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Abstract
Context: Software systems often need to exist in many variants in order to
satisfy varying customer requirements and operate under varying software
and hardware environments. These variant-rich systems are most commonly
realized using cloning, a convenient approach to create new variants by reusing
existing ones. Cloning is readily available, however, the non-systematic reuse
leads to difficult maintenance. An alternative strategy is adopting platform-
oriented development approaches, such as Software Product-Line Engineering
(SPLE). SPLE offers systematic reuse, and provides centralized control, and
thus, easier maintenance. However, adopting SPLE is a risky and expensive
endeavor, often relying on significant developer intervention. Researchers have
attempted to devise strategies to synchronize variants (change propagation)
and migrate from clone&own to an SPL, however, they are limited in accuracy
and applicability. Additionally, the process models for SPLE in literature, as we
will discuss, are obsolete, and only partially reflect how adoption is approached
in industry. Despite many agile practices prescribing feature-oriented software
development, features are still rarely documented and incorporated during
actual development, making SPL-migration risky and error-prone.
Objective: The overarching goal of this PhD is to bridge the gap between
clone&own and software product-line engineering in a risk-free, smooth, and
accurate manner. Consequently, in the first part of the PhD, we focus on
the conceptualization, formalization, and implementation of a framework for
migrating from a lean architecture to a platform-based one.
Method: Our objectives are met by means of (i) understanding the literature
relevant to variant-management and product-line migration and determining
the research gaps (ii) surveying the dominant process models for SPLE and
comparing them against the contemporary industrial practices, (iii) devising a
framework for incremental SPL adoption, and (iv) investigating the benefit of
using features beyond PL migration; facilitating model comprehension.
Results: Four main results emerge from this thesis. First, we present a quali-
tative analysis of the state-of-the-art frameworks for change propagation and
product-line migration. Second, we compare the contemporary industrial prac-
tices with the ones prescribed in the process models for SPL adoption, and
provide an updated process model that unifies the two to accurately reflect the
real practices and guide future practitioners. Third, we devise a framework for
incremental migration of variants into a fully integrated platform by exploiting
explicitly recorded metadata pertaining to clone and feature-to-asset traceabil-
ity. Last, we investigate the impact of using different variability mechanisms
on the comprehensibility of various model-related tasks.
Future work: As ongoing and future work, we aim to integrate our framework
with existing IDEs and conduct a developer study to determine the efficiency
and effectiveness of using our framework. We also aim to incorporate safe-
evolution in our operators.

Keywords

Variant-rich Systems, Software Product-Line Engineering, Variability Mecha-
nisms Process Models, Model Comprehension
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Chapter 1

Introduction

With the advent in digitization, software systems prevail in virtually all do-
mains and disciplines. Customers of software systems have varying needs and
expectations, and as a result, software systems need to exist in many variants.
These variants tend to a variety of expectations regarding quality, functionality,
performance, and usability etc. Additionally, they address a diverse set of
market segments and need to function on different run-time environments and
hardware systems. Companies cater to these varying expectations by creating
a portfolio of systems which share considerable functionality with each other.
These variant-rich systems differ in terms of the distinguishing features they
implement.

Developers mainly realize variant-rich systems using two contrasting ap-
proaches. One approach is clone&own, in which developers create a variant
and then later clone it and adapt it to create another variant. Developers adapt
variants in response to various stimuli, such as new customer requirements, inno-
vative feature introduction, and variant tuning for different hardware platforms
etc. This strategy is strongly favored by developers due to its inexpensiveness,
agility, and ease of adoption. It also offers independence to developers and does
not impose any additional training efforts. Additionally, clone&own can be
conveniently deployed at any granularity level, e.g., cloning an entire project vs.
cloning a block of code. Similarly, cloning can be performed at any stage; re-
quirements, design, implementation and testing. Clone&own is well-supported
by popular version control systems such as GIT∗ and Mercurial† owing to their
forking, branching, merging, and pull request facilities.

Despite its many benefits, clone&own does not scale well when the number
of variants increases. Clones of source (or cloned) variants lose their link
with the source variant as soon as they are cloned. Subsequently, the variant
and its clones evolve independently. However, some changes, such as bug-fix
propagation, feature introduction and feature enhancement etc. often need to
be applied across variants. To replicate the changes across variants, developers
manually traverse the code-base of the variants to find the clones (a.k.a clone
detection) of the changed artifacts (henceforth referred to as assets) and apply
the changes. Consider the example of a mobile phone company which uses

∗https://github.com/
†https://www.mercurial-scm.org/

1

https://github.com/
https://www.mercurial-scm.org/


2 CHAPTER 1. INTRODUCTION

calling
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Feature configurations
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Figure 1.1: Two contrasting approaches for realizing variant-rich systems:
clone&own (left) and software product-line engineering (right)

clone&own to create mobile phone variants (Figure 1.1, left side). In project
1, developers decide to update the “calling” functionality to also support
video calling. During the testing of the feature with the end users, developers
realize that the feature is well-received, and that it adds value to the system.
Developers now wish to reflect the same update in other projects (change
propagation). To achieve this, they have to traverse the code base of project 2
and project 3, and find clones of assets which implement “calling”. Moreover,
if the updated feature is scattered across multiple software assets, developers
have to manually find the different locations in project 2 and project 3 where
the feature was implemented (a.k.a feature location). Even determining the
right source variant for cloning, or determining the target variant for change
propagation, is challenging, since it is often far from obvious what features
are realized in a variant. Both clone detection and feature location are typical
and frequent developer tasks which can be performed either manually or using
third-party tools. Manual clone detection and feature location is laborious
and time-consuming, and can affect developer productivity. Developers can
also use third-party tools, however, such tools mainly rely on heuristics for
detecting clones and locating features, and are therefore inaccurate at best.
Moreover, using these tools requires extra setup effort as well as fulfilling the
assumptions and preconditions of the tool (e.g., compliance to specific input
formats or providing a seed value).

An alternative approach for realizing variant-rich systems is creating a
configurable, fully integrated platform by deploying platform-oriented en-
gineering methods, such as software product-line engineering. An integrated
platform (henceforth referred to as a software product-line) is a holistic con-
tainment of all features implemented and tested only once (see integrated
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platform, Figure 1.1). Individual variants are derived from the platform by
providing valid feature configurations. This approach suits best to systems
with many variants, such as software product lines (e.g., automotive/avionics
control systems and robotics) and highly configurable systems (e.g., Linux
Kernel and Marlin 3D printer). In contrast to clone&own, this approach scales
well when the number of variants increases. A software product-line offers
centralized control; changes such as bug-fix and feature enhancement only
need to be implemented once in the platform. Changes are automatically
reflected in the subsequently configured variants. A software product-line offers
higher consistency in products, as they are derived from a unified platform.
Additionally, software assets in a product-line are planned for reuse, leading to
a higher focus on quality assurance of these shared and reusable assets.

Software product-line engineering offers better reuse and maintenance, how-
ever, adopting a product-line approach poses a few overheads. It can be
expensive and time-consuming, requiring extra steps such as domain anal-
ysis and scoping‡, variability analysis§, and core asset implementation and
testing. These additional steps lead to a delayed initial time-to-market. Start-
ing with a fully integrated platform from scratch also requires incorporating
variability-specific concepts, such as feature models, variability mechanisms,
and configurator tools to make assets reusable and configurable. Research
shows that while product-line adoption can be expensive, the high upfront
investments soon pay off. In fact, companies reach a break-even point with as
few as three variants (Figure 1.2), with dramatic cost reductions per variant in
comparison to single-system development [2].

Figure 1.2: Economics of software product-line adoption from [2]

In practice, organizations rarely build a fully integrated platform from
scratch, but rather start with clone&own, owing to its ease of adoption. Another
reason for inclining towards clone&own is that organizations typically do not
have specialized personnel for planning reuse [3], leading them to incline towards
the readily available solution; cloning. However, with clone&own, they face
inevitable maintenance overheads in the long run. With an ever-increasing
number of variants, developers lose overview over the products. Soon, simple

‡Involves studying the domain to determine the intended specifications and scope of the
project

§Analyzing the alternate implementations of various features, e.g., operating system of a
mobile phone (iOS Vs. Android Vs. Windows)
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changes such as feature updates and bug fixes become very difficult to propagate.
Consequently, a migration from a lean architecture to a software product-line
one is executed, which in itself is challenging. An architecture migration involves
major code refactoring, making it risky and effort-intensive. In addition, it
poses cost overheads, and relies on recovering important metadata that was
never recorded during development, such as the location of features in assets
(feature location), and traceability between clones (clone detection). A classic
example of architecture migration to a product-line one is the case of Danfoss [4],
an electronics manufacturing company, where migration took four years, and
required experts both from inside and outside the organization, in addition to
many organizational changes.

To overcome the aforementioned challenges, researchers have contributed a
few frameworks for product-line migration and variant synchronization (change
propagation). These frameworks follow an extractive strategy to recover meta-
data from a set of given variants. The migration frameworks, as we will
show (in RQ1), are either too abstract, or predominantly rely on heuristics
techniques for feature identification, feature location, clone detection, and
variability mining. Unfortunately, the heuristic techniques are usually not
accurate enough to be applicable in practice, and require substantial effort
to set them up and provide with manual input (e.g., specific program entry
points for feature location techniques). Furthermore, the migration frameworks
prescribe a non-iterative, “single-hit” strategy, which is risky and expensive.
The variant synchronization frameworks partially solve the change propagation
problem. However, the frameworks either do not have the notion of features
altogether, still requiring developers to perform feature location frequently, or
only support change propagation in code-level assets.

The overarching goal of this PhD is to bridge the gap between clone&own and
a fully integrated platform in an accurate, risk-free manner. We aim to provide
a non-restrictive method of working, in which developers conveniently switch
between the two extremes and reap the benefits of both. To work towards this
goal, we begin by understanding the relevant literature to survey the capabilities
and shortcomings of the existing frameworks. We qualitatively evaluate various
frameworks supporting either variant synchronization or architecture migration
to a software product-line. Specifically, we study five state-of-the-art frameworks
and compare them against our framework (presented in RQ3). To this end,
we investigate the following research question:
RQ1: What are the state of the art frameworks for software product-line
migration and variant synchronization?
To answer this research question, we iterate through the literature to gather
relevant frameworks. We identify five related frameworks, three of which focus
on product-line migration [5–7] and two on variant synchronization [8, 9]. We
report our findings from RQ1 in Paper A.

Our findings suggest that although many researchers have attempted to
address the issues prevalent in software product-line migration and variant
synchronization, a number of factors hinder the applicability of their contri-
butions in practice. The frameworks for product-line migration all prescribe
an extractive strategy; recovering metadata pertaining to clones and features
heuristically. The framework by Rubin et al. [5,10] comprises a rather abstract
set of operators which rely on heuristics (e.g., for feature identification and
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feature location) and third-party tools (textual diff tools for clone detection).
The framework by Fisher et al. [6] is concrete and operational, but yet again,
relies on heuristics for feature identification and location, and clone detection.
Martinez et al. [7] also propose a framework for variant integration, which
although usable, heavily relies on the involvement of product-line adopters and
domain experts, rendering it laborious and error-prone.

The frameworks for variant synchronization are also limited in their capabil-
ities. VariantSync, a plugin developed by Pfofe et al. [8] supports automated
variant synchronization of related variants. VariantSync significantly reduces
inaccuracies posed by manual or tool-assisted clone detection and feature
location, however, it is only applicable at the lowest level: actual code. In
reality, assets of different types, including repositories, directories, files, and
classes can require synchronization. Montalvillo and Díaz [9] define branching
models to support change propagation between core assets (assets belonging
to all variants) and variant-specific assets (assets belonging to some variants).
The framework is effective, however, it is limited because of frequent merge
conflicts. Additionally, without the notion of features, when the number of
variants increases, it becomes difficult to establish source and target variants for
variant synchronization. We summarize the discussed frameworks and provide
a qualitative comparison against our framework in Section 1.4.

After establishing an overview of the relevant literature, we proceed to
explore the dominant practices adopted by software product-line engineering
practitioners in industry. Our goal is to understand the state-of-the-art, and
determine if the practices actually reflect the process models for product-line
adoption prescribed in literature. Following, we briefly look into the prevalent
industrial practices regarding software product-line adoption and evolution.
Accordingly, we investigate the following research question:

RQ2: What are the contemporary product-line engineering processes employed
in practice? Do they accurately depict the process models for product-line
adoption presented in literature?

To investigate this research question, we begin by surveying the most
prominent process models for product-line adoption. These process models
[11–15] steer the adoption and evolution of product-line engineering in industry
and as such, are considered the de-facto standard for incorporating platform-
oriented approaches in any organization. Next, we survey the contemporary
practices employed in industry by analyzing the experience reports reporting
product-line adoption and evolution in industry. To this end, we gather
publications reporting experiences with product-line adoption published in the
past five years. The aim is to determine if there are discrepancies between the
process models from literature, and the practices adopted in industry.

Notably, most process models mainly focus on the scenario of proactive
adoption; implementing a product-line architecture from scratch. Proactive
adoption however, as explained above, relies on conducting intensive domain
analysis and scoping before the realization of a centralized platform, delaying
the initial time to market. In reality, developers prefer to capitalize on their
existing variants to create new ones. Secondly, the process models prescribe a
clear distinction between the two phases of software product-line engineering:



6 CHAPTER 1. INTRODUCTION

domain engineering (DE)¶ and application engineering (AE)‖. In reality, the
distinction is not very strict. Organizations can extract a platform from their
existing variants. Moreover, developers can still implement changes in the
platform (DE) even after some variants have been created (AE). So, while most
process models assume a sequence between domain engineering and application
engineering, these phases go hand in hand in reality. Lastly, most process models
assume that product lines only evolve through their platforms; variability is
known and realized at the time of platform construction. In practice however,
while some variability is known prior to platform construction, it is common
for platforms to evolve via variants as a result of new customer requirements
and hardware adaptations etc.

We gained a number of insights from our analysis of RQ1 and RQ2. First,
industrial cases of software product-line adoption and evolution do not mirror
process models prescribed in literature. Most assumptions in process models
are vague and obsolete, and consequently, need to be updated to reflect actual
scenarios and challenges developers face when undertaking Software Product-
Line Engineering (SPLE). We present an updated process model, promote-pl,
which we synthesize from industrial reports of product-line adoption in literature.
Secondly, while existing frameworks and process models have attempted to
steer product-line adoption, adopting SPLE remains a demanding and risky
endeavor. Most approaches require halting the development to proactively,
reactively∗∗ or extractively†† create an integrated platform, requiring developers
to perform tasks they are not familiar with: scoping, variability mechanism
incorporation, feature modeling, and configuration etc. Thirdly, when creating
variant-rich systems, organizations choose either clone&own or software product-
line engineering and adhere to it. A switch is only executed if the organization
is struggling with reuse or maintenance. The switch is mostly “single-step”,
involving code refactoring, developer intervention, and third-party tools. The
adoption approaches discussed above assume that once a platform is in place,
organizations will proceed with the platform, and cease using clone&own. In
practice, developers still continue to use clone&own to their convenience even
after adopting a product-line architecture.

We take a different route than the existing frameworks and process models,
and provide a non-restrictive, non-binary mode of working. We conceive an
approach which exploits the spectrum between clone&own and software product-
line, offering both variant management and product-line migration. To this
end, we prescribe truly incremental migration; starting from cloned variants,
and building incrementally towards a fully integrated software product-line.
Following, we investigate how to formalize truly incremental migration.
RQ3: How to design an appropriate framework to realize the truly incremental
migration. Specifically, what operators and conceptual structures need to be
defined, and how?

As mentioned above, our framework supports truly incremental migration.
Specifically, we take-over the 6 governance levels proposed by Antkiewicz et

¶Involves scoping the product-line and building the core-assets
‖Involves implementing variant-specific functionality

∗∗Reactive adoption starts with one variant, which becomes the platform. All subsequent
variants are merged into the platform one by one.

††Extractive adoption starts with n variants, which are migrated to a platform in a
single-step after extensive commonality and variability analysis.
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al. [1]—each level representing the system at an increased stage of maturity.
Instead of recovering metada about clones and features, we proactively store
metadata incrementally using simplistic data structures. Each governance level
adds further detail to the system and in return, offers incremental benefits.
Our framework is multi-step and minimally invasive, rendering it less prone to
risks. Additionally, by proactively storing metadata, we eliminate inaccuracies
resulting from reliance on developers and third-party tools. The stored metadata
can be conveniently used for change propagation. Additionally, the metadata
enables feature cloning, a novel use-case that supports cloning entire features
across variants. In addition, it can be exploited to integrate variants, and even
migrate variants to a product-line, if needed. In the event that an organization
does not desire to adopt a product-line architecture immediately, the metadata
can still be maintained as a “safety net” to facilitate any planned or needed
architecture migration to a product-line one in the future.

We devise a framework called “virtual platform” for incremental migration,
which generalizes various variant management and product-line migration
frameworks. Akin to the framework by Rubin et al [5,10], our framework is also
operator-based; offering operators that bridge the gap between clone&own and
software product-line architecture. While their framework comprises abstract
operators, our operators are concretely implemented and tested. Moreover, in
contrast to the frameworks by Fischer et al. [6] and Martinez et al. [7], our
operators do not rely on being invoked in a specific order.

The foundation of our framework lies in a set of conceptual structures,
which are semi-structured representations of code in memory. The concep-
tual structures capture the semantics of the code, but are orthogonal to the
code syntax, making our framework language-independent. The sanity of
our conceptual structures is governed by a set of well-formedness constraints,
which are predefined rules that look over the operations over the structures.
These conceptual structures are used for two main purposes. First, they are
used to maintain an in-sync copy of the variants and the various assets they
comprise (directories, files, classes etc.), and as such, form a foundation for
invoking our operators responsible for variant management and product-line
migration. Second, they are used to store two important kinds of metadata:
clone traceability and feature-to-asset traceability (referred to as feature map-
pings). After establishing a high-level overview of the entities our framework
will comprise, we capture the relevant details for all conceptual structures, and
develop a conceptual model. To this end, we iteratively discuss the entities
and the relationships among them, and the attributes of each entity that are
relevant to our framework. We aim for a good balance between usefulness and
required memory space. Our conceptual model comprises of assets and features,
among other entities.

On top of the conceptual structures, we devise operators that manage and
manipulate these conceptual structures. Virtual platform offers a multitude of
operators for managing and exploiting the conceptual structures. The operators
which manage the conceptual structures are responsible for synchronizing these
structures with the working copy of the variant, and for augmenting the
conceptual structures with metadata. As explained above, we store two kinds
of metadata: clone traceability and feature-to-asset traceability. We store clone
traceability silently; without requiring explicit invocation by the developer.
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In contrast, feature traceability is stored proactively by the developers. We
also provide operators for exploiting the stored metadata. Specifically, we offer
support for querying the conceptual structures to retrieve information such as
assets containing the implementation of a feature (feature location), and all
clones of a particular asset (clone detection) etc. This information becomes
relevant in other super-tasks, which have their own dedicated operators, such
as change propagation from original assets to their clones and vice versa. When
designing operators, we focus on inputs, tasks and required outcome of each. A
summary of our conceptual structures and operators is discussed in Section 1.4.
Next, we investigate the following research question:
RQ4: What is the effectiveness of the framework virtual platform? Specifically,
what are the costs and benefits?
We implement a prototype of our framework in Scala. Parallel to implementa-
tion, we test each operator using realistic scenarios inspired by literature and
experience. We evaluate our framework both qualitatively and quantitatively.
For the former, we conduct a comparative assessment of our framework against
the frameworks analyzed in RQ1. For the latter, we perform a cost and benefit
analysis of using virtual platform on a real-world open-source system having
four variants. Since our approach relies on explicitly recorded feature-related
metadata, we choose a case study with explicitly recorded features [16]; Clafer
WebTools‡‡. The variants are originally realized using clone&own, and after
forking, there is significant cloning in the variants throughout development. We
simulate the development of the variants by retrofitting our operators to the
operations performed in every commit, e.g., addition of a file or modification
of a method.

As primary validation, we verify that our operators suffice to cover each
evolution activity performed in the actual variants (e.g., addition of a file).
We observe that the virtual platform has a corresponding operator to each
evolution activity. Secondly, we compare two costs: the added cost and the
saved cost. Added cost is the additional workload on the developers to invoke
the operators. This mainly constitutes the operators for recording feature-
related metadata. Saved cost is the time taken for clone detection and feature
location that the developers are able to save. These costs are saved because the
explicitly recorded metadata eliminates the need to locate clones and features;
developers can query the virtual platform to retrieve this information. Based
on our analysis, developers reach a break-even point if they take 54 seconds to
record one feature. In practice, features exist in the developers’ subconscious
when they are developing those features, and as such, documenting them takes
significantly less than 54 seconds. We envision better accuracy when virtual
platform is used alongside development. A summary of our evaluation and
results is presented in Section 1.4.

