches well the requirements of stream processing. A deep,
feed-forward-only pipeline with lightweight control for a back-pressure stall mecha-
nism is able to process fast large volumes of incoming data. We propose a reconfig-
urable dataflow design for single window stream aggregation. A Maxeler N-series
card [25] is used to host our design, implemented as a Data-Flow Engine (DFE),
further providing a direct network connection and DRAM access to minimize the
processing latency. Although this Maxeler system fits well our design requirements,
our approach is general and could be ported to other platforms that exhibit similar
characteristics.

Figure 2.3 shows the top level block diagram of the proposed design. Incoming
tuples containing a timestamp, a key, and a value, are carried by network packets and
received by the receiver module (Rx). Their keys are hashed to index a hash table,
which stores metadata per key, needed for the subsequent processing stages. After
accessing the hash table, multiple concurrency control queues are used to enqueue
the tuples and resolve dependencies between them. Dequeuing from the queues is
performed in a round-robin fashion allowing only for a single tuple per key to be
in-flight. Forwarded tuples trigger an access to DRAM to read and subsequently
update the stored values (state) of the respective key. When the number of tuples
per key reaches the WS threshold, DRAM accesses are issued to read all the values
of the corresponding window and compute the aggregation function in the compute
stage. The result of the aggregation function is finally transmitted back through the T x
module.

Note, that the flow of the data through the stages is controlled through FIFOs
responsible for stalling the pipeline via a back-pressure mechanism when needed as
well as for triggering a stage when valid data are available. Below, each stage of the
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stream aggregation engine is described in detail.

2.3.1 Receiver and Transmitter

The receiver Rx and transmitter T x modules handle the incoming and outgoing network
packets, respectively, supporting the network protocol processing tasks (TCP, UDP, or
Ethernet). Rx and T x receive and transmit packets from/to the 64-bit wide physical
DFE link through protocol specific bi-directional streams. Each packet carries multiple
tuples of the following form 〈ts(8),key(4),value(4)〉, containing in total 16 bytes, of
which 8 bytes used for a timestamp, 4 bytes for the key and 4 bytes for the actual value
of the tuple.

2.3.2 Hash Function

The incoming tuples are unpacked and hashed using their key to generate a hash table
address (ht adr). Bob Jenkin’s Lookup3 hash function [39] is used for the hashing as
proposed in [36]. Such functions are proven to produce reduced number of collisions
due to the Avalanche effect, whereby, keys that differ even by a single bit produce
different hash values. Two hash functions are computed in parallel, the second one
used in case of collision of the first. This stage adds the ht adr to the tuple and
forwards it to the next stage.

2.3.3 Hash Table

The hash table, shown in Figure 2.4, stores metadata for the active keys handled
in the system. In order to fit the hash table for a large number of keys using the
on-chip BRAMs, our current implementation is direct mapped, having each entry
corresponding to a single key. Alternatively, the handling of hash collisions could be
improved by adding associativity to the hash table as described in [36]. In such setup,
a table entry would offer multiple locations to store a key and a least recently used
(LRU) policy would be used for replacement.

As shown in Figure 2.4, each hash table entry contains (i) a counter for the number
of values (tuples) stored in DRAM for a particular key window as to determine when
the key context is ready for aggregation, and (ii) a pointer to the last stored value in
DRAM (head pointer). Optionally, a timestamp or other fields could be added as the
application demands it.

As explained in Section 2.3.5, each entry in the hash table has a statically allocated
DRAM memory region to store the values of the respective key. Static allocation
simplifies considerably the hardware design compared to a dynamic memory manage-
ment scheme. The size of this DRAM region determines the maximum window size
supported. Due to this static DRAM allocation, after a hash table access, the DRAM
location for accessing the stored values of the corresponding key can be calculated
using (i) the hash table address storing the key, and (ii) the head pointer to the last
stored value.

In general, a tuple accessing the hash table, finds the DRAM location of its key
window and decides whether the computation of the aggregation function is triggered.
After reading the hash table, the same hash table entry is updated with a new counter-
value and head-pointer.
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Figure 2.4: Hash table and external DRAM organization.

2.3.4 Concurrency Control Queues
After the hash table stage, the tuples are distributed among a set of concurrency control
queues (cc Qs) using the least significant bits of their ht adr. Tuples that belong to
the same key are sent to the same cc Q. Each queue has a fixed time-slot to send
a tuple forward and is selected in a round-robin fashion. The cc Q arbiter has an
additional locking functionality in which it locks the queue as soon as a tuple is
pulled out. The arbiter waits for the DRAM write commit signal, indicating that the
tuple has updated its key window, before unlocking again the queue. This is done to
prevent read-after-write hazards in the pipeline as a result of issuing multiple requests
concurrently.

Ideally, blocking of tuples would be avoided (assuming uniform random distribu-
tion of keys) when using a number of cc Qs equal to the delay (in FPGA cycles) of
the pipeline part that comes after the concurrency control queues (including DRAM
accesses). In practice, we use 128 queues without limiting DFE performance or
exhausting FPGA resources.

A similar concurrency control mechanism was proposed for an in-memory DB
system in [36]. However, that work uses single registers, rather than entire queues
to store tuples. As a consequence, their pipeline is stalled when an incoming tuple
needs to be written to an already occupied register. On the contrary, using queues, as
proposed in our design, offers higher flexibility and better load balancing, resulting in
fewer stalls.

2.3.5 DRAM access
The values of each active key, forming a single window, are stored in the external
DRAM accessed directly through a memory controller module in the FPGA. Next, we
describe the placement of the key values in DRAM as well as the way DRAM reads
and writes are performed.

2.3.5.1 Placement of key values in DRAM

The DRAM capacity is equally divided statically to the hash table entries, correspond-
ing to the total number of (active) keys supported. For example, in our platform the
total DRAM capacity is 24GB and considering that the total active keys supported is
1 million, each key is allocated a maximum single window value storage of 24 KB.
We use the entire DRAM as a single monolithic block in single channel mode with
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a random access pattern and a single DRAM burst of 192 bytes (single burst size).
The number of DRAM bursts corresponding to the maximum single window size is
24KB/192 = 128. So, for values of size 4 bytes (value size), the maximum single
window size per key is 24KB/4B = 6144.

The values of a key in the single window are organized in a circular buffer fashion
as shown in Figure 2.4. This is possible as we implement the tuple-based class of
sliding window stream aggregation in which the window advance is a fixed number
of tuples [40]. Consequently, this allows to overwrite the stale entries in the single
window in a circular fashion4. The WS and WA in the continuous stream query may be
parameterized at runtime. The maximum value of WS is the maximum single window
size per key. WA can vary from 1 . . .WS. Using the runtime parameterized WS, the
no o f bursts per key can be calculated as WS× value size/single burst size. For
example, if the query has a WS of 3072, then the number of bursts required per key is
64. The granularity of a data word in the DRAM read/write data stream is a single
DRAM burst of 192 bytes.

2.3.5.2 DRAM Read

As a tuple along with its control bits enters the DRAM stage, it is known whether an
aggregation computation is triggered, or otherwise a new value should just be added
to the window. In the former case, a multiple-burst read is issued with start address
as vs adr. In the latter case, a single read is issued at address vs adr+ last vs block
(last vs block is retrieved from the head pointer). As there are two read streams
corresponding to single and multiple bursts, there are two internal queues to buffer the
input data words. Once the read is issued, the tuple is placed in a queue, waiting until
the memory controller returns with a response.

When DRAM responds to a single read, the tuple awaiting is dequeued and the
word read from the DRAM is updated with the new key value and forwarded to the
DRAM write stage along with the proper control bits specifying the DRAM location
to write back the updated data. Using the above internal queue to delay the tuples with
pending DRAM responses, synchronization is achieved between the incoming tuple
and its values read from DRAM.

When DRAM responds to a multiple burst read request, a counter with maximum
value equal to the burst length (no o f bursts per key) is used to ensure that all the
values needed for aggregation are received. Subsequently, the values are forwarded to
the compute stage together with the tuple. Note that the new key value carried by the
tuple that triggered the aggregation still needs to be written back to DRAM updating
the key values. Consequently, a write back to DRAM is performed parallel to the
computation of the aggregation.

2.3.5.3 DRAM Write

All writes to DRAM are single burst writes. This stage receives two streams coming
from the DRAM Read stage, one for tuples that issued a single word DRAM read,
and a second for tuples that issued a multiple burst DRAM read. These two streams
bring DRAM write requests, which are sent to the memory controller and subsequently
forwarded to the DRAM.

4For time-based windows, static memory allocation would limit the maximum number of values arriving
within a time slot that defines the window. It would further require variable number of values to be updated
in a WA.
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Figure 2.5: Maxeler DFE used for SW stream aggregation.

2.3.6 Compute Stage

The compute stage calculates the implemented aggregation function, using the values
read from DRAM, which correspond to the window of the particular key. Depending on
the function in the query (distributive, algebraic, holistic), the values may be processed
gradually as they arrive from DRAM (e.g. partial aggregation), or otherwise only
when all values in the window have been received. For example, algebraic aggregation
functions like average and distributive functions such as minimum, maximum, and
sum can be partially computed on-the-fly for each burst and then the result accumulated
to find the final aggregate of the entire window. But for holistic aggregation functions
such as median, the entire single window should be received before triggering the
aggregation. Note that in our implementation of a median aggregation function, the
bitonic network sorting algorithm is used, which is a parallel sorting algorithm and
conforms to the dataflow paradigm [41].

After the computation of the function is completed the result is forwarded to the
T x stage. Note that the design effort for implementing different queries in our design
mainly lies on modifying the compute kernel.

2.4 Evaluation
The proposed approach is evaluated in terms of performance and power consumption
implementing different queries. First, the experimental setup is discussed. Then, the
FPGA resource utilization of our design is presented. Finally, processing throughput,
latency and power results are reported and compared to a state-of-the-art stream
processing software.

2.4.1 Experimental Setup

The block diagram of the experimental platform is shown in Figure 2.5. A Maxeler
N-series ISCA (MAX4AB24B) PCIe card with an Altera Stratix V (5SGXAB) was
used.

The card provides direct 10 GbE network connection to the FPGA. It is further
equipped with three 8 GB DDR3 DIMMs accessible directly from the FPGA (24
GB in total). The off-chip DRAM has a maximum bandwidth of 38.4 GB/s and an
average latency of about 500 ns. The total on-chip BRAMs available in the DFE is 6.6
MB. Our design is implemented in MaxJ, a Java based High level Synthesis (HLS)
language and compiled to FPGA bitstream using MaxCompiler.
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Table 2.1: Resource utilization for the FPGA implementation.

Resource Query 1 Query 2 Query 3
Logic (ALMs) 89853 (25.01%) 222275 (61.9%) 223364 (62.18%)
BRAMs 1856 (70.30%) 1840 (69.7%) 1906 (72.20%)

Our implementation is compared with the state-of-the-art open source stream
processing software framework, Apache Flink (v1.2.1). Flink processing was set up
in a workstation with an Intel® Core™ i7-4790 CPU running at 3.6 GHz and 24 GB
DDR3 DRAM. Prior FPGA/GPU works cannot be directly compared with our design
as they target stream aggregation queries with different semantics.

The data set is uniformly distributed and the tuple’s keys and values are generated
with uniform distribution. The tcpreplay is used to inject captured packets [42]. We
experimented with WS up to 6000 and WA ranging from 1 to WS. Our experiments
have used a finer grain of WA for the smaller sizes (up to 10) as this is the region of
interest for the single window implementation.

The queries which we implemented can be expressed in a streaming relational
model [40]. To make the queries intuitive, a subset of the LinearRoad benchmarking
system [43] is used, where each vehicle has a sensor that emits tuples composed of a
timestamp, a vehicle ID (key), and speed (value).

The following queries were used in our evaluation:
Query 1: Find the average, minimum, and maximum speed for each vehicle for

the last WS tuples and return the aggregate every WA tuples.
Query 2: Find the median speed for each vehicle for the last WS tuples and return

the aggregate every WA tuples.
Query 3: Find the median, average, minimum, and maximum speed for each

vehicle for the last WS tuples and return the aggregate every WA tuples.

2.4.2 Resource Utilization and Maximum Frequency
The resource utilization of the proposed design is shown in Table 2.1 for each query.
About 70% of the BRAMs are used for the hash table and the queues employed in
our design. It can be further observed that the median operation requires more logic
resources as it uses a sorting network. The reported resource utilization corresponds to
the maximum WS of the queries. For Query 2 and 3, the maximum WS is determined
by the largest bitonic sorting network that could fit in the available FPGA resources,
which is for a WS of 144. An alternative sorting algorithm such as a merge-sort could
have been used but it would still have a storage limitation as all values need to be
kept in the FPGA memory to produce the final result. Query 1 operates at 150 MHz.
Queries 2 and 3 have more complex implementations and operate at 100MHz.

2.4.3 Throughput
The processing throughput, i.e., the number of input tuples processed by the system per
unit of time, is measured for every query and compared to the software implementation
(Flink).

Figure 2.7 and 2.6 depict the throughput for different Window Sizes (WS), Window
Advance (WA) for both the FPGA-based (FPGA), in solid line, and software (Soft),
in dashed line, implementations for Query 1. As the WA increases, the throughput
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Figure 2.6: Throughput for Query 1 for Window Sizes: 96, 192 and 384 tuples.
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Figure 2.7: Throughput for Query 1 for Window Sizes: 768, 1536, and 6000 tuples.
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Figure 2.8: Throughput for Query 2 for Window Sizes: 48, 96, and 144 tuples.
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Figure 2.10: Latency for Query 1.

also increases. This is expected as the number of aggregates to be produced decreases
significantly with the larger WA because the aggregation function is triggered less
often. For small values of WA, the software implementation appears to suffer more
than the FPGA implementation. This gap closes for larger WA values. The most
important observation is that the throughput achieved by the software implementation
is always significantly lower by a factor of 13× up to 173× than the FPGA-based
implementation, which is able to process 8 million tuples per second.

The charts in Figures 2.8 and 2.9 show the throughput for WS of 48, 96, and 144
for Queries 2 and 3 respectively, for both the FPGA and software implementations.
For these queries, the trend is the same as in Query 1: throughput increases as the WA
increases, and FPGA throughput is substantially higher than software by a factor of
20× up to 185×.

Overall, stream aggregation in our platform is memory bounded. Considering
the operating frequency of our design and the Ethernet bandwidth (10Gbps), DFE
would be able to process about 80 Mtuples/sec if not limited by the external DRAM
bandwidth. However, the throughput observed in our experiments is an order of
magnitude lower.

2.4.4 Latency

For the same set of experiments we also measured the average tuple latency. That is
the average time spend by a single tuple in the system, from the time it enters until its
processing is completed. Obviously, the worst case latency occurs when the compute
stage is triggered to produce a result for the aggregation function. The contribution of
computing the aggregation function in the worst-case overall latency, which is about 4
µs, is 0.67 µs, 0.79 µs, and 1 µs for Queries 1, 2, and 3, respectively. In this Section,
we show only the latency for Query 1 since it is the simplest and thus the one where
the software-based system exhibits the lowest latency (about 1-3% lower than Queries
2 and 3). For the FPGA-based system, the latency is approximately the same across
all queries.
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Figure 2.10 shows average tuple latency for different window sizes of Query 1
implemented in software and FPGA. As opposed to the FPGA implementation, in
software, WA has some impact in the average tuple latency. Consequently, for software
we report the minimum and maximum (average) tuple latency measured for each WA.
While not clear in this chart, the software latency is lower as the WA increases. This is
because the aggregation function is triggered less frequently and thus the system load
is not as high. For the FPGA system the difference is negligible and thus only a single
line is shown.

The latency for the software system ranges from approximately 0.01 up to 70
seconds. For the FPGA system the latency is significantly lower, approximately 4 µsec.
Even though the operating frequency of the FPGA-based system is much lower (100-
150 MHz for the FPGA system as compared to 3.6 GHz for the software) the Maxeler
N-series system provides a dedicated FPGA implementation that is substantially more
efficient than the general-purpose CPU implementation. In particular, the latency for
the FPGA system is 4 to 7 orders of magnitude lower than the latency of the software
system.

2.4.5 Power

The power consumption for both the FPGA-based and software implementations is
measured. For the CPU we measured the power consumption using the processor
performance counters. This gives package power to which we added DRAM power.
For the FPGA we used the available tool to measure the total power consumed by the
ISCA board including the FPGA, DRAM and QSFP port.

While for the CPU, power consumption depends on the executed scenario, i.e.
the particular query, WS and WA, for the FPGA it is relatively stable. CPU power
consumption ranges between 13.7 W to 48.4 W while for the FPGA it is 23.9 W to
29.7 W. Notice that for certain cases the CPU power is actually lower than the FPGA
power but for most cases it is almost double.

More relevant than the absolute power consumption is the energy efficiency
achieved by each architecture. We define energy efficiency as the Performance (num-
ber of tuples processed per second) per Watt. In our experiments, energy efficiency of
our FPGA-based design is 10× to 36× better than the software CPU implementation.

2.5 Conclusion

High throughput and low latency stream aggregation is critical for various emerging
stream processing applications in order to process large data volumes and produce
real-time responses. High-end multicores and GPUs are able to support high through-
put stream processing, but fall short in delivering low latency. On the contrary, FPGA
platforms can provide both. Still, previous FPGA-based solutions offer only incre-
mental stream aggregations, which is not acceptable for certain queries. This work
describes the first FPGA-based single window stream aggregation engine. It is able
to implement challenging realistic queries of any holistic, distributive or algebraic
function and support up to 1 million keys, storing windows of 6144 values per key. Our
approach is implemented in a Maxeler N-series dataflow engine, which offers a direct
network connection and access to external DRAM. The proposed design achieves
1-2 orders of magnitude higher processing throughput than a state-of-the-art stream
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processing software system at up to 2× lower power cost, processing up to 8 million
packets per second (1.1 Gbps) consuming 23.9 to 29.7 W. Moreover, a single tuple is
processed in less than 4 µsec, at least 4 orders of magnitude faster than software.
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Chapter 3

Time-SWAD: A Dataflow
Engine for Time-based Single
Window Stream Aggregation

The number of connected devices grows rapidly along with the amount of data they
produce and exchange. Processing such big data brings tremendous opportunities
in various domains (e.g. financial, transportation) enabling real-time sophisticated
decisions that were never possible before. However, realtime analysis of unbounded
streams is challenging, it requires high processing throughput to cope with massive
volumes of data and low latency to respond fast.

Streaming aggregation is one of the fundamental and computationally challenging
types of stream processing. Streams of values (tuples) are handled in windows of a
particular size, WS, which are “slid” by a particular window advance, WA. Then, an
aggregation output is produced per window, computed based on a function that uses
as input the window values. The result of a Sliding Window streaming AGgregation
(SWAG) is a stream of aggregated values. Often values in a stream are grouped by a
key, then, values of different keys are processed separately. There are several design
options for SWAG, each with different tradeoffs and challenges.