We already established that explicitly recorded features can be exploited for
a variety of purposes including automated feature location and feature cloning.
Next, we investigate their potential beyond code-related tasks; we explore how
features can be used to improve model comprehension. To this end, we look
into the following research question:
RQ5: Can features be leveraged to facilitate model comprehension?

‡‡https://github.com/gsdlab

https://github.com/gsdlab
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Thus far, we explore how feature mappings can be exploited to facilitate code
reuse and maintenance. Researchers have also attempted to study the impact
of different variability mechanisms on the comprehensibility of code [17]. Code
comprehension is often a prerequisite to many tasks pertaining to software
evolution and maintenance. While code is mostly syntactic and technical,
features in code add a high-level perspective to the software and facilitate code
comprehension.

As organizations streamline their processes for developing variant-rich
systems, they realize that variability needs to be incorporated in all key devel-
opment artifacts, including models. As a result, researchers have invested their
efforts in developing variability mechanisms for models. Variability mechanisms
are available for both UML [18–20] and Domain-Specific Modeling Languages
(DSMLs) [19, 21, 22]. Models are often used to steer development, and offer an
abstract means of analyzing the system before it is implemented. They serve
many purposes including code generation [23] and automated verification [24].
While the impact of variability mechanisms on code comprehension has been
studied [17], so far, the impact of these mechanisms on model comprehensi-
bility is not empirically investigated. We investigate the impact of different
variability mechanisms on the comprehensibility of models. We conduct an
empirical study comparing the efficiency of using two popular variability mech-
anisms: annotative and compositional variability on the efficiency of routine
model comprehension tasks developers perform. Annotative variability involves
adding features inside models by annotating various model elements with
feature annotations. Compositional models comprise various model fragments,
each fragment representing the structure or behavior of the software for one
feature (or feature combination). The integrated model is a composition of
model fragments pertaining to the features implemented in the variant. In
our analysis, we consider three model types: class diagrams, state machine
diagrams, and activity diagrams.

We report our findings from a family of three experiments, each featuring
a different model type. For each experiment, we design tasks of three types:
understanding variants, comparing two variants, and comparing all variants.
As participants, we recruit 164 (BSc, MSc, PhD) students from various univer-
sities. Participants are required to perform tasks pertaining to the task types
mentioned above. We follow the Latin-squared design [25, 26], such that each
participant experiments with each variability mechanism and subject system
once. After the participants have interacted with each variability mechanism,
we ask them for their subjective assessments and preferences. We evaluate
the efficiency of the variability mechanisms using two metrics: correctness
and time taken to complete the tasks. Our findings indicate that in majority
of the cases, annotative mechanism leads to better performance in terms of
correctness and time taken. Additionally, annotative mechanism is favored over
the compositional one in majority of the task types and experiments owing
to its conciseness. Based on our analysis of the qualitative responses, we also
discover that the choice of the variability mechanism depends on a number of
factors including scalability, overview, flow, efficiency, and intuitiveness etc.
We present the details of our methodology in Section 1.2, and the results of
our analysis in Section 1.4.

This report is structured as follows: we present a background of relevant
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terminology and concepts in Section 1.1. We discuss the methodology we adopt
to answer each research question is Section 1.2. We summarize our publications
in Section 1.3. We answer our research questions in Section 1.4. We conclude
the contributions of our work and discuss our ongoing and future work in
Section 1.5. We append our publications as Chapter 2, Chapter 3, and Chapter
4.
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1.1 Background and Motivation
In this section, we define the terminology used in this report. We also elab-
orate on clone management, variant management and software product-line
migration in variant-rich systems. We explain the relevance of features in
model comprehension. Lastly, we discuss the governance levels presented by
Antkiewicz et al. [1], which drive the design of our framework.

1.1.1 Terminology
• Asset: Asset is any artifact belonging to a variant (explained shortly).

Assets can be classified into different kinds depending on their content:
requirement documents, models, code, and test cases etc. Assets can
also be of different types, depending on their level of granularity in the
project: repository, directory, file, class, method, and block (of code or
text). Code assets contain partial or complete implementation of features
(explained shortly) or feature combinations. In traditional clone&own,
assets of different types are cloned from one variant to another.

• Variant: A variant is a customized, stand-alone instance of the system,
either realized via clone&own, or derived from a centralized platform
(explained shortly). Variants comprise assets of different types, each
implementing one or more features. Variants can also comprise require-
ments and design documents, system analysis models, test cases, and
user interface screens etc. Variants correspond to feature selections, and
one variant differs from another based on the distinguishing features it
implements.

• Feature: Features are distinctive high-level abstractions of function-
ality relevant to one or more stakeholders. Features can be fine- or
coarse-grained, but they are generally more abstract and less technical
than the code itself. Features offer a non-technical perspective to the
functionality and facilitate communication between developers. Features
are derived from requirements, and may or may not be documented
explicitly. Research shows that explicitly documenting features leads to
better reuse and maintenance [16] and improves the accuracy of program
comprehension [17].

• Feature Model: Feature models are hierarchical, tree-like structures
composed of features. These models capture the relationships among
features. Additionally, they also capture dependencies and constraints
between different features in the same feature model. Feature models
allow decomposing functionality into small, meaningful units (features).
Once incorporated, they can be used to check validity of configurations
(explained shortly) when deriving variants.

• Variability: Variability is the ability of a platform to comprise alternate
implementations of the features it comprises. Variability allows variants
and assets to be customized, extended, and configured to fit certain
requirements.
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• Variability mechanism: Variability mechanisms are ways in which
variability can be incorporated in software assets. This mainly involves
mapping assets to the features they implement (e.g., #ifdefs in the Linux
kernel [27]). Once a variability mechanism is in place, the assets can be
made configurable, and developers can derive variants by providing valid
feature configurations (explained shortly).

• Configuration: Configuration is the process of composing a variant
given a feature selection. Feature selection is retrieved from customers,
and checked against the feature model for validity; a valid configuration
conforms to the relationships and the constraints among the features, and
holds the dependencies among various features. For valid configurations,
assets implementing the selected features are picked and added to a newly
created variant.

• Platform: A platform is a holistic containment of all features imple-
mented once. Variability is known and implemented in the platform
by allowing variable implementations of a feature to provide customiza-
tion. A platform offers centralized control, and offers better reuse and
maintenance. In addition, it allows configuration; using a configurator
tool, developers can derive variants corresponding to various customer
requirements.

1.1.2 Clone Management in Variant-rich Systems
As explained above, organizations often deploy clone&own as a reuse mechanism
to quickly create and deliver new variants to the market. While cloning is
a convenient and readily available solution, the reuse comes at the cost of
effort duplication in the long run. Due to lack of any centralized control,
developers soon lose overview over the variants. This impedes subsequent
reuse of the variants, as with the increasing number of variants, it becomes
increasingly difficult to establish which variant to clone to create a new one.
Maintenance of variants also becomes exceedingly difficult when the number of
variants grows. For routine changes such as bug-fixes and feature enhancements,
developers have to manually locate all places where the assets were cloned
to replicate those changes manually. Without an explicit clone management
framework [5–7,9] or tool [8, 28] in place, these tasks become daunting in the
long run, and hinder developer productivity. Even with the presence of a
framework or tool, developer involvement is inevitable; the frameworks and
tools require significant setup effort and training.

Virtual platform provides accurate and efficient clone management by
recording and exploiting two kinds of metadata explained above. With clone
traceability, the daunting and error-prone task of clone detection becomes
accurate and automated. To propagate changes, virtual platform can be
queried to get the clones of the changed asset, and automatically propagate
these changes to the clones. With feature mappings, establishing which variant
to clone (reuse) to create another one is easier, as features provide a higher
level of abstraction, and developers do not need to understand the code inside
the variants to find out which features they implement.
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1.1.3 Variant Management in Variant-rich Systems

In a fast and competitive market, the need to deliver to rapidly evolving
customer requirements intensifies. As a result, organizations deploy variant
management strategies to deliver customer-tailored solutions quickly to the
market. Variant management involves implementing processes and product
models to streamline the process of variant creation and deployment. Variant
management can be approached in a number of ways. The simplest strategy
is by adopting clone&own. Clone&own, as explained above, allows quickly
creating new variants in response to incoming customer requirements, and
introducing them to the market. With no means of governing the number of
variants, this customer-focused development strategy can in the worst scenario,
lead to one special solution per customer. This results in a range of maintenance
and reuse problems, as explained above.

Other strategies for variant management include independent component
teams [29], platform versions [30], and model-based variant management [31]
etc. Ideally, customized variants should be a composition of stable, stand-
alone components, which are modular solutions of (one or more) features the
variant implements. The components once standardized, offer a high degree
of flexibility. Software product-line engineering is a systematic approach for
variant management, which allows software systems to be decomposed into
features. The features are independently built in standalone components (a.k.a
modules), and tested individually and in combination with other features.
This approach heavily contrasts ad-hoc clone&own, which focuses on (non-
systematic) variant reuse instead of (systematic) feature reuse. Clone&own
allows convenient reuse but leads to difficult maintenance. SPLE lies on the
other extreme of the spectrum, where the initial development can be daunting
and labor-intensive, but the reuse and maintenance is relatively effortless.

However, as explained in Section 1, implementing SPLE is a demanding and
time-consuming endeavor. SPLE involves planning for reuse, which requires
specialized personnel including domain experts and third-party tool practi-
tioners (e.g., for incorporating variability). SPLE also requires developers to
perform tasks unfamiliar to them, such as using variability mechanisms and
making assets configurable. These factors significantly slow the variants’ initial
time to market, and pose the risk of falling behind in a competitive market.

Virtual platform offers a middle ground between ad-hoc clone&own and
SPLE by exploiting the spectrum between the two. Firstly, it allows developers
to incrementally transition from a set of variants realized via clone&own to a
fully integrated software product-line. By design, our framework is risk-free,
avoiding a single-step migration, and relying on accurate metadata. Recording
feature-to-asset mappings (e.g., using embedded annotations, Paper a [32])
enables configuring assets and facilitates incorporating an SPL architecture.
Secondly, our framework is not restrictive; allowing developers to still use
clone&own even after having a platform in place, and continuing to record
metadata for integrating the clones into the platform. In the event where an SPL
architecture is never realized, virtual platform still provides automated change
propagation and variant management by exploiting the metadata pertaining to
clones and features.
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1.1.4 Software Product-line Migration in Variant-rich Sys-
tems

Aiming for efficiency and agility, organizations typically start creating a port-
folio of variants by reusing their existing variants; using clone&own instead
of investing in a product-line architecture. As the portfolio grows in size,
developers run into a range of reuse and maintenance challenges (as explained
above). To overcome those challenges, organizations plan to invest in fully inte-
grated platforms. Having a platform allows developers to focus on developing
high-quality assets, which can then be configured to be included in different
variants. This “migration” to a product-line architecture can be approached in
different ways.

Reactive adoption allows developers to migrate to a platform incrementally:
one variant at a time. The first variant is the platform itself, and all next variants
are integrated sequentially into the platform as it grows. While reactive adoption
is a safe approach owing to its incremental nature, it is limited by accuracy.
Every time a variant is merged into the platform, the commonality (shared
functionality with other variants) and variability (distinguishing functionality of
the merged variant) need to be established. This involves developer intervention,
either manual or tool-assisted. Moreover, since the feature traceability was
never recorded, developers have to locate features inside assets, and record the
traceability. Once the features are known and automated, significant effort is
required to incorporate variability mechanisms and make assets configurable.
An example of reactive adoption is the ECCO framework [6]. Another approach
for migration is extractive adoption, which merges multiple variants at once into
a platform. Extractive adoption involves performing a commonality analysis
to identify clones of various assets, and performing feature identification and
location for all features implemented in different variants. Once the clone
traceability and feature-to-asset traceability are recovered, the variants are
integrated, and the assets are made configurable. This approach also heavily
relies on developers and third-party tools for clone detection and feature
location, and is prone to risks and inaccuracies. Additionally, the “single-step”
nature of extractive adoption can in worst case require organizations to halt
variant development, and focus solely on the architecture migration.

Virtual platform offers smooth, risk-free migration by allowing developers
to conveniently record metadata, and then relying on the metadata for accurate
clone detection and feature location. In this way, developers continue to perform
tasks they are accustomed to, while only recording information of the features
they implement. Clone traceability, as explained above, is recorded silently
in the background automatically. Moreover, the migration is incremental,
such that each level adds more metadata and provides incremental benefits.
Organizations can choose to implement only a subset (or all) of the governance
levels depending on their needs, and realize the benefits the levels provide.

1.1.5 Model Comprehension in Variant-rich Systems
Models are high-level abstractions of the software, and play a significant role
in development and testing of software systems. Models offer a simpler view of
the system, and allow analyzing the system before it is realized. In the context
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of variant-rich systems, the need for models intensifies, as such systems are
inherently complex and tend to a variety of customer requirements. To fully
explore the capabilities of models in various stages of the development life cycle,
it is important that they are understood well. Model comprehension is the task
of understanding models that represent the structure or behavior of the software
systems. Researchers have attempted to empirically investigate the impact of
using different types of models on the accuracy of model comprehension. The
model types include graphical and tabular models [33,34], UML models [35],
and textual languages [34].

With an increasing focus on reuse-oriented development processes, software
product-line engineering is gaining popularity in industry. As a result, vari-
ability mechanisms are devised to allow practitioners to incorporate variability
in code, and more recently, models. Variability mechanisms, as explained
above, are used to add feature traceability in software assets. Features are
non-technical abstractions over code, and often act as a perceivable mode of
communication between clients and developers. A study on the impact of
different variability mechanisms on code comprehensibility shows that feature
annotations have a positive impact on code comprehension [17]. Another em-
pirical study by Santos et al. [36] shows that there is no difference between the
correctness and response time of code comprehensibility using feature-oriented
programming (FOP) and conditional compilation (CC). So far, the impact of
using different variability mechanisms on the comprehensibility of models is not
systematically investigated. We conduct the first empirical study to investigate
the impact of using two pupular variability mechanisms: annotative variability
and compositional variability, on the efficiency of model comprehension.

We report our findings from a series of three experiments, each featuring a
different model type. We use different subject systems in each experiment to
aim for better generalizability. We detail the methodology of our experiments
in Section 1.2 and present our results in Section 1.4.

1.1.6 Governance Levels by Antkiewicz et al. [1]
Antkiewicz et al. [1] present six governance levels spanning from clone&own
to a fully integrated platform. The levels set out truly incremental migration;
transitioning from a lean, clone-based architecture to a reuse-oriented platform
based one in a progressive manner. Figure 1.3 represents the governance levels,
with the benefits of incremental migration on the left, and the drawbacks of
non-systematic reuse on the right. Next, we briefly discuss each governance
level, focusing on the problem it solves, the solution it provides, and the
metadata it saves (if any). It is important to note that the first level (L0) is
not fundamentally one of the governance levels defined by Antkiewicz et al. [1].
However, we still discuss L0 to build motivation for the subsequent levels.
Problem: Organizations need to quickly respond to varying customer require-
ments and deliver variants.
L0. Clone and own: They deploy clone&own, which is convenient and
readily available. Developers traverse through the existing variants to find a
suitable one to clone; the functionality of which is closest to the newly requested
variant.
Approach: Developers clone a variant, adapt it for new requirements, and
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L0: Clone and own

L1: Clone and own with provenance

L2: Clone and own with features

L3: Clone and own with configuration

L4: Clone and own with feature model

L5: Integrated platform with clone and own

L6: Fully integrated platform

• Efficient reuse
• Higher consistency
• Easier maintenance
• Centralized control
• Higher quality
• Automated change

propagation

• Effort duplication
• Lack of centralized control
• Manual clone detection
• Manual change propagation
• Manual feature location

Figure 1.3: Governance levels by Antkiewicz et al. [1]; L0-L6 represent the
system at increasing stages of maturity

deploy it to the customer.

Problem: With rapidly changing customer requirements, organizations con-
tinue creating new variants non-systematically. Consequentially, the number
of variants grows exponentially. To maintain the code, simple tasks such as
propagating a bug-fix, become increasingly difficult, mainly as the organization
lacks a way to govern where the clones of different variants are.
L1. Clone and own with provenance: Organizations resume cloning, but
also record metadata about clones to enable tracking clone traceability. The
benefits are mani-fold. The metadata can be used to synchronize variants
(change propagation) and improve consistency among variants. Additionally, it
can be used to integrate multiple variants into one if the organization aims to
transition to a product-line architecture.
Approach: Developers incorporate a way to store metadata about clone
traceability. This can be achieved in many ways, e.g., textual files and external
databases etc. On top of the metadata, developers provide ways to traverse
through the stored information and query the system (i.e., virtual platform) to
get information about clones.

Problem: Developers lose overview over variants. It gets increasingly difficult
to determine which features are implemented in a variant. Consequently, it
is laborious to determine which variant to clone when creating a new one, as
developers have to traverse the variants to find the features they implement.
Additionally, tasks such as enhancing the functionality of a feature, or cloning
a feature across variants become increasingly demanding.
L2. Clone and own with features: Developers add the information about
features the variants implement. Specifically, they record which assets imple-
ment a feature. This eliminates the effort needed for feature location, and
adds a non-technical overview over the variants. Additionally, having explicitly
recorded features enables feature-oriented reuse. Feature-oriented evolution also
becomes efficient, as the recorded feature-to-asset traceability makes finding
and modifying features convenient.
Approach: Developers record feature-to-asset mappings either internally or
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externally to the software assets. Since features already exist in the sub-
conscious of the developers, the only effort required is for materializing the
information in physical memory.

Problem: Despite explicitly recorded features, due to cloning, there still is
substantial redundancy in the variants.
L3. Clone and own with configuration: Developers make the assets
configurable; on top of the feature-to-asset mappings, developers incorporate
variability mechanisms, so that developers can enable or disable features and
control variation points.
Approach: Developers maintain a list of features, and incorporate a variability
mechanism of their choice to add feature mappings (e.g., embedded annotations,
Paper a [32]). Additionally, they add a configurator, which generates a variant
given a feature selection.

Problem: With time, it becomes difficult to maintain an overview over the
features, especially if the variants grow in size. Additionally, features can have
dependencies and constraints that need to be maintained in order to generate
valid variants.
L4. Clone and own with feature model: Developers structure the main-
tained list of features into a feature model. The feature model is dynamic; it can
grow and shrink at any time during the development of the variants. Developers
can use the feature model as a non-technical artifact for communication, and
govern the valid configurations by providing the feature model as an input to
the configurator tools.
Approach: Developers create a feature model by defining the relationships,
dependencies and constraints among features. To this end, they either analyze
the code from the variants to determine how various features interact with
each other (bottom-up), or extend the domain analysis to identify relationships
among features (top-down).

Problem: Despite having features and configuration, there are still redundan-
cies and inconsistencies in the variants due to multiple implementations.
L5. Integrated platform with clone and own: The organization integrates
the existing variants into a consolidated platform. This is enabled by the
metadata for clone traceability and feature-to-asset mappings.
Approach: Using clone traceability, developers consolidate assets belonging
to different variants by merging them into holistic assets. The common parts
of the implementation are only written once in the consolidated platform,
and the variable parts are preserved with feature mappings. The developers
can then control the variability by exploiting the feature mappings. Notably,
even when a platform is in place, developers can still employ clone&own to
their convenience; the recorded clone traceability can be exploited to integrate
subsequently cloned variants into the platform if needed.

Problem: Due to cloning, developers still need to ensure consistency by
frequently performing change propagation among variants or merging variants
into the platform. Having multiple stand-alone variants in addition to the
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platform makes it difficult to ensure high quality in both the platform and the
variants.
L6. Fully integrated platform: Using metadata, developers merge all vari-
ants the organization is maintaining into the consolidated platform. Thence-
forth, developers can focus on maintaining and evolving the consolidated
platform. This ensures high consistency among the variants, as they are gener-
ated from the same platform. Additionally, having a unified implementation
facilitates developers to produce high-quality variants.
Approach: Developers merge all variants into the platform, either sequentially,
or all at once. To this end, they use the metadata to identify and merge clones,
and incorporate variability in the platform when needed.



1.2. METHODOLOGY 19

1.2 Methodology
We discuss the methodology we adopt to answer our research questions in this
section.

For Paper A, we study frameworks relevant to our work; frameworks
supporting variant management or product-line migration. To this end, we
gather the frameworks we are familiar with, as well as any frameworks we find
from the related work of the papers we know. We find five related frameworks.
We evaluate them based on their ability to support activities pertaining to clone
management and product-line migration, also analyzing their shortcomings. A
summarized table of the comparison of our framework against the other related
frameworks is shown in Section 1.4.

We adopt a design-science-like strategy to iteratively synthesize our con-
ceptual structures and operators and evaluate them on realistic scenarios.
We create our conceptual structures to reflect assets of different types in the
variants’ working copy, capturing details relevant for automating tasks such
as change propagation and incremental migration etc. With our operators,
we aim to maximize the coverage of evolution scenarios we observe from lit-
erature as well as our own professional experience. While formulating the
conceptual structures, the main challenge is to find a common ground for
assets of all types; capturing details which are shared across assets of different
types. We strive to find a reasonable trade-off between level of detail and
resulting memory consumption, also ensuring that the conceptual structures
are language-independent. When designing the operators, the challenge is to
ensure that using our framework (virtual platform) imposes minimal additional
effort. Devising a holistic set of operators which covers different scenarios of
software evolution is also a challenge. Another challenge is to formulate the
operators in a way that offers high familiarity to ensure easy adoption and
smooth transition to a software product-line, if needed.

Initial design. The first task is to design the conceptual structures that
lie at the foundation of virtual platform. We follow an iterative strategy,
conducting multiple brainstorming sessions among the authors. The authors
are diversified in terms of experience, two having over ten-year experience in the
fields of variability management and SPLE. The discussions involve many small
design decisions that play a critical role in the efficiency and effectiveness of our
framework. Next, we look into ways to incorporate metadata. The challenge
is to find data structures that are light-weight and offer efficient traversal.
Lastly, for the operators, we create many ad-hoc scenarios for different types of
evolution, each inspired by our experience and informed by real-world projects.

Prototyping and Simulation. We implement our conceptual structures
and operators in Scala. After developing each operator, we test it by simulating
toy examples that reflect various evolution scenarios. When testing, we check
if the operators maintain the validity of the well-formedness criteria we define
over the conceptual structures. The well-formedness criteria govern the sanity
of the conceptual structures, e.g., a file asset cannot contain a folder asset.

Evaluation. Our evaluation is two-fold. For a qualitative assessment,
we compare virtual platform with the state-of-art frameworks discussed in
Section 1.4. Specifically, we evaluate how the framework supports activities
pertaining to variant management or product-line migration. For a quantitative
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assessment, we conduct a cost and benefit analysis of using our framework on a
real-world system comprising four variants realized via clone&own. To this end,
we simulate the development history of a real-world project consisting of four
variants. Using Git commands, we retrieve the order of commits developers
made during development, as well as the operations performed in each commit
(git diff ). Next, as simulation, we translate each operation performed in the
commit to one or more operators in the virtual platform.

During simulation, we count the number of invocations of our operators,
each of which has its associated cost. The cost of one operator invocation is
the sum of the parameters it has. Ultimately, we have two costs. Incurred cost
(or added cost) is the accumulated cost of adding feature-related information
in the variants. This mainly constitutes adding features in the feature model
and adding feature mappings to assets. In the chosen case study, both features
and feature mappings were added in textual form in specific files. The saved
cost is the effort saved due to the elimination of clone detection and feature
location. These costs are relevant in scenarios of change propagation in assets,
cloning of features, and change propagation in features. These scenarios are
studied and documented in a prior contribution [16], where researchers studied
the commits and the annotated code to determine the rationale of various
evolution activities (e.g., copying assets due to feature cloning across variants).
For estimating the saved costs, we make the following assumptions:

• It takes 15 minutes for developers to locate one feature manually (taken
from Wang et al [37]).

• It takes 15 minutes for developers to find clones of one asset or feature.

• The cost of adding a forgotten mapping is 10 times more than the cost
of proactively adding it during development.

We calculate the benefit by subtracting the incurred costs from the saved
costs. We discover that we reach a break-even point at 54 seconds; if developers
take 54 seconds to add one feature (or mapping), they reach a break-even
point. In practice, adding information which is already fresh in the minds of
the developers takes significantly lesser time. Additionally, for growing variants
with frequent change propagations, the benefit is expected to be incremental.

For Paper B, we develop a high-level understanding of the popular process
models [11–15] for product-line adoption presented in literature. As explained
above, the process models mainly focus on proactive adoption, and assume
a strict distinction between domain engineering and application engineering.
Additionally, they assume that product lines only evolve through the platform
itself; variability is known and implemented at the time of platform construction.

Next, we survey the literature to understand the industrial practices in
software product-line adoption. First, each author recommended papers re-
porting experiences with product-line adoption from their knowledge of the
literature. The papers are discussed collectively by all authors, which helps
in creating a foundation for our analysis. Second, following the guidelines
prescribed by Kitchenham et al [38], we manually search for papers published
in five conferences (ICSE, ESEC/FSE, ASE, SPLC, VaMoS) and seven journals
(EMSE, TSE, TOSEM, JSS, IST, IEEE Software, SPE). We include papers
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that are peer-reviewed and written in English, and (optionally propose and)
use a process model.

Our final set of papers comprises 32 publications. We classify the articles
on two aspects; product-line adoption, and product-line evolution. Based on our
observations, we conclude that there is a gap between the prescribed process
models in literature and the deployed industrial practices. Firstly, extractive (12
papers) and reactive adoption strategies (8 papers) are as frequently employed
as proactive adoption (12 papers), however, they are not covered by any
process model. Secondly, many organizations adopt variant-based product-line
evolution (8 papers); evolving platform through variants incrementally. This
contrasts the process models, where the assumption is that the entire variant
scope is known prior to platform construction, and variability is incorporated
in the platform only. Variant-based evolution also negates the assumption
that domain engineering and application engineering are executed sequentially;
evolved variants (in application engineering) can be merged back into the
platform (domain engineering).

Based on these reflections, we conclude that the process models do not
depict the industrial practices accurately, and consequently, they should be
updated to reflect prevalent practices in product-line adoption and evolution.
We present promote-pl, an aggregated process model for product-line adoption
and evolution. Our process model is less strict than the other process models,
focusing on adoption and evolution as the high-level abstraction. In addition
to the proactive approach, promote-pl also caters for the other approaches for
adoption; reactive and extractive. Next, we discuss our approach for deriving
promote-pl.

For each paper, we synthesize a partial order of activities the organization
deploying SPLE partook, and unify the terminology to establish a common
ground. We compare the partial orders resulting from different reports based
on their scope and similarities, and create partitions of our process model. The
partitions are along two aspects: adoption and evolution. Finally, we construct
our process model by merging all partial orders and removing duplicate activities.
The granularity of promote-pl allows practitioners to map the various activities
to actual development processes—more flexibly than the existing process models.
Additionally, promote-pl is well-aligned with contemporary practices, such
as agile software development, clone (or variant) management, incremental
product-line adoption, and continuous software engineering.

For Paper C, we extend the notion of features in software assets to features
in models used to analyze and design a system. Specifically, we conduct an
experiment comparing different variability mechanisms and their effect on the
comprehensibility of various model-related tasks. We compare three variability
mechanisms: enumerative, annotative, and compositional. We conduct a series
of three experiments, each focused on a different model type. The considered
model types are class diagrams, state machine diagrams, and activity diagrams.
We recruit 164 participants in total (experiment 1: 73 participants, experiment
2: 65 participants, experiment 3: 26 participants), which consist of students
from universities in three different countries.

In each experiment, the number of variability mechanisms (n) and subject
systems (m) are similar. For each experiment, we model each subject system
using all variability mechanisms. Participants are distributed in n groups
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randomly. Each participant experiments with each variability mechanism and
each subject system exactly once. For experiment 1, we choose three subject
systems (d1 = Simulink, d2 = a Project Management System, and d3 =
Mobile phone), and three variability mechanisms (Enu = enumerative, Ann
= annotative, and Com = compositional). We distribute the participants in
three groups. Following the Latin-squared design [25,26], the groups follow the
following paths:

• Enu d1 → Ann d2 → Com d3 (group 1),

• Com d1 → Enu d2 → Ann d3 (group 2), and

• Ann d1 → Com d2 → Enu d3 (group 3).

We only consider annotative and compositional mechanisms in the second
and third experiment as the enumerative and annotative mechanisms yield
similar results in experiment 1. Consequently, both experiment 2 and 3 feature
two subject systems each, and participants are divided into two groups. In
experiment 2, we model two high-level features of Robocode [39], a programming
game employed as a teaching tool. In experiment 3, we model two subject
systems: an Email Service Provider and a Flight Reservation System. As
explained in Section 1, for each subject system, we require participants to
perform tasks of three types; understanding variants, comparing two variants,
and comparing all variants. Each task type consists of two types. For the first
task type, the tasks followed the theme: “Which variants have the elements X
and Y? List all such variants, or write none otherwise". For the second task
type, the tasks followed the theme: “How do the two variants Var1 and Var2
differ? List all differing elements if there are any”. For the third task type,
the tasks followed the theme: “Which elements are included in all variants?”

We measure the time taken by participants by asking them to log the
starting and ending time for each subject system. As a post-experiment survey,
we ask participants for their subjective preferences for all task types, their
preferred mechanism, and the rationale for their choice. Specifically, we ask
participants for the following questions, the responses to which are to be given
on a 5-point Likert scale (1: very easy, 5: very difficult):

• (S1) How easy did you find it to understand each mechanism?

• (S2) How difficult was it to answer the questions on “Understanding
variants” (tasks 1 and 2) for each mechanism?

• (S3) How difficult was it to answer the questions on “Comparing two
variants” (tasks 3 and 4) for each mechanism?

• (S4) How difficult was it to answer the questions on “Comparing all
variants” (tasks 5 and 6) for each mechanism?

For retrieving the subjective preferences, we formulate the following questions:

• (S5) Which mechanism do you prefer for each of the three task types?

• (S6) Can you explain your subjective preferences (intuitively)?
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We evaluate and compare the mechanisms based on their correctness and
time taken to perform tasks. As primary evaluation, we assign scores to the
participant responses manually. Each task type consists of two tasks, the score
of each task can have three values: 0 (incorrect), 0.5 (partially correct), and
1 (correct). A response is only correct if it composes only and all correct
elements needed. With three task types having two tasks each, each variability
mechanism is scored between 1-6 for each participant. Next, we perform the
analysis and comparison. For analyzing our results and plotting the results
of our comparison, we use R-scripts, which are shared in the online appendix
of Paper C. Our findings indicate that annotative mechanism outperforms
the other two mechanisms in two out of three experiments, recognized by
better developer performance in terms of accuracy and time taken. The
subjective preferences by developers also show a clear inclination towards
annotative mechanism in all experiments. We supplement our findings with
recommendations; guidelines to support flexible, tailored-to-task solutions,
which are summarized in Chapter 4.
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1.3 Summary of Contributions
In this section, we summarize the papers this thesis encompasses, focusing on
problem statement, aim, solution, and contributions.

1.3.1 Paper A
Customization is a trend in software engineering, and to deliver tailored prod-
ucts to a large target audience, organizations often develop variant-rich systems.
To develop variant-rich systems, developers deploy one of two approaches:
clone&own and platform-oriented development (a.k.a software product-line
engineering). In clone&own, developers reuse existing variants by cloning them
and adapting them to satisfy new (or changed) customer requirements. Cloning
is an efficient immediate solution, offering ease of adoption and freedom to
experiment with features quickly. It is strongly preferred by developers as
it does not impose additional training and allows developers to work with
(and reuse) artifacts they are familiar with. However, cloning comes with
costs. As the number of variants increase, developers lose overview over the
variants. The immediate benefits of reuse are soon overcome during evolution
and maintenance. To perform simple tasks such as bug-fixes, developers have
to find clones of the buggy functionality and replicate the changes in every
variant. Introducing new functionality or enhancing existing functionality in
all variants is similarly also a difficult task. Due to missing information about
clone traceability (what was cloned where), developers have to rely on their
memory, or third-party tools for identifying clones. These solutions are far
from optimal, as they lead to inconsistencies in the codebase. Another issue is
feature location; developers often need to locate functionality corresponding
to a certain requirement. Feature location, like clone detection, also relies on
human intervention or third-party tools, and leads to inaccurate results.

An alternative way of realizing variant-rich systems is building a fully
integrated platform by deploying platform-oriented approaches such as SPLE.
A product-line offers better reuse and easier maintenance, as instead of cloning,
the focus is on creating high-quality core-assets. Features are implemented only
once (in code assets), and any changes to features (bug-fix, feature enhancement)
are also performed in the platform. Developers can configure features to derive
new variants corresponding to new customer requirements. Starting a platform
from scratch (proactive adoption, Paper B) however, is a tedious task. It relies
on tasks that need domain knowledge, as well as incorporation of variability-
related concepts (e.g., feature model, variability mechanism, configurator tool
etc). SPLE adoption leads to increased time to market, in addition to posing
extra costs and resources.

Researchers prescribe a few frameworks [5–7] for migrating variants realized
using clone&own to a product line. However, those frameworks, as we will show
in Section 1.4 are either too abstract, or rely on heuristics for clone detection
and feature location, rendering them inaccurate to be applicable in practice.
Most frameworks prescribe a “single-step” migration, which is risky and error
prone. Proactive adoption, as we discussed above, can be human-intensive,
time-consuming, and risky. Extractive and reactive approaches are limited
by accuracy, as they mainly rely on heuristics for clone detection and feature
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location. In addition, merging variants in the platform leads to merge conflicts,
that require developer intervention to fix.

We aim to bridge the gap between clone&own and SPLE in a minimally
invasive, accurate manner. To this end, we devise a framework, virtual plat-
form, that generalizes various variant management and product-line migration
frameworks. We propose truly incremental migration; migration exploiting
explicitly recorded meta-data. We store two kinds of metadata: clone traceabil-
ity and feature-to-asset mappings. Our framework comprises operators, which
mirror the various evolution activities variants go through. The operators
work on virtual platform’s conceptual structures, which are semi-structured
representation of code in memory. The operators serve to keep an in-sync copy
of the variant’s working copy in memory, as well as recording the metadata
mentioned above. A subset of the operators allow developers to query the stored
metadata (for example for automated clone detection and feature location).
Lastly, virtual platform comprises operators for automated change propagation,
feature cloning, and feature-related change propagation. We implement a
prototype of virtual platform in Scala and evaluate it on a real, open-source
case study comprising four variants. The results indicate the virtual platform
saves costs of clone detection and feature location, and provide benefits in
terms of automation and accuracy. We present our conceptual structures and
operators, as well as the results from our evaluation in Section 1.4.

1.3.2 Paper B
Organizations developing variant-rich systems often need to adopt a product-
line approach, either as a result of maintenance overheads, or to satisfy a
diverse customer base. Researchers in the recent decades have proposed
process models [11–15] for product-line adoption. These process models guide
practitioners towards product-line adoption by defining concrete activities that
need to be performed to build an integrated platform. Typically, the process
models comprise two distinct phases: domain engineering (development of
core assets) and application engineering (development of individual variants).
These product models, although widely established as the de-facto standard for
adopting SPLE, focus on the best-case scenario: proactive product-line adoption.
In reality, SPLE is rarely incorporated from the get-go. Developers start with
clone&own, and later migrate to a fully integrated platform when needed. SPLE
can be adopted using three approaches: proactive (develop a platform from
scratch), reactive (start with one variant, build incrementally), and extractive
(start with n variants, migrate in a single step). Additionally, product lines
evolve both through the platform itself (as prescribed by the process models),
but also through the variants, when developers use contemporary practices to
evolve systems naturally.

Realizing that there is a discrepancy between the process models and
contemporary industrial practices, we propose an updated process model for
product-line adoption. Our process model, promote-pl, is an aggregation of
the existing process models as well as the industrial reports for product-line
adoption over the recent years. We begin by gathering literature reporting
experiences with product-line adoption and evolution in industry. To this
end, we manually search 12 venues (including SPLC, ICSE, VaMoS, ASE,
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ESEC/FSE, EMSE, and TSE). We limit our search to past five years in order
to retrieve only the most recent experience reports. Our inclusion criteria
filters papers not written in English and not peer-reviewed. Additionally,
we only include papers reporting experiences with using a process model,
instead of just proposing one. We analyze 32 peer-reviewed articles reporting
product-line adoption, and categorize them on two dimensions: adoption and
evolution. For each paper, we extract the set of activities undertaken during
product-line adoption, and list them in order. Next, we unify the terminology
used in papers to reach a common ground. Based on the activities and their
partial orders, we synthesize our process model, the high-level representation
of which is shown in Section 1.4. We discuss the relevance of our process
model in modern software-engineering practices including continuous software
engineering, dynamic configurations and adaptive systems, and agile software
engineering.

Consisting of multiple entry points (no variant, one variant, many variants),
our process model can be used as a guide for product-line adoption and evolution
for projects at different stages of maturity. Additionally, promote-pl can be
exercised as a teaching tool to teach students the state of the art practices in
SPLE in real projects.

1.3.3 Paper C
Organizations employ reuse-oriented development approaches in an attempt
to cope with diverse and oft-changing market needs. To prevent the problems
stemming from maintaining multiple copies of code, developers incorporate
variability in code. To this end, they use variability mechanisms to make the
assets configurable, and enable product derivation. To further streamline their
development processes, organizations incorporate variability in models as well.
This prevents the need to maintain multiple copies of the same model, and
simplifies the analysis by having a unified model. Variability mechanisms in
models either follow the annotative paradigm or the compositional paradigm.
Annotative mechanism allows adding feature annotations on a single, consol-
idated model. Models corresponding to a specific variant only comprise the
model elements annotated with the selected features. Compositional models
are fragmented into sub-models (model fragments), each representing one or
more features. Models corresponding to a specific variant are a union of the
model fragments representing the selected features.

Annotative and compositional mechanisms both have advantages and draw-
backs. Annotative mechanism offers a consolidated view, but the models get
cluttered when the number of features grows. Compositional models offer
a cleaner view, however, they involve the extra cognitive step of “merging”
different model fragments to create the final model. At present, the choice
of variability mechanism is predominantly done intuitively. Research lacks
concrete evidence on how the choice of variability mechanism impacts the effi-
ciency of model-related tasks. We conduct an empirical study to systematically
investigate the impact of variability mechanisms on model comprehension tasks
for three popular model types: class diagrams, state machine diagrams, and
activity diagrams. We conduct three experiments, each focused on one model
type. The goal is to guide practitioners towards informed choice of variability
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mechanism to use. Another goal is to guide tool developers to build support
for flexible, task-tailored solutions.

We recruit 164 students as participants in total for our experiments, where
no student performs in more than one experiment. For each experiment, we
create models using different variability mechanisms for each subject system.
We follow a Latin square design [26], such that each participant experiments
with every subject system and variability mechanism only once. Participants are
required to perform tasks of three types: understanding variants, comparing
two variants, and comparing n variants, for each subject system. We ask
participants about their subjective preferences after the experiment. Our
results indicate that annotative mechanism outperforms the compositional
mechanism in two out of three experiments. Additionally, we observe that
compositional mechanism impedes developer performance in tasks that require
having an overview over the variants. Participants prefer annotative over
compositional mechanism in all three experiments. Lastly, participants prefer
different mechanisms for different task types, implying that the choice of
mechanism depends on the nature of the task. We share a summary of our
findings, and our recommendations based on the finding, in Section 1.4.
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1.4 Results
In this section, we answer our research questions based on our contributions.

RQ1: What are the state of the art frameworks for software product line
migration and variant synchronization?
Following, we summarize the five frameworks which informed the design of our
framework:
Rubin et al. [5, 10] propose an abstract variant-integration framework, specif-
ically a set of operators that a realization of such a framework should realize.
The operators are derived from three case studies of organizations migrating
cloned variants into a platform. They propose a set of operators that extract
feature-oriented information from design documents and code (feature iden-
tification), and then link that information to code assets (feature location).
They also define operators to mine information about feature dependencies
and similarities—all typically require complex algorithms. After extracting this
data, they reorganize the variants into clusters of related assets. Lastly, they
compose various assets that result in a tentative architecture and a feature
model. The application of the framework is discussed for three case studies.