The first choice concerns the windowing policy and dictates the way the window
is defined. The simplest way is to define the window based on the number of tuples
(values) it contains. Tuple-based windows always contain (and are slid by) a fixed
number of tuples. They are suitable for applications with fixed data rates and simpler
to implement because they have a fixed memory footprint. Alternatively, a sliding
window can be defined by a time interval. Time-based SWAG is more commonly used
as it is less restrictive allowing varying data-arrival rates which naturally fits the time-
series data produced by most Internet-of-Things (IoT) devices [3–5]. Nevertheless,
the number of tuples contained in a time-based window can vary making the memory
and compute resources needed to produce the aggregation result unpredictable.

The second design choice is the type of SWAG algorithm. Some aggregation func-
tions can be computed incrementally using either multiple windows [6] or panes [7, 8].
Incremental aggregation computes and stores partial results, rather than storing all
the incoming values of a window before computing the full function. In doing so,
usually memory pressure is reduced (both capacity and bandwidth) and performance

31
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is improved [9]. However, for some queries, especially with small WA, incremental
aggregation has the opposite effect causing an excessive number of memory ac-
cesses that limit performance [9], e.g., cases of processing geo-tagged data [5], social
media data [10] or manufacturing equipment data [11]. Then, a single window, non-
incremental approach that explicitly stores all the incoming values in a single window
before processing is more efficient [9]. More importantly, storing values in a single
window is unavoidable when computing some holistic functions; these are functions
that have no constant bound on the size required to store a partial result, such as
median [12]. In general, non-incremental, single-window SWAG is more suitable
for general data mining and machine learning functions [4]. However, storing all
incoming values before processing puts significant pressure to the memory, which
often becomes the bottleneck.

This work introduces the Time-based Single Window stream Aggregation Dataflow
engine (Time-SWAD). Time-SWAD addresses the above two challenges of time-based
single window stream aggregation and accelerates it using reconfigurable hardware.
First, the unbounded number of tuples in a time-based sliding window is facilitated by
a flexible circular buffer that stores the window values. We apply the idea of panes [7]
to a single window [9] creating a circular buffer that supports bulk evictions. In
addition, this buffer can be expanded dynamically with one or more unused identical
buffers originally meant for other keys. Thereby, time-based windows of varying size
can be stored. Second, the memory pressure of single windows, caused by their need
to store all incoming data, is alleviated with a caching scheme. Time-SWAD uses
external DRAM in order to support a large number of keys and sufficient volumes of
stored values. However, DRAM bandwidth is limited and a caching mechanism is
used to merge multiple requests to the same DRAM location. Our design is dataflow,
matching well the stream processing characteristics, and is implemented in a Maxeler
N-series FPGA card with direct network and DRAM interfaces [25].

Our main contributions are the following:

• The first accelerator for time-based single window stream aggregation.

• A flexible buffer for variable sized time-based windows.

• A novel caching mechanism to reduce the memory pressure of single window
aggregation.

• An implementation of the above design that:

– supports realistic streaming aggregation queries with a large number of
concurrently active keys;

– achieves high processing throughout and ultra low latency due to a deep
dataflow pipeline and direct network and DRAM connections;

– using single windows, allows to handle multiple, arbitrary (and holistic)
aggregation functions; and

– using time-based windows, offers the flexibility to support streams with
variable arrival rates.

The remainder of this chapter is organized as follows. Sections 3.1 and 3.2
offer background on time-based streaming aggregation and present related work,
respectively. Section 3.3 describes Time-SWAD. Section 3.4 presents the evaluation
results. Finally, Section 3.5 summarizes our conclusions.
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Figure 3.1: Example of time-based SWAG over a stream of tuples composed by schema,
〈ts,key,value〉, for parameters F = {sum, min, max, top-2, bottom-2}, WS = 4 time-
units, WA = 1 time-unit, and K = key and internal states/values maintained by the
different implementation strategies at time instance indicated by * for In-key1.

3.1 Background - Time-based SWAG

In this section, we present the semantics of time-based SWAG and provide an overview
of the main implementation strategies discussed in literature.

A stream is an unbounded sequence of tuples t0, t1, . . ., each tuple containing
n+ 1 attributes 〈ts,A1, . . . ,An〉. Given a tuple t, attribute t.ts represents t’s event
creation timestamp at the data source and A1, . . . ,An are application-related attributes
(values). When aggregated, tuples are fed to one (or multiple) function F such as sum,
mean, min, max, or median. Optionally, aggregation can be performed specifying a
parameter K (a subset of the tuple’s attributes, also referred to as key). In such a case,
F is computed for each distinct value observed for K (group-by) in the input stream.
Punctuation tuples of the form, 〈ts,key,P〉, where P is a reserved value to indicate that
the tuple is a punctuation is used to unblock group-by and produce the aggregate for
a particular key in case there were no tuples for that key during a window slide [44].
Note that the incoming tuples are timestamp-sorted.

Since streams are unbounded, the aggregation is performed over a sliding window
of size, WS time-units and advance, WA time-units, both based on the event time
in the tuple. Three operations can be performed in SWAG, namely, insert, trigger,
and eviction. When a new tuple enters the system, it is inserted into the window. If
the timestamp of the incoming tuple falls after the current window, aggregation is
triggered, the oldest invalid entries evicted and the new tuple is inserted.

In general, three different strategies exist to implement SWAG’s semantics, namely,
Multi-Window (MW), Pane-Based (PB) and Single-Window (SW) [9]. Figure 3.1
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illustrates an example of time-based SWAG showing the different implementation
strategies as discussed below.

The MW strategy maintains the partial aggregated state of all overlapping windows
to which each tuple contributes [6]. As shown in Figure 3.1, the tuple 〈ts3,key1,8〉
contributes to all 4 open windows, namely, MW1, . . . ,MW4. The aggregated state
is stored in MW1 until ts4 time-unit for F = {sum, min, max, top-2, bottom-2} is
27,1,8,{8,7},{1,2}. The tuple 〈ts4,key1,4〉 triggers aggregation and MW1 is evicted.

The alternative PB strategy [9], partitions the window into P panes, where, P=
WS

GCD(WS,WA) and maintains partial aggregated states for the latter (GCD: greatest common
divisor). As shown in Figure 3.1, the window is separated into four 1-time-unit
panes (P1, . . . ,P4) and the partial state for F is each function’s value observed for
each pane of 1-time-unit. For example, pane P4 stores the partial aggregated state,
9,1,8,{8,1},{1,8} from ts3 to ts4 time-unit. Upon aggregation trigger, the result is
computed by aggregating the pane’s partial states (in the example, aggregating F of
each pane value), and the stale panes of the window are then evicted. The contribution
of the incoming tuple is added to the partial aggregate state of the corresponding pane.

The third strategy, the SW [9], maintains tuples, rather than partially aggregated
states, in a single window. With SW, tuples’ values for WS time-units are maintained
for each key (as shown in Figure 3.1) and the results are computed on aggregation trig-
ger. For example, until ts4 time-unit, the SW stores the tuples’ values 4,1,2,1,7,3,8,1
and on arrival of tuple 〈ts4,key1,4〉, aggregation is triggered, the single window slides,
and evicts the values 4,1.

As shown in the past, for large WS, small WA and multiple aggregation functions,
MW and PB implementations would have a lower performance due to their need for
higher DRAM bandwidth [9]. Another disadvantage of MW and PB implementation
is that for holistic, non-associative functions maintaining all input tuples is necessary
independently of whether the function can be computed incrementally [12]. This is for
instance, the case for the median function as all the tuples contributing to the window
need to be kept and sorted before the median itself can be computed.

3.2 Related Work

In this section, we briefly discuss related works on stream processing as well as on
in-memory databases (IMDBs), which are similar, although they follow a store-and-
process paradigm rather than on-the-fly processing. Table 3.1 offers a summary of
the recent related works, indicating their platform, holistic functions support, window
(data) sharing among functions, window size, number of keys, and windowing policy.

Generic software approaches, such as Apache Flink, Spark, and Storm, running on
general-purpose CPU offer a wide range of stream processing capabilities, including
support for time-based and holistic aggregations with ease of deployment but have
limited throughput and high latency [16–18]. Other CPU-based sliding window
aggregation algorithms use data structuring and algorithmic techniques such as DABA
[2] and MTA [19] and improve latency of in-memory aggregation but are constrained
to associative aggregation functions.

GPU systems are able to achieve high processing throughput, but similar to CPU
solutions, they fall short in delivering low latency [13] as they have redundant memory
accesses managed by an operating system to store incoming tuples in DRAM even
before processing starts. This, besides the long latency, wastes a significant fraction



3.2. RELATED WORK 35

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

re
la

te
d

w
or

ks
fo

cu
si

ng
on

st
re

am
in

g
pl

at
fo

rm
an

d
ag

gr
eg

at
io

n
fe

at
ur

es
.

Pl
at

fo
rm

W
or

k
A

gg
re

ga
tio

n
Fe

at
ur

es
ho

lis
tic

fu
nc

tio
ns

w
in

do
w

sh
ar

in
g

am
on

g
fu

nc
tio

ns
w

in
do

w
si

ze
nu

m
be

ro
fk

ey
s

w
in

do
w

in
g

po
lic

y

C
PU

Fl
in

k
[1

6]
3

7
la

rg
e

la
rg

e
tim

e+
tu

pl
e

M
TA

[1
9]

7
7

la
rg

e
si

ng
le

tim
e+

tu
pl

e

G
PU

+C
PU

SA
B

E
R

[2
0]

7
7

la
rg

e
la

rg
e

tim
e+

tu
pl

e
G

as
se

r[
4]

3
7

la
rg

e
si

ng
le

tu
pl

e

FP
G

A

G
la

ci
er

[6
]

7
7

sm
al

l
sm

al
l

tim
e+

tu
pl

e
O

ge
et

al
.[

8]
7

7
la

rg
e

si
ng

le
tim

e
Sh

un
tfl

ow
[4

5]
7

3
la

rg
e

si
ng

le
tim

e
SW

-t
up

le
[9

]
3

3
la

rg
e

la
rg

e
tu

pl
e

Ti
m

e-
SW

A
D

3
3

la
rg

e
la

rg
e

tim
e



36 CHAPTER 3. A DATAFLOW ENGINE FOR TIME-BASED SINGLE WINDOW STREAM AGGREGATION

of valuable memory bandwidth, thereby reducing performance. One of the best
systems that uses GPUs is SABER, a relational stream processing system targeting
heterogeneous machines equipped with CPUs and GPUs [20]. SABER achieves
high throughput but at high latency of hundreds of milliseconds for aggregation
queries. Moreover, it supports only incremental aggregate computations utilizing the
commutative and associative property of some aggregation functions and therefore can
implement only distributive (count, sum) and algebraic (average) functions. Another
work that uses GPUs is Gasser [4]. As opposed to SABER, Gasser supports holistic
functions at high processing throughput by offloading batches containing, in the order
of thousands of windows to the GPU, which negatively impacts the processing latency.
Moreover, Gasser supports only a single key and only tuple-based windowing policy.
On the contrary, our proposed design is able to support a large number of concurrently
active keys for time-based stream aggregation that computes holistic functions while
maintaining high throughput and ultra low latency.

On the contrary, FPGAs provide both high processing throughput, similar to that
of GPUs, and orders of magnitude lower latency [9]. Customized dataflow engines,
which naturally match the stream processing characteristics, can be implemented in
reconfigurable hardware offering high throughput. Furthermore, incoming tuples can
be fed to an FPGA through a direct network connection with low latency, avoiding
unnecessary DRAM accesses. Most existing FPGA-based systems support only
incremental aggregations [6, 8, 45]. In Chapter 2, the FPGA-based single window
stream aggregation approach handled only tuple-based windows [9]. In that work,
dependencies (read after write hazards) between tuples of the same key are resolved
with concurrency control queues; this leads to poor performance in case of skewed key
distributions which is common in real world data. In contrast, the caching mechanism
in this work prevents read after write hazards without limiting performance in skewed
key distributions.

A considerable number of previous works have focused on accelerating IMDB
operators using FPGAs. One point to note here is that most of the IMDB group-by
aggregation designs have some form of optimization for alleviating memory pres-
sure and handling skewed data distributions better [35, 38]. Absalyamov et al. [38]
performed IMDB group-by incremental aggregation (count) using CAMs to cache
recently produced partial results and improve performance. On the contrary, our
caching mechanism stores DRAM lines (of multiple window values per entry) that are
partially updated and therefore is different. Furthermore, István et al. implemented an
on DRAM hash table [36], which was subsequently improved using a Cuckoo hash
table [37], similar to our design. They used a FIFO+CAM structure to implement
a write through caching mechanism to specifically prevent read after write hazards
in the DRAM read-modify-write pipleline caused due to skewed data distributions.
Their caching mechanism manages to reduce only the DRAM reads as opposed to our
caching scheme which reduces both the read and write accesses for skewed distribu-
tions, helping to boost performance. As the read queue allows duplicate addresses
in [46], the capacity of the cache is also not efficiently utilized.

3.3 Time-SWAD Design

The proposed design for Time-SWAD is a dataflow engine, implemented on a Maxeler
N-series card [25]. Dataflow computing suits the characteristics of stream processing
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well. A deep, feed-forward-only pipeline with lightweight control for a back-pressure
stall mechanism is able to process large volumes of incoming data at high throughput.
The Maxeler Dataflow Engine (DFE), can facilitate minimum processing latency
offering a direct network connection for receiving incoming tuples as well as a direct
interface to DRAM for storing the window values.

Figure 3.2 shows the top level block diagram of the proposed design. Incoming
tuples of the form 〈ts,key,value〉 are carried by network packets and received by the
receiver module (Rx). The key of each tuple is first hashed, as proposed in [37], to the
hash table. Multiple hash functions are used for reducing collisions and for adding
flexibility. Each hash table entry corresponds to a key and stores metadata needed for
processing this key’s incoming tuples in the subsequent stages; in particular, mainly
for locating the existing window values in DRAM as well as the next available position
to write the new incoming value(s). After accessing the hash table, each incoming
tuple does a read-modify-write operation to a single line (SL) in DRAM in order
to add the new value(s) to the window. A caching mechanism is placed before the
DRAM to merge recent accesses to the same DRAM location (line). An aggregation
is triggered for a particular key when one of its tuples with timestamp outside the
window arrives. Then, its entire single window is read by issuing multiple-line (ML)
DRAM commands. Subsequently, this single window feeds the compute kernel where
the aggregation function(s) are computed. The result of the aggregation function is
finally transmitted back to the network through the T x module. Note that the flow of
the data through the stages is controlled through FIFOs which stall the pipeline via a
back-pressure mechanism when needed.

3.3.1 Flexible and expandable circular buffers

The window values of each key are stored in DRAM to offer sufficient capacity for
high input rates and large number of keys. DRAM is statically divided equally to the
number of keys supported in the system in order to avoid dynamic DRAM allocation,
which would be too complex to handle in hardware. However, the amount of values
stored in each time-based window is not fixed. This is accommodated in our design by
implementing for each key a First-In-First-Out (FIFO) circular buffer in DRAM, which
is flexible and expandable. Below we describe these two attributes of the proposed
circular buffer.

The circular buffer needs to support bulk evictions of values every time the window
is advancing. In time-based windows the number of evicted values is not fixed. The
proposed circular buffer supports bulk evictions of variable number of values by using
the pane concept, previously introduced for incremental aggregations (Section 3.1),
and applying it to our single-window approach. Briefly, the single window of each key
is divided in P panes, where, P= WS

GCD(WS,WA) . The proposed buffer is defined by a set
of read pointers pointing to the beginning of each pane in the window (ri) as well as
by a write pointer w for the head of the buffer (end of last pane).

Figure 3.3 illustrates an example of such a buffer. The input stream is the same
as the one in Figure 3.1 for key1. The columns in the index table correspond to the
metadata information needed to be stored in the corresponding key entry in the hash
table so as to handle the circular buffer. More precisely, the timestamp ts, pointer to
the head of the buffer w, and the starting pointers of each pane, r1 . . .r4 in our example
because P = 4. The pointer management to decide where to insert into the single
window, what to read upon aggregation trigger, and how many values to evict in bulk
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Figure 3.3: Circular buffer management. Insertion, query, and bulk eviction supported
by the proposed buffer located in DRAM, which stores a single window for key k. The
fields of the hash table entry for k are populated as incoming tuples arrive over time.
The grey numbers in the inner circle indicate buffer indices. F-tuple indicates the
output aggregate.
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from the single window is controlled by this metadata information inside the hash
table. The circular buffer in DRAM is just a value store. When the first tuple 〈ts0,k,4〉
enters the system, ts is updated with the window start timestamp ts0 and the write
pointer w is incremented by 1. This tuple contributes to P1 and so, r1 points to index
0. Similarly, tuple 〈ts1,k,2〉 contributes to P2 and so, r2 is updated to index 2. On
arrival of tuple 〈ts4,k,4〉, aggregation is triggered as the event time ts4 falls outside the
window calculated from ts = ts0. This tuple contributes to pane P1 and the interesting
part to note here is that the pane number has wrapped around and this enables us to use
the existing read pointer index stored in r1 as the starting index of the circular buffer
for aggregation. So, the circular buffer region of interest for aggregation is starting
from r1 = 0 to w−1 = 7. Once the aggregation indices are queried, the single window
starting timestamp ts gets updated to ts1, w to 9, and r1 to 8 which corresponds to
the insertion into the sliding window. The eviction happens in bulk and comes for
free on insertion. Another interesting point to note here is the support for punctuation
tuple [44], 〈ts5,k,P〉, which is a special tuple used to unblock the aggregation for
key k as k did not have any tuple for the time interval, [ts5, ts6). This tuple does not
increment the indices as it does not contain any valid value.

Although the buffer described so far is flexible, it has limited capacity. Con-
sequently, it cannot accommodate within the window time an amount of incoming
values that exceeds its capacity. We address this problem by allowing the buffer to
be expanded using the DRAM space of another (or multiple other) inactive, unused
keys. This way, we trade the maximum number of keys supported simultaneously in
the system for increasing the DRAM space of a single key. Buffers of other inactive
keys can be found both within the same set of the hash table (if there is associativity)
and across sets by using multiple hash functions. Inactive keys are keys that have not
received any tuples for an entire window and therefore do not store any valid value. A
key that claimed DRAM buffer space of other keys returns this space when its window
shrinks back to its original statically allocated size. In our implementation, each key
can expand its buffer space occupying the storage of up to one more key. The victim
key is found in another entry (set) of the hash table using a second hash function.

3.3.2 Hash Table

The hash table stores metadata for the active keys handled in the system. Depending
on the SWAG parameters (WS, WA, number of keys), the hash table may have very
long entries and/or very large number of entries. In order to allow our design to
operate at high frequency, the hash table is organised in a tiled fashion as shown in
Figure 3.4. In doing so, the implementation tools can map it more efficiently to the
BRAM resources. Hash table tiles are organised in a 2D structure, with r rows and
c+1 columns configured at build time, each column being a different pipeline stage.
By default, a tile T has two ports, width Tw of 80 bits and depth Td of 1024 entries,
hence, each tile consumes 4 M20K BRAMs (80 kb).