Notably, the framework supports the narrative that an operator-based
perspective leads to more efficient implementation and support. However, while
their framework is abstract in nature; our method and tool can be seen as a
realization, relying on recording and exploiting metadata. Consider their oper-
ator findFeatures, which is described as an operator that identifies features
from assets, which usually requires expensive and inaccurate feature-location
effort. In our case, we can easily retrieve this information from the asset tree
(explained shortly). Furthermore, their work emphasizes the need to support
different types of assets (code, requirements, design models, and tests), which
we support with a programming-language-independent representation.
ECCO is a variant integration framework and tool, developed by Fischer et
al. [6], for composing new product variants using reusable assets. The input
to the framework is a set of variants realized via clone&own, each with a list
of implemented features; additional cloned variants may be added over time.
Extraction is used to collect information about features and assets, as well as
the feature interactions. Commonality analysis on variants leads to a set of
reusable assets along with dependencies between them. Composition takes a
selection of features and uses the reusable assets from ’extraction’ to compose
a partial or complete product. Completion guides the developers to fill in
the missing implementation corresponding to features and feature interactions.
The new variant is fed back into the system. While the framework significantly
improves reuse, the accuracy of the framework is debatable, since it primarily
relies of heuristics for feature identification, feature location and clone detection.
In comparison to ECCO, our framework is more accurate, since it does not
rely on recovering metadata, but instead on actively logging and maintaining
it. Additionally, as opposed to ECCO, we support change propagation for
synchronizing variants after cloning.
BUT4Reuse, presented by Martinez et al. [7], is an extraction-based technique
for variant integration. The process begins with the creation of an asset model
using the asset variants. Then, software product-line adopters perform feature
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identification and feature location in the variants. Using the resultant list of
features and the constraints among them, a feature model is automatically
created. Lastly, using feature location traces, the reusable assets are created by
extracting implementations of all features, and made suitable to be included in
a variant by composition. Since the goal is to facilitate a “one-shot” migration
of a large set of variants towards a platform, feature identification and location
need to be performed exhaustively. Due to the lack of reliable automated
techniques for the tasks, BUT4Reuse heavily relies on the involvement of
domain experts for these tasks. These tasks are daunting and error-prone,
rendering the framework risky in practice. Additionally, this requires some
training for technical tasks as majority of these activities are different than
what developers do in real-time. Our framework offers a higher degree of
familiarity, with the only added effort being the addition of metadata.
VariantSync, developed by Pfofe et al. [8], is a plugin-supported framework
for automated synchronization of related software variants. The plugin uses
FeatureIDE [40] for feature model specification, and allows developers to tag
code fragments to feature expressions. After a change, developers can choose to
perform a source- or target-focused change propagation. The former propagates
the changes to all fragments whose tagged feature expression evaluates to
true against the changed code’s feature expression, whereas the latter only
propagates changes to a specified code fragment. The merge conflicts arising
during change propagation are resolved manually using java-diff-utils§§. The
framework is light-weight and eliminates feature location and clone detection. It
also saves maintenance effort as the change propagation is automated. However,
it is unclear how an asset can be reused automatically when a feature expression
is tagged with it. Moreover, VariantSync only considers code fragments, but in
reality, features could contain implementations in entire directories and files,
as is supported in our framework.
Montalvillo and Díaz [9] propose supplementing version control systems
(VCS) with operations that allow synchronization between artifacts belonging
to two distinct phases of product line development; Domain Engineering
(DE) and Application Engineering (DE) [11]. To this end, they specify a
repository architecture comprising of a core asset repository and a set of
product repositories. On top of these, they define branching models that
allow isolated development of core assets and customized products with two-
way propagations when needed. Update propagations allow disseminating the
changes in core assets to product repositories, while feedback propagations feed
changes introduced in product repositories back into the core assets repositories.
Traditional VCS operations are used to provide these propagations, where
development takes place in branches (branch, fork) and product repositories
use (clone) assets from the core assets repository. Changes made to core assets
or product specific assets are propagated (merge) when required. To automate
their approach, they use web-augmentation techniques to enhance GIT with
the proposed operations. The approach is novel and flexible, however it comes
with the risk of frequent need of resolving merge conflicts. Also, for a large
number of products, the storage requirements inevitably grow and it can be
difficult to keep track of which changes to propagate and which branches to
propagate to. Lastly, the need to locate features will eventually rise and without

§§https://github.com/KengoTODA/java-diff-utils

https://github.com/KengoTODA/java-diff-utils
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Table 1.1: Comparison of the virtual platform with activities supported by
clone management and product-line migration frameworks

Feature identification → abstract operator [10], specified in the beginning
[6–8], specified any time in virtual platform
Feature location → abstract operator [10], extracted [6, 7], internal tagging
[8], also internal tagging in virtual platform
Feature dependency management → abstract operator [10], statically
mined [7], specified in beginning [8], specified any time in virtual platform
Feature model creation → multiple abstract operators [10], activity [7],
specified in the beginning [8], dynamically grows in virtual platform
Feature-to-asset mapping → abstract operator [10], extracted [6, 7], speci-
fied any time [8], specified any time in virtual platform
Clone detection → textual diff tools [10], feature expression comparison [8],
git clone points to source [9], not needed in virtual platform
Feature cloning → supported by virtual platform
Change propagation → multiple abstract operators [10], variant synchro-
nization [8], using Git merge [9], automated in virtual platform
Reusable assets creation → abstract & incremental [10], reuse existing
variants [6], reusable core assets [7, 9] and features in virtual platform
Product derivation → abstract [10], customizing after cherry-picking [9],
composition [6, 7], preprocessor-like in virtual platform
Integration→ abstract operator using meta-data [10], third party tool [8], Git
merge [9], manual or tool-based, guided by meta-data in the virtual platform
Variant synchronization → Git diff [9], code comparison [6, 7], not needed
in virtual platform

a notion of features, it can be difficult to trace which changes in implementation
corresponding to a certain feature.

Table 1.1 shows a comparison of the frameworks analyzed in RQ1 against
each other and virtual platform. Contrary to other frameworks, virtual platform
does not rely on heuristics or third-party tools for extracting or specifying
features, as well as their locations in assets. It also allows developers to flexibly
add feature dependencies at any time during development. Additionally, virtual
platform allows developers to dynamically grow and shrink feature models
in parallel to software evolution instead of recovering them heuristically or
specifying them in the beginning. Only two frameworks, VariantSync [8] and
virtual platform offer accurately adding feature mappings in assets, however,
virtual platform allows mapping features to not only code, but assets of different
types (e.g., repository, folder, file etc). Virtual platform is the only framework
that supports feature cloning: cloning all assets implementing a feature, to
another variant. It also eliminates the need for clone detection and feature
location, allowing developers to query the stored metadata to retrieve such
information automatically. The stored metadata also enables automated change
propagation, along both assets and features. Assets and features can undergo
changes after cloning (e.g., renaming). Using accurately stored metadata,
changes can be propagated among clones, ensuring a consistent implementation
across variants. The metadata can also be exploited for two-way change
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Figure 1.4: High-level overview of promote-pl from Paper B

propagation (variant synchronization), variant integration (combining multiple
variants into one), and automated product derivation.

RQ2: What are the contemporary product-line engineering processes employed
in practice? Do they accurately depict the process models for product-line
adoption presented in literature?
As explained above, we survey 32 papers reporting experiences with product-
line adoption and evolution. Confirming the observations from our experience
with industrial collaborations, a considerable proportion of the studied papers
report extractive (12 instances) and reactive (8 instances) adoption in addition
to the standard approach assumed by the process models; proactive adoption
(12 instances). Additionally, we observed that product lines also evolve through
their variants (7 papers reporting variant-based evolution) instead of just
evolving through their platforms. Recognizing these discrepancies, we conclude
that the process models need to be updated to reflect realistic industrial
practices. To this end, we synthesize a common process model, the methodology
for which is described earlier in Section 1.2. Figure 1.4 represents a high level
abstraction of our process model (for the larger version, see Chapter 3).

Developers can start with a platform from scratch, leading them to start
with the “integrated platform” in Figure 1.4 (proactive adoption). They can also
start with one or more variants (top-right corner), and migrate to the platform
incrementally (reactive adoption) , or all at once (extractive adoption). For
creating new variants (derived variant), developers can follow one of two routes.
They can derive a variant from the integrated platform by providing a valid
feature selection. Alternatively, they can reuse an existing variant (clone&own)
to create a new variant. The copied variant can be evolved (evolution) to create
the new, evolved variant. Lastly, if developers want to merge the derived and
evolved variants back into the platform, they can switch back to adoption,
merging variants sequentially or simultaneously into the platform.

Notably, our process model:

• switches the focus from the primary decomposition between domain
engineering and application engineering to adoption and evolution.

• is round-trip—allowing practitioners to switch between adoption and
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evolution conveniently.

• covers all adoption strategies, allowing developers to approach product-
line adoption in different ways.

• caters for both platform-based evolution and variant-based evolution,
as opposed to only assuming that product lines evolve through their
platforms (as done by the process models).

• is based on concrete evidence and experience from industrial collaborations
with different companies.

• comprises activities at various granularity levels, allowing developers to
easily map and apply the activities to various development processes, less
strictly than the existing process models.

• connects software product-line engineering to contemporary industrial
practices including agile practices, clone management, incremental soft-
ware product-line adoption, dynamic configuration, and continuous soft-
ware engineering.

RQ3: How to design an appropriate framework to realize the truly incremental
migration? Specifically, what operators and conceptual structures need to be
defined, and how?
As explained above, we devise a framework for truly incremental migration,
starting from a lean set of variants to a fully integrated platform. Our frame-
work, virtual platform, relies on accurately stored metadata for activities such
as change propagation and software product-line migration. Next we elaborate
the conceptual structures and operators that formalize our framework.

Conceptual structures. Our conceptual structures store semi-structured
representations of assets at different levels of granularity, as well as the features
they map to. Figure 1.5 shows a demonstration of our conceptual structures.
Asset represents an artifact pertaining to a variant. Assets can have a name
and a numeric version number (versioning explained shortly). Additionally,
assets can have an AssetType depending on their granularity level in the
variant. An Asset can be one of the defined asset types: root (VPRootType,
virtual top node to hold all variants), repository (RepositoryType), folder
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Figure 1.5: Conceptual structures for the virtual platform



1.4. RESULTS 33

(FolderType), file (FileType), class (ClassType), method (MethodType), and
block (BlockType). Assets are hierarchical; an Asset can have sub-assets
(e.g., folders can have files), making each Asset an Asset Tree (AT). Each Asset,
except the root asset, is parented (e.g., class is a parent of method). Textual
assets also have Details, which store the content the textual files comprise.
Each Asset optionally can also have a Feature Model (explained shortly). For
flexibility, we allow developers to add a Feature Model in all types of assets.
Additionally, for flexibility, we also allow multiple feature models in a variant;
the feature models lower in the AT will have more fine-grained features. Once
a Feature Model is added to an Asset A, the assets in the hierarchy of A
can be mapped to any feature from the FM. Assets are mapped to features
(using presence conditions). Each Asset has a presenceCondition, which
is an expression over the features it maps to (e.g., Messaging & Internet).
The default value of presenceCondition is True; features are mapped to
the Asset by adding them as a disjunction to the presenceCondition. The
rationale for adding with a disjunction is to make the mapping flexible and
not too conservative, such that we can say that the Asset is included in the
final configuration if any (or both or all) of the features is selected. Feature,
like an Asset, is named. Additionally, it has a boolean parameter optional
to represent if it is a mandatory or optional feature. Features can also have
dependencies (Depends On). Lastly, the parameter incomplete represents if all
assets mapped to the feature are in the variant or not. Features are contained
in a Feature Model, which is a hierarchical structure composed of features. In
a Feature Model, features have parent features and sub-features (similar
to assets). Features, like assets, are versioned. Feature models also have an
Unassigned feature, which is used to add features whose target (or parent)
features have not been provided. Feature models also hold a reference to the
assets they belong to. This enables tracking which Asset the Feature Model
belongs to. Lastly, for storing clone traces, there are two trace databases; an
AssetTraceDatabase and a FeatureTraceDatabase. The trace databases are
simplistic. Each database comprises traces; each trace storing a link to the
source Asset (or feature), its clone, and the version of source at the time the
Asset was cloned. The version is used to determine if there are changes to
be propagated in change propagation.

Versioning. Aiming for simplicity, we use numeric versions, starting from 0.
An Asset not yet added in the asset tree (AT) has a version of 0. The version
of the root node is called the globalVersion, and it has special relevance
in the versioning strategy. After each update in the AT, the globalVersion
is incremented and assigned to the updated assets. Our operators update
the versions of the assets. The same protocol is applied to features in the
Feature Model. Such a strategy saves expensive tree traversal; only updating
the affected assets after an operation has been performed.

Asset-oriented operators. Asset-oriented operators depict routine tasks
developers perform. These conventional operators serve two purposes. First,
they maintain an in-sync copy of the working copy of the variants in the AT.
Second, they store metadata pertaining to clones and features. The operators
also govern versioning of the various conceptual structures explained above.
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Table 1.2: Summary of asset-oriented operators

Operator Summary
AddAsset(S,T) Adds a given asset S to a given parent asset T (in the

virtual platform’s AT). Updates the globalVersion and
assigns it to S and T. Also adds any features mapped to
S in the feature model of T’s repository.

ChangeAsset(S) Changes a given asset S (e.g., renaming, addition of
a line etc) in the virtual platform’s AT. Updates the
globalVersion and assigns it to S.

RemoveAsset(S) Removes an asset S from the AT. Updates the
globalVersion and assigns it to the parent of S be-
fore deletion. Also removes any features only mapped to
S from the repository’s feature model.

MoveAsset(S,T) Moves an asset S from its parent asset to another asset T.
Is a logical combination of CloneAsset and RemoveAsset.
No traceability is stored in this operator.

CloneAsset(S,T) Clones an asset S from one variant (or repository) to
an asset T belonging to another variant. Also clones
any features S maps to into T’s repository’s feature
model. The clones retain the version of the source assets.
The globalVersion is incremented and assigned to T.
Cloning is deep; the operator creates a deep clone of the
asset down to the leaf nodes and adds it to the target
variant. A new trace is created, pointing to the source as-
set(s), its clone, and the version of the source when it was
cloned. The trace is added to the AssetTraceDatabase.

PropagateTo
-Asset(S,S*)

Propagates changes in an asset S to its clone S*. Traverses
the AssetTraceDatabase to determine if the assets have
a source-clone relationship. If they do, determines if a
change propagation is valid by comparing the current
version of S to the one at the time of cloning. Propagates
changes automatically if both the conditions are true.
Changes that can be propagated are renaming, addition
of a sub-asset, mapping to a new feature, and change in
the content (in case of textual assets) etc. Propagation
is also deep; change propagation in an asset is executed
in all its sub-assets down to the leaf node.

Table 1.2 presents a summary of our asset-oriented operators, focusing on the
functionality and versioning protocol of each. The operators for maintain-
ing an in-sync copy of the AT in the memory are AddAsset, ChangeAsset,
RemoveAsset, and MoveAsset. The operators that add metadata pertaining
to clone traceability are CloneAsset and PropagateToAsset.

Notably, asset-oriented operators are mostly invoked silently in the back-
ground (except PropagateToAsset, which needs to be invoked explicitly). The
metadata for clone traceability is also automatically stored and queried (by
convenience operators, explained shortly).
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Table 1.3: Summary of feature-oriented operators

AddFeatureModelToAsset(A,FM) → Adds a given feature model FM to an
asset A of any type. Also adds a reference to A in the FM. Updates the
globalVersion of the asset tree A belongs to, and assigns it to A.
AddFeatureToFeatureModel(F,T,FM) → Adds a feature F to either a given
target feature F, or to a feature model FM. If T is not provided, F is added as
a top-level feature of the FM. The globalVersion of the FM is incremented
and assigned to S (and T if provided).
MapAssetToFeature(A,F) → Checks if the given feature F belongs to the
feature model closest to A in its asset tree, and if it does, maps A to F by
adding F to the presenceCondition of A with a disjunction. Updates the
globalVersion of the AT and assigns it to A. If the feature does not exist in
the feature model of A’s closest ancestor with a feature model, it is added to
the Unassigned feature of the feature model before mapping.
ChangeFeature(F) → Changes a feature F in the feature model. Examples
of changes are renaming and addition of a feature dependency. Updates the
globalVersion of the FM and assigns it to F.
MakeFeatureOptional(F)→Makes a feature optional. Virtual platform allows
developers to quickly and conveniently govern configurations and provide
adaptability by making features optional. The globalVersion of the FM is
incremented and assigned to F.
RemoveFeature(F) → Removes a feature F from the feature model it belongs
to. Also removes assets from the relevant AT that only map to F. Updates the
globalVersion of the FM and assigns it to F’s parent before feature removal.
MoveFeature(F) → Moves a feature from one parent feature to another in the
same feature model. Is a logical combination of AddFeatureToFeatureModel
and RemoveFeature.
CloneFeature(F, TF, TFM)→ Clones a feature F from a source feature model
SFM to a given target feature (TF) or a target feature model (TFM). Also
clones any assets from the source AT mapped to F in the target’s AT. For
cloning the mapped assets, it uses tree slicing to get a slice of the source AT
relevant to the mapped asset. The feature clone and the (mapped) asset clones
all retain their source versions. The globalVersion of TFM is incremented
and assigned to TF. Feature cloning is deep; the feature is cloned along all
its sub-features down to the leaf nodes. The mapped asset cloning is also
deep. After cloning, traces for the feature and asset clones are added in the
FeatureTraceDatabase and AssetTraceDatabase respectively.
PropagateToFeature(F,F*) → Propagates changes in a feature F to its clone
F*. Traverses the FeatureTraceDatabase to determine if the features have
a source-clone relationship. If they do, determines if a change propagation is
valid by comparing the current version of source feature to the one at the time
of cloning. Propagates changes automatically if both the conditions are true.
Changes that can be propagated are renaming, addition of a sub-feature, and
mapping to a new asset etc. Change propagation is deep; propagation in a fea-
ture recursively invokes propagation in all the sub-features. After propagation,
a new trace between the feature and its clone with the current version of the
source feature is created and added to the FeatureTraceDatabase.
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Figure 1.6: High-level overview of virtual platform

Feature-oriented operators. Feature-oriented operators incorporate feature-
related data into software assets mainly by allowing developers to add a Feature
Model, update it (add, remove, and change features), and add mappings between
features and assets. As explained above, virtual platform allows developers
to add feature models in assets of all types. Additionally, feature models can
grow and shrink dynamically, any time during the development. Developers
can also make features optional or mandatory, and add dependencies between
them. Virtual platform also offers systematic feature reuse; developers can
clone entire features across variants. To clone a feature, developers simply
invoke CloneFeature, which automatically retrieves all assets implementing
the feature, and clones them to the provided target variant. Features can evolve
independently once cloned, and synchronized using PropagateToFeature. Ta-
ble 1.3 presents a summary of our feature-oriented operators, focusing on the
functionality and versioning protocol of each.

Convenience operators. Convenience operators are the helper methods that
are used to query the various conceptual structures and retrieve information
needed for performing other tasks (such as feature cloning or change propaga-
tion). For brevity, we omit the details of the convenience operators. A detailed
description of each convenience operator can be found in the online appendix
of Chapter 2. Some examples of convenience operators are getMappedAssets
(retrieve assets implementing a given feature), getClones (get clones of a given
Asset or feature), and getLatestTrace (get the last trace between a given
Asset or feature and its clone) etc.

Virtual platform overview. Figure 1.6 represents the various way devel-
opers can incorporate virtual platform. Virtual platform offers both direct
and indirect interaction. Developers can directly invoke the operators using a
command-line interface (or a graphical user interface). Notably, asset-oriented
operators (except explicit change propagation) do not require manual invo-
cation. An indirect interaction can also be enabled by provided hooks and
extensions in existing development tools or version-control systems; addition of
a file in a version-control system can be linked to the AddAsset operator in
virtual platform.
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Next, we discuss the details of the evaluation.

RQ4: What is the effectiveness of the framework virtual platform? Specifically,
what are the costs and benefits?
We choose Clafer Web Tools for our analysis. Clafer Web Tools (CWT) is an
open-source system having four variants, three of which are clones (ClaferIDE,
ClaferMooVisualizer, and ClaferConfigurator), and one is an integrated plat-
form (ClaferUICommonPlatform). The development of these systems involved
significant cloning between the projects. We follow the dataset by Ji et al. [16],
who incorporated feature-related data in the sub-systems, as if they were im-
plemented in a feature-oriented way. Features were incorporated in two ways;
in the Feature Model, and in mappings. Features were mapped to different
types of assets including directories, files, and text (e.g., code).

As explained above, we retrofit our operators to the activities performed
during the simulation performed by Ji et al. [16]. For each two consecutive
commits, we retrieve the summary of tasks performed by developers using git
diff, and translate the changes in the commit into virtual platform operators.
Virtual platform automatically creates an AT, comprising repository assets for
all variants. The operators synchronize the AT with the working copies of all
variants by invoking operators equivalent to actual evolution tasks developers
perform.

Next, we measure the cost of using virtual platform. Notably, our asset-
oriented operators do not impose any additional costs since they mirror actual
developer tasks, and are automatically invoked in the background. The only
added costs are those of adding and maintaining features (Cfeat), and the cost
of dealing with missing features that the developers forgot to add (Cmiss).
For the former, we count the number of times a feature was added (# of
invocations of AddFeature) and the number of times a feature was mapped
to an Asset (# of invocations of MapAssetToFeature). Table 1.4 shows the
number of invocations for all operators. There are 724 invocations of feature-
oriented operators, the most commonly invoked ones being AddFeature (368)
and MapAssetToFeature (229). The actual cost of invoking these operators is
assumed to be low (in seconds), as features exist in the developers’ mind when
coding, and it takes little effort to materialize them for recording. For mea-
suring Cmiss, we count the number of late invocations of MapAssetToFeature;

Table 1.4: Operator invocations in simulation study:asset-oriented and feature-
oriented operators

operator freq. operator freq.
AddAsset 3,527 AddFeature 229
ChangeAsset 1,191 AddFeatureModelToAsset 4
RemoveAsset 1,060 MapAssetToFeature 368
MoveAsset 303 RemoveFeature 40
CloneAsset 48 MoveFeature 22
PropagateToAsset 8 CloneFeature 54

PropagateToFeature 7
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situations where developers realized a feature annotation was missing, and
retroactively added it. There are two operators that rely on explicitly recorded
feature-related metadata; CloneFeature and PropagateToFeature. If fea-
tures are not recorded, each operator needs extra manual effort for feature
location. We therefore count the number of times a feature mapping was
added (MapAssetToFeature) before or after the above-mentioned operators
(CloneFeature and PropagateToFeature) were invoked. Additionally, we also
look for the number of times a feature itself was added (AddFeature) before
or after the operators CloneFeature and PropagateToFeature were invoked.
We find 14 invocations of MapAssetToFeature relevant to CloneFeature, and
none relevant to PropagateToFeature. For AddFeature, we find 25 invoca-
tions, yielding 39 invocations in total for Cmiss.

Last, we measure the saved costs. To this end, we account for the times
virtual platform bypasses manual clone detection (Cclone) and feature location
(Cloc) due to explicitly recorded metadata. For measuring Cclone, we count
the number of times developers did not need to locate clones of assets for
propagating changes in them (PropagateToAsset). We find 8 such invocations.
To count the actual cost, we multiply the number of invocations with the amount
of time developers take to manually perform clone detection (15 minutes as
explained in Section 1.2). For measuring Cloc, we count operators that require
feature location, which is done automatically by virtual platform (resulting
in cost savings). The operators CloneFeature and PropagateToFeature rely
on explicitly recorded feature mappings. We assume that each invocation of
these operators results in saved cost in terms of time spent in locating one
feature (15 minutes as explained in Section 1.2). We count 54 invocations of
CloneFeature and 7 relevant invocations of PropagateToFeature, leading to
a total value of 61.
Break-even point. We conduct a break-even point analysis since in our
evaluation, virtual platform is not used alongside development, but rather
to simulate development afterwards. We calculate the benefit by using the
following formula:

Btotal = saved costs - added costs
Btotal = (Cclone + Cloc) - (Cfeat + Cmiss)

Based on our analysis, if developers take 54 seconds to record one feature
(or feature mapping), they reach a break-even point; when the saved costs
and added costs even each other out. In reality, developers take significantly
less than 54 seconds to add (and map) features, as they are familiar with the
features they are developing. The only effort required is the cognitive process
of choosing a meaningful feature name when adding a feature. In case of
feature mappings, given that the features are already known (and added
in the Feature Model) and the notation for specifying feature mappings is
established, the effort is expected to be even less than that of adding features.
We envision higher accuracy if virtual platform is used in parallel to development.
Additionally, for larger-scale systems with many features and frequent cloning,
the benefits are expected to be exponential.

RQ5: Can features be leveraged to facilitate model comprehension?
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Table 1.5: Correctness scores for experiment 1 (class diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.7/2 2.0/2 0.6 1.5/2 2.0/2 0.7 1.7/2 2.0/2 0.6
2: Comparing two variants 1.5/2 1.5/2 0.6 1.5/2 1.5/2 0.6 1.6/2 1.5/2 0.4
3: Comparing all variants 1.6/2 2.0/2 0.7 1.2/2 1.0/2 0.7 1.5/2 2.0/2 0.7
Total 4.8/6 5.0/6 1.3 4.2/6 4.5/6 1.4 4.9/6 5.0/6 1.1

Mdn: Median, St.dev: Standard deviation

Table 1.6: Correctness scores for experiment 2 (state machine diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.2/2 1.0/2 0.8 1.2/2 1.0/2 0.7 - - -
2: Comparing two variants 1.0/2 1.0/2 0.8 1.1/2 1.0/2 0.8 - - -
3: Comparing all variants 1.2/2 1.0/2 0.8 0.8/2 1.0/2 0.7 - - -
Total 3.4/6 3.0/6 2.0 3.1/6 3.0/6 1.8 - - -

Mdn: Median, St.dev: Standard deviation

Table 1.7: Correctness scores for experiment 3 (activity diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn St.dev Mean Mdn St.dev
1: Tracing elements to variants 1.4/2 1.5/2 0.6 1.2/2 1.0/2 0.6 - - -
2: Comparing two variants 1.4/2 1.5/2 0.6 0.9/2 1.0/2 0.7 - - -
3: Comparing all variants 1.4/2 1.5/2 0.5 0.9/2 1.0/2 0.6 - - -
Total 4.2/6 4.0/6 1.0 3.0/6 3.0/6 1.3 - - -

Mdn: Median, St.dev: Standard deviation

Following, we share the results of our analysis from the three experiments.
For brevity and conciseness, we provide a high-level overview of the results in
this report. For a detailed insight into the results of hypothesis testing and
effect-size analysis [41], please refer to Chapter 4. Table 1.5 - 1.7 represent the
correctness scores for the three types of tasks using each featured variability
mechanism in each experiment. For deeper insight, in addition to the average
scores, we represent the median (Mdn) scores and standard deviation (Std.
dev) observed in the scores as well. We discuss the results on two dimensions:
correctness and time taken.

Correctness. In experiment 1 (Table 1.5), annotative and enumerative mech-
anisms lead to similar correctness scores (no significant differences), whereas
compositional mechanism leads to lowest scores in all task types. Hypothesis
testing reveals a significant difference between compositional and other two
mechanisms for task type 1 and 3. In experiment 2 (Table 1.6), for task type 1
and 2, there are no significant differences between the correctness scores using
annotative and compositional mechanisms. We observe a significant difference
for task type 3, the most complex task type. A possible rationale for the lower
score in task type 3 using compositional mechanism is that while the other task
types can be answered without an in-depth understanding of how composition
works, task type 3 requires deeper knowledge. Using compositional mechanism
requires the extra cognitive step of composing various model fragments to form
the complete model, which can be challenging and inefficient. In experiment
3 (Table 1.7), we find more notable differences. Participants using annotative
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Table 1.8: Completion times (in minutes) of our participants for all three
experiments.

Exp Mechanism Min Mn Mdn Max St.dev
1 Annotative 3 6.6 6 15 2.6

Compositional 4 8.8 8 17 3.2
Enumerative 3 7.1 6 19 3.1

2 Annotative 3 10.4 10 23 4.3
Compositional 5 11.3 11 22 3.7

3 Annotative 3 14.2 14 28 6.1
Compositional 8 16.8 14 32 6.7

Mn: Mean, Mdn: Median, St.dev: Standard deviation

mechanism outperform the others for all task types. Hypothesis testing also
reveals significant differences for all task types. On average, the correctness
score for participants using annotative mechanism is 1.3 times higher than the
correctness score using compositional mechanism.

Completion Time. Table 1.8 represents an overview of the times taken using
each variability mechanism in all three experiments. For each experiment,
we show the minimum (Min) and maximum (Max) time taken, the average
time (Mn), the median value of completion time (Mdn), and the observed
standard deviation (Std. dev). Participants are fastest in Experiment 1
(see median times), possibly due to the tasks being simpler for all task types.
Participants using annotative mechanism solve the tasks slightly faster than
the ones using enumerative mechanism, the difference is however not signifi-
cant. Compositional mechanism leads to the slowest completion times, with
significant differences in comparison to both annotative and enumerative mech-
anisms. For Experiment 2, participants spend almost equal time using both
mechanisms, with no significant differences revealed in hypothesis testing. This
is consistent with the correctness scores, where we find no statistical differences
for the first two task types. For Experiment 3, participants using annota-
tive mechanism are 2.6 minutes faster on average than participants using the
compositional mechanism. Hypothesis testing reveals that the difference is not
significant. In summary however, annotative mechanism leads to the fastest
average completion times in all three experiments.

Subjective perceptions. We ask participants about the ease of understand-
ing each mechanism, and the difficulty they experience with each task type
using all variability mechanisms. Table 1.9 shows the participant ratings for
understandability and difficulty using all variability mechanisms in each ex-
periment. In Experiment 1, enumerative mechanism is rated the easiest
to understand (2.2 mean rating), followed by annotative (2.6) and composi-
tional (3.2) mechanisms. The analysis of understandability ratings between
all mechanisms leads to significant differences. Participants experience similar
difficulty using both annotative and enumerative mechanisms; with no statisti-
cal differences identified in hypothesis testing. Compositional mechanism is
rated the most difficult in all task types. The analysis for all comparisons with
compositional mechanism reveal significant differences. In Experiment 2,
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Table 1.9: Participant perceptions (understandability and difficulty ratings)
for Experiment 1, 2, and 3.

Annotative Compositional Enumerative
Exp Quality Mean Mdn St.dev Mean Mdn St.dev Mean Mdn St.dev
1 Understandability 2.6/5 3/5 1.1 3.2/5 3/5 1.1 2.2/5 2/5 1.2

Difficulty Task type 1 2.3/5 2/5 1.2 3.1/5 3/5 1.2 2.3/5 2/5 1.1
Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 2.2/5 2/5 1.2
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 2.5/5 2/5 1.1

2 Understandability 3.0/5 3/5 1.0 2.9/5 3/5 0.9 - - -
Difficulty Task type 1 2.6/5 3/5 1.0 2.6/5 3/5 1.0 - - -

Task type 2 2.6/5 3/5 0.9 2.6/5 2/5 0.9 - - -
Task type 3 2.9/5 3/5 1.0 2.9/5 3/5 1.0 - - -

3 Understandability 2.7/5 2/5 1.3 3.4/5 3/5 1.1 - - -
Difficulty Task type 1 2.3/5 2/5 1.0 3.2/5 3/5 0.9 - - -

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 - - -
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 - - -

1 Scores on a 5-point Likert scale with 1: very easy, 5: very hard to understand.
2 Scores on a 5-point Likert scale with 1: very easy, 5: very difficult to perform task.
Mdn: Median, St.dev: Standard deviation

in-line with the observations for correctness and completion times, participants
experience similar level of difficulty using both annotative and compositional
mechanisms. The understandability ratings are also similar. No significant
differences are found in hypothesis testing. In Experiment 3, annotative
mechanism is rated to be more understandable (2.7 vs 3.4) and less difficult to
deal with (2.7, 2.3, 2.5 vs. 3.2, 3.0, 3.2) for all three task types in comparison
to the compositional mechanism. The analysis of understandability ratings and
the difficulty ratings for task type 2 reveals significant differences in hypothesis
testing.

Table 1.10: Distribution of preferred mechanisms per task type

Task type Ann. Com. Enu. None
Experiment 1
1 Understanding variants 50.7% 13.7% 34.2% 1.4%
2 Comparing two variants 26.0% 15.1% 57.5% 1.4%
3 Comparing all variants 43.8% 12.3% 42.5% 1.4%
Experiment 2
1 Understanding variants 58.6% 33.8% - 7.6%
2 Comparing two variants 52.3% 41.5% - 6.2%
3 Comparing all variants 46.2% 41.5% - 12.3%
Experiment 3
1 Understanding variants 78.3% 8.7% - 13.0%
2 Comparing two variants 78.3% 21.7% - 0%
3 Comparing all variants 78.3% 17.4% - 4.3%

Ann: Annotative Variability Com: Compositional Variability Enu: Enumer-
ative Variability

Participant Preferences. As explained above, we ask participants for their
preferred mechanism for each task type (S5, S6, Section 1.2). Table 1.10 shows
the distribution of participant preferences for all task types. For Experiment
1, we find notable differences in the participant preferences. Majority of
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the participants prefer annotative mechanism for task type 1 (50.7%) and
3 (43%). Enumerative mechanism is favored by participants for task type
2 (57.5%), possibly because it shows a side-by-side view of variants, making
it easier to compare them. Compositional mechanism is the least preferred
mechanism (13.7%, 15.1%, 12.3%). For Experiment 2, participants clearly
prefer annotative mechanism (58.6%, 52.3%, 46.2%) over the compositional
mechanism (33.8%, 41.5%, 41.5%). The differences are more pronounced for
task type 1 and 2, possibly because the consolidated view facilitates the reader to
understand and compare variants. For Experiment 3, the differences are more
notable. Majority of the participants prefer annotative mechanism (78.43%,
78.43%, 78.43%) over the compositional mechanism (8.7%, 21.7%, 17.4%).
These percentages align well with the correctness scores and completion times,
where participants perform better and faster for all task types in Experiment 3.
Qualitative Responses. After asking participants to describe their intuition
for preferring their chosen mechanism in S5, we manually assess the responses
and use inductive coding to tag the participants’ comments. We observe that
participants prefer a mechanism based on the conciseness it offers, the ease
of understandability, the degree of familiarity, scalability, and efficiency. Par-
ticipants also find labels and colors helpful. For behavioral diagrams (state
machine diagrams and activity diagrams), participants prefer mechanisms that
offer a better flow (annotative and enumerative). As recommendations, we
suggest practitioners to provide flexible, task-oriented solutions. Additionally,
for smaller systems with fewer features, we advise using the simplest repre-
sentation: the enumerative mechanism. We also urge developers to use labels
and colors to improve readability of the models and assist developers in their
routine tasks.
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1.5 Conclusion and Future Work
In this work, we present virtual platform—a framework for incremental mi-
gration of variants realized using clone&own into a fully integrated platform
using explicitly recorded metadata. We determine that software product-line
engineering is not always adopted proactively (Paper B). Instead, organizations
often choose to transition to an SPL-based architecture only when they face
reuse and maintenance overheads as a result of using clone&own. Consequently,
they migrate to an SPL-based architecture either reactively or extractively.
Researchers have presented a few migration frameworks (Paper A) for reac-
tive and extractive adoption, however, those frameworks significantly rely on
heuristics and developer intervention. As a result, they are limited in accuracy
and completeness, rendering them less effective and error-prone in practice.
Contrary to those frameworks, our framework relies on explicitly recorded
metadata for enabling automated change propagation and SPL-migration. We
prescribe proactive logging of features and feature mappings in assets. Virtual
platform is language-independent, and can be incorporated in multiple ways.
The evaluation of our framework features a simulation study of the development
of a real-world project, and the results imply that using virtual platform saves
the costs of clone detection and feature location. We also study the potential
of features beyond code-level; investigating the impact of using different fea-
ture representations (variability mechanisms) on the the comprehensibility of
common model-related tasks. Our results show that variability mechanisms
have different impacts on model comprehensibility depending on the nature of
the task and the type of model.

As part of our ongoing work, we aim to conduct a user-study to investigate
the accuracy and usefulness of using the virtual platform in real-time. To this
end, we are building plugin-support for our framework on top of HAnS (Helping
Annotate Software) [42], an IntelliJ IDE plugin that supports developers to
efficiently record features as they code. Additionally, in an effort to standardize
the notation for adding features in a language-independent manner, we combine
the existing approaches for specifying embedded feature annotations and provide
a unified notation, as well as a plugin for extracting annotations specified in
our notation (Paper a). Lastly, we aim to incorporate safe evolution [43]
operators for product-line evolution in the virtual platform. While virtual
platform provides basic support for verifying the validity of the structures
(Well-formedness criteria), additional support is needed for more complex
operations (e.g., splitting an asset or making a feature optional).
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Abstract
Customization is a general trend in software engineering, demanding systems
that support variable stakeholder requirements. Two opposing strategies are
commonly used to create variants: software clone&own and software configu-
ration with an integrated platform. Organizations often start with the former,
which is cheap, agile, and supports quick innovation, but does not scale. The
latter scales by establishing an integrated platform that shares software assets
between variants, but requires high up-front investments or risky migration
processes. So, could we have a method that allows an easy transition or even
combine the benefits of both strategies? We propose a method and tool that sup-
ports a truly incremental development of variant-rich systems, exploiting a spec-
trum between both opposing strategies. We design, formalize, and prototype the
variability-management framework virtual platform. It bridges clone&own and
platform-oriented development. Relying on programming-language-independent
conceptual structures representing software assets, it offers operators for engi-
neering and evolving a system, comprising: traditional, asset-oriented operators
and novel, feature-oriented operators for incrementally adopting concepts of an
integrated platform. The operators record meta-data that is exploited by other
operators to support the transition. Among others, they eliminate expensive
feature-location effort or the need to trace clones. Our evaluation simulates the
evolution of a real-world, clone-based system, measuring its costs and benefits.
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2.1 Introduction

Software systems often need to exist in many different variants. Organizations
create variants to adapt systems to varying stakeholder requirements—for
instance, to address a variety of market segments, runtime environments or
different hardware. Creating variants allows organizations to experiment with
new ideas and to test them on the market, which easily leads to a portfolio
of system variants that needs to be maintained.

Two opposing strategies exist for engineering variants. A convenient and
frequent strategy is clone&own [3, 44–47], where developers create one system
and then clone and adapt it to the new requirements. This strategy is well-
supported by current version-control systems and tools, such as GIT, relying
on their forking, branching, merging, and pull request facilities. The frequent
adoption of clone&own [3,46,48] is usually attributed to its inexpensiveness,
flexibility, and provided developer independence. However, clone&own does not
scale with the number of variants and then imposes substantial maintenance
overheads. A scalable strategy is to integrate the cloned variants into a
configurable and integrated platform, by adopting platform-oriented engineering
methods, such as software product line engineering (SPLE) [2, 15, 49–51]. Indi-
vidual variants are then derived by configuring the platform. This strategy is
typically advocated for systems with many variants, such as software product
lines (e.g., automotive/avionics control systems and industrial automation
systems) or highly configurable systems (e.g., the Linux kernel). This strategy
scales, but is often difficult to adopt and requires substantial up-front invest-
ments, since variability concepts (e.g., a feature model [52,53], feature-to-asset
traceability [54,55], a configuration tool [56]) need to be introduced and assets
made reusable or configurable. In practice, organizations often start with
clone&own and later face the need to migrate to a platform in a risky and costly
process [4, 48, 57, 58], recovering meta-data that was never recorded during
clone&own, such as features and their locations in software assets [53,59].

Over the last decades, researchers focused on heuristic techniques to recover
information from legacy codebases, including feature identification [60–62],
feature location [63–65], variability mining [66,67], and clone-detection tech-
niques [68,69]. Unfortunately, such techniques are usually not accurate enough
to be applicable in practice, and also require substantial effort to set them
up and provide with manual input (e.g., specific program entry points for
feature location techniques [37]). As we will show, existing platform migration
techniques either heavily rely on such heuristics or have only been formulated
as abstract frameworks so far. Moreover, they tend to prescribe non-iterative,
waterfall-like migrations, making it risky and expensive.

We take a different route and present a method to continuously record the
relevant meta-data already during clone&own, and to incrementally transition
towards a more scalable platform-oriented strategy, exploiting the meta-data
recorded. We design, formalize, and prototype a lightweight method called
virtual platform, generalizing clone-management and product-line migration
frameworks. We exploit a spectrum between the two extremes of ad hoc
clone&own and fully integrated platform, supporting both kinds of develop-
ment. As such, the virtual platform bridges clone&own and platform-oriented
development (SPLE). Based on the number of variants, organizations can
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decide to use only a subset of all the variability-implementation concepts that
are typically required for an integrated platform. This allows organizations to
be flexible and innovative by starting with clone&own and then incrementally
adopting the variability-implementation concepts necessary to scale the develop-
ment, as indicated by industrial practices for product-line adoption [51,70–72].
This realizes an incremental adoption of platforms with incremental benefits
for incremental investment. Furthermore, it also allows to use clone&own
even when a platform is already established, to support a more agile develop-
ment with cloning and quickly prototyping new variants. The framework is
lightweight, since it avoids upfront investments and can be easily integrated with
version-control systems or IDEs, where its operators can be mapped to existing
activities, avoiding extra effort. This way, our new (feature-oriented) operators
are cheap to invoke during development, when the feature knowledge is still
fresh in the developer’s mind, allowing to record meta-data in a lightweight way.

The term “virtual platform” was introduced earlier in a short paper [1]
discussing an incremental migration of clone-based variants into a platform. It
introduced governance levels reflecting a spectrum between the two extremes ad
hoc clone&own and fully integrated platform. Higher levels involve a super-set
of the variability concepts of lower levels. Advancing a level—e.g., when the
number of variants increases—supports an incremental adoption of variability
concepts, avoiding the costly and risky “big bang” migration [57] often leading
to re-engineering efforts over years [4, 73]. This early, high-level description
of a strategy to incrementally scale the management of variants paved the way
for this paper. One of our core contributions are conceptual structures and
formalized operators for the virtual platform, which are related to ordinary
code editing, but also record and exploit meta-data. While we prototypically
implemented the virtual platform on top of an ordinary file system, our work
gives rise to realize it upon a database (to enhance scalability), within an
integrated development environment (IDE), or as a command-line tool. The
meta-data could also easily be saved directly in the software-assets using
lightweight embedded annotations (as our prototype does). We evaluated our
prototype on a reasonably sized system (57.4k lines of text, 4 variants), where
we simulated evolution activities that are typical of practical software systems.
Our prototype was able to fully simulate and manage all considered activities.
From a cost-benefit analysis, we conclude that the virtual platform offers
significant cost savings during inevitable evolution and maintenance activities.