The cell in the first tile column is special and it stores the following metadata: (i)
valid bit: boolean to indicate whether the hash table entry (row) is valid; (ii) window
full bit: boolean to indicate whether the SW circular buffer is full; (iii) key (24 b)
which is hashed to this row for identification; (iv) window start timestamp (24 b) to
determine when the key is ready for aggregation; (v) write pointer (20 b), pointing
to the next DRAM index in the key’s single window where to insert. The remaining
fields in a hash table entry that span across the remaining tile columns are the pointers
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Figure 3.4: Tiled organisation of the hash table with the corresponding fields.

to the beginning of each pane ri as described in Section 3.3.1.
Before accessing the hash table and in parallel to computing the hash functions for

generating the hash table address, the following information is also generated: (i) the
pane number to which the current tuple contributes, Pn=b ts mod WS

GCD(WS,WA)c, where ts is the
timestamp in the current tuple; (ii) the hash table tile column number corresponding
to the above pane, given by, 1+ bPn

N c, where N is the number of pane read indices
present in each tile entry of width Tw; (iii) the pane read pointer slot in the above hash
table tile entry, given by, Pn mod N; and (iv) the starting pane number of the single
window, PW = (Pn +1)modP and the corresponding tile column number and slot in
the tile entry as above, used to retrieve the key’s window-start-index to check if it is
full.

Then, the hash table is accessed in a pipelined fashion as follows. First, a tile in
column 0 is read using the hash table addresses obtained from previous stage. Here
it is checked if the requested key exists in either of the entries identified by the hash
functions (or in multiple entries if the key has expanded to multiple buffers). A hit
in the key determines the subsequent row of the remaining table to be accessed. In
case of missing the key in the hash table, a new entry is made, evicting the oldest
key of the accessed entries based on their timestamp. If the evicted key is still active
a flag is raised indicating collision and the information is sent to software. In a
complete system, a software process could handle keys that do not fit in hardware due
to collisions or capacity issues. Accessing the first column of the hash table determines
whether an aggregation is triggered or the incoming value is just added to the window
and provides the address and type of the subsequent memory access. In addition,
the values of the circular buffer pointers are updated and written back. Note that in
case the buffer space allocated for the key is exhausted, then the buffer is expanded
if possible following the above eviction process. In case of collision or reaching the
maximum buffer space, a flag is raised again, providing the respective information to
software. Finally, unused buffers previously occupied by an already expanded key are
detected and released.

3.3.3 Memory subsystem

There are two types of memory accesses in our system. The first one updates the
circular buffer that stores the window of a key adding an incoming value. This requires
a read-modify-write on a single DRAM line. The second type of memory accesses
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Figure 3.5: Caching mechanism before DRAM single line (SL) read-modify-write.

takes place when an aggregation is triggered. Then, the entire window of a key is
read and used to compute the aggregation function(s). This second case requires one
or multiple multiple-line DRAM read commands. We discuss both types of memory
accesses below in detail below.

3.3.3.1 DRAM Single-Line (SL) Read-Modify-Write

DRAM SL read-modify-write requests are pipelined to improve throughput, but may
also cause read after write hazards. As a consequence, our design needs to ensure that
a write caused by an earlier tuple has been committed to the DRAM before a read of a
subsequent tuple to the same address. Another reason for the read after write hazard
in our DFE is due to the fact that there are separate queues to the DRAM controller
for DRAM reads and writes. The DRAM controller does not provide guarantees on
the ordering between commands in different queues.

We address this problem by adding a caching mechanism before the DRAM. The
same mechanism also improves performance reducing DRAM accesses in skewed
distributions of keys which is common in real world data sets. In such cases, the
same key produces bursts of tuples (temporal locality). Then, adding a cache merges
consecutive DRAM accesses to the same address caused by such bursts.

The proposed caching scheme illustrated in Figure 3.5 needs to support the follow-
ing two points. First, incoming values need to wait in the cache for the DRAM line
to arrive before they can be added to it; consider that read-modify-write to the cache
can be handled in a single cycle. Second, the updated DRAM line need to be kept in
(another victim) cache to be available for reuse until it is confirmed that it has been
written to DRAM. We use two almost identical cache blocks to support each of above
points. They are both fully associative, their lines are equal to a DRAM line (64 B that
fit 32 values), and have 32 entries in order to cover for the maximum DRAM (read
or write) access latency which is 32 cycles in our system. The replacement policy is
Least Recently Used (LRU) in order to ensure that a cache line stays in the cache for
at least 32 cycles since its last use before it gets evicted. The first cache needs to be
sectored in order to keep track of the validity of each value in the line separately; in
other words it needs a separate valid bit for each of the 32 values in a cache line. This
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is the only difference between the two cache blocks henceforth called Sectored Cache
(SC) and Victim Cache (VC).

The proposed caching mechanism works as follows. Consider an incoming value
V to be added on address A.i, where A is the DRAM line address and i is the offset of
the value in the line. In case address A misses in both the SC and the VC, a new entry
for A is added in the SC, V is added in the offset i (the rest of the line is invalid), and a
DRAM read request is sent for address A. In case A hits on either of the two caches,
it updates the value of the line at offset i; if it was a hit in the VC, that VC entry is
removed and written to SC. Finally, a line evicted from SC is written back to DRAM
and also in the VC; a line evicted from VC is not written back.

3.3.3.2 DRAM Multiple-Line (ML) Read

When an aggregation is triggered, the entire window of a key needs to be read and
send to the compute kernel. This is performed with one or multiple multiple-line read
requests to DRAM. In our system, the memory controller allows reading up to 128
DRAM lines in one command. For example, to read a single window of 32 kB, 4 read
commands need to be issued. In case a requested line hits in the cache, it overwrites
the one read from DRAM. It is worth noting that the order of the read lines per key
is maintained in order to support non-commutative aggregation functions like rank
which are order sensitive.

3.4 Evaluation

3.4.1 Experimental Setup

We evaluate Time-SWAD on a Maxeler N-series ISCA (MAX4AB24B) PCIe card
with an Altera Stratix V (5SGXAB). This card provides a 10 Gb/s direct network
connection to the FPGA and is equipped with 3× 8 GB DDR3 off-chip DRAM
DIMMs. The memory is accessible directly by the FPGA via three independent
channels and has a maximum bandwidth of 38.4 GB/s. The FPGA has also 6.6 MB
of on-chip memory (BRAM). Our design is implemented in MaxJ, a Java based High
level Synthesis (HLS) language and compiled to a bitstream using MaxCompiler.

Two standard real-world datasets are used as the input streaming data: the Google
compute cluster monitoring (CM) [47] and smart grid (SG) [48]. The tuples fed into
the system are composed of three fields, a timestamp (24 bits), key (24 bits) and value
(16 bits). These are the only required fields for the queries. Truncation of the fields
is performed to match the tuple size to the network interface and does not affect the
contents of the fields. The tcpreplay tool [42] is used to inject the captured packets at
varying injection rates to determine the highest sustainable throughput of the system.
The queries used are the following:

CM1: Find the aggregation functions, F of the CPU usage for each category for
the last 60 seconds (WS=60), returning a result every WA seconds. CM1 represents
queries with aggregation on a small number of keys (4 categories), exploiting the
benefits of the caching system.

CM2: Find the aggregation functions, F of the CPU usage for each jobID for
the last 60 seconds (WS=60), returning a result every WA seconds. CM2 represents
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aggregation queries on a large number of jobIDs, exploiting the support for large
number of concurrently active keys.

SG: Find the aggregation functions, F of the power usage for each house for the
last 3600 seconds (WS=3600), returning a result every WA seconds. SG represents
aggregation queries on a large window size.

For each query, WA is varied from 1 to WS time-units. The aggregation functions
F include both associative and non-associative functions such as average, minimum,
maximum and median. Histogram-based median filtering is implemented for comput-
ing the median function [49].

Besides throughput and latency, power consumption for Time-SWAD was mea-
sured using the available tool to measure the total power consumed by the ISCA board
including the FPGA, DRAM and QSFP port.

3.4.2 Resource Utilization and DFE Frequency
For the implementation of Time-SWAD, 132779 (37.0%) logic (ALMs) and 2195
(83.1%) BRAMs of the available FPGA resources are used. The logic resource
utilization is mainly constituted of hash table stage (20%), caching system (25%),
and the compute kernel (40%) implementing the aggregation functions. Based on
the number of BRAMs that can be allocated in the platform for building the hash
table, the tiling mechanism as described in Section 3.3.2, is used to maximise the
number of keys supported for a given number of panes. For example, in our FPGA
platform, we allocate a budget of 1500 M20K BRAMs for the hash table which is
around 68% of the total BRAMs utilised. The key cardinalities supported for this
BRAM budget range from 9 to 18 bits as the number of panes vary from 3600 to 1,
respectively. The remaining BRAMs are mostly utilized by the queues between the
pipeline stages. This BRAM budget was chosen for the hash table in order to keep the
total BRAM utilization around 80% making timing closure for the desired frequency
easier. As the resources occupied by the hash table, caching system and the compute
kernel are the same for the aggregation queries, the resource utilization is similar
across queries. The DFE operates at 156.25 MHz enabling to achieve a maximum of
10 Gb/s (156.25 million tuples per second) line rate through the direct 64 bit network
interface connected to the FPGA.

3.4.3 Throughput and Latency
The chart in Figure 3.6 depicts the throughput and latency for the three queries (CM1,
CM2 and SG) for Time-SWAD. For each query we show the results for different
values of WA. Throughput represents the number of tuples processed by the system
performing the queries on the input stream per unit of time. Latency represents the
average time it takes from the moment a tuple enters the system until it is processed.

The results in Figure 3.6 show that for all queries the throughput increases as
the WA values increase. This is a consequence of having fewer calls to the compute
kernel as WA increases, which in turn result in fewer ML DRAM accesses and thus a
reduction of the overall waiting time.

The impact of the queries’ characteristics on the throughput is also clear from
the results. The higher throughput is achieved for the query CM1 that imposes less
pressure on the memory sub-system, since the aggregation function is on a smaller set
of keys and also the window size is relatively small. As there are only 4 concurrently
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active keys in this workload, the DRAM SL reads and writes are largely reduced due
to the caching layer. For CM2, we observe that the throughput is reduced and this can
be attributed to the fact that in this query the aggregation function is performed on a
larger number of keys. Throughput is further reduced for SG, which has large window
size, thus resulting in a large number of DRAM ML reads when data is collected by
the compute kernel.

When compared to the throughput supported by the network interface (line rate),
the throughput for the queries ranges from 5% (SG: WS=3600;WA=1) to 100%
(CM1: WS=60;WA=60) of the maximum throughput.

Latency, as expected, follows the opposite trend to the throughput, showing lower
values as WA increases. The latency for CM1 ranges from 0.3 to 2.68 µs. The latency
for CM2 ranges from 0.83 to 1.75 µs. The latency for SG ranges from 6.89 to 9.88 µs.
The highest latency is for SG due to the DRAM pressure caused by the large window
size.
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3.4.4 Comparison with alternative systems

As mentioned before, Time-SWAD is the first hardware accelerator to perform time-
based stream aggregation for non-associative functions. As such, a direct comparison
with our system can only be done with a software-based system such as Flink [16].
Flink (Apache Flink v1.5.1) is evaluated on a workstation with an Intel® Core™
i7-4790 CPU running at 3.6 GHz and 24 GB DDR3 DRAM. The non-incremental
API provided by Flink is used to implement the non-associative aggregation queries.
The power consumption for this system is measured using the processor performance
counters for the package power to which we added the DRAM power. The throughput
and latency for both Time-SWAD and Flink are depicted in Figure 3.7.

It can be observed that the trends for both throughput and latency are very similar
for both systems. The major difference is the large gap between the absolute values.
Notice that both the throughput and latency scales are represented in logarithmic scale.
The throughput achieved by Time-SWAD is 1 to 2 orders of magnitude higher and the
latency is 4 to 7 orders of magnitude lower than Flink.

In terms of power consumption, depending on the query, the FPGA board for the
Time-SWAD consumes between 24.9 W to 27.1 W while the CPU for the Flink system
consumes between 30.1 W to 48.2 W. More important than power consumption is
the energy efficiency, measured in throughput per watt, where Time-SWAD is 2 to 3
orders of magnitude more energy efficient than Flink.

All previously proposed hardware-based systems that perform time-based stream
aggregation are limited to using associative functions as they do not support non-
incremental aggregation [20]. In order to present a comparison with alternative
state-of-the-art hardware-based systems, we have tested our system with the same
queries as before but excluding the non-associative function median and compared it
with the results reported for SABER [20], which is the fastest among previous works.
The results are depicted in Figure 3.8. Note that since Time-SWAD is focused on
non-associative functions, the implementation of it’s aggregation functions is non-
incremental. Nevertheless, associative functions can be implemented more effectively
if implemented in an incremental way. Therefore, we also present results of an
incremental implementation of Time-SWAD, called Time-SWAD-Inc, simplifying the
original design presented in Section 3.3. This is achieved by using the hash table to
store partial results and disabling all subsequent memory access and compute stages;
this is possible because the incremental values for the functions can be calculated in
the hash insert stage and their values can be added to the hash entries themselves.

The results in Figure 3.8 show that the non-incremental implementation of the
aggregation achieves limited throughput. In contrast, the emulated incremental imple-
mentation for our system achieves the maximum possible throughput for the tested
network interface. This throughput is even larger than what is achieved by SABER.
The difference is small for both CM1 and CM2 but quite large for SG2. We attribute
this larger difference from the fact that SG2 produces the aggregation value over a
very large window size and that for SABER the execution of the aggregation function
is offloaded to a GPU, requiring large amount of data to be transferred from the main
system to the memory of the GPU.

In terms of latency, SABER reports a sub-second processing latency. In contrast,
Time-SWAD has a latency that is less then a few tens of a microsecond, which is about
5 orders of magnitude shorter than SABER.
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3.5 Conclusion
This chapter describes Time-SWAD, the first FPGA-based time-based single window
streaming aggregation engine. The proposed flexible and expandable circular buffers
are able to cope with the variable size of time-based windows. Time-SWAD achieves
high throughput, up to 150 Mtuples/s (10 Gb/s) by employing dataflow processing
and a novel caching mechanism which alleviates memory pressure. Time-SWAD
matches the throughput of related GPU systems, which however do not offer both
time-based and single window aggregation. In addition, the proposed design exploits
the direct network and DRAM connections of the employed platform to offer ultra low
latency of 1-10 µs, which is at least 4 orders of magnitude lower than CPU and GPU
solutions. In summary, our approach is able to support realistic streaming group-by
aggregation queries, with multiple holistic and arbitrary user-defined aggregation
functions, large number of concurrently active keys, large window sizes and small
window advances which trigger frequent aggregations.
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Chapter 4

A Specialized Memory
Hierarchy for Stream
Aggregation

The rapidly increasing rates at which data are produced globally have enabled a large
number of emerging stream processing applications [50]. Such applications are em-
ployed in various domains, e.g., financial, transportation, to analyze large unbounded
streams of data and make fast, sophisticated decisions. However, consuming massive
data volumes at line rates requires high processing throughput and in case real-time
response is expected, it also needs low latency.

Stream aggregation is one of the most challenging tasks in stream processing. It
can be described by applying the traditional relational database aggregation semantics
to a sliding window. Such window of size (WS) is updated with incoming elements
(values carried by incoming tuples). Upon aggregation, the window “slides” by a
particular number of elements (Window Advance - WA) to produce the aggregated
values; that is, the window contents before sliding [1]. The stream of aggregated values
is subsequently fed to one or multiple functions that compute an output every time the
window slides. Considering a key-value pair system, incoming tuples carry values of
different keys, which are aggregated separately using a separate sliding window per
key. This description fits a sliding window stream aggregation (SWAG) that follows
a tuple-based window policy, meaning WS and WA are measured in terms of the
count of elements; an alternative window policy is the time-based one where the size
and slide are defined by time intervals [1]. A typical tuple-based SWAG example is
depicted in Figure 4.4(a).

For some problems, the aggregations can be simplified by computing them in-
crementally using multiple windows/panes [6–8]. However, for many others with
non-associative aggregation functions which cannot be computed incrementally, e.g.,
median [12], or even if they can, it is more expensive than explicitly storing all incom-
ing values in a single window, e.g., for processing geo-tagged data [5], social media
data [10] or manufacturing equipment data [11].

Single window stream aggregation is a memory-intensive problem [13]. For
each incoming tuple, the sliding window of the respective key is updated with the
newly arrived value(s). In addition, every time the window advances, its entire
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Figure 4.1: Processing throughput vs. problem size for an FPGA-based single window
SWAG at 156.25 MHz using only BRAMs (2 MB) or only DRAM (24 GB). WS= 2-96K
values; WA=WS; 128K keys, value size 2 bytes.

contents need to be read and fed to the aggregation function(s) to produce a result.
Different stream aggregation platforms handle memory in different ways. Multicore
CPU and GPU based systems, although able to sustain high processing throughput
[4, 20], have wasteful memory management [13, 51]. They require redundant memory
accesses to store incoming tuples from the network to DRAM even before processing
starts. This, besides the latency overhead, wastes valuable memory bandwidth and
hence limits performance. On the contrary, FPGAs use their memory resources more
efficiently [9, 26]. They can offer a direct network connection to receive incoming
tuples and support dataflow processing, delivering both high processing throughput
and low latency. However, existing FPGA approaches use either only on-chip memory
(i.e. BRAMs) [6–8] or only off-chip memory (i.e. DRAM) to store the values for
aggregation [9, 26]. As illustrated in Figure 4.1 for a particular stream aggregation
problem, the higher bandwidth and limited capacity of on-chip BRAM enables line-
rate processing on an FPGA based stream aggregation system but supports only small
problem sizes. The larger but lower bandwidth off-chip DRAM can handle larger
problems, but with limited performance.

This chapter introduces Multi-level Queues (MLQ), the first memory hierarchy
specialized for stream aggregation systems aiming to alleviate their memory bottleneck.
The proposed memory system offers a higher and better utilized bandwidth as well as
off-chip DRAM capacity to enable higher processing throughput for larger problem
sizes, i.e., WS × number of keys. As shown in Figure 4.2, multiple memory levels
are used to form logical queue buffers, each buffer storing the contents of a sliding
window for a particular key. Each multi-level logical queue needs to support (i) single
element write and (ii) all elements read operations for window updates and window
aggregations, respectively. More precisely, for a window update, a new value needs
to be enqueued. The head of the MLQ can be at any memory level, but the tail is
always at the fastest (and smaller) first level which is the on-chip SRAM. This ensures
that the window is always updated at the highest speed. Then, when the window
advances, the contents of the entire window are read utilizing the aggregate bandwidth
of all memory levels and subsequently, WA number of elements are discarded by just
updating the head pointer. Compared to a BRAM-only design, MLQ offers higher
capacity. Compared to a DRAM-only design, it offers faster window updates at on-
chip SRAM speed as well as faster aggregation using the aggregate bandwidth of all
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is at timestamp ts with attribute value Av∗.

levels, rather than only the DRAM one.
Another alternative for improving the memory bandwidth of a SWAG could be

the use of high bandwidth 3D-stacked DRAM. However, even 3D-stacked DRAM
bandwidth is at least an order of magnitude lower than on-chip SRAM, while its size
is significantly smaller than off-chip DRAM. In addition, 3D-stacked DRAMs are
expensive, especially for systems deployed near the edge. Nevertheless, they could be
part of the proposed hierarchy.