In summary, we contribute:

• a mechanization of the so-far abstract idea of operators mediating
between clone&own and an integrated platform, defined upon conceptual,
language-independent structures,

• a prototype of the virtual platform [74] in Scala,

• a comparative evaluation of the virtual platform against five re-
lated frameworks, based on their ability to support common evolution
scenarios,

• a cost-and-benefit evaluation of the virtual platform, based on
a simulation study featuring the revision history of a real variant-rich
open-source system, and
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• an online appendix [75] with a technical report about our operators,
additional examples, and evaluation data.

2.2 Motivation and Overview
We provide a core scenario of seamless variability management as a running
example and an overview of the virtual platform. While rooted in a deliber-
ately simple application domain, the example is inspired by documented real
product-line migration scenarios [58, 76]. It includes tasks that are tedious and
error-prone in practice (e.g., bugfix propagation along branches).

2.2.1 Motivating Running Example
We now discuss relevant problems of managing variants inspired by actual
industrial practices, also presenting our solution in the virtual platform and
how a developer would use the virtual platform. Specifically, developers in-
teract with the virtual platform by invoking its provided operators, either via
the command-line or an integration with an IDE or version-control system
provided by a tool vendor (see Section 2.2.2 for details). While the traditional,
asset-oriented operators can run transparently in the background, only the
feature-oriented operators require an extra user interaction for invoking the
operators. The operator are described in detail in Section 2.5.

Consider the scenario of an organization developing and evolving variants
of a calculator tool. Our organization starts creating a project of a simple cal-
culator called BasicCalculator (BC) that supports basic arithmetics: addition,
subtraction, multiplication, and division. Soon, based on customer requests,
the organization needs to create variants of BC, which have substantial com-
monalities, but also differ in functional aspects.

Figure 2.1 illustrates the two opposing strategies (cf. Section 2.1) for realiz-
ing the variants. Specifically, it shows two alternate realizations of a variant of
BasicCalculator with a small display, requiring the rounding of results (feature
SmallDisplay). To the left, the code is cloned and adapted (one line changed in
the branch BC+SmallDisplay); to the right, a configuration option represents
the change in a common codebase (integrated platform). The changes are usu-
ally more complex (e.g., features can be highly scattered [27,77]), as well as the
representation of variability in the integrated platform. We also need more vari-
ability concepts, among others, features [78–80], code-level configuration [15],
feature-to-asset traceability [54,55,81], a feature model (a hierarchical structure
with features and their dependencies) [52,53], a configurable build system [15],
and a configurator tool [56, 82, 83]. This example shows that, when it becomes
necessary to migrate from clone&own to an integrated platform, important
information needs to be recovered, specifically: that a feature SmallDisplay
was implemented and where its code is located. Recovering such information in
systems with many features and sizable codebases is laborious, time-consuming,
and inaccurate at best. Also, migration can be invasive, risky, and costly,
especially hard to achieve under market pressure [4, 57,59,73,84,85].

The virtual platform exploits a spectrum between the two extremes and
supports an incremental transition as shown in Figure 2.2. It adapts the
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governance levels from prior work [1], which also explains the benefits of each
transition step in detail.

Let us further discuss the evolution of our calculator using ad hoc clone&own.
After the BasicCalculator and a variant of it for small displays (BC+SmallDisplay)
is created, customers request a ScientificCalculator, which should solve com-
plex inputs, such as expressions, factorials, and logarithms. Our organization
decides to copy and adapt the codebase from BasicCalculator, since there is
no need for a ScientificCalculator with small display support; otherwise we
would already have four cloned variants. As such, cloning provides a baseline
minimizing the duplication of efforts. Soon after, the organization needs to
create another variant called GraphingCalculator, for which it selects the most
similar variant, ScientificCalculator, and clones and adapts it. It also notices
that some functionality in BasicCalculator had in the meantime received a bug
fix, which the organization also applies to GraphingCalculator, now realizing
that also ScientificCalculator needs to receive the bug fix.
Problem 1: Where are my clones? With many more variants developed
using ad hoc clone&own, developers lose overview. If a change (e.g., a bug fix)
is to be replicated, developers need to recover which project was cloned from
which, in the worst case requiring a clone-detection technique. Also, the added
effort in synchronizing cloned implementations is likely to surpass the initial
benefit of reuse via cloning.
Solution 1: Clone&own with provenance. (Figure 2.2, 1st level). Our
solution is to record traceability information about the cloned variants’ prove-
nance, which eases tracking and synchronizing clones. It also bypasses the
inaccuracies associated with clone detection, making tasks such as change
propagation more effective. The virtual platform records clone traces among
assets in the background, without requiring extra effort from the developer,
but who can query it for obtaining the clones of an asset.

To this end, the developer invokes the CloneAsset operator provided by the
virtual platform. As a result, a trace between the original asset and its clone is
stored in a trace database, which can be queried at any time by the developer
to retrieve clones of an asset quickly and accurately. The developer can later
propagate changes between the original asset and its clone (PropagateToAsset)
or integrate changes between the assets (either manually or using a tool) by
exploiting the continuously recorded meta-data.

function divide(a, b){
var result = 0
result = a/b
return result.toFixed(2)

}

function divide(a,b){
var result = 0
result = a/b
return result

}

function divide(a,b){ 
var result = 0
result = a/b
#ifdef SmallDisplay
return result.toFixed(2)

#else
return result;

#endif
}

main branch

BC+SmallDisplay branch

basic

advanced

^

ad hoc clone & own fully integrated platform

main branch
feature
model

SmallDisplay

Figure 2.1: Ad hoc clone&own vs. fully integrated platform illustrated for two
variants: the BasicCalculator and a variant with only a small display
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Figure 2.2: Spectrum between the extremes ad hoc clone&own and a fully
integrated platform (see Figure 2.1 for both), illustrated with cloned variants:
BasicCalculator (BC), ScientificCalculator (SC), GraphingCalculator (GC),
and FinancialCalculator (FC). The virtual platform provides operators to
transition along this spectrum (e.g., to incrementally adopt a platform).

Problem 2: What is in my cloned variants? With more variants, despite
provenance information, the problem arises that developers lose overview. To
understand what is in the variants, we need a more abstract representation of
assets. For cloning, this is also necessary to select an existing variant closest
to the desired one in terms of the desired features. Furthermore, our organi-
zation finds the feature exponent developed in ScientificCalculator to be useful
for other cloned variants. To clone it, the developer needs to know which
implementation assets belong to the feature.
Solution 2: Clone&own with features. (Figure 2.2, 2nd level). Adding
feature meta-data adds perspective and allows functional decomposition. It
also allows representing assets in terms of features, to reuse and clone features
across projects. Lastly, including feature-related information allows going past
the efforts and inaccuracies of feature location (recovering where a feature
is implemented), making feature reuse and maintenance more effective. The
virtual platform offers operators to add features conveniently (at the same time
annotating assets).

The developer maps assets to features by using the operator MapAssetToFeature.
She can later query the virtual platform to find the location of the features using
the operator getMappedAssets, and also to clone assets along with feature
mappings (CloneAsset).
Problem 3: How to reduce redundancy? Despite features, which help
maintaining variants, substantial redundancy exists.
Solution 3: Clone&own with configuration. (Figure 2.2, 3rd level). To
reduce it, our organization starts to incorporate configuration mechanisms.
These allow to enable or disable features, such as SmallDisplay, which control
variation points. This reduces redundancy and maximizes reuse. So, the orga-
nization maintains a list of features and uses a configurator tool. The virtual
platform supports this solution with a simple operator.

Over time, the developer adds features by invoking the operator AddFeature.
She can map the assets to features using MapAssetToFeature and clone
features using CloneFeature. She can also make features optional by in-
voking MakeFeatureOptional. Variants can be configured by cloning the
repository (CloneAsset) with assets mapped to only the selected features
(getMappedAssets).
Problem 4: How to keep an overview over the features? The more
features and variation points the organization incorporates, the more it loses
overview over the features and their relationships, including feature dependen-
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cies (accidentally ignoring those can lead to invalid variants). Maintaining such
information would also help scoping variants.
Solution 4: Clone&own with a feature model. (Figure 2.2, 4th level).
Our organization introduces a feature model, which captures features and their
constraints, also as input to the configurator. Feature models are very intuitive
and simple models, which provide deep insights without much additional tool
support. They also foster communication among stakeholders and validate
feature configurations. With this solution, consistency between features and
clones is high, since developers can also exploit the clone traces and use the
virtual platform for feature-based change propagation.

The developer adds a feature model to the repository with the operator
AddFeatureModelToAsset. She can change the feature model to add and re-
move features at any time. She can map assets to features from the feature
model (MapAssetToFeature), clone features across projects (CloneFeature),
and propagate changes in features to their clones (PropagateToFeature).
Problem 5: How to keep consistency, improve quality, and further
reduce redundancy? Our organization needs to further scale the develop-
ment with an ever-increasing number of variants (due to rapidly changing
market needs), while it has problems maintaining consistency and propagating
changes, despite some redundancy already being reduced with Solution 3. It
is also likely that eventually, there will be some projects with a configuration
mechanism and some without.
Solution 5: Integrated platform with clone&own. (Figure 2.2, 5th level).
Our organization integrates the projects into a consolidated platform. Luckily it
can exploit meta-data about clone traceability (provenance) and features with
their locations in assets. The virtual platform provides support for this kind
of information, easing the integration of cloned variants into a platform. Of
course, developers might have forgotten to record all that information, then it is
natural to recover it. As long as some information is recorded, a benefit arises in
terms of saved feature identification, feature location and clone-detection effort.

2.2.2 Virtual Platform Overview
Our goal is to combine the benefits of the two opposing strategies clone&own
and integrated platform, exploiting a spectrum between both and allowing
incremental transition as in our running example (Section 2.2.1). To this
end, we designed a framework called virtual platform comprising conceptual
structures upon which operators modifying the structures are executed by
developers. The conceptual structures abstractly represent software assets at
various levels of granularity—from whole repositories to blocks of code—and
can be adapted to specific asset languages (explained shortly in Section 2.4).
In addition, they maintain information about variability, specifically feature
information, feature-to-asset mappings, and clone traces. The virtual platform
extends other development tools, specifically, IDEs and version control sys-
tems. On top of these, which are concerned with the management of assets,
the virtual platform provides dedicated functionality for managing features.
Operators can be either traditional, meaning they are concerned with asset
management, or feature-oriented, meaning they are devoted to features and
their locations in assets. In contrast to traditional development workflows, the
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use of dedicated feature-oriented operators incurs a certain cost, but promises
benefits to developers. In Section 2.6, we study this trade-off.

Figure 2.3 illustrates interactions and internal workings of the virtual plat-
form. Developers can interact with it directly or indirectly. The former is
enabled via extensions and hooks of existing tools. Specifically, traditional
IDE commands such as “Create File” and version-control commands such as
“Add File” are linked to the traditional, asset-oriented operators of the virtual
platform (e.g., “Create Asset”) and do not impose additional effort for develop-
ers. Feature-oriented operators can be implemented by new, feature-oriented
IDE commands (e.g., “Create Feature”). Direct interaction is enabled via a
command-line interface, where developers can call feature-oriented operations
such as “Create Feature” directly.

2.3 Methodology
We followed a design-science-like strategy to iteratively define the conceptual
structures, the operators, and to evaluate them using unit tests representing
common scenarios. Specifically, for the structures and operators, we aimed at
maximizing the support for different scenarios from the literature and our own
professional experience. The main challenge was to define adequate structures
that, while programming-language-independent, can be mapped to many of
the different asset types of real-world software projects, as well as to design
the operators to be able to operate on the structures.
Initial Design.. We started by analyzing clone-management and platform-
migration frameworks proposed in the literature, from which we extracted
development activities that should be supported by the virtual platform. We
also had a series of discussions among the authors, one from industry and four
from academia. Two authors have over ten years of research experience in
variability management and SPLE. We also created ad hoc examples in the
discussion meetings. From these sources, we identified an initial set of data
structures and operators, and implemented them in Scala.

Specifically, from the literature, we identified five relevant works on clone
management and product-line migration using our expert knowledge. Rubin
et al.’s product-line migration framework [5, 10] offers operators that support
the narrative that a mechanization—i.e., an operator-based perspective—leads
to more efficient implementation and support. Fischer et al.’s [6] framework
and tool ECCO relies on heuristics to identify commonalities and allows
composing new product variants using reusable assets. Martinez et al.’s tool
BUT4Reuse [86] is an extraction-based technique for product-line migration,
including support for feature-model synthesis. Pfofe et al.’s tool VariantSync [8]
supports clone-management by easing the synchronization of assets among
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Figure 2.3: Overview (dashed boxes represent optional parts)
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Figure 2.4: Conceptual structures: asset tree, features, mappings, and clone
traces

cloned variants. Montalvillo et al.’s operators and branching models for clone
management in version-control systems [9] allow isolated variant development
with change propagation, but without using the notion of features, as opposed
to the other frameworks. For brevity, we will present the identified activities
only at the end in Section 2.6.1. Detailed descriptions are in our online
appendix [75].
Continuous Evaluation.. Once every operator was implemented, we tested it
with unit tests based on scenarios from the literature and our own experiences.
We ensured that the operators assured the well-formedness of the conceptual
structures by prohibiting illegal actions, e.g., limiting asset addition to scopes
that can host an asset of the given type.
Final Qualitative and Quantitative Evaluation.. We evaluated the vir-
tual platform qualitatively by comparing it against the existing frameworks
discussed above, from which we had extracted activities supported by techniques
for supporting clone&own or the migration of cloned variants to an integrated
platform. We evaluated the virtual platform quantitatively in a cost-benefit
calculation based on simulating the development of a real open-source system
developed using clone&own.

2.4 Conceptual Structures
The virtual platform’s conceptual structures form the basis for its operators,
which we formulated as functions with side effects (in-place transformations)
that modify the structures. Figure 2.4 illustrates the main structures and
their relationships. We define them abstractly, but also provide a concrete
implementation for handling assets within a file system and special support
for textual files that follow a hierarchical structure (e.g., with nested classes,
methods or code blocks; cf. Section 2.6).
Asset Tree (AT ). is our main conceptual structure and abstractly represents
a hierarchy of assets, such as the folder hierarchy, but also the hierarchy within
source files. In Figure 2.4, the AT is represented implicitly in the form of
assets with their sub-asset relationships. The idea of AT is inspired by feature
structure trees (FSTs, [87]), which represent source files. In our case, we
define the AT as a hierarchical, non-cyclic tree structure of nodes. It has a
synthetic root node (root) and then represents a hierarchy that can start with
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repositories as the top-level nodes, followed by folders and files, and can then go
into the nesting structure of elements of hierarchical files. Every node represents
an Asset related to the project, such as a folder, a file (e.g., image, source file,
model or requirements document), or text. Every Asset has a name, a type
(AssetType), and a version (a simple means to identify changes). An asset can
have any number of sub-assets. It also owns a parent pointer p, which should
define a tree, with a virtual root node (Asset of type VPRootType) denoted as
root. The AssetType is used to capture the role of the Asset in the project,
and can be one of the following: VPRootType, RepositoryType, FolderType,
FileType, ClassType, MethodType, and BlockType. The type VPRootType is
only used once in the AT , to specify the synthetic root node. The main purpose
of this root node is to carry a global version (we explain versioning shortly).

Traditional SPLE architectures have a feature model per project, which can
be difficult to maintain and evolve in large systems (e.g., Linux kernel [88]). We
provide a more flexible structure by including an optional feature model as part
of every Asset (see composition of feature model in Asset in Figure 2.4).
Well-Formedness Criteria. We define a partial order of valid containment
over the types of assets in a check function containable : Asset×Asset→ B that
validates the containment based on the asset types. For instance, VPRootType
can only be at the root, and a MethodType can be contained in a FileType, but
not the other way around. Operators are implemented with consideration of
well-formedness criteria, to ensure that the tree structure of AT is retained.
Features and Feature Models. A feature has a name and two Boolean
parameters: optional and incomplete. The field optional specifies whether
the feature is mandatory or optional; incomplete captures information about
the completeness of the feature’s implementation. If the feature was cloned
from another feature model scope, it is true if the new scope containing
the feature also contains all the assets to which the feature is mapped;
otherwise it is always false. Every feature has an optional parent, and any
number of sub-features. Features can have dependencies to each other. A
feature model has a root feature and a mandatory feature called Unas-
signed, which contains all features that are added to the model as a result of
asset cloning. That is, if any feature mapped to the Asset is not present
in the target feature model already, it is mounted under Unassigned(and
requires developer intervention to move it to the desired location in the model).
Asset-To-Feature Mappings., in practice, can have two semantics. They can
be simple mapping relationships, indicating that Asset realizes a feature [16].
They can also indicate variability [89], where the Asset is included in a concrete
variant if the feature is selected (interestingly, if an Asset is optional based
on a feature, then the Asset also realizes it, but not necessarily all assets
realizing a feature are optional). The SPLE community usually focused on
the variability relationship, and the feature-location community on traceability.
For the virtual platform, we unified the mechanism with which assets are
mapped to features. Specifically, an Asset has a presence condition (PC)—a
propositional formula over features. A PC allows conveniently mapping as-
sets of different granularity levels (AssetType) to entire feature expressions.
Whether this relationship to the feature represents variability or traceability
is solely determined by the feature’s optional parameter.
Versioning of Assets.. Assets (and features) have a version—an integer
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used to recognize changes in the AT (and FM), especially among cloned as-
sets. The version of the VPRootType node has a special role, which we call
“globalVersion” and which carries the most up-to-date version, to recognize
any change in the whole AT . For simplicity, we assume that any Asset out-
side the tree has a version of 0. After addition, it takes the version of the
global root (initialized with 1 and incremented after any update in the AT ).
Versions are incremented after every modification and addition or removal of
sub-assets. This simple versioning strategy is a sweet spot between two other
alternatives: First, after every change in an Asset, increment the version of
the Asset and continue updating the ancestors up to the root. This would
make the tracking of the changes easy, but change propagation expensive and
redundant. Second, keep two separate numbers, one global version, and one
local version for every asset. This solution would ease change propagation, but
yield a hard-to-understand versioning model.
Clone Traceability.. To maintain trace links between source assets and their
clones, we define an AssetTraceDatabase—essentially a list of AssetTraces
(Figure 2.4). An AssetTrace is a triplet of the source Asset, its clone, and a
version at which the source Asset was cloned. Similarly, feature traces
are used to keep track of the feature clones, and they are stored in a
FeatureTraceDatabase. A FeatureTrace is also a triplet pointing to the
source feature, its clone, and version at the time of cloning. These traces
are a core component of our contribution, and have special relevance in cloning
and change propagation for both assets and features. For brevity, we refer to
both AssetTraceDatabase and FeatureTraceDatabase as TraceDatabase in
the remainder of the paper.

2.5 Virtual Platform Operators
We now present the traditional, asset-oriented and the feature-oriented oper-
ators. Their underlying algorithms and further illustrations (supplementary
to the illustrations used here) are provided in our online appendix [75]. The
appendix also presents a number of additional convenience operators—utility
methods that efficiently traverse the trees (AT and feature model) to return
data that needs to be frequently accessed (such as assets mapped to a feature
and clones of an Asset etc).

2.5.1 Traditional/Asset-Oriented Operators
We represent conventional activities performed by developers using asset-
oriented operators. These operators allow to keep the AT in sync with the
working directory. Also, the assets act as mappable components to the features,
and allow cloning and change propagation. In what follows, we introduce the
asset-oriented operators with their parameter types, a brief description, and
sample scenarios, inspired from our calculator running example (cf. Section
2.2.1). The notation used for visualizing various scenarios is shown in Figure 2.5.
AddAsset : Asset× Asset→ B
Description: When a source Asset (S) is added in any target Asset (T ) to
a repository (e.g., a file to a folder), AddAsset creates an Asset for S and
adds it to the preexisting Asset T in the AT . Additionally, it increments the
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globalVersion, and assigns it to S and T . This implies that the most recently
changed assets are S and T . Also, it adds any feature mapped to S in T’s
feature model (typically repository feature model).
Example: Consider the BasicCalculator (BC) example. The developer adds
the implementation for the divide method in the file Operators.js, with an
annotation for the feature DIV. Consequently, the virtual platform creates
and adds the Asset divide (S) of MethodType to the Asset Operators.js (T)
of FileType, and DIV to the feature model of T . The globalVersion
(previously 3) is incremented and assigned to divide and Operators.js. Figure
2.6 illustrates the scenario.
ChangeAsset : Asset→ B
Description: Upon a change in an Asset S in the repository, ChangeAsset
increments the globalVersion of the AT and assigns it to S. Versionable
changes include renaming, addition, mapping to a feature and modification
or removal of lines.
RemoveAsset : Asset→ B
Description: If an Asset is deleted from a parent asset T , RemoveAsset removes
its corresponding Asset S in the AT , along with all its sub-assets. It increments
the globalVersion and assigns it to T . Additionally, any feature mapped to
S is also removed from the feature model of S if S the only Asset mapped
to it. This enforces that if all assets mapped to a feature are deleted, the
feature is also deleted.
MoveAsset : Asset× Asset→ B
Description: If an Asset is moved from one location to another, MoveAsset
clones the corresponding Asset S to the new target Asset T (using CloneAsset),
and removes it from the sub-assets of its previous parent (using RemoveAsset).
Thus far, the operators we presented serve two purposes: keeping the AT
synchronized with the project, and keeping track of changes through versioning.
Following, the operators serve two additional purposes: storing feature-oriented
data, and recording traceability among clones. The exploitation of these
meta-data are the essence of our framework.
MapAssetToFeature : Asset× feature→ B
Description: Upon addition of a featuremapping by a developer, MapAssetToFeature
checks if the feature exists in the feature model of the Asset. If not, it
creates a feature F (with the name used by the developer), maps it to S
(corresponding Asset in the AT ), and adds F to the Unassigned feature in
the feature model of S. If F already exists, it simply maps F to S. For

Name: Type: VersionAsset
Asset-to-feature 

mappingName: Type: VersionWith 
GlobalVersion

Feature

Trace link

Name: Type: VersionAdded asset

Name: Type: VersionModified asset

Name: Type: VersionCloned asset

name name name

namename

Added Modified Cloned

With 
GlobalVersion

Figure 2.5: Notations used in operator illustrations
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Feature Model
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Operators.js:File: 4

divide:Method:4

AT (after)

BC

DIV

Figure 2.6: Illustration of AddAsset(divide,Operators.js)
mapping, it adds F to the presencecondition of S with a logical disjunction.
To track this change, the globalVersion is incremented and assigned to S.
Example: Assume that the developer adds a method multiply to BC, with a
feature annotation for the feature MULT. MapAssetToFeature creates this
mapping in the AT . The presencecondition of the method becomes “MULT
| true”.
CloneAsset : Asset× Asset→ B
Description: CloneAsset imitates the actual clone&own strategy; when an
Asset is cloned to another location by a developer, CloneAsset creates a deep
clone of the source Asset and adds it to the target Asset in the AT , provided
it is containable. Additionally, if the cloned Asset (or its sub-assets) is mapped
to any features, they are also cloned, added to the target feature model, and
mapped to the Asset clone. The clone retains the version of the original
asset, however, since the target Asset is modified (addition of sub-asset), the
globalVersion is incremented and assigned to the target. For storing trace
links, it creates traces for both Asset and feature clones and adds them to
the TraceDatabase.
Example: Starting from Figure 2.6, the developer copies the method divide in
Arithmetic.js; a file in another project, ScientificCalculator (SC). CloneAsset
clones divide to Arithmetic.js, an Asset of FileType in SC, as well as the
mapped feature DIV in the feature model of SC. Traces for both divide
and DIV are added to the TraceDatabase. Figure 2.7 illustrates the scenario.
PropagateToAsset : Asset× Asset→ B
Description: PropagateToAsset takes two assets, checks if one is a clone of
the other, and propagates changes in source, after cloning, to its clone. To

Feature 
Model

Root:Root:7

BC:Repository:3

Operators.js:File: 4

divide:Method:4

AT (after)

SC:Repository:5

Arithmetic.js:File: 7

divide:Method:4

Feature 
Model

seq source clone versionAt

t1 divide divide 4

t2 div div 1

Trace 
Database

t1

BC

DIV

SC

DIV

t2

Figure 2.7: Illustration of CloneAsset(divide, Arithmetic.js)
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seq source clone versionAt
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Trace 
Database

t3

Figure 2.8: Illustration of PropagateToAsset(divide, divide)
determine if source was changed, it compares the version of source to its
version when it was cloned (versionAt from the TraceDatabase). If it is
ahead of the version it was cloned at, the changes are propagated to the
clone. Changes performed in the clone are retained. Propagation, like cloning,
includes added and modified sub-assets, added mappings, and renaming. After
propagation, a trace with source and clone is added to the TraceDatabase,
the versionAt of which is the version of the source. The globalVersion is
incremented and assigned to the clone.
Example: Assume that the divide method during cloning did not include the
check for division by zero. After adding the check (ChangeAsset), the divide
method in source (Operators.js) is ahead (version=8) of the divide method in
target (Arithmetic.js), with version=4. By invoking PropagateToAsset, the
changes are propagated automatically. Figure 2.8 demonstrates the scenario;
for simplicity, feature mappings are omitted.

2.5.2 Feature-Oriented Operators
The feature-oriented operators incorporate feature-related information to the
AT and enable feature reuse and maintenance.
AddFeature : feature× feature→ B
Description: When a developer adds a feature (e.g., in a text file or a database),
or an Asset mapping to a feature which does not exist in the feature model,
AddFeature creates a new feature and adds it to the feature model. It also
adds any assets mapped to the feature using AddAsset. Similar to versioning
of AddAssetin AT , AddFeature increments the globalVersion (version of
root feature) and assigns it to the added feature.
Example: Assume that the feature model for BC is a textual file, where
features are written as individual lines, and indentation is used to represent
hierarchy (Clafer syntax [90]). The developer adds a line “EXP” (exponent),
below the line “BC” (root feature, BC). AddFeature creates a corresponding
feature EXP, and adds it to the feature BC. The version of root feature is
incremented (previously 1 after adding feature DIV ) and assigned to feature
EXP. Figure 2.9 demonstrates the scenario, with the resulting versions in a
table on the right.
AddFeatureModelToAsset: Asset× feature model→ B
Description: Developers can add a feature model to an Asset in different
ways, e.g., as a file or a database. The virtual platform, upon recognizing that
a feature model is added to an asset in the repository, invokes AddFeature-
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Figure 2.9: Illustration of AddFeature(EXP, BC )
ModelToAsset. The operator then locates the Asset in the AT , creates a
feature model FM , and sets the asset’s parameter feature model to FM .
The globalVersion of the AT is incremented and assigned to the Asset which
contains FM .
Example: Consider that the feature model of BC is a separate text file, which
resides in the root folder of BC. As a result of AddFeatureModelToAsset, the
feature model (FM) will be loaded from the file and assigned to BC. All
sub-assets of BC can now be mapped to features from FM .
RemoveFeature : feature→ B
Description: When a feature is removed by a developer from a repository,
RemoveFeature locates the feature in the feature model, un-maps it from
all assets it maps to, and removes the feature along with all its sub-features.
Additionally, any asset mapped to only the removed feature is also removed
by the operator. The operator increments the globalVersion of the FM and
assigns it to the parent feature (before removal).
MoveFeature : feature× feature→ B
Description: Features can be moved in the same project as a result of refac-
toring, and also across projects, when developers incorporate it into another
project. MoveFeature combines two operators; CloneFeature (explained be-
low) to clone the feature (and its mapped assets) to its new location, and
RemoveFeature to remove it from its previous location.
MakeFeatureOptional : feature→ B
Description: Often, developers want to keep a feature’s implementation in
the AT , and decide whether to include it or not at compile time, instead
of deleting it altogether. MakeFeatureOptional sets a feature’s boolean
property optional to true. By default, every feature is mandatory when
added to the feature model. This operator allows to keep the feature’s
implementation in the AT while allowing developers to activate or deactivate
the feature.
CloneFeature : feature× feature→ B
Description: Cloning a feature manually requires developers to recollect its
location in software assets. These assets can be of different types (directory,
document, code artifact, text etc). Features can be scattered and therefore
harder to locate. This is where the stored (and maintained) meta-data pays
off. CloneFeature simply invokes a convenience operator; getMappedAssets,
to retrieve all assets mapped to the feature. It then clones the feature and all
its mapped assets in the target AT and FM . The operator also stores traces
for the Asset and feature clones in the TraceDatabase. The globalVersion
of the FM is incremented and assigned to the target feature (parent of the
feature clone).
Example: After adding the feature EXP (using AddFeature), the developer



60 CHAPTER 2. PAPER A

Feature 
Model

BC

EXP

Root:Root:8

BC:Repository:5

Operators.js:File: 4

exponent:Method:4

AT (after)

Exp.txt:File:4

SC:Repository:8

Operators.js:File: 4

exponent:Method:4

Exp.txt:File:5Operators.js:File: 4 Exp.txt:File:5

Feature 
Model

SC

EXP

t2

t3 t4t1 (versionAt = 1)

Figure 2.10: Illustration of CloneFeature(EXP, SC )
added two assets in feature BC, and later mapped them to feature EXP. The
assets are a method “exponent” and a textual file “exp.txt” with documentation
of exponent. The developer now wants to reuse feature EXP in SC. To clone
the feature, she invokes CloneFeature, which clones the feature EXP and its
mapped assets to SC. Additionally, traces for the feature and asset clones are
added to the TraceDatabase. This example is illustrated in Figure 2.10. Note
that even though Operators.js was not cloned, the virtual platform created a
clone, as the method exponent could not be added directly to the repository.
This is referred to as tree slicing, which the virtual platform adopts to ensure
that the well-formedness of the AT is maintained.
PropagateToFeature : feature× feature→ B
Description: PropagateToFeature replicates the changes in the feature (e.g.,
renaming, adding or removing sub-features) to either selected, or all of its clones.
For checking if propagation is valid and necessary, it checks two conditions,
based on the TraceDatabase. First, if one of the features provided is a clone of
the other. Second, if the feature was modified after cloning (current version
> versionAt). After propagating changes, it creates new traces between the
source and newly modified targets (both feature and Asset), and adds them
to the TraceDatabase.

2.6 Prototyping and Evaluation
We prototyped and evaluated the virtual platform qualitatively and quanti-
tatively: (i) in a comparative assessment against the frameworks presented
in Section 2.3, (ii) using a simulation study based on revision histories from
clone&own-based system. Details of our implementation and evaluation are
available in the online appendix [75]. The prototype, implemented in Scala, pro-
vides an API as the main interface to execute the operators. In the production-
ready tool, this API would be usable as a command line interface or a set of
IDE commands. We used a strategic programming library (kiama) for efficient
tree traversal and rewriting. After implementing all operators, we created
test scenarios to verify the correctness. These test scenarios were developed
using domain knowledge acquired by experience, and also inspired by observing
scenarios from the case study of Clafer Web Tools. We checked correctness by
comparing the result state (AT, trace, and mappings) after operator invocations
to the expected one. We also simulated the illustrative example presented in
Section 2.2.1 by automatically realizing all the discussed scenarios.
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2.6.1 Comparative Evaluation
For comparison, we extracted activities supported by techniques for supporting
clone&own (a.k.a., clone management), or the migration of cloned variants to an
integrated platform (a.k.a., product-line migration). In total, we extracted 12 ac-
tivities which we found to be common across most, if not all, existing techniques.
We evaluated the virtual platform’s ability to support the scenario from Section
2.2 and the 12 activities of related frameworks. Details are in the appendix [75].

Table 2.1 shows whether and how an activity related to either clone man-
agement or product-line migration is supported by an existing framework, as
well as virtual platform. The activities are: feature identification (features
defined in a variant), feature location (recovering traceability between features
and assets), feature dependency management (managing constraints among fea-
tures), feature model creation (creating and evolving a feature model), storing
feature-to-asset mappings, clone detection (identifying assets which are clones
of one another), feature cloning (ability to clone features), change propagation
(replicating changes made in an asset to its clone), creation of reusable assets
(which can be used to derive variants), product derivation (ability to derive a
partial or complete product given a configuration), variant integration (merging
assets/variants by taking variability into account), and variant comparison
(comparison of assets to find commonalities and varaibilities).

In summary, among all frameworks, the virtual platform is the first one

Table 2.1: Comparison of the virtual platform with activities supported by
clone-management and product-line migration frameworks
Feature identification → abstract operator [10], specified in the begin-
ning [6, 8, 86], specified any time in virtual platform
Feature location → abstract operator [10], extracted [6, 86], internal
tagging [8], also internal tagging in virtual platform
Feature dependency management→ abstract operator [10], statically
mined [86], specified in beginning [8], specified any time in virtual platform
Feature model creation→ multiple abstract operators [10], activity [86],
specified in the beginning [8], dynamically grows in virtual platform
Feature-to-asset mapping → abstract operator [10], extracted [6,86],
specified any time [8], specified any time in virtual platform
Clone detection → textual diff tools [10], feature expression comparison
[8], git clone points to source [9], not needed in virtual platform
Feature cloning → supported by virtual platform
Change propagation → multiple abstract operators [10], variant syn-
chronization [8], using Git merge [9], automated in virtual platform
Reusable assets creation → abstract & incremental [10], reuse existing
variants [6], reusable core assets [9, 86] and features in virtual platform
Product derivation→ abstract [10], customizing after cherry-picking [9],
composition [6, 86], preprocessor-like in virtual platform
Integration→ abstract operator using meta-data [10], third party tool [8],
Git merge [9], manual or tool-based, guided by meta-data in the virtual
platform
Variant synchronization → Git dif [9], code comparison [6, 86], not
needed in virtual platform
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fully committed to recording traceability, instead of recovering it later. It auto-
matically maintains traces between cloned assets, and encourages developers
to map features to assets of all types and all granularity levels (not just code
blocks). This traceability has a cost to developers; however, at the same time,
it can significantly reduce cost when complex evolution activities are performed,
as detailed below.

The other frameworks define their involved activities either abstractly or
using heuristics (e.g., feature location). The virtual platform includes exact
specifications and implementations of operators—possible since we address a
broad range of evolution scenarios, rather than just the “big bang” scenario
of platform migration. The existing methods have not been applied to real
project revision histories as part of their evaluation, rather explain that they
support migration scenarios described before.

2.6.2 Simulation Study
We used an open-source system called Clafer Web Tools (CWT, [91]) that
was evolved using clone&own in three cloned variants (ClaferMooVisualizer,
ClaferConfigurator, ClaferIDE) towards an integrated platform (ClaferUICom-
monPlatform), including many feature clonings across the variants. We eval-
uated the virtual platform’s efficiency by simulating the evolution of CWT,
retrofitting our operators to achieve the original evolution, and studying the
costs and benefits.

We used a dataset by Ji et al. [16] that augments the original codebase with
feature information, as if it had been developed in a feature-oriented way. It
comprises a full revision history for the four sub-systems, with source code from
the original developers, and feature information manually added by researchers.
Feature information is contained in three types of artifacts: feature models,
feature-to-asset mapping files, and embedded feature annotations in code. We
provide details about the dataset in our appendix [75].
Performing the Simulation.. We retrofitted CWT’s full revision history to
our operators to extract a sequence of (high-level) operator applications that
accurately capture the changes previously expressed by the history of (low-level)
file-based commits. We analyzed each pair of successive commits to extract a
set of operator applications that produces the delta between the commits. Re-
playing the operator applications in the given order creates and updates the AT.
Cost & Benefit.. As costs, we measure the additional effort imposed on
developers by our platform. Our traditional, asset-oriented operators (left-hand
column of Table 2.2) do not lead to additional cost, because these tasks are
performed in traditional development as well. Cost arises from two components,
both related to our feature-oriented operators (right-hand column of Table 2.2):
one called Cfeat for maintaining features, one called Cmiss for dealing with
omissions during feature maintenance. The latter arises if the developer forgets
to invoke a feature-oriented operator and then later the feature information
is missing for a relevant feature-oriented activity.

As benefits, we consider the saved cost in two dimensions: feature location
and clone detection. Feature location cost Cloc is saved on invocations of
certain operators that rely on previously specified mappings. Clone detection
cost Cclone is saved on invocations of one certain operator for propagating
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Table 2.2: Operator invocations in simulation study:asset-oriented and feature-
oriented operators

operator freq. operator freq.
AddAsset 3,527 AddFeature 229
ChangeAsset 1,191 AddFeatureModelToAsset 4
RemoveAsset 1,060 MapAssetToFeature 368
MoveAsset 303 RemoveFeature 40
CloneAsset 48 MoveFeature 22
PropagateToAsset 8 CloneFeature 54

PropagateToFeature 7

changes along clones from our clone database.
We study these costs and benefits in four dedicated research questions. RQ1

and RQ2 are devoted to costs, while RQ3 and RQ4 are devoted to benefits.
We first discuss these research questions, before weighing off the observed costs
and benefits.

RQ1.. What are the costs of maintaining features using feature-oriented
operators? The overall cost Cfeat arises from accumulating the cost of apply-
ing feature-oriented operators. Each feature-oriented operator op has a cost
Cfeat(op) = #invoc(op) ∗ costabs(op), which depends on the number of invoca-
tions of op, and the absolute cost of each invocation of op. Based on Table 2.2,
there are 724 invocations of feature-oriented operators in total. Two operators
contribute the bulk to this number, namely MapAssetToFeature (368) and
AddFeature (229). The absolute cost per invocation can be assumed to be
low (in the order of seconds) because it mostly amounts to picking the feature
name, when it is fresh in the developer’s mind. An exception are situations
where the developer has to deal with earlier omissions (see RQ2).

RQ2.. What percentage of feature maintenance operations required additional
feature location effort? The omission-related cost Cmiss arises from the num-
ber of late invocations of MapAssetToFeature, representing situations where
the developer missed to specify an asset-to-feature mapping when the asset
was added. This number is to be multiplied by the absolute cost for these
invocations, which is generally higher than a regular invocation. Our operators
CloneFeature, and PropagateToFeature rely on a complete mapping from
a feature to its assets. A third relevant operator is AddFeature which adds
feature information to source code added earlier. In absence of a recorded map-
ping, each operator requires an expensive manual feature location step, which
is not required in our approach (see RQ3). We counted the number mappings
that were added before or after one of these operators was invoked, which
indicates that the researcher preparing the original dataset noticed an omission.
We determined 14 relevant mappings for CloneFeature (2 relevant invocations,
3.7% of all invocations), and 25 relevant mappings for AddFeature (12 rele-
vant invocations, 4.0% of all invocations). We did not discover any relevant
mappings for PropagateToFeature, yielding 39 late invocations in total.

RQ3.. To what extent can feature location costs be avoided when using feature-
oriented operators? The operators CloneFeature and PropagateFeature rely
on previously specified mappings. Conversely to RQ2, we can assume that each
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invocation of one of these operators avoided manual feature location when it
did not require any fixing of omitted annotations. So, we define Cloc to rely on
the number of feature location steps saved by an invocation of one of our op-
erators. We count 54 invocations of CloneFeature, and 7 relevant invocations
of PropagateToFeature, leading to a final value of 61. This number is to be
multiplied with the absolute cost of feature location, which can be assumed to
be high (earlier work [16] an estimate of 15 minutes per feature), based a strong
reliance on the developers’ memory, and an understanding of how cross-cutting
features are scattered.
RQ4.. To what extent can clone detection costs be avoided when using feature-
oriented operators? Since the propagation of changes along clones requires a
complete specification of the clones at hand, we can assume that every appli-
cation of PropagateToFeature saves one application of clone detection (either
manual or using a tool). In our subject system, we identified 7 invocations of
PropagateToFeature. To obtain the value of Cclone, this number of is to be
multiple with the absolute cost for clone detection. Manual clone detection is a
tedious and error-prone task, and known to be infeasible for larger systems [92].
Tool-based clone detection requires manual verification and postprocessing,
since even the most advanced clone detection tools have imperfect precision
and recall [93].

2.6.3 Discussion
Break-Even Point.. We can now weigh off the costs observed in RQ1+2
against the benefits from RQ3+4. Consider the following formula, which spec-
ifies the total benefit of using the virtual platform: Btotal = -(Cfeat + Cmiss)
+ (Cloc + Cclone). If this formula yields a positive value, the virtual platform
surpasses the break-even point and leads to a net benefit.

The value of Btotal depends on the absolute costs for operator invocations,
feature location, and clone detection, which are unavailable. However, we
can perform an approximation based on plausible estimates: (1.) For the
cost of feature location, we rely on the earlier literature estimate [16] of 15
minutes per instance. (2.) We assume clone detection to have the same cost as
feature location. (3.) We assume the cost for adding an omitted annotation
to be 10 times as high as a regular operator invocation. Based on these three
assumptions, we break even if invoking a feature-oriented operator takes 54
seconds or less on average. In practice, the benefit can be assumed to be larger,
since invoking a feature-oriented operator mostly entails picking a feature name
(while the feature is still fresh in the developer’s mind), a matter of a few
seconds.