Queue buffers composed of two memory types have been designed in the past.
More precisely, about two decades ago, 2-level hybrid SRAM/DRAM packet buffers
were introduced for network processing [27–31] offering SRAM speed and DRAM
capacity. Although our approach is in the same direction, there are several funda-
mental differences. Firstly, the SRAM/DRAM packet buffers implement queues that
support read and write operations at the granularity of a single element and this is less
bandwidth demanding compared to the stream aggregation. In addition, a network
packet size is at least equal to a DRAM line (64Bytes) and therefore fits DRAM better
than the stream aggregation accesses which are often finer and hence require expensive
read-modify-write operations. Finally, the hybrid packet buffers were limited to two
levels, while the proposed memory system can use more levels to exploit a higher
aggregate bandwidth.

The contributions of this work are the following:

• MLQ, a specialized memory hierarchy for stream aggregation;

• An analytical model of MLQ and a method to automatically generate its config-
uration for a problem at hand; and

• An MLQ implementation, in a FPGA-based SWAG system and its evaluation
and comparison with related work.

The remainder of this chapter is organized as follows. Section 4.1 offers an
analytical model of MLQ. Section 4.2 describes our FPGA-based stream aggregation
design with MLQs. Section 4.3 presents the evaluation and comparison with related
work. Finally, Section 4.4 summarizes our conclusions.

4.1 MLQ Analytical Model
In this section, a generic description of MLQs and an analytical model for estimating
system’s performance are presented. This model is then used by a heuristic to identify
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an efficient configuration of the memory hierarchy, i.e., selecting block size per level,
for the SWAG problem at hand considering the given memory characteristics while
aiming to maximize the processing throughput of the system.

We consider n levels in the memory hierarchy, M1, . . . ,Mn as shown in Figure 4.2.
The higher the level the longer the access time and the larger its capacity, which

is shared equally between the keys (K) supported in the system. Let Ci denote the
capacity of the ith memory level and Cki =Ci/K, denote the capacity available per key
in each level. The access granularity of a memory level is defined as the minimum
number of bytes that can be read or written (R/W) in a memory access. Let Gwi and
Gri denote the write and read access granularity of the ith level, respectively. For
example, on-chip SRAM can be configured to support R/W access granularity of
just a single bit, while DRAM has a R/W access granularity is 64B lines. The ideal
write access granularity (en-queue) required for window updates is equal to size of
the attribute value(s) (As) carried by a tuple. In case the write access granularity is
larger than that, e.g. values of 4B written directly to DRAM, then a more expensive
read-modify-write operation is needed rather than a simple write.

The average R/W memory access time Ti of level i is measured in number of cycles
of the processing chip (i.e., FPGA). For simplicity it is considered that all memory
ports are R/W with the same access time for both access types. Ti is the inverse of the
average access rate (throughput) of a level. The number of available channels offering
for independent parallel R/W access in level i is denoted as Chi.

We define the input system throughput T PCin, i.e., the line rate at which the system
receives incoming tuples. Considering that one tuple is received per cycle, T PCin = 1
tuple per cycle.

When a tuple enters the system, its value gets enqueued to the tail of the corre-
sponding key’s MLQ in the fastest first level of the memory hierarchy M1. When a
level gets full, the complete block of values in that level is subsequently flushed to the
next level. Let Fi denote the flush rate of the ith memory level, which is the inverse of
the block of values stored in that level. vi denotes the number of values stored in the
ith level per key before it is flushed to the next level. The incoming tuple’s attribute
value inserted in M1 is denoted as v0 = 1. So, Fi = 1/vi, for 1≤ i≤ n−1. It is worth
noting that the nth level should be able to hold the entire window (vn = WS).

Based on the above, we model the number of memory accesses per incoming tuple
required for window updates and aggregation and then the throughput sustained by
each memory level. For simplicity, a uniform random distribution of tuple arrival per
key is considered, but different arrival rates would follow the same methodology.

4.1.1 Window Updates
There are three types of memory accesses that may occur during window updates.
First, a write access of the incoming value(s) of size As to M1. Second, a read access
to any memory level that is full and needs to be flushed. Third, a write access to level i
to store the flushed values from level i−1. Let Wui and Rui be the average number
of write and read accesses per tuple, respectively, due to window updates to the ith

memory level. Every incoming tuple has to be written to M1, so, Wu1 = 1. For the
successive levels, the number of writes in level i depends on the flushing rate per tuple
of the previous level Fi−1 and on the number of write accesses needed to write the
vi−1 flushed values which is d vi−1×As

Gwi
e. In case a read-modify-write (rmw) operation

is needed, an equal amount of read accesses needs to be accounted: Rrmwi =Wui, if
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(vi−1×As)< Gwi; considering values will be aligned and do not span across two Mi
lines. Note, that there is the option to underutilize the capacity of memory to avoid
read-modify-writes. In the event of a flush, the number of read accesses on level i is
d vi×As

Gri
e and on average, these reads happen at a rate of Fi per tuple. Then, the number

of write and read accesses for window updates at each level are:

Wui =

{
1, for i = 1
Fi−1×d vi−1×As

Gwi
e, for 2≤ i≤ n

Rui =

{
Fi×d vi×As

Gri
e+Rrmwi , for 1≤ i≤ n−1,n > 1

Rrmwi , for i = n

4.1.2 Aggregation
Upon aggregation, the entire window of a key is read, which may spread across all
MLQ levels. The number of read accesses in level i for one aggregation is d vi×As

Gri
e.

Since these reads happen once every WA arriving tuples, then the average number of
read accesses per tuple is Rai =

1
WA ×d

vi×As
Gri
e. This is the worst case Rai as it assumes

the entire key space in the level (vi) is needed.

4.1.3 Average Throughput
The average throughput sustained by level i is measured in tuples per cycle, T PCi. This
is the inverse of the average number of cycles per tuple CPTi required to complete the
accesses per tuple in the level. The CPTi required per tuple for window update writes
and reads as well as for aggregation reads is [(Wui +Rui +Rai)/Chi]×Ti, where Ti is
the access time (in cycles) and Chi the number of parallel channels at the level. Thus,
the tuples per cycle for level i is T PCi = 1/CPTi.

The overall system throughput T PCall is the minimum between the input through-
put (T PCin) and the throughput of each memory level. The average cycles per tuple
consumed per level are not summed as all memory levels are working in parallel to
perform the accesses for window updates and aggregation in a dataflow fashion. So,
the throughput supported by the system T PCall = min(T PCin,T PC1, . . . ,T PCn). As
we focus on the memory system, we consider that the aggregated values delivered by
the memory system can be consumed at the same rate by the subsequent stage which
computes the aggregation functions, otherwise the throughput of the compute stage
needs to be considered in the above equation.

4.1.4 Automatic memory configuration generation
Based on the above performance modeling, we seek the optimal memory configuration,
that is the number of values stored per level V = {v1, . . .vn} based on the aggregation
parameters (number of keys, WS, WA) and memory characteristics in order to maxi-
mize the processing throughput of the entire system and meet the memory capacity
constraints.

We developed a heuristic, described in Algorithm 1, to find the partition set V
that maximizes system throughput. Input i encapsulates the memory characteristics
of level i such as capacity(Ck), access-granularity (G), and access-time (T ). Starting
from level-1, the heuristic finds for each level i, the set of solutions for vi that can
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ALGORITHM 1: Partitioning algorithm.

Input: i, isBackward // memory level, back-propagation flag

Output: V,T PCall
1 Function Partition(i, isBackward):
2 if isBackward then
3 if i == 1 then
4 update v1, T PC1, T PCin
5 Partition(i+1, false)
6 else
7 update vi,T PCi based on vi+1,T PCi+1
8 Partition(i−1, true)
9 end

10 else
11 if hasVisitedi then
12 Partition(i+1, false)
13 else
14 find vi set to maximise T PCi within available Cki
15 if i == n and vn <WS then
16 return Not enough capacity in MLQ
17 end
18 if T PCi == T PCi−1 and vi ==WS then
19 print V , T PCall
20 return // partitioning done

21 end
22 if T PCi < T PCi−1 then
23 Partition(i−1, true)
24 else
25 hasVisitedi = true // visit flag - level i
26 Partition(i+1, false)
27 end
28 end
29 end

support its requested input throughput T PCi−1 within the available capacity Cki (line
13) using the formulas of our analytical model. In case there is a set of vi solutions
that can support 100% of T PCi−1, then the output throughput of the level T PCi is
calculated and given to the level i+1 as input (line 23). Otherwise, the heuristic would
call the function for the previous i−1 level (line 20) to reconsider its solutions for
the newly adjusted T PCi−1 (lines 2-8). The heuristic exits when it finds a solution for
the last memory level that satisfies its given input throughput and capacity constraint
(lines 16-18). The output of the heuristic is V and the (possibly adjusted) T PCall that
is satisfied by V , which is the maximum input throughput T PCin that can be processed
by the system. Compared to exhaustive search which would need to search the entire
WS space for each memory level (O(WSn)), our heuristic has substantially lower
complexity of O(n2) as in the worst case, each recursive call has to traverse and fit
only from the current level to level-1.
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4.2 Reconfigurable Single Window SWAG with MLQ

A reconfigurable single window SWAG dataflow engine (DFE) that uses the proposed
MLQ memory hierarchy is designed to exploit the offered high bandwidth and capacity.
The top level block diagram of our engine is shown in Figure 4.3. Incoming tuples of
the form 〈ts,key,value〉 are carried by network packets and received by the receiver
module (Rx).The key of each tuple is first hashed to the hash table. Multiple hash
functions are used for reducing collisions and for adding flexibility [37, 52]. Each
hash table entry corresponds to a key and stores metadata needed for processing
this key’s incoming tuples in the subsequent stages; in particular, for managing the
memory accesses for window updates and aggregation at each memory level. After
accessing the hash table, the memory commands are generated to each level based on
the metadata state. The data collector acts as a buffer to synchronise the dataflow of
the single window from the various memory levels. Subsequently, aggregated values
of a window fetched from the memory are fed to the compute kernel(s) where the
aggregation function(s) are computed. The result of the aggregation function is finally
transmitted back to the network through the T x module. Note that the flow of the
data through the stages is controlled through FIFOs which stall the pipeline via a
back-pressure mechanism when needed. The design is implemented in a platform that
offers three memory types to be used in MLQ, in particular besides the FPGA on-chip
BRAMs, an off-chip DRAM, and off-chip SRAM are used. Table 4.1 shows their
characteristics.

From the end users’ perspective, based on the stream aggregation parameters
provided and the specifications of the memories, the heuristic discussed in Section 4.1
generates the partitioning of the design-time reconfigurable memory hierarchy that
maximizes throughput. The APIs provided by MLQ are: a) insert (en-queue) a single
value upon tuple arrival; b) flush a block of values from a full memory level to the
next; c) aggregate by reading the complete single window queue and d) bulk evict
values upon window slide corresponding to the WA from the memory levels. These
APIs translate to one or more read or write access micro-commands.

4.2.1 Hash Table

The hash table stores the metadata for the active keys in the system and is implemented
using BRAMs. A hash table entry points to the MLQ space allocated for storing the
window of a single key. The metadata contains: (i) a valid bit; (ii) the key assigned to
the entry; (iii) window start timestamp for key replacement in case of collision and to
trigger aggregation in time-based windows; (iv) read pointers to each memory level, ri
pointing to the head index in level i; and (v) write pointers to each memory level, wi
pointing to the tail index of each memory level i.

The hash table is accessed in a pipelined fashion using multiple hash functions.
First, the selected hash table entries are checked to match the requested key. In case
of a miss, a new entry is made evicting the least recently used key out of the ones
identified by the hash functions. If the evicted key is still active, a flag is raised
indicating collision and the information is sent to software.The hash table can be
extended using the memory hierarchy and/or a software process could handle keys
that do not fit in hardware due to collisions or capacity issues. A hit in the hash table
fetches the metadata of the associated key which determine: i) the index in M1 to
insert the incoming tuple’s value for window update; ii) whether any memory is full
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Tuple r1 w1 r2 w2 r3 w3 Operation M1 M2 M3

Init 0 0 0 0 0 0 -

1 0 1 0 0 0 0
M1-Wu

2 0 2 0 0 0 0
M1-Wu

3 0 1 0 2 0 0
M1-Ru;	M2-Wu;	M1-Wu

4 0 2 0 2 0 0
M1-Wu

5 0 1 0 4 0 0
M1-Ru;	M2-Wu;	M1-Wu

6 0 2 0 0 0 4
M1-Wu;	M2-Ru;	M3-Wu

7 0 1 0 2 0 4
M1-Ru;	M2-Wu;	M1-Wu;	

8 0 2 0 2 2 4
M1-Ra;	M2-Ra;	M3-Ra;	M1-Wu;	

9 0 1 0 4 2 4
M1-Ru;	M2-Wu;	M1-Wu;	

10 0 2 0 0 4 0 	M1-Ra;	M2-Ra;	M3-Ra;	M3-Wu;	M1-Wu

11 0 1 0 2 4 0
M1-Ru;	M2-Wu;	M1-Wu

12 0 2 0 2 6 0
M1-Ra;	M2-Ra;	M3-Ra;	M1-Wu

13 0 1 0 4 6 0
M1-Ru;	M2-Wu;	M1-Wu

14 0 2 0 0 0 4
M1-Ra;	M2-Ra;	M3-Ra;	M3-Wu;	M1-Wu	

15 0 1 0 2 0 4
M1-Ru;	M2-Wu;	M1-Wu;	

t5 t6 t2t1 t3 t4
- -- --- - -

0 1 0 1 2 3

t1 - - -- -
- -- --- - -

t1 t2 - -- -
- -- --- - -

t3 - - -- -
- -- --t1 t2 -

t3 t4 - -- -
- -- --t1 t2 -

t5 - - -- -
- -- -t3t1 t2 t4

t7 - t1 t3t2 t4
- -- --t5 t6 -

t7 t8 -t1 t3-t2 t4
- -- --t5 t6 -

t9 - - t3- t4
- -- -t7t5 t6 t8

t9 t10 - -t3- -t4
t7 t8t5 t6-t7-t5 -t6 -t8

t11 - - -- -
t7 t8t5 t6-t9 t10 -

t11 t12 - -- -
t7 t8-t5 -t6-t9 t10 -

t13 - - -- -
t7 t8- -t11t9 t10 t12

t13 t14 t9 t11t10 t12
-t7 -t8- --t11-t9 -t10 -t12

0 1 2 3
4 5 6 7

t15 - t9 t11t10 t12
- -- --t13 t14 -

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

O
O

O
OWA	=	2	tuples

WS	=	8	tuples

(Insert	t1	in	M1)

(Insert	t2	in	M1)

(Flush	M1	to	M2;	Insert	t3	in	M1)

(Insert	t4	in	M1)

(Flush	M1	to	M2;	Insert	t5	in	M1)

(Insert	t6	in	M1;	Flush	M2	to	M3)

(Flush	M1	to	M2;	Insert	t7	in	M1)

(Aggregate	t1:8;	Evict	t1:2;	Insert	t8	in	M1)

(Flush	M1	to	M2;	Insert	t9	in	M1)

(Aggregate	t3:10;	Evict	t3:4;	Flush	M2	to	M3;	Insert	t10	in	M1)

(Flush	M1	to	M2;	Insert	t11	in	M1)

(Aggregate	t5:12;	Evict	t5:6;	Insert	t12	in	M1)

(Flush	M1	to	M2;	Insert	t13	in	M1)

(Aggregate	t7:14;	Evict	t7:8;	Flush	M2	to	M3;	Insert	t14	in	M1)

(Flush	M1	to	M2;	Insert	t15	in	M1)

Input	
Stream	

(a)

(b)

Figure 4.4: (a) A stream of tuples t1, t2, . . . , of a key aggregated with WS=8 and WA=2
tuples. (b) Hash Table metadata logic and dataflow through the memory hierarchy for
the above stream. Memories configured with: v1=2; v2=4; v3=8. Mi-Wu, Mi-Ru, and
Mi-Ra denotes write operation due to window update, read operation due to window
update, and read operation due to aggregation in memory level i, respectively. The red
numbers in the Init row indicate the indices of each memory cell. The grey and blue
boxes indicate window updates and aggregation reads, respectively.

and needs to be flushed to the next level; iii) the index of the successive level to insert
the flushed block of values from the predecessor; and iv) whether the key is ready for
aggregation and perform eviction of invalid entries on a window-slide. Based on the
above cases, the entry is updated and written back to the hash table.

Figure 4.4 illustrates an example of the index management for tuple-based stream
aggregation using the hash table. When the first tuple t1 enters the system, the write
pointer w1 gets incremented by 1 as the tuple is to be inserted in M1. Similarly, for
t2, w1 becomes 2. On arrival of t3, as w1 = 2 (equal to v1, the capacity available
per key in M1), M1 has to be flushed to M2. Then, t3 is inserted in M1 and w1 gets
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updated to 1 pointing to the index in M1 where the next tuple has to be inserted.
Similarly, on arrival of t5, as M2 is full (w2 = v2), M2 is to be flushed to M3. This
goes on until t8 when the total count of tuples in the single window becomes equal
to WS ((w1− r1)+ (w2− r2)+ (w3− r3) = 8 tuples) and triggers aggregation. On
aggregation, the entire single window spanning across the memory hierarchy has to be
read, and then the invalid tuples evicted based on the WA (2 tuples). The eviction is
marked by incrementing r3 by 2 which reduces the total tuple count to 6. An interesting
point to note is that on arrival of t10, the buffer in M3 wraps around and on t14, M2
gets flushed to the first line in M3. This maintains the circular buffer per key which is
statically allocated in the memory hierarchy. In this example, the read pointers of M1
and M2 remain to zero, because on a window-slide (WA=2) the evictions did not span
to M1 or M2. In a case where the evictions span multiple levels (large WA), the MLQ
parts of the upper levels will be emptied and the read pointer of the lower affected
level will be updated.

For a tuple-based windowing policy, the read and write pointers memory can be
reused to manage evictions. For a time-based case, more metadata are required to
manage the number of evicted tuples upon aggregation as described in [26], because
the number of tuples per slide (WA) is time-dependent. This is orthogonal to the
metadata used for supporting MLQ. Another note is that the MLQ storage in each
level i < n can be reduced from vi to vi− vi−1 because the last write access of vi−1
elements to level i triggers a flush to level i+ 1 and therefore it can be forwarded
without storing it in i.

After the hash table access, the tuple along with its hash address, read/write
indices, full flag per memory level, and a “ready for aggregation” flag are pushed to
the command generator.

4.2.2 Memory Command Generator
The command generator controls the memory levels and converts the window update
(insert, flush) and aggregation operations into access commands to each memory level.
It converts the received indices to actual physical addresses to each memory level. As
the available memory space of each level is statically allocated equally to a block per
key, the physical address is created using the key block offset. Then, the address of the
memory line(s) to be accessed within the key block is generated based on the received
index, the value size, and the number of values to be accessed. In case, multiple
memory lines need to be accessed (i.e. due to flushing, aggregation), then multiple
commands are generated. Finally, in case of a write access at a granularity smaller than
a memory line, multiple commands are generated to implement a read-modify-write.
Figure 4.4 describes for the given example the commands to the different memory
levels generated by the memory command generator.

After this stage, the tuple along with the number of lines read based on the read
commands generated, the full flag per level as well as the aggregation ready flag are
passed to the data collection stage.

4.2.3 Data Collection Controller
This module synchronizes the data read from memory levels due to flushes and
aggregations each of the two cases using a separate state machine. The flushing state
machine checks the full-flag of each memory level and writes the flushed data to the
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Table 4.1: Platform memory specifications

Type Capacity
R/W Access
Granularity (bytes)

Theoretical
Bandwidth

Avg. Access Time in
FPGA cycles (156.25 MHz)

On-chip BRAM 2 MB 4 in our design 14.4 TB/s 1
Off-chip SRAM 72 MB R: 18 / W: 1 9.9 x2 = 19.8 GB/s 1.2
Off-chip DRAM 24 GB 64 12.8 x3 = 38.4 GB/s 7 (<4 lines), 2 (>4 lines)

next level. In case of a read-modify-write, the lines are modified before flushing to
the next level. The aggregation state machine maintains separate internal queues for
the tuple’s metadata and for the data flowing in from each memory level. It then
synchronises the contents of the different queues to deliver in order the aggregated
values to the subsequent compute kernel. Value reordering is needed because the
aggregation read operations are performed in parallel for all memory levels that
contain valid data. This is important for supporting non-commutative aggregation
functions like rank. Finally, the data are pushed to the compute kernel for computing
the functions.

4.2.4 Computer Kernels

Depending on the aggregation function in the query, the values can be processed
on the fly, gradually as they arrive, e.g. for algebraic (i.e.,average) or distributive
functions (i.e., minimum, maximum, and sum), or otherwise only when all values have
been received, e.g., for holistic functions, such as median. In our implementation, the
compute kernel is pipelined and for median a Histogram-based median filtering is
implemented [49]. Our design is implemented for a particular (worst-case) WS and
WA, but one can choose dynamically at runtime to use a lower WS and/or a different
WA, within the same memory configuration. The selected WS and WA is the same
for all keys. Multiple queries can be supported by implementing multiple parallel
compute kernels. Should these compute kernels be implemented in a way that supports
dynamic partial reconfiguration, then these queries could be updated at runtime. After
the function computation, the result is forwarded to the T x stage.

4.3 Evaluation

The performance of the proposed approach is evaluated in terms of processing through-
put and latency. First, the experimental setup is discussed. Then, the implementation
and performance results are presented and compared against existing approaches.

4.3.1 Experimental Setup

All designs are implemented on a Maxeler N-series ISCA (MAX4AB24B) PCIe card
with Altera Stratix V (5SGXAB) that provides a 10 Gb/s direct network connection to
the FPGA. As shown in Table 4.1, besides on-chip BRAMs and 24 GB DDR3 DRAM,
the board offers off-chip QDR-SRAM memory [53]. The designs are implemented
in MaxJ, a Java-based High level Synthesis (HLS) language, and compiled using
MaxCompiler.
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Table 4.2: Resource utilization for the FPGA implementation.

Resource DFE(D) DFE(B+D) DFE(B+Q+D)

Logic (ALMs) 95998 (26.73%) 98137 (27.32%) 102300 (28.48%)
BRAMs 1429 (54.14%) 1705 (64.57%) 1798 (68.09%)

Three different types of FPGA-based single window SWAG dataflow engines
(DFEs) are implemented. A SWAG engine that uses only DDR3 DRAM, denoted as
DFE(D), that follows the designs described in the current state-of-the-art [9, 26]. A
SWAG engine with BRAM and DRAM, denoted as DFE(B+D) and follows the general
principles of 2-level SRAM/DRAM hybrid memories used in network processing
[27–31]. A SWAG engine with a 3-level MLQ memory system using BRAM, off-chip
QDR-SRAM and DRAM, denoted as DFE(B+Q+D) and best captures the principles
of our approach, although as explained below for some SWAG problems using fewer
levels may suffice. The configuration of each design (partitioning V per level) was
generated using the proposed heuristic. It is worth noting that none of the SWAG
problems sizes used could be supported by a design that uses only BRAM. Finally,
a software baseline is used, implemented in Apache Flink v1.5.1 [16] running on an
Intel Core i7-4790 CPU at 3.6 GHz using 24 GB DDR3 DRAM.

As a stream aggregation application, a subset of the LinearRoad benchmark [43] is
used, where each vehicle has a sensor that emits tuples composed of a timestamp (24b),
a vehicle ID (key, 24b), and speed (value, 16b). The data set is uniformly distributed,
and the tuple’s keys and values are generated with uniform probability. The tcpreplay
tool [42] is used to inject the captured packets at varying injection rates to determine
the highest sustainable system throughput.

The implemented query, comprising of algebraic, distributive, and holistic ag-
gregation functions, is the following: “Find the average, minimum, maximum, and
median speed for each vehicle for the last WS tuples and return the aggregate every
WA tuples.” The WS ranges from 64 to 4K tuples, the WA varies from 1 to WS tuples
and the number of vehicles (keys) is 128K which is in line with our goal of supporting
a wide range of group-by stream aggregation queries with large window sizes, frequent
aggregations, generic aggregation functions, and a large number of keys.

4.3.2 Implementation Results
The resource utilization of the proposed design is as depicted in Table 4.2. The
logic utilization is mainly constituted of the hash table stage and the compute kernel
(40%) implementing the aggregation functions. The increase in logic utilization across
designs is mainly attributed to the increase in pointer arithmetic for managing the extra
levels in the hash table stage, command generator, and data collector. The BRAM
utilization also increases with more memory levels as more read/write pointers are
required in the hash table. For value storage, 512KB of BRAMs are allocated providing
4B per key for DFE(B+D) and DFE(B+Q+D) designs. The remaining BRAMs are
mostly utilized by FIFOs between the pipeline stages.

All DFE designs operate at 156.25 MHz allowing to receive one incoming tuple/-
cycle using the full 10 Gb/s bandwidth of the network interface. This translates to a
theoretical line rate of 156.25 million tuples/sec, but in practice, the actual highest rate
of incoming tuples measured on the board is about 140 million tuples/sec, so about
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Figure 4.5: Throughput in million tuples per second (MT/s) and latency in microsec-
onds of the various designs for WS of (a) 64 and (b) 256 tuples.

90% of the theoretical. Finally, QDR-SRAM and DDR3 DRAM are clocked at 350
MHz and 800 MHz, respectively.

4.3.3 Processing throughput and latency

Figures 4.5 and 4.6 show the processing throughput of the alternative SWAG designs
for different WS and WA, measured in number of tuples processed per unit of time.
It also depicts the average (per aggregation) latency, which is interesting for systems
with real time constraints.

A general observation is that the throughput of all designs is reduced for small
window advance (WA), especially for large window sizes (WS). This is because
smaller WA trigger aggregations more frequently and in addition, the larger windows
aggregate more data, hence the problem becomes more bandwidth demanding.

The performance of the reference Flink software confirms the claim that CPU
memory management does not suit the considered SWAG requirements as it offers
2-3 orders of magnitude lower throughput and 4-7 orders of magnitude higher latency
compared to DFEs.
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Figure 4.6: Throughput in million tuples per second (MT/s) and latency in microsec-
onds of the various designs for WS of (a) 1k and (b) 4k tuples.

DFEs exhibit similar latency, as DFE(B+Q+D) has on average 90% and 99% the
latency of DFE(D) and DFE(B+D), respectively.

The DRAM-only design, DFE(D), which follows the design principles of [9, 26],
achieves the lowest throughput out of the three DFEs, supporting up to 15% of the
line rate because it handles inefficiently the window update accesses. More precisely,
it requires slow and bandwidth wasteful read-modify-writes, since value size (2B)
is smaller than DRAM line (64B). However, for small WA (1) and large WS (1024-
4096) it offers about the same throughput as the other two DFE designs as shown in
Figures 4.6a and 4.6b. This is due to the following reasons. First, in these cases the
aggregation traffic dominates and therefore the inefficient handling of window updates
has negligible effect. Second, DFE(B+D) and DFE(B+Q+D) cannot take advantage
of the added aggregation bandwidth offered by BRAM and BRAM+QDR-SRAM,
respectively, because for large WS the dominant portion of the window is stored in
DRAM which becomes the bottleneck.

Adding BRAM to form a BRAM+DRAM DFE, DFE(B+D), improves throughput
offering up to 30% of the line rate. Although better than DFE(D), the DFE(B+D)
memory system is still inefficient. For the given large number of keys, BRAM capacity
is too small to fit an entire DRAM line per key, and so cannot completely eliminate
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read-modify-writes. It can store only two values per key in BRAM, so compared to
DFE(D) it reduces the expensive read-modify-write DRAM operations to half, offering
better but still limited throughput.

Adding another memory level between BRAM and DRAM solves the above
problem and supports up to 90% of the theoretical line rate, which in practice matches
the actual maximum rate of incoming tuples on the board. The off-chip QDR-SRAM
employed in DFE(B+Q+D) offers the capacity required for storing an entire DRAM
line of key-values before flushing to DRAM, completely eliminating read-modify-
writes. Moreover, it offers higher aggregate memory bandwidth. This is mostly
evident in problems with small WA and WS, because in small WAs, aggregation traffic
dominates and in small WS, significant part of the window is not in DRAM, e.g., for
WS=64, half of the window is in the lower memory levels.

4.3.4 Accuracy of the analytical performance model
Figures 4.7a and 4.7b show for various WS and WA the system throughput estimated by
our analytical model (AM) and measured in our actual implemented DFEs, respectively.
The mean absolute percentage error (MAPE) is 12%, but as it can be observed the
trend is estimated correctly which is sufficient to guide well our heuristic.

4.3.5 Comparison with related work
Compared to existing works, our approach offers higher performance for larger prob-
lems due to the use of MLQs.

The DFE(D) implementation follows the design of existing DRAM-only FPGA
approaches [9, 26] and is 6-8× slower than our 3-level MLQ design. Another ad-
vantage of our approach compared to DRAM-only designs is that it handles skewed
key distributions without additional support. The design in [9] would suffer from
consecutive tuples of the same key as it would create read after write hazards in the
pipeline. The design presented in [26] uses an additional cache structure before the
DRAM controller to deal with consecutive DRAM accesses by tuples of the same
key. On the contrary, our designs perform all window updates in the fastest level-1
which offers single cycle access and therefore there are no read-after-write-hazards.
Moreover, the more recently received values of each key are at the lower levels sup-
porting better performance. We experimented with skewed distribution traffic (from
real-world datasets [47, 48]) with the same set of associative and non-associative
aggregation functions, and confirmed that the throughput of our design is agnostic to
the key-distribution. Finally, BRAM-only FPGA designs such as the ones presented
in [6–8] can support only 4 orders of magnitude smaller stream aggregation problems;
that is up to WS=8 for the considered query and number of keys.

To the best of our knowledge, the only GPU-based stream processing hardware
accelerator that supports non-associative functions (i.e., median), therefore using
a non-incremental aggregation approach is Gasser [4]. However, Gasser supports
queries with only a single key, hence small problem sizes, and also does not capture
tuples from the network. We experimented with a single key query and DFE(B+Q+D)
was able to achieve similar throughput (line rate) comparable to Gasser for varying
WS/WA. The throughput readings are similar to the experiment with uniform key
distribution traffic. However, DFE achieves this at a much lower latency, which is 3-4
orders of magnitude lower than Gasser.
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Figure 4.7: System throughput as percentage of line-rate: (a) Estimated by the ana-
lytical model (AM); and (b) Measured in the hardware implemention using Dataflow
Engines (DFE) for the various memory configurations, namely, with only DRAM
(D), Block-RAMs + DRAM (B+D) and the 3-level MLQ system with Block-RAMs +
QDR-SRAM + DRAM (B+Q+D).
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4.4 Conclusion
This chapter introduced Multi-level Queues (MLQs), a specialized memory hierarchy
for stream aggregation. MLQs use multiple memory levels to form logical queues
that offer on-chip SRAM (BRAM) bandwidth for window updates and DRAM capac-
ity. In addition, they employ the aggregate bandwidth of all levels in the hierarchy,
offering higher aggregation throughput. Compared to BRAM-only stream aggrega-
tion designs, MLQ supports 4 orders of magnitude larger problems. Compared to
DRAM-only designs, it achieves up to 8× higher throughput. Even compared to
hybrid BRAM+DRAM designs, MLQ has up to 4× higher throughput. Finally, MLQ
offers the same throughput as GPUs, but in addition supports group-by operations
–up to 128K keys rather than one key offered by the competing GPU systems– and 4
orders of magnitude lower aggregation latency.
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Chapter 5

StreamZip: Compressed
Sliding-Windows for Stream
Aggregation

The massive volumes of data produced globally enable a large number of emerging
stream processing applications [50]. Such applications are used in various domains,
e.g., financial, transportation, to analyze large unbounded streams of data and make
fast, sophisticated decisions. However, consuming large data volumes at line rates
require high processing throughput and sometimes, e.g., in financing, also low latency.

Stream aggregation is one of the most challenging tasks in stream processing. An
example is depicted in Figure 5.1. It can be described by applying the traditional
relational database aggregation semantics to a sliding window. Such a window of
size (WS) is updated with incoming elements (values carried by incoming tuples).
Upon aggregation, the window “slides” by a particular number of elements (Window
Advance - WA) to produce the aggregated values; that is, the window contents before
sliding [1]. The aggregated values are subsequently fed to one or multiple functions
that compute an output every time the window slides. Considering a key-value pair
system, incoming tuples carry values of different keys, which are aggregated separately
using a separate sliding-window per key. This description fits sliding-window stream
aggregation (SWAG) that follows a tuple-based window policy, meaning WS and WA
are measured in terms of the count of elements. An alternative windowing policy is
time-based, where the size and slide are defined by time intervals.

For some problems, the sliding-window aggregations can be simplified by com-
puting them incrementally [6–8]. However, many others need to follow the single
window stream aggregation (Single-SWAG) approach [9,26], which is the focus of this
paper. That is the case for problems that use non-associative aggregation functions,
which cannot be computed incrementally, e.g., median [12], or problems that would
be more expensive to compute incrementally than using Single-SWAG, e.g., frequent
aggregations of multiple aggregation functions in geo-tagged data [5], social-media
data [10] or manufacturing-equipment data [11].

Single Sliding-Window stream AGgregation (Single-SWAG) is a memory-intensive
problem [13]. For each incoming tuple, the memory needs to be accessed to update the
window and, when ready for aggregation, the entire window should be read. These two

67
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
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OWA = 2 tuples
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Input 
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Figure 5.1: Sliding-window stream aggregation with Window Size (WS)=8 tuples
and Window Advance (WA) = 2 tuples for a input data stream, e.g. a vehicular
sensor emitting tuples t1, t2, . . . with each tuple containing a timestamp, vehicle-ID
and speed. For simplicity, only tuples from a single vehicle (key) is shown. The grey
tuples indicate the aggregate output generated when the sliding-window gets full. (e.g.
top-3, average, and median speed).

Single-SWAG steps, window update and window aggregation, generate tremendous
memory pressure, the latter especially for queries with frequent aggregations (small
WA). In Chapter 4, we discussed the memory bandwidth bottleneck due to window
updates being mitigated using multi-level queues (MLQ) [15]. However, this only
addresses the first Single-SWAG step, i.e., window updates. For queries with frequent
aggregations, as the dominant part of the single window rests in the farthest and
slowest memory, previous approaches suffer from low processing throughput due to
the memory bandwidth bottleneck posed by the large volume of window aggregation
traffic.

One way to alleviate the window aggregation memory bottleneck is to compress
the sliding window. Existing studies on real-world streaming datasets have shown
that a dominant part of them consisting of performance counters, sensor, geolocation
and other time-series data have significant redundancy that can be exploited through
data compression [14]. As an example, Figure 5.2 illustrates the tremendous potential
gains in Single-SWAG processing throughput by reducing the tuple’s value size, e.g.,
up to 28× higher throughput with a 32× data reduction. However, compression
complicates window management and introduces dependencies. Moreover, due to
the on-the-fly processing, high throughput, and low latency requirements of stream
processing, sophisticated compression schemes cannot be afforded due to their high
complexity and high latency.

In the past, compression has been proposed for stream processing in TerseCades
[14]. However, TerseCades only supports batch-processing of separate non-overlapping
tumbling windows, i.e., WA=WS, rather than true stream processing with WA≤WS,
therefore it avoids data overlap between different window instances and hence avoids
the greatest challenge of applying compression to SWAG. In addition, TerseCades is
software-based and requires data to be stored in memory before processing, introducing
significant latency. An interesting contribution of that work is the support for pro-
cessing directly on compressed data, which requires support by both the compression
algorithm and the aggregation function.

This work introduces StreamZip, the first true stream processing engine with
compression support for sliding windows and WA≤WS. StreamZip is based on
previous FPGA-based multi-level queue (MLQ) DFE for SWAG systems and is
able to support lossless and lossy compression algorithms aiming to mitigate the
memory bandwidth bottleneck of window aggregations. StreamZip achieves this by
addressing a number of concurrency control challenges introduced by the addition of
the compression and decompression steps to the pipeline.
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Figure 5.2: Processing throughput in million tuples per second vs. WS in tuples for an
FPGA-based MLQ Single-SWAG dataflow engine [15] at 156.25 MHz with varying
value sizes and WA=1 tuple, showing the potential for data-compression.

Table 5.1: Data-types and Compression schemes in StreamZip

Data-types / Compression Lossless Lossy
Fixed-point Base-Delta SZ

Floating-point XOR SZ

The contributions of this work are the following: StreamZip, a novel dataflow, true
stream processing engine with compression support for sliding windows with any WA,
which:

• supports diverse compression algorithms;

• devises efficient concurrency control mechanisms to mitigate the data and
control dependencies in the pipeline;

• achieves substantial reduction of aggregated data volumes; and

• offers up to an order of magnitude higher processing throughput and reduction
in effective memory capacity compared to current state-of-the-art Single-SWAG
systems.

The remainder of this chapter is organized as follows. Section 5.1 offers back-
ground about compression and discusses related work. Section 5.2 describes the
StreamZip design. Section 5.3 presents the evaluation and compares StreamZip with
related works. Finally, Section 5.4 summarizes our conclusions.

5.1 Background and Related Work
This section offers some background on data compression in relation to stream pro-
cessing and discusses related work.

5.1.1 Compression algorithms
FPGA-based Stream processing engines use deep dataflow pipelines to achieve high
processing rates. As a consequence, they require fine-grained pipelining with as little
data dependencies as possible. Adding compression to such a system introduces a
number of challenges. Briefly, the challenges pertaining to the choice of compression
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Figure 5.3: Base-Delta compression of a stream of 8 byte values to 1-byte deltas.

algorithm are related to the arithmetic complexity of compression and the dependencies
between computations of consecutive values. Other compression characteristics that
require attention when designing a SWAG with compression are related to the nature
of the algorithm, i.e., being lossy, thus introducing error, versus lossless, as well as
the target compression ratio. Next, we discuss our choice of the diverse compression
algorithms used in StreamZip as illustrated in Table 5.1, namely, the Base-Delta (BD)
lossless algorithm applied to fixed-point numbers, XOR lossless algorithm applied to
floating-point numbers and the Squeeze (SZ) lossy algorithm applied to fixed- and
floating-point numbers.

Base-Delta encoding is a simple but efficient lossless compression scheme used for
decades in computing systems [54, 55] and offers competitive compression ratio for a
wide range of fixed-point integer data, ranging from performance counters, geolocation,
sensor and other time-series data. Briefly, a value is represented as an offset (Delta)
from a constant (Base); if that is not possible, a new base is selected. Multiple bases
can also be used. Figure 5.3 shows a stream of 8 byte values compressed with Base-
Delta encoding to 1-byte deltas. As such there are no dependencies in computing
(compressing/decompressing) consecutive values and processing is minimal as a single
addition is sufficient. StreamZip applies Base-Delta to fixed-point numbers.

The second algorithm used in StreamZip is the XOR lossless compression scheme
for floating-point numbers [56, 57]. Base-delta lossless encoding does not work well
for floating-point numbers as it does not reduce the number of bits sufficiently and
hence results in low compression ratios [14]. On the other hand, XOR is a reversible
operation that turns identical bits into zeros. Since the sign, the exponent, and the
top mantissa bits occupy the most significant bit positions in the IEEE 754 standard,
the XOR result would have a substantial number of leading zeros. Hence, it can be
encoded and compressed by a leading zero count that is followed by the remaining
bits. The incoming tuple’s double-precision floating-point values are variable length
encoded using XOR compression [57] as below:

• The initial value is stored uncompressed;

• If XOR with the previous is zero, i.e. same value, a single ‘0’ bit is stored;

• When XOR is non-zero, the number of leading and trailing zeros in the XOR is
calculated and a ‘1’ bit is stored followed by either:

– Control bit ‘0’: If the block of meaningful bits falls within the block of
previous meaningful bits, i.e., the number of leading zeros and trailing
zeros is at least as many as in the previous XORed value, that information
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Figure 5.4: XOR compression of a stream of 8 byte values.

is used for the block position and just the meaningful XORed value is
stored.

– Control bit ‘1’: The length of the number of leading zeros is stored in the
next 5 bits, then the length of the meaningful XORed value in the next 6
bits. Finally, the meaningful bits of the XORed value is stored.

Figure 5.4 shows the XOR compression in action over a stream of 8 byte floating-point
values. Both the previous floating point value and the previous XORed value are
utilized in XOR compression. This leads to an additional compression factor as a
sequence of XORed values in time-series data often have a very similar number of
leading and trailing zeros [57].

The third algorithm used in StreamZip is the lossy Squeeze (SZ). SZ compresses
a sequence of numeric values by describing each value Xi as a function of the three
preceding values [Xi−3,Xi−2,Xi−1], according to a predefined function model [58]. A
typical SZ supports four such function models (to be encoded with 2-bits per value),
namely:

• a constant value is approximated as equal to the nearest preceding one,

• a linear value is extrapolated from the preceding two values,

• a polynomial value fits on the cubic curve described by the preceding three
values, or

• if none of these models describes a value with an acceptable error, the value is
an outlier and stored explicitly. To start the sequence the first three values are
stored uncompressed (seeds).

Figure 5.5a shows the four function models used in SZ. It is clear that computing
a value depends on the computations of its previous three, hence the computing
complexity is important. In case computing a value takes more than a cycle, then
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Figure 5.5: SZ Compression

throughput can be limited. As shown by Eldstål et al., computing a value can be
reduced for the most complex function (polynomial) to two pipeline stages, each
with a 3-operand addition [59]. To stress the system, SZ is applied to floating-point
numbers. As a result compressing or decompressing a value requires multiple cycles.
In general, SZ introduces an error that can be controlled by the compressor, i.e., if the
error is too high an outlier is created, but offers roughly 4× higher compressibility
than lossless compression schemes. Figure 5.5b shows the decompression of a SZ
value sequence.

In the past, SZ has been used in the GhostSZ FPGA-based system for I/O compres-
sion [60]. GhostSZ breaks the dependencies between computing consecutive values by
splitting them to multiple parallel sequences that are compressed separately, thereby
increasing throughput.

5.1.2 Stream processing platforms

Various computing alternatives have been used for stream processing and stream ag-
gregation in particular, each having different functionality and performance potential.
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Generic software platforms running on general-purpose CPU offer a wide range of
stream processing capabilities, but have limited throughput and high latency [16–18].

Multicore CPU and GPU based systems are able to sustain high processing through-
put, but have wasteful memory management [13] as they require redundant memory
accesses to store incoming tuples from the network to DRAM even before process-
ing starts. Some CPU-based approaches propose algorithmic modifications to re-
duce latency, but are constrained to only associative aggregation functions [2, 19].
StreamBox-HBM exploits high bandwidth HBM memories to improve the processing
throughput [61]. TerseCades achieves the same goal with compression [14]. How-
ever, both StreamBox-HBM and TerseCades only support aggregation queries with
tumbling windows (WS=WA). The two fastest GPU stream aggregation systems
are SABER, which performs only incremental aggregations [20], and Gasser, which
supports non-associative functions too [4].

FPGAs can offer direct network connection to receive incoming tuples and support
dataflow processing. This enables FPGAs to deliver both high processing throughput,
on par with the fastest GPU and CPU systems, as well as low latency, at least 3 orders
of magnitude lower than CPUs and GPUs [9].

FPGA designs based on incremental aggregation algorithms does not support
non-associative functions [7, 8]. Recently, there has been work on FPGA-accelerated
approximable query processing using sketches [62] which maintains statistics, rather
than explicit values and thus can only provide estimates. On the other hand, FPGA
based single window stream aggregation for tuple-based [9] and time-based [26]
windowing policies, explicitly store values and support generic aggregation functions
(including non-associative), varying window-slides, large window sizes and large
number of keys, as discussed in Chapters 2 and 3. However, these works use only
DRAM for maintaining the single window state which require slow and bandwidth
wasteful read-modify-writes for window-updates. As discussed in Chapter 4, a multi-
level queue (MLQ) approach for single window aggregation was proposed to offer
faster window updates [15]. MLQ constructs logical queues for storing sliding-
windows composed of BRAM, off-chip SRAM, and DRAM. The tail of the queue
is always in the BRAM offering high bandwidth window updates, i.e., enqueues,
thereby improving performance. However, window aggregations are limited by the
available memory bandwidth. StreamZip builds on top of MLQ and compresses
sliding-windows to reduce their size and alleviate the memory bandwidth pressure of
the aggregation step, thereby, improving processing throughput.

5.2 StreamZip Design

StreamZip is a reconfigurable, stream aggregation dataflow engine (DFE) with com-
pression support for sliding-windows that reduces the volume of aggregated data
improving processing throughput and effective memory capacity. It can be reconfig-
ured to support different queries or aggregation problems based on the application at
hand. As in MLQ [15], StreamZip windows are stored in multi-level queues, but in
this case, they are compressed. Figure 5.6 illustrates the StreamZip pipeline. Incoming
tuples of the form 〈ts,key,value〉 are carried by network packets and received by the
receiver module (Rx). The key of each tuple is first hashed to the hash table. Multiple
hash functions are used to reduce collisions [52]. Each hash table entry corresponds to
a key and stores metadata needed for compression, multi-level memory management,
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and decompression of this key’s incoming tuples.
After the hash table stage, the tuple’s value is compressed and memory commands

are generated to update the window at each memory level based on the metadata
state. The compressor also feeds back the compressed state to the hash table to
update the metadata. The data collector acts as a buffer to synchronise the dataflow of
the compressed single-window compartments from the various memory levels. On
aggregation trigger, the entire compressed single window of the key is streamed to the
decompressor and the decompressed values are fed to the compute kernel(s) where the
aggregation function(s) are computed. The decompressor feeds back the information
regarding the invalid values evicted upon window-slide following the aggregation to
the hash table stage. The result of the aggregation function is finally transmitted back
to the network through the T x module. The dataflow between the stages is controlled
through FIFOs which stall the pipeline via back-pressure when necessary.

5.2.1 Hash table organisation
The hash table stores the metadata required for managing the window update and
aggregation steps of single window stream aggregation. In our implementation, the
table is direct-mapped and uses dual-port BRAMs with a depth chosen to support
a large number of concurrently active key entries. Alternatively, associativity can
be added to the hash table to reduce collisions [52]. Each entry of the hash table
corresponds to a single key and stores various fields separated in three banks for the
management of the sliding window, the compressor, and the decompressor.

5.2.1.1 Window management bank

The window management bank contains: (i) a valid bit; (ii) the key assigned to the
entry; (iii) tuple counter, tc, to determine when the key is ready for aggregation for
tuple-based windows; (iv) window start timestamp for key replacement in case of
collision and to trigger aggregation in time-based windows; and (v) optionally, starting
stream number, used in case a key’s compressed stream is divided into multiple sub-
streams to account for the compressor and decompressor pipeline latency, which is
described in Section 5.2.3.1.

5.2.1.2 Compressor bank

The compressor bank contains: (i) current seed(s), denoted by SC, used to compress
the incoming tuple’s value; (ii) write pointers to each memory level, wi, pointing to
the tail index of each memory level for inserting the upcoming compressed value;
and (iii) an extra write pointer to M2, denoted by w2S, pointing to the index to store
the updated base upon BD or the outlier upon SZ compression. The extra pointer
is needed for alignment reasons as the larger base or outlier values are stored from
the most significant side of a memory line, as opposed to the smaller compressed
symbols which are stored staring from the least significant side of the block. This
extra pointer is not needed for XOR compression as the scheme involves variable
length encoding and the compressed symbols are written in a continuous fashion in the
memory hierarchy. The memory packing and alignment for the various compression
schemes are explained in Section 5.2.2. In case of BD encoding, the current seed is the
latest base utilized for the compression of the incoming stream. For XOR compression,
the seed field stores the latest incoming value and the leading and trailing zeros from
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the latest XOR operation. Similarly, for SZ, as the upcoming compression depends on
the computations of the preceding three values, the three latest predictions based on
the function models are stored.

5.2.1.3 Decompressor bank

The decompressor bank contains: (i) starting seed(s), SD, for decompressing the
window, used to start the decompression of a window on aggregation trigger and (ii)
read pointers to each memory level, ri, pointing to the head index in level i from
which to start reading the compressed values. The seeds stored here for the selected
compression scheme are similar to the ones in the compressor bank, except that these
seed(s) are the oldest ones at the start of the single window of a key used to initiate the
decompression.

Partitioning the compressor and decompressor metadata into separate hash table
banks enables to update them at different instances following the compressor and the
decompressor pipeline stages, respectively. The hash table is accessed in a pipelined
fashion using multiple hash functions [52]. First, the selected hash table entries are
checked to match the requested key. In case of a miss, a new entry is made evicting
the least recently used key out of the ones identified by the hash functions and the
corresponding (de)compressor entries reset. If the evicted key is still active, a flag
is raised indicating collision and the information is sent to software. The memory
hierarchy can be used to extend the hash table and/or a software process could handle
the keys that do not fit in the on-chip hash table due to collisions.

A hit in the hash table enables fetching the remaining metadata fields of the asso-
ciated key from the compressor and decompressor banks. The compressor metadata
determine: (i) the current seed(s) needed for the compression of the incoming tuple’s
value; (ii) the write address to insert the compressed value upon compression in M1;
(iii) the address in M2 based on w2S to flush to, which is used only in case of BD and
SZ if the compression results in a new base or an outlier, respectively; (iv) indicate
whether a memory level is full and needs to be flushed to the next level; and (v)
provide the write address of the successive level for insertion of the flushed block.
If the window is full, the key is ready for aggregation and the metadata from the de-
compressor bank are used to determine: (i) the starting seed(s) needed to decompress
the window; and (ii) the read addresses of each memory level to be passed on to the
Memory Command Generator for fetching the compressed single window parts spread
across the memory levels. In parallel to decompression, sliding the window requires
a number of values (defined by WA) to be invalidated and evicted from the window.
Accordingly, the window read pointers for each memory level are updated and fed
back to the hash table.

5.2.2 Memory alignment and packing
The format used for packing and storing the output of the compressor to the memory
levels is key for the efficient utilization of the available memory space and bandwidth.
It determines memory footprint of the window and the number of accesses required
to read and update it. In our implementation, three memory levels are used, namely,
on-chip BRAMs (M1), off-chip QDR-SRAM (M2) and off-chip DRAM (M3) as shown
in Figure 5.6. A compressed window is partitioned in blocks of fixed size defined
by the access granularity of the last memory level (M3/DRAM) which is 64 bytes.
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(a) Base-Delta block format of a StreamZip compressed sliding window
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(b) SZ block format of a StreamZip compressed sliding window

Figure 5.7: Block format of a compressed sliding window for two different compression
algorithms: (a) Base-Delta fixed point lossless compression. Bases, denoted by base∗
and deltas denoted by ∆∗ are written from the most and least significant addresses
respectively. D represents the demarcation in the compressed sequence to denote a
new base to be picked up from the most significant side; and (b) SZ lossy floating point
compression. Outliers and symbols are written from the most and least significant
addresses respectively. Black symbol indicates an outlier and the 3 grey shades
indicate constant, linear, and polynomial prediction compressed symbols.

A compressed block is denoted by CB. In order to maximize the number of keys
supported for stream aggregation, BRAMs are mostly used for storing metadata, so M1
stores only few compressed values. Then, M2 is configured to store one compressed
block of 64 bytes per key matching the access granularity of M3. The access granularity
of M2 is 16 bytes and so, four M2 lines compose one CB that can be stored in one M3
line.

Figure 5.7 shows the format of a CB for BD and SZ compression algorithms used
in StreamZip. The size of an uncompressed value in a tuple is 8 bytes. BD uses full
size Bases (8B) and ∆s are set to 1B. SZ encoding uses half-precision outliers (4B)
(if permitted within acceptable error thresholds) and compressed symbols of just 2
bits. Using half-precision seeds and outliers reduces the constant capacity overhead
enabling to support larger problem sizes. To simplify the data alignment in a block,
we separate the data in a block based on their size. More precisely, values (bases
or outliers) are stored starting from one end of the block and compressed values (∆s
or 2-bit symbols) starting from the other end. This format simplifies block accesses
during decompression providing simpler address calculations for reading each type
of data. It also packs data more efficiently in the available block space. Finally, it
prevents multiple write accesses to M2 due to misalignment, improving M2 bandwidth
utilization. In the case of BD compression, a demarcation, D, is used to denote a base
change. The largest value of a ∆ is reserved to represent such demarcation. For SZ,
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Figure 5.8: Block format of StreamZip compressed sliding-window for XOR com-
pression: (a) For dependent DRAM lines; and (b) For independent DRAM lines with
starting uncompressed value (8B) and the leading (5b) and trailing (5b) zeros in red
to aid in decompression by preventing the sequential dependency between consecutive
compressed blocks. The various shades of yellow and grey in both formats indicate
different compressed variable-length encodings generated by XOR compression and
written continuously from the most significant side.

the demarcation is implicit as outliers are marked by an already reserved combination
of the 2-bit compressed symbol.

On the other hand, XOR compression is variable length encoded and therefore, the
data in a block cannot be separated based on their size. Instead, the compressed data is
written in continuous fashion from the most significant side of the compressed block.
This is as shown in Figure 5.8a. Multiple write accesses to M2 due to misalignment
are avoided by writing the spilled over compressed bits, if any on a flush, to the first
level in the memory hierarchy, thereby, improving the bandwidth utilization of the
second level.

5.2.3 Data dependencies and Concurrency control mechanisms
There are various concurrency control challenges in adding compression support
to a stream aggregation DFE pipeline without negatively impacting processing rate.
Some of these challenges are generic and others are artifacts of particular compres-
sion characteristics. In general, the stream aggregation pipeline needs to ensure it
generates correct results despite things happening in parallel at different stages. For
example, one tuple may be updating the window while another tuple of the same key
has already initiated an aggregation. In other words, the design needs to correctly
handle data dependencies between tuples of the same key entering the pipeline in close
succession, which is prevalent in real-world datasets with skewed key distributions.
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Figure 5.9: Value Interleaving to support multiple substreams in StreamZip. C1, . . . ,Cn
denote the n pipeline stages of the compressor. The various color coded uncompressed
values denoted by v1, . . . ,vn represent the n substreams that can be interleaved and fed
to the compressor to process one value every FPGA cycle to generate a compressed
symbol, si, every cycle.

Besides making the pipeline longer, adding compression introduces the following
challenges. Firstly, it creates more dependencies between consecutive values, when
the compression algorithm requires the previous values to generate the next. Second,
a decompression triggered by an aggregation may depend on ongoing compression
of values before it can start decompressing the window. Third, aggregations cause a
window to slide and evict a number of values, but in a compressed window, evictions
can be performed only after decompression; this creates a dependency between succes-
sive aggregations. Fourth, handling a compressed window stored in multiple memory
levels makes data collection (upon aggregation) more complex than an uncompressed
window. Finally, frequent aggregations in skewed key distributions creates redundant
memory accesses which wastes bandwidth and this performance hit is exacerbated
with decompressors with high latency. Some of these challenges could be handled by
pipeline stalls or bubbles, however, this would compromise performance. Below we
discuss how StreamZip addresses these challenges without giving up performance.

5.2.3.1 Intra-(De)Compressor Pipeline Dependency

There are two inefficiencies within the (de)compressor pipeline affecting the processing
throughput of StreamZip that needs to be addressed.

(i) (De)Compressor latency due to arithmetic complexity: The varied arithmetic
complexity of the compression algorithms needs to be dealt with. Base-delta requires
a single addition to compress or decompress a value and when applied to fixed-point
numbers, this can be handled in a single cycle without affecting StreamZip’s processing
rate. Similarly, XORing two values and calculating the leading and trailing zeroes for
XOR compression can be handled in a single cycle without affecting the processing
throughput of StreamZip. On the contrary, SZ requires more complex computations,
and applied to floating-point numbers, needs about 20 cycles at the operating frequency
that supports line-rate processing. This may reduce processing throughput 20-fold, if
not addressed, since compressing or decompressing a value depends on completing
the computation of the previous value first.

StreamZip deals with this using value interleaving similar to previous designs used
in other domains [59, 60]. The incoming values of each key are divided into multiple
independent sub-streams as shown in Figure 5.9. Then, a pipelined version of the SZ
computations can handle these sub-streams without data hazards. This is performed
by storing the initial seeds for (de)compression for each stream separately in the
hash table stage and maintaining a sub-stream counter to identify the current active
sub-stream. Although this is sufficient for maintaining correctness and high processing
throughput, it complicates window aggregation and may affect compression quality.
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Figure 5.10: Compressed Blocks denoted by CB1 . . .CBn processed once every cycle
when there are no dependencies between consecutive CBs. n denotes the number of
compressed symbols in a block which are fed to the unrolled decompressor stages,
D1, . . . ,Dn. s1, . . . ,sn denote the various symbols which are buffered and fed to the
decompressor in consecutive cycles.

StreamZip removes some of this complexity by allowing all sub-streams to share
the same memory block for aggregating values of the same key. Moreover, multiple
decompressor pipelines are added, each handling a window of a different key, to cope
with the processing rates.

(ii) Sequential dependency between values in compressed blocks: At the decom-
pressor, the sequential dependency between consecutive values in compressed blocks
needs to be dealt with. In order to achieve the best possible processing throughput,
the available memory bandwidth needs to be fully utilized without the decompressor
becoming the bottleneck. The decompressor is fed with 64 byte compressed blocks
from the memory and in order to achieve the best processing throughput, the decom-
pressor should be able to decompress the CBs at bandwidth provided by the memory
interface. XOR decompressor is fed with up to 512 compressed symbols per CB.
XOR decompressor operates at 1 bit per cycle as the minimum granularity of a XOR
compressed symbol is a single bit. As a consequence, the XOR decompressor requires
512 cycles before which a new CB can be pulled into the decompressor. This is due to
dependency between consecutive symbols and CBs. This is unlike base-delta encoding
where the new bases are explicitly stored in the block format and the starting base
for the successive memory line is already available at the start of decompressing a
memory line. Moreover, for base-delta encoding, the decompressor stage performs a
precompute step on the compressed block to find the bases, if any, in the compressed
block based on the demarcations. This allows the decompression of all the deltas per
CB in parallel and enables BD decompressor to process one compressed block every
cycle without any sequential dependency.

For a compressed single-window size of up to a single CB, line-rate processing
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Figure 5.11: Idling due to sequential dependency between compressed blocks costing
processing throughput. Here CB2 can be fed to the decompressor only after n cycles
after processing CB1 as the decompression of symbol sn+1 in CB2 requires the decom-
pressed value from the symbol sn in CB1. s1, . . . ,sn denote the various symbols which
are buffered and fed to the decompressor in consecutive cycles.

throughput can also be achieved for XOR compression by using pipelined parallel
decompressors as there are no sequential dependency between CBs. However, for
larger windows and keys triggering aggregation in close succession, the processing
throughput is severely penalised due to the idle time between consecutive CBs as
shown in Figure 5.11.

One way to solve this problem is by making the compressed blocks independent as
shown in Figure 5.12a using the block format shown in Figure 5.8b. However, making
compressed blocks independent by storing the starting uncompressed seed per CB can
lead to lower compression ratios.

Another approach pursued in StreamZip is to perform compressed block inter-
leaving across keys so that the each block entering the decompressor pipeline is from
a different key in consecutive cycles as shown in Figure 5.12b. This would require
buffering per key after the decompressor to store the intermediate decompressed values
for computation. However, for skewed key distributions, it would not be possible to
interleave compressed blocks which can be solved using caching the decompressed
values as discussed in Section 5.2.3.5.

5.2.3.2 Inter-Compressor-Decompressor Dependency

When an aggregation is triggered before all tuples of a key already in flight have
been compressed, the decompressor pipeline will have to stall until the compression
is done, limiting processing throughput. This is pronounced when compression has
higher latency. StreamZip addresses this by buffering the values under compression
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(a) Sequential Dependency Solution 1: Independent compressed blocks. Using the starting
uncompressed seeds denoted in red, each compressed block denoted by CB1,CB2,CB3,CB4, . . .
can be fed to the deompressor pipeline stages in consecutive cycles, enabling a processing
throughput of 1 CB/cycle. s1, . . . ,sn denote the various symbols which are buffered and fed to
the decompressor in consecutive cycles.
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(b) Sequential Dependency Solution 2: Compressed block interleaving across keys. Each
coloured compressed block denoted by CB∗ belongs to a separate key and these interleaved CBs
across keys enables to increase the dependence distance to n so that on arrival of symbol sn+1
of a key, sn from the same key would have been decompressed.

Figure 5.12: Solutions for sequential dependency in compressed blocks.
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until they are processed and if needed, forwarding them, instead of their compressed
counterparts, to the compute kernel using a separate bypassing path.

5.2.3.3 Dependencies between Consecutive Aggregations

An input data stream with skewed key distribution and stream aggregation queries with
small WA may cause tuples of the same key to trigger aggregations in close succession
or even in consecutive cycles. However, each aggregation causes the window to
slide and some of its elements (values) to be evicted. Evictions are implemented
during decompression by updating the hash table, but the latency between hash table
and decompressor is prohibitive for supporting successive evictions and therefore
successive aggregations. StreamZip solves this problem by maintaining an outstanding
aggregations field which stores the count of the outstanding aggregations triggered per
key in the hash table using a separate field. Upon aggregation, the compressed single
window is read as usual based on the available read and write pointers in the hash table
stage and the outstanding aggregation count is also passed to the decompressor. This
count enables the decompressor to identify the unreported invalid compressed values
in the window (count×WA) and to skip them. The count is decremented by 1 each
time the hash table stage receives feedback from the decompressor for a completed
aggregation. Although this works for tuple-based windowing policy, for time-based
windows, storing just the count would not suffice. This is because the number of
evicted tuples in a WA is time-dependent and so a cumulative sum of the number of
tuples in the WA time-unit per outstanding aggregation needs to be maintained and
stored in the outstanding aggregation field.

5.2.3.4 Data Collection

The compressed window of each key is scattered across the memory levels. In addition,
parts of the window may need to be taken from the buffer next to the compressor that
stores uncompressed values for ongoing compressions, as explained in Section 5.2.3.2.
To make matters worse, data may be moving from one memory level to the next at
any point in time. Upon aggregation, StreamZip uses a data collection controller
to ensure that all parts of the particular window instance are gathered correctly to
be forwarded to the compute kernel. Separate queues are maintained for metadata
and compressed data for each memory level and the uncompressed buffer. Then,
the controller synchronises the contents of the queues to deliver data in-order to the
decompressor. Value reordering is needed because the aggregation read operations are
performed in parallel for all memory levels that contain valid data and correct value
order is required for computing non-commutative aggregation functions like rank.

5.2.3.5 Caching Optimization for skewed-key distribution

For skewed-key distributions and especially for large WS and frequent aggregations,
redundant memory reads for the same single window of a key wastes valuable memory
bandwidth and thereby, becomes a performance bottleneck in StreamZip. In order
to alleviate this bottleneck, the idea is to cache the decompressed window of a few
recently seen keys which triggered aggregation at the decompressor DFE pipeline stage
using on-chip memory as shown in Figure 5.13. Moreover, reusing the single-window
of a key in on-chip memory would prevent the need to go all the way to DRAM to
fetch the window upon aggregation, thereby, reducing DRAM pressure and enabling
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higher processing throughput for skewed-key distributions. The size of a cached block
per key at the decompressor side is equal to WS, and the oldest tuples corresponding to
WA will be evicted upon window-slide during aggregation. For tuple-based windows,
the size is deterministic as the WS and WA are defined on the count of the tuples.
However, for time-based windows, an upper bound on the WS is measured based on
a per-key arrival rate and is used as the cache block size. In our implementation, we
buffer the decompressed windows of up to two keys using on-chip memory, and the
interface width of the cache at the decompressor side can feed the compute kernel up
to 128 decompressed values in a cycle.

At the compressor side, the recently seen keys which triggered aggregation are
marked and uncompressed values for those keys up to WA tuples are buffered. These
cached uncompressed values of the key are streamed directly to the compute kernel
upon the next aggregation trigger using a bypass path and used in conjunction with
the cached decompressed values at the decompressor. The replacement policy of the
caches follow a LRU policy based on the incoming keys similar to the cache structure
in Time-SWAD [26].

5.2.4 Memory Management and Dataflow

StreamZip memory management and dataflow is illustrated by the example in Fig-
ure 5.14. Here, lossless base-delta compression is described, but the dataflow is similar
for other compression choices, too. On arrival of t1 with value 50, tc is incremented
by 1. As this is the first tuple of the key, the compressor and decompressor partitions
are set with SC=SD=50 and the read and write pointers at each memory level are
initialized. Note that for M2, there are 2 write pointers to indicate the base side written
from the most significant memory cell, denoted by w2B and the delta side written
from the least significant cell, denoted by w2. When t2 arrives with value 51, tc is
incremented to 2 and the compressor takes as input the previous SC =50 and performs
base-delta compression to produce ∆2=51−50=1. The compressor metadata parti-
tion is updated by incrementing w1 by 1 as the ∆ gets written to M1. On arrival of t3,
M1 is full, so, it is flushed to M2 along with the new ∆3=52−50=2. This causes w1
to reset to 0 as M1 gets empty and w2=3−2=1 as the two ∆s get written from the
least significant side of the M2 line. Similarly, for t4, ∆4=53−50=3 gets written to
M1 and for t5, M1 gets flushed to M2 with the new ∆5=4. When t6 enters the system,
∆6 =5 gets written to M1 and as M2 is full (w2 =4), it is flushed to M3 which leads
to resetting w2 to 3 and w3 points to the next line at index 4. Note that using MLQ,
wasteful read-modify-writes to M3 (DRAM) are completely eliminated by writing
first to the nearer and faster memories in the hierarchy (M1 and M2) ensuring faster
window updates. Tuple t7 carries a value of 320 and this causes a base change in
the compressor. A base change is marked by a demarcation (D) on the delta side as
described in Section 5.2.2. Then, SC gets updated to 320, and M1 is flushed along with
D to M2, leading to w1 getting reset to 0, w2 shifting to 1 and w3 remains at 4.

Arrival of tuple t8 makes the window full (tc=7=WS−1), and triggers aggregation
causing the compressed sequence {M3[1,2,3,4];M2[5,D];M1[320]} to be read and
passed to the decompressor with the starting seed (base), SD=50 and the current tuple,
t8:330. The decompressor, upon traversing the compressed sequence marks the delta
read index corresponding to the WA for eviction and feeds it back to the decompressor
partition in the hash table stage. In this case, eviction of invalid tuples t1: t2 during
window slide is marked by shifting r3 to 2. In order to maintain the continuity in
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tup:
value

tc SC w1w2S w2 w3 SD r1 r2 r3 Memory Operations M1 M2 M3

Init 0 0 0 0 3 0 0 0 3 3 -

t1:
50

1 50 0 0 3 0 50 0 3 3 -

t2:
51

2 50 1 0 3 0 50 0 3 3
M1-Wu

t3:
52

3 50 0 0 1 0 50 0 3 3
M1-Ru; M2-Wu

t4:
53

4 50 1 0 1 0 50 0 3 3
M1-Wu

t5:
54

5 50 0 0 4 0 50 0 3 3
M1-Ru; M2-Wu

t6:
55

6 50 1 0 3 4 50 0 3 3
M1-Wu; M2-Ru; M3-Wu

t7:
320

7 320 0 0 1 4 50 0 3 3
M1-Ru; M2-Wu

t8:
330

6 320 1 2 1 4 50 0 3 2
M2-Ra; M3-Ra; M1-Wu; M2-Wu

t9:
331

7 320 0 0 1 8 50 0 3 2
M1-Ru; M2-Ru; M2-Wu; M3-Wu

t10:
332

6 320 1 0 1 8 50 0 3 0
M2-Ra; M3-Ra; M1-Wu

t11:
333

7 320 0 0 4 8 50 0 3 0
M1-Ru; M2-Wu; 

t12:
580

6 580 1 0 3 12 50 0 3 6

t13:
600

7 580 0 2 1 12 50 0 3 6
M1-Ru; M2-Wu

t14:
601

6 580 1 0 3 0 320 0 3 10
M2-Ra; M3-Ra; M1-Wu; M3-Wu

t15:
602

7 580 0 0 1 0 320 0 3 10
M1-Ru; M2-Wu

(Insert 𝚫2 in M1)

(Flush M1 with 𝚫3 to M2)

(Insert 𝚫4 in M1)

(Flush M1 with 𝚫5 to M2)

(Insert 𝚫6 in M1; Flush M2 to M3)

(Flush M1 with D to M2)

(Aggregate t1:t8; Evict t1:t2; 
Insert base8 in M2; Insert 𝚫8 in M1)

(Flush M1 with 𝚫9 to M2; 
Flush M2 to M3)

(Aggregate t3:t10; Evict t3:t4;
Insert 𝚫10 in M1)

(Flush M1 with 𝚫11 to M2)

(Aggregate t5:t12; Evict t5:t6; 
Flush M2 to M3; Insert D in M1)

(Flush M1 with 𝚫13 to M2; 
Insert base12 in M2)

(Flush M1 with 𝚫15 to M2)

(b)

(Aggregate t7:t14; Evict t7:t8; 
Flush M2 to M3; Insert 𝚫14 in M1)

Compressor Decompressor
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Figure 5.14: (a) A stream of tuples t1, t2, . . . of a key aggregated with WS=8 and WA=2
tuples. (b) Base-delta compression metadata management in the hash table stage
and compressed dataflow through the memory hierarchy for the above stream. The
red numbers in the Init row indicate the indices of each memory cell. basei and ∆i
denotes the base and delta corresponding to ti. ∆ requires only 1 memory cell and
a base (value) requires 2 cells. M1, M2, and M3 configured to store up to 1 ∆, 4 ∆s,
and 8 values; Mi-Wu, Mi-Ru, and Mi-Ra denotes writes due to window update, reads
due to window update, and reads due to aggregation in memory level i, respectively.
The green and blue highlights indicate flushes due to window update between memory
levels and aggregation reads from each level, respectively.
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the compressed sequence for decompression, SC=320 is written to M2 leading to
w2S to point to 2 as a base occupies 2 cells. The compressed ∆8 =10 gets written
to M1 leading to w1 = 1. w2 and w3 remain unchanged at 1 and 4 respectively. tc
is decremented by WA=2, making the total tuple count in the single window to 6.
Now M2 is full as the most significant side with base and least significant side with
deltas have overlapped and on arrival of t9, M2 gets flushed to M1. Similarly, on arrival
of t10, t12, and t14, aggregation gets triggered and {M3[2,3,4,5,D,320];M2[10,11]},
{M3[4,5,D,320];M2[10,11,12,13]}, and {M3[D,320,10, 11,12,13];M2[D,580,20]}
get streamed to the decompressor. Note that on arrival of t14, M2 with {580,20,D}
gets flushed to M3 causing w3 to wrap around and point to 0, thus maintaining the
circular buffer per key which is statically allocated in the memory hierarchy.

An interesting point to note here is that in this small example with an original
value of size 2B (assuming a memory cell is a byte) being compressed to 1B using
base-delta encoding, the aggregation reads from the farthest and slowest memory (M3)
have been reduced by half, thereby alleviating the memory bandwidth bottleneck. This
enables StreamZip to achieve overall higher processing throughput. In addition, the
effective memory capacity improves, leading to support of larger problem sizes (WS
× number of keys).

5.3 Evaluation
The performance of StreamZip is evaluated in terms of processing throughput and
latency. First, the experimental setup is discussed. Then, the implementation and
performance results are presented and compared to existing approaches.

5.3.1 Experimental Setup
All designs are implemented on a Maxeler N-series ISCA (MAX4AB24B) PCIe card
with Altera Stratix V (5SGXAB) that provides a 10 Gb/s direct network connection to
the FPGA. The board offers 6 MB on-chip BRAMs, 72 MB off-ship QDR-SRAM, and
24 GB off-chip DDR3 DRAM. The designs are implemented in MaxJ, a Java-based
High Level Synthesis (HLS) language, and compiled using MaxCompiler.

Three different types of FPGA-based single window SWAG dataflow engines
(DFEs) are implemented. First, a baseline SWAG engine that uses only DDR3 DRAM,
denoted as DFE-Base, that follows the designs described in [9,26]. Secondly, a SWAG
engine with a 3-level MLQ memory system using BRAM, off-chip QDR-SRAM and
DRAM, denoted as MLQ, that follows the best performing previous design [15]. Third,
StreamZip, the compressed SWAG engine using lossless (base-delta encoding for fixed-
point numbers and XOR compression for double-precision floating-point numbers)
and lossy (SZ for double-precision floating-point numbers) compression schemes with
the 3-level MLQ memory system. These designs are denoted by, StreamZip-Lossless-
Fixed, StreamZip-Lossless-Float, and StreamZip-Lossy-Float respectively, and, aptly
capturing the principles of our approach.

The memory configuration of each design (partitioning per memory level) was
generated using the partitioning algorithm in [15] with MLQ configured to store 1 and
8 values in the M1 and M2 levels, respectively. StreamZip-Lossless-Fixed using BD
compression scheme is configured with 1 and up to 64 ∆s, StreamZip-Lossless-Float
using XOR compression is configured with 8 bytes and 64 bytes, and StreamZip-
Lossy-Float design with 4 and up to 256 symbols per key in the M1 and M2 levels,
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Table 5.2: Resource utilization for the FPGA implementations.

Design / Resource Logic (ALMs) BRAMs DSP

DFE-Base 86208 (24%) 1136 (43%) 0
MLQ 93392 (26%) 1347 (51%) 0
Streamzip-Lossless-Fixed 104168 (29%) 1584 (60%) 0
Streamzip-Lossless-Float 219112 (61%) 1796 (68%) 0
Streamzip-Lossy-Float 308912 (86%) 2139 (81%) 165 (47%)

respectively. M3 being the last level, needs to have a capacity of a number of tuples
equal to the WS per key.

The Google compute cluster monitoring (CM) [47] real world dataset is used
as the input streaming data with the tuples composed of timestamp (32b), job ID
(key, 32b), and CPU usage (value, 64b). The tcpreplay tool [42] is used to inject the
captured packets at varying injection rates to determine the highest sustainable system
throughput.

The implemented query, comprising of algebraic, distributive, and holistic aggrega-
tion functions, is the following: “Find the average, minimum, maximum, and median

CPU usage for each job ID for the last WS tuples and return the aggregate every WA
tuples” [20]. The WS ranges from 64 to 4K tuples, the WA varies from 1 to WS tuples
with support for up to 16K concurrently active keys.

5.3.2 Implementation Results
The resource utilization of the evaluated designs is as shown in Table 5.2. For
StreamZip-Lossless-Fixed, the increase in logic utilization over MLQ is attributed to
the extra (de)compressor metadata management and encoding. StreamZip-Lossless-
Float requires a deeper decompressor pipeline due to the XOR compression scheme
and hence a higher logic utilization. StreamZip-Lossless-Float also implements the
independent compressed blocks to tackle sequential dependency. StreamZip-Lossy-
Float has about 3× higher logic utilization due to the replicated parallel decompressor
pipelines (up to 128) across keys and the associated state machine to control the
dataflow per key. StreamZip-Lossy-Float relies on value interleaving to tackle the
sequential dependency in the SZ compressed block.

In the case of StreamZip-Lossless-Fixed, an extra seed (base) for initiating the
(de)compressor process is required per key in the hash table stage which attributes
to the increase in BRAM utilization. StreamZip-Lossless-Float needs to store up
to 8 bytes of compressed symbol(s) in BRAMs and consumes more BRAMs than
StreamZip-Lossless-Fixed. StreamZip-Lossy needs to store 3 (de)compressor seeds
per key in the hash table stage to aid in (de)compression and as a result, has the highest
resource utilization. DSP blocks are also utilized for the StreamZip-Lossy floating
point computations. In order to fit StreamZip floating-point designs in the FPGA, only
one aggregation function (min) is implemented in the compute kernel stage and the
reported resource utilization is based on this implementation.

All designs operate at 156.25 MHz supporting one incoming tuple (128 bits) every
two FPGA cycles, fully utilizing the 10 Gb/s 64-bit network interface bandwidth.
This translates to a theoretical line rate of 78.125 million tuples/sec. However, in
practice, the highest measured rate of incoming tuples on the board is about 70 million
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Figure 5.15: Throughput in million tuples per second (MT/s) and latency in microsec-
onds of the various designs for WS of (a) 64 and (b) 256 tuples.

tuples/sec, so about 90% of the theoretical. Finally, off-chip SRAM and DRAM are
clocked at 350 MHz and 800 MHz, respectively.

5.3.3 Performance results

A general observation is that the throughput of all designs is reduced for small window
advance (WA), especially for large window sizes (WS). This is in line with the
trend observed in the previous work [9, 15, 26] because smaller WA queries trigger
aggregations more frequently and in addition, the larger windows aggregate more data.
This leads to the problem becoming more memory bandwidth intensive. However, with
StreamZip, this phenomenon is less pronounced as the number of compressed DRAM
line reads upon aggregation is smaller compared to DFE-Base and MLQ by a factor
of the overall compression ratio achieved for the input data set. This alleviates the
DRAM bandwidth bottleneck to a large extent, leading to better processing throughput
even for problems with extremely frequent aggregations (WA=1). In case of the CM
stream aggregation query, StreamZip-Lossless-Fixed (BD) and StreamZip-Lossless-
Float (XOR) designs achieve, on average, a compression ratio of 5.3× and 5.6×
respectively. StreamZip-Lossy (SZ) design achieves a compression ratio of 23×. In
general, it is observed that the gains in processing throughput compared to designs
with no compression are proportional to this ratio and the corresponding reduction in
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Figure 5.16: Throughput in million tuples per second (MT/s) and latency in microsec-
onds of the various designs for WS of (a) 1k and (b) 4k tuples.

the number of DRAM lines read upon aggregation. The graphs in Figures 5.15a, 5.15b,
5.16a and 5.16b show the processing throughput in million tuples per second and
latency in microseconds for WS ranging from 64 to 4k tuples for the various designs.

The latency follows an opposite trend as, larger the WS and smaller the WA, the
tuples will have to suffer longer queuing latency in the Data Collection Controller
waiting for the outstanding aggregations to be completed before it can be processed.
Compression helps to reduce the number of DRAM lines to be read for aggregation and
this helps to reduce the DRAM read traffic and hence the queuing latency suffered by
the tuples in the pipeline. The achieved reduction is proportional to the CR especially
for queries with frequent aggregations (WA<16).

The DRAM-only design, DFE-Base, which follows the design principles of [9,26],
achieves the lowest throughput out of the three designs, supporting up to 15% of the
line rate. This is primarily because it handles the window update accesses inefficiently.
More precisely, it requires slow and bandwidth wasteful DRAM read-modify-writes,
since an incoming tuple’s value (8B) is smaller than the DRAM line (64B).

MLQ mitigates the above window-update problem by utilizing the multi-level
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queues that span across three memory levels in the platform to completely eliminate
the wasteful read-modify-writes. Then, window-update writes of an incoming tuple
happen always directly to the on-chip BRAM which is configured to store one value
per key and is flushed to the off-chip SRAM once every two tuples. As off-chip SRAM
offers direct writes and the capacity required for storing an entire DRAM line of key-
values before flushing to DRAM, MLQ completely eliminates the read-modify-writes.
This allows to achieve up to 90% of the theoretical line-rate, which in practice matches
the actual maximum rate of incoming tuples on the board. However, for small WA,
it suffers a similar throughput reduction as DFE-Base. This is due to the following
reasons. First, in these cases, despite MLQ’s efficiency in handling window updates,
the aggregation traffic is the bottleneck. Second, MLQ cannot take advantage of the
aggregated bandwidth offered by BRAM and off-chip SRAM because, even for small
WS, e.g., 64, the dominant portion of the window is stored in DRAM which becomes
the bottleneck.

StreamZip mitigates the above two problems to a large extent as the tuple’s values
are compressed on the fly during window-updates and this helps to improve the
processing throughput and latency for smaller WA proportional to the compression
ratio offered by the compression scheme. For instance, without compression, upon
aggregation of a window of size 256, data of up to 32 DRAM lines need to be read
and streamed to the compute kernel. With StreamZip-Lossless-Fixed (BD encoding),
compressing the values to 1 byte ∆s, the DRAM read traffic due to aggregation
reduces by a factor of up to 5.7×, leading to proportional improvement in processing
throughput as shown in Figures 5.15b. StreamZip-Lossless-Float (XOR compression)
achieves a compression ratio of 6× for this design point.

In addition, StreamZip-Lossless-Float design mitigates the performance bottle-
neck due to the sequential dependency between the compressed blocks (CBs) using
independent CBs as discussed in Section 5.2.3.1. However, the trade-off here is the
reduction in compression ratio as a result of adding the extra starting seeds to the
beginning of each CB versus the benefit of processing up to CB every FPGA cycle. In
our experiments, we see that this benefit outweighs the reduction in compression ratio
enabling to achieve better processing throughput, especially for larger compressed
windows with mutliple CBs. As a consequence, StreamZip-Lossless-Float has the
independent CB feature enabled by default and the numbers reported are for this
design. Without using independent CBs, StreamZip-Lossless-Float is able to achieve
on average a compression ratio of 6.5× which gets reduced to 5.6× with the extra
starting seeds per CB for mitigating the sequential dependency.

This is even further improved by utilizing lossless compression (SZ) which at
best compresses a value to just two bits, offering better compressibility and hence
higher throughput. Another interesting design point is WS=64, where StreamZip
takes advantage of the aggregated bandwidth offered by BRAM and off-chip SRAM,
because employing compression enables a large fraction of the window to remain in
the first two memory levels, which in turn increases processing throughput up to line-
rate. In our implementation, the output error for lossless compression is configurable
and set to 1%. The effective capacity gain is proportional to the compression ratio and
StreamZip-lossless and StreamZip-lossy increase it by 5× and 23×, respectively.
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5.3.3.1 Overall throughput gains

Adding compression to the MLQ design improves the performance of extremely
frequent aggregations with small WA by reduction of data volume being read upon
aggregation. Figure 5.17 shows the overall throughput gains achieved by the various
compression schemes for extremely frequent aggregations with WA=1. The gains are
normalized to the throughput achieved by the DFE-Base baseline design. Compared
to DFE-Base and MLQ system, StreamZip-Lossless-Fixed, StreamZip-Lossless-Float,
and StreamZip-Lossy-Float achieves processing throughput gains of up to 5.7×, 6×,
and 23×, respectively.

5.3.3.2 Caching results for skewed key distribution

Figure 5.18 shows the effect of adding the stream cache to buffer the decompressed
values of the most recently seen keys for varying WS. In order to stress the system, the
experiment uses a synthetic data set with a single key triggering extremely frequent
aggregations with WA=1. This causes each tuple entering StreamZip to trigger ag-
gregation. Compared to StreamZip-Lossless-Float, StreamZip-Lossless-Float+Cache
achieves up to 3× better processing throughput. In this implementation, the cache
output interface width is up to a window size of 128, meaning, the compute kernel is
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fed with a window of 128 values every cycle. So, for window sizes greater than 128,
we see a drop in line-rate processing throughput. Should the cache interface be bigger,
the DFE would be able to achieve higher processing rates.

5.3.3.3 Comparison with related work

Overall, StreamZip offers higher performance by alleviating the memory bandwidth
bottleneck of window aggregations using compression, especially for smaller WA.
In addition, there is a reduction on the memory footprint, offering higher effective
memory capacity available for solving larger stream aggregation problems. Com-
pared to the best performing previous work, MLQ [15], StreamZip-Lossless-Fixed,
StreamZip-Lossless-Float, and StreamZip-Lossy offer up to 7×, 7.5×, and 22× better
processing throughput, respectively. In terms of latency, for larger WS and smaller WA
(<4), StreamZip-Lossless-Fixed, StreamZip-Lossless-Fixed, and StreamZip-Lossy-
Float offers up to 6×, 4×, and 3× lower latency than MLQ. However, for larger
WS, StreamZip-Lossy-Float has up to 12× higher latency. This is due to the the
deep pipeline required during aggregation for decompressing a large number of val-
ues packed per read DRAM line. Should more resources be allocated to implement
multiple parallel decompressors, the latency cost of StreamZip-Lossy-Float would
be reduced. Nevertheless, it is still orders of magnitude better than CPU and GPU
systems. We also tested with uniformly random values (zero compressibility) and the
processing throughput of Streamzip for this worst case is similar to the MLQ system
with a slight overhead of up to 5% on average. This overhead is mainly attributed to
the increase in data footprint due to the extra bits required for compression-packing.

It is worth noting that, similar to MLQ, StreamZip matches GPU processing
throughput and offers substantially better latency. Gasser is the fastest GPU system
in literature that supports non-associative functions and therefore follows a non-
incremental aggregation approach [4]. However, it supports queries with only a single
key, as opposed to 16K keys supported by our StreamZip implementation. As a
consequence Gasser, handles only small problem sizes and also does not capture tuples
from the network. We experimented with a single key query and StreamZip was able to
achieve similar throughput (up to line-rate) comparable to Gasser for varying WS/WA.
However, StreamZip achieves this at a much lower latency, which is 3-4 orders of
magnitude lower than Gasser.

5.4 Conclusion
This chapter introduced StreamZip, a dataflow stream aggregation engine that is
able to compress the sliding windows, alleviates the memory pressure posed by
window aggregation traffic, and improves performance as well as effective memory
capacity. StreamZip addresses a number of concurrency control challenges to integrate
a compressor in the stream aggregation pipeline. StreamZip supports both lossy and
lossless compression algorithms with diverse characteristics, applied to both fixed and
floating point numbers. Compared to designs without compression, StreamZip lossless
and lossy designs achieve up to 7.5× and 22× higher throughput, respectively, while
reducing effective memory capacity by up to 5× and 23×, respectively.
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Chapter 6

Conclusions

This thesis considered the design of FPGA-based accelerators for Single Sliding-
Window Aggregation (Single-SWAG) supporting holistic aggregation functions. Multi-
core CPU and GPU based stream processing systems, although able to sustain high
processing throughput have wasteful memory management. They require redundant
memory accesses to store incoming tuples from the network to DRAM even before pro-
cessing starts. This, besides the latency overhead, wastes valuable memory bandwidth
and hence limits performance. On the contrary, FPGAs use their memory resources
more efficiently. They can offer a direct network connection to receive incoming
tuples and support dataflow processing, delivering both high processing throughput
and low latency. However, existing FPGA-based solutions offer only incremental
stream aggregations, which is not applicable for queries with holistic aggregation
functions which require keeping explicitly all incoming values in a single window
before computing an aggregation function. Moreover, existing FPGA solutions only
relied on on-ship memories and so could support only smaller problem sizes, i.e.,
Window-Size × Number of Keys. This thesis bridges this gap in existing literature by
proposing Single-SWAG using FPGAs for supporting holistic aggregation functions
and achieving high processing throughput and low latency. This thesis deals with the
tremendous memory pressure in the Single-SWAG approach, and proposes efficient
memory management techniques to alleviate this bottleneck.

6.1 Summary
Chapter 2 describes the first tuple-based Single-SWAG engine using FPGA [9].
Tuple-based windows always contain (and are slid by) a fixed number of tuples. They
are suitable for applications with fixed data rates and have a fixed memory footprint.
Our approach is implemented in a Maxeler N-series Dataflow Engine (DFE) and uses
deep pipelining to provide high processing throughput. The DFE has a direct network
connection to feed incoming tuples as well as direct access to DRAM offering ultra
low end-to-end latency and large problem sizes. It is able to implement challenging
realistic queries of any holistic, distributive or algebraic function and support large
window sizes and number of keys.

Chapter 3 describes Time-SWAD, the first FPGA-based time-based Single-SWAG
engine [26]. Time-based SWAG allows for varying data-arrival rates which naturally
fits the time-series data produced by most Internet-of-Things (IoT) devices. Never-
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theless, the number of tuples contained in a time-based window can vary, making
the memory and compute resources needed to produce the aggregation result un-
predictable. This unbounded number of tuples in a time-based sliding window is
facilitated by a flexible circular buffer that stores the window values. In addition,
this buffer can be expanded dynamically with one or more unused identical buffers
originally meant for other keys. Thereby, time-based windows of varying size can be
stored. Second, the memory pressure of single windows for skewed-key distributions,
caused by their need to store all incoming data, is alleviated with a caching scheme.
Similar to the tuple-based Single-SWAG DFE in Chapter 2, Time-SWAD design is
dataflow, matching well the stream processing characteristics, and is implemented in
a Maxeler N-series FPGA card. The DFE has direct network and DRAM interfaces
supporting holistic functions, large number of keys and sufficient volumes of stored
values. However, DRAM bandwidth is limited and the caching mechanism enables
to merge multiple requests to the same DRAM location, especially for skewed-key
distributions, enabling high throughput.

Chapter 4 describes Multi-level Queues (MLQs), a specialized memory hierarchy
for stream aggregation [15]. Instead of using only DRAM as in the previous chapters
to accommodate the single window per key, MLQs employ multiple memory levels
available in the FPGA platform to form logical queues that offer on-chip SRAM
(BRAM) bandwidth for window updates and DRAM capacity. This ensures that the
window is always updated at the highest speed and mitigates the need for expensive
read-modify-write operations as in DRAM-only designs. Then, when the window
advances, the contents of the entire window are read utilizing the aggregate bandwidth
of all memory levels. This chapter describes an analytical model of MLQ and a method
to automatically generate its configuration for a problem at hand. A 3-level MLQ
design is implemented in a Maxeler DFE to support Single-SWAG and is evaluated
and compared with related work.

Chapter 5 describes Streamzip, a dataflow stream aggregation engine that is able
to compress the sliding windows [32]. The MLQ system in Chapter 4 mainly mitigates
the memory pressure due to the window-update step in Single-SWAG. StreamZip, built
on top of MLQs, improves the processing throughput of Single-SWAG by mitigating
the memory bandwidth bottleneck posed by the large volume of window-aggregation
traffic using compression. Streamzip addresses a number of concurrency control
challenges to integrate a compressor in the stream aggregation pipeline and supports
both lossy and lossless compression algorithms with diverse characteristics, and is
applied to both fixed- and floating- point numbers.

6.2 Contributions

This thesis proposes Single Sliding-Window Stream Aggregation (Single-SWAG) at
up to line-rate throughput and low latency supporting any arbitrary functions and large
problem sizes. This is achieved using dataflow processing in reconfigurable hardware
with smart window management for both tuple- and time- based windowing policies
and by mitigating the memory pressure of the data-intensive Single-SWAG using
multi-level queues and compressed sliding-windows. To this end, this thesis describes
the first FPGA-based Single-SWAG Dataflow Engine (DFE), which:

• Supports both windowing policies, namely, tuple-based and time-based;
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• Supports multiple challenging realistic streaming queries with holistic and
arbitrary user-defined aggregation functions, as well as distributive and algebraic
ones;

• Supports large number of concurrently active keys and large window sizes;

• Utilizes deep pipelining to achieve 1-2 orders of magnitude higher processing
throughput than a state-of-the-art stream processing software system at up to
2× lower power cost; and

• Utilizes direct network connection to feed incoming tuples as well as direct ac-
cess to DRAM offering ultra low latency, which is at least 4 orders of magnitude
lower than CPU and GPU solutions.

For improving the performance of the window-update step in Single-SWAG DFE,
the thesis proposes Multi-level Queues (MLQs), a specialized memory hierarchy for
stream aggregation, which:

• Utilize multiple memory levels to form logical queues that offer on-chip SRAM
(BRAM) bandwidth for window updates and DRAM capacity;

• Compared to BRAM-only stream aggregation designs, MLQ supports 4 orders
of magnitude larger problems;

• Compared to DRAM-only DFE designs, it achieves up to 8× higher throughput;
and

• Offers 4 orders of magnitude lower aggregation latency, compared to competing
GPU stream processing systems.

Finally, the overall performance of the Single-SWAG DFE is improved by reducing
the volume of window-aggregation traffic using compression. To this end, this thesis
proposes, Streamzip, a dataflow stream aggregation engine built on top of the MLQ
design, which:

• Alleviates the memory pressure posed by window aggregation traffic, and
improves performance as well as effective memory capacity by compressing
sliding-windows;

• Supports both lossy and lossless compression algorithms with diverse character-
istics, applied to both fixed- and floating- point numbers;

• Compared to designs without compression, achieves up to 7.5× higher through-
put while reducing effective memory capacity by up to 5× for the Lossless
deisgn; and

• Achieves up to 22× higher throughput while reducing effective memory capacity
by up to 23× for the Lossy design.

6.3 Future Work
There are several directions for future research which can improve and complement
the work presented here. In the following, we identify and list some of them:
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Building Stream Processing Data Management System using FPGA-based Dataflow
Engine: It would be interesting to build generic stream processing data management
system with support for other stateless and stateful operators using FPGA-based
Dataflow Engines. Examples of stateless operators include Map (the data streaming
counterpart of the relational projection function), Filter (the data streaming counterpart
of the relational select function) and Union operators. Examples of other stateful
operators include the Join operator [16, 18, 33]. It would be interesting to evaluate
the impact of the designs and ideas proposed for stream aggregation in this thesis on
other resource intensive stateful operators like stream-joins [22, 63–67]. To this end,
modular libraries for various stream processing operators can be implemented using
similar dataflow-based FPGA designs. The exposed interfaces of the accelerator li-
braries would be used to combine and build stream processing pipelines and accelerate
deployments in production.

Utilizing High Bandwidth Memory Subsystem: Another possible research direction
is to evaluate the impact of the designs and ideas proposed in this thesis using other
memory technologies like High Bandwidth Memories (HBM) [68, 69]. In contrast
to traditional DRAM, 3D die-stacking in form of HBM compensates its lower clock
frequency with wide busses and a high number of separate channels. However, this
also requires data to be spread out over all channels to reach the full throughput [68].
As HBMs are becoming mainstream and less expensive, they can be part of the
proposed MLQ hierarchy. It will be interesting to show the tradeoffs arising from HBM
integration related to data movement and partitioning across the memory hierarchy and
it’s impact on processing throughput and latency of the stream processing pipeline.

Hardware-Software Co-design: All the designs proposed in this thesis have the
FPGA working mostly in standalone mode with direct network and memory interfaces.
However, for corner cases like hash table collisions and congestion management, it
would be interesting to explore the impact of involving the software on the host side
to provide dynamic bookkeeping capabilities and to work in tandem with the FPGA.
This can also open up the possibility of the CPU taking the unconventional role of
a specialized accelerator and the FPGA as the general purpose engine which can be
especially useful for stream processing engines [70].
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