This calculation shows promising results in terms of saved effort and time.
By simulating the development of the case study with feature-oriented informa-
tion, we can reuse as much as 20 features from one project (ClaferMooVisualizer)
by cloning them. We envision greater accuracy and efficiency levels when the
virtual platform is used alongside development.
Representativeness.. Our case is representative for systems of comparable
size (547k lines, four variants). Many reported product-line migrations are of
similar size [94]. We argue for representativeness for larger systems qualitatively.
Our case has all evolution activities observable in industrial systems, supported
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by other frameworks. Still, the virtual platform is evaluated more extensively
than any of these.
Threats to Validity.. A threat to external validity is that our operators do not
completely capture the real-world scenarios developers encounter when dealing
with variant-rich systems. We mitigate this threat with our evaluation based on
the simulation of a real system. There is a general lack of available systems for
benchmarking on realistic revision histories with available feature information,
a problem that we aim to address as part of our ongoing benchmarking initiative
[95,96].

There are two main threats to internal validity. First, our calculation of
Cmiss could be incomplete: there might be potential omissions not fixed by
a later commit. This situation is comparable to other research that relies
on potentially imperfect datasets (e.g., in software defect prediction [97,98]).
While our analysis focuses on omissions that later required fixing, these omis-
sions are arguably the most relevant ones in practice. Second, there could be
implementation errors; after retrofitting our operations to the development
process given by the commit revision, the AT might be in an incorrect state.
To mitigate this threat, one author, not involved in the simulation, manually
inspected a random sample of 25 commits by comparing the git diff with the
AT resulting from operator invocations. The AT was always consistent.

2.7 Related Work
The five most closely related works are the clone-management and product-
line-migration frameworks that we used to inform the virtual platform’s design
( [6,8–10,86], cf. Section 2.3). In Section 2.6.1 and our online appendix [75],
we provide a detailed comparison, highlighting unique benefits of the virtual
platform: support for early traceability recording, operators for the full spec-
trum between the extremes ad hoc clone&own and integrated platform, and
an evaluation on a real project revision history. We now discuss further related
work on product-line migration and integrated-platform evolution.

The idea of automatically handling variation points, as the virtual plat-
form does, is not new. In fact, going back to the 1970s, researchers have
built so-called variation-control systems [99, 100], which never made it into
the practice of software engineering. These systems have been realized upon
different back- and frontends (e.g., version-control systems [101,102] or a text
editor [103]), but before effective and scalable concepts from SPLE research
for managing variability have been established. The virtual platform can be
seen as a variation control system.

The large majority of product-line migration techniques focuses on de-
tecting and analyzing commonalities and variabilities of the cloned variants,
together with feature identification and location, as shown in Assuncao et
al.’s recent mapping study based on 119 papers [58]. Case studies of manual
migration [4, 57, 59, 84, 104,105] also exist. These illustrate the difficulties and
huge efforts of recovering important information (features and clone relation-
ships) that was never recorded during clone&own, supporting our approach
of recording such information early. Finally, many works focus on migrating
a single system into a configurable, product-line platform [104–107], typically
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proposing refactoring techniques. Wille et al. [108] use variability mining to
generate transformational rules for creating delta-oriented product lines.

Others focus on evolving software platforms. Liebig et al. [109] present
variability-aware sound refactorings (rename identifier, extract function, inline
function) for evolving a platform by preserving the variants. Rabiser et al. [110]
present an approach for managing clones at product, component, and feature,
and define 5 consistency levels to monitor co-evolving clones. Ignaim et al. [111]
present an extractive approach to engineer cloned variants into systematic reuse.
Neves et al. [43] propose a set of operators for safe platform evolution. In
contrast to our operationally defined operators, these operators are defined on
an abstract level, based on their pre- and post-conditions; implementing them
is left to the user. Incorporating safe evolution or Morpheus’ refacting in the
virtual platform is a valuable future work.

2.8 Conclusion
We designed, formalized, and prototyped the virtual platform—a framework
that exploits a spectrum between the two extremes ad hoc clone&own and
fully integrated platform, supporting both kinds of development. Based on
the number of variants, organizations can decide to use only a subset of all
the variability concepts typically required for an integrated platform, fostering
flexibility and innovation, starting with clone&own and incrementally scaling
the development. This realizes incremental benefits for incremental investments
and even allows to use clone&own when a platform is already established, to
support a more agile development. Another core novelty is that, instead of
trying to expensively recover relevant meta-data (e.g., features, feature locations,
and clone traces), the virtual platform fosters recording it early. For instance,
developers typically know the feature they are implementing, but usually do
not record it. The virtual platform records such meta-data and exploits it for
the transition, providing operators that developers can use to handle variability.
Our evaluation shows that the additional costs are low compared to the benefits.

We see several promising directions of future work. By allowing developers
to continuously record feature meta-data, the virtual platform paves the way
for software analyses that rely on this data. One example is support for the safe
evolution of product line platforms [43], which could be extended to support
systems in our intermediate governance levels. Specifying our operators in
the framework of software product line transformations [112–114] would make
them amenable to conflict and dependency analysis [115], a versatile formal
analysis with applications in the coordination of evolution processes. Many
of the virtual platform’s operators (e.g., those related to change propagation)
lead to non-trivial changes of the codebase. To increase developer trust and
optimize accuracy, an important challenge is to keep the “human in the loop”,
which we aim to address by exploring dedicated user interfaces. By integrating
the virtual platform with available annotation systems [32], we could facilitate
inspection of the available feature mappings. Offering a “preview mode” would
allow to inspect and interact with the changes arising from a planned operator
invocation. Providing a dedicated operator to integrate cloned features is
another future direction. Other directions are to support configuration of
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variants by selecting features, offering views [116], and providing visualizations
(e.g., dashboards [117,118]). Finally, recommender systems that learn from the
meta-data and support developers handling features and assets could further
encourage using features in software engineering [119].
Acknowledgment.. Swedish Research Council (257822902), Vinnova Sweden
(2016-02804), and the Wallenberg Academy.



68 CHAPTER 2. PAPER A



Chapter 3

Paper B

Promote-pl: A Round-Trip Engineering Process Model for
Adopting and Evolving Product Line
Jacob Krüger, Wardah Mahmood, and Thorsten Berger

In Proceedings of the 24th ACM Conference on Systems and Soft-
ware Product Line: Volume A-Volume A (pp. 1-12).





69

Abstract
Process models for software product-line engineering focus on proactive adoption
scenarios—that is, building product-line platforms from scratch. They comprise
the two phases domain engineering (building a product-line platform) and appli-
cation engineering (building individual variants), each of which defines various
development activities. Established more than two decades ago, these process
models are still the de-facto standard for steering the engineering of platforms
and variants. However, observations from industrial and open-source practice
indicate that the separation between domain and application engineering, with
their respective activities, does not fully reflect reality. For instance, organiza-
tions rarely build platforms from scratch, but start with developing individual
variants that are re-engineered into a platform when the need arises. Organiza-
tions also appear to evolve platforms by evolving individual variants, and they
use contemporary development activities aligned with technical advances. Rec-
ognizing this discrepancy, we present an updated process model for engineering
software product lines. We employ a method for constructing process theories,
building on the recent literature as well as our experiences with industrial
partners to identify development activities and the orders in which these are
performed. Based on these activities, we synthesize and discuss the new process
model, called promote-pl. Furthermore, we explain its relation to modern
software-engineering practices, such as continuous integration, model-driven
engineering or simulation testing. We hope that our work offers contemporary
guidance for product-line engineers developing and evolving platforms, and in-
spires researchers to build novel methods and tools aligned with current practice.
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3.1 Introduction
Software product-line engineering provides methods and tools for building
variant-rich systems. It allows to systematically reuse software features (i.e.,
user-visible functionalities of a system) by establishing an integrated software
platform [12, 15, 120]. To build a platform, developers employ a range of imple-
mentation techniques called variability mechanisms [15,121] to define variation
points. Individual variants can then be derived through configuring—enabling
or disabling features. Typical variability mechanisms comprise preprocessors
(e.g., the C preprocessor), configurable build systems, configurator and variant-
derivation tools [122–124], as well as model-based representations of features and
their constraints, called variability models [48,53,125,126]. Especially the latter
are core to manage features and to guide the derivation of individual variants.

While the underlying ideas and mechanisms employed remain similar, their
implementation and usage have evolved considerably over the last decades,
enabling organizations to rely on more advanced automation. Examples of these
advancements are novel analysis techniques for feature models, code, and test
assets [95, 127–129], or the adoption of continuous integration [130,131]. Many
of these techniques have implications on the processes with which variant-rich
systems are engineered. Unfortunately, the process models for product-line
engineering have not been updated accordingly. Consider one of the most
common process models for product-line engineering [12], as shown in Figure 3.2.
This model strictly distinguishes between domain engineering (i.e., developing
the platform) and application engineering (i.e., developing variants), defining
five and four activities, respectively. This process model should be updated
to reflect, for example, the less strict separation of domain and application
engineering in practice, the evolution of product lines via their variants, and
different adoption strategies [132] (we detail these examples in Section 3.2). In
short, we believe that the core limitations of existing process models are the
strict separation of domain and application engineering, and the focus on the
proactive adoption strategy, which, as we will show, do not reflect industrial
and open-source practice anymore.

We present promote-pl (PROcess MOdel for round-Trip Engineering of

derived 
variant

integrated
platform

evolved
variant

planned or
existing
variant(s)

evolution

adoption

Figure 3.1: High-level representation of promote-pl.
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Figure 3.2: A typical product-line process model [12].
Product Lines), an updated process model for product-line engineering that we
synthesized from recent literature and collaborations with industry. For this
purpose, we adapted methods for deriving process theories [133,134] to elicit em-
pirical data and synthesize promote-pl (high-level representation in Figure 3.1,
explained in Section 3.4.2). We further discuss the adaptations we implemented
in promote-pl and analyze its relations to contemporary software-engineering
practices to define research opportunities. In detail, we contribute:

• A systematically elicited process model for product-line engineering that
reflects recent practices, called promote-pl.

• A discussion of the adaptations we implemented and their implications
for practice as well as research.

• An analysis of relations between promote-pl and software-engineering
practices.

With these contributions, we intend to provide a more realistic and updated pro-
cess model for product-line engineering that can provide a better understanding
of how organizations engineer software platforms. Especially for researchers,
promote-pl highlights the differences between historically defined process models
and industrial practices, helping them to identify research opportunities.

3.2 Motivation and Objectives
In Figure 3.2, we illustrate the structure of a typical product-line process
model [12]. We can see that the domain engineering encompasses a special ac-
tivity for product management as well as activities for requirements engineering,
design, implementation, and testing of the platform. Moreover, there is a loop
between these activities, indicating evolution of the platform. Strictly separated
and always building on the defined platform is the application engineering with
the respective four activities for deriving a variant. This process model is a
high-level abstraction (i.e., [12] describe the activities in more detail, as well as
the need to tailor the model to concrete systems) that is similar to other estab-
lished process models, most notably those of [11], [13], [14], and [15]. However,
even though some of these process models encompass minor differences, they
appear to not be in line with contemporary practices [51], they largely disre-
gard recent trends of blurred boundaries between software-engineering phases
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(e.g., continuous software engineering [135]), and they focus on the proactive
adoption strategy (explained shortly). For example, [12] suggest to conduct
the “Commonality analysis first,” supporting the proactive adoption—that is,
first establishing a platform before individual variants are derived. In contrast,
our and others’ experiences with practitioners [48,58,136] show a dominance of
reactive and extractive adoption strategies, where organizations start with one
or multiple variants first, before eventually establishing a platform. This means
that, for instance, activities such as variability analysis are performed later [53]
than prescribed by the traditional process models. Furthermore, platforms are
typically evolved via variants—customers request additional features, which
are first introduced into variants and later integrated (e.g., back-propagated)
into the platform [46]. In this paper, we describe promote-pl as an updated
process model for product-line engineering to reflect contemporary practices
as well as adoption and evolution processes that are predominant in current
practice [46,58,59,137].

3.2.1 Example Limitations of Process Models

We exemplify (mingled) limitations of existing process models, quoting insights
from the company Danfoss with its long-living and well-documented [4, 73,
138,139] product line of frequency converters in the power electronics domain.
The experiences are largely in line with our own experiences from studying
industrial practice [46,51,53,59,78,80,136,140–145].
Separation of Domain and Application Engineering. We experienced
that most organizations and developers do not strictly separate (or even
distinguish) domain and application engineering. Instead, there is constant
interaction between both. For example, features are often implemented in a
variant and later integrated into the platform (see second example), for reactive
and extractive adoption the platform is even defined based on existing variants
(see third example), and processes iterate between platform and variant (e.g.,
during testing). Similarly, Danfoss experienced [73]:

“[...] there was no strict separation between domain and application engi-
neering in the product projects [...]”

In their case, the main idea was to limit the number of changes required to
adopt processes and tool chains; facilitating an extractive adoption. So, we
argue that we need a new process model that integrates interactions between
domain and application engineering.
Evolution of the Product Line. Existing process models define that new
requirements are propagated to the domain engineering, features are imple-
mented on the platform, and the variant is derived afterwards. This is the ideal
scenario, but most organizations and open-source projects use the well-known
concept of feature forks [44, 46, 80] to implement new variants or platform
features. By re-integrating these forks, the platform is evolved—but this is
driven by developing and merging complete or partial variants. Obviously,
missing to re-integrate the variants results in clone&own development instead
of product-line engineering. Still, Danfoss experienced that feature forks allow
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that [73]:

“[...] projects could keep their independence by introducing product-specific
artifacts as new features. Later on, when a change was assessed, there
would be a decision on whether the change should be applied to other
products and thus should be integrated into the core assets.”

The stated independence and also fast delivery are benefits of feature forks,
and they align with continuous integration. Due to their practical importance,
different evolution scenarios should be added to the process model.
Adoption Strategies. Even though, extractive and reactive adoption strate-
gies are more common in practice [48], existing process models focus on the
proactive adoption in which a product line is planned from scratch. However,
due to the economic investments and risks [46, 146–149], most organizations
start with clone&own and only later migrate towards a product line. Con-
sequently, they have a variety of existing variants from which they can, for
example, recover architectures, reuse code, or analyze domain documentation
to design the platform. This results in adopted, new, and re-ordered activities,
depending on the adoption strategy. For instance, Danfoss [73] employed an
extractive adoption, during which the organization migrated 80% of the code
and introduced continuous integration within the first five years, but:

“Introducing pure::variants and establishing feature models for both code
and parameters, and finally including the requirements, would take another
two years.”

As we can see in Figure 3.2, this conflicts existing process models in which a
feature model is defined before the implementation (i.e., in the domain design).
So, a general process model for product-line engineering should also incorporate
different adoption strategies.

3.2.2 Research Objectives
Our overarching goal was to derive an updated, practice-oriented process
model for product-line engineering. This model should help practitioners as
well as researchers in understanding current practices, fostering the adoption,
improvement, and future research of product lines. To achieve this, we defined
three research objectives:

RO1 Elicit empirical data about contemporary product-line engineering pro-
cesses and activities employed in practice.

RO2 Synthesize a common process model that puts the identified activities
into a reasonable order.

RO3 Discuss the adaptations in the process model and the impact of contem-
porary software-engineering practices.

According to these objectives, we defined an empirical methodology to elicit
data (RO1) and to construct the process model, promote-pl (RO2). Promote-pl
itself (RO2) and our discussion of adaptations and practices (RO3) represent
the resulting contributions.



74 CHAPTER 3. PAPER B

3.3 Methodology
Using a process model, we can describe how something happens in an actual,
real-world process [150]. In contrast, development methodologies describe an as-
sumed “best practice” of doing something, while a process theory is a universal
description of a process [133]. We remark that researchers heavily debate about
what a process theory constitutes in detail, and some definitions are close or
even identical to a process model [133, 134]. However, following the distinction
of [133], we define a process model, since we focus on constructing a process from
empirical evidence, neither claiming that it represents best practices nor that it
can explain all existing processes for product-line engineering in their entirety.
As we can only cover the product-line engineering activities that we could iden-
tify, these two properties can, arguably, not be fulfilled; considering, for example,
the numerous tools, implementation techniques, or testing strategies that exist.
Moreover, future advances in research may require changes in promote-pl.

We are not aware of a specific guideline for constructing process models.
Instead, we adapted recommendations for deriving process theories [133,134].
As a result, we relied on three information sources:

• First, each author suggested publications based on their knowledge of the
literature, without relying on a systematic search (cf. Section 3.3.1). This
design resembles integrative reviews [151], which are helpful to critically
reflect, synthesize, and re-conceptualize theoretical models for mature
research areas—which was our research goal.

• Second, we extended the suggested publications based on a systematic
literature review [38], searching manually in the last five instances of
relevant venues (cf. Section 3.3.2). Our goal was to more systemati-
cally and extensively cover the most recent developments in product-line
engineering to understand, incorporate, and discuss current practices.

• Finally, we relied on our own experiences (also adding the correspond-
ing publications) of collaborating with industrial partners that employ
product-line engineering (cf. Section 3.3.3). We used our experiences to
structure our data, order activities, and discuss how practices are aligned
with promote-pl.

By using these information sources, we base promote-pl in empirical evidence
to strengthen its validity. In the following, we describe each information source
in more detail, our strategy to elicit data from the publications identified (cf.
Section 3.3.4), and how we synthesized the data to construct promote-pl (cf.
Section 3.3.5).

3.3.1 Knowledge-Based Literature Selection
We used our knowledge of the literature and particularly from recently con-
ducted (semi-)systematic literature reviews [46,51,53] to select publications.
For this purpose, each author suggested publications that they considered
relevant, based on a publication’s topicality and relevancy for our research goal.



3.3. METHODOLOGY 75

We discussed each suggestion based on the following inclusion criteria, and
only incorporated a publication if we achieved mutual agreement:

IC1 The publication is written in English.

IC2 The publication describes activities of product-line engineering, suggesting
at least one partial order (i.e., a minimum of two activities in a sequence
of execution).

IC3 The publication reports activities based on recent (i.e., five years) ex-
periences (e.g., case studies, interviews) or synthesizes them from such
experiences (e.g., literature reviews).

We performed an initial selection to scope our research, but also added publi-
cations later in our analysis.
Results. In the beginning, we selected five publications that describe well-
known process models for product-line engineering (cf. Section 3.2) as baseline
for our work—marked as BL in Table 3.1. We included these publications to
have a foundation that we could extend and refine to construct promote-pl.
Note that we included the publication of [11], due to the reported process
model being well established, even though it does not fulfill IC2 (no partial
orders). Furthermore, we agreed to add 12 additional suggestions (marked
with ER in Table 3.1) that cover up-to-date experiences (i.e., IC3)–including
publications with our experiences (marked with *).

3.3.2 Systematic Literature Selection
To define a more systematic foundation for the process model, we decided to
perform the search and selection phase of a systematic literature review [38].
So, we did not only rely on our own knowledge, but extended our information
sources using a replicable process.
Search. We conducted a manual search among five conferences (SPLC, Va-
MoS, ICSE, ESEC/FSE, ASE) and seven journals (TSE, EMSE, TOSEM,
JSS, IST, IEEE Software, SPE); aiming to avoid the problems of automated
searches [152–154]. For the conferences, we covered their last five editions of
research and industry tracks, including the 2015 to 2019 (and additionally 2020
for VaMoS) editions for each. For the journals, we considered the years from
2016 to 2020, including online-first publications. We selected these time spans
to consider current product-line practices for promote-pl.

To conduct the search, we used DBLP as of April 7th 2020—except for
online-first publications, for which we relied on the journals’ websites as of
that same date. We selected major software engineering venues that employ
peer-reviews and publish product-line research, ensuring the quality of included
publications. While we certainly miss some publications that describe product-
line engineering processes, we argue that this selection provides a reasonable
overview of recent publications to understand what adaptations are required
to design a contemporary process model [151].
Inclusion Criteria. To select relevant publications, we employed the same
inclusion criteria as for the knowledge-based selection. Further, we essentially
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added two more inclusion criteria:

IC4 The publication has been published at the research or industry track of a
peer-reviewed venue.

IC5 The publication does not only propose a process (e.g., new testing meth-
ods), but this process is actually used in practice.

Using these criteria, we ensured that the selected publications actually cover
real-world processes and not only proposals, for example, for incorporating a
new research tool.
Results. With the manual search, we identified 16 new publications, which
we mark with SR in Table 3.1. Note that we do not account for publications
we already identified in the previous search in this set. In the end, we selected
33 publications for constructing promote-pl.

3.3.3 Industrial Collaborations
We regularly collaborate with different industrial partners that employ product-
line engineering. For instance, we worked with 12 medium- to large-sized
organizations to assess their state of adopting variability management [51],
interviewed experts to understand feature-modeling practices [53], and col-
laborated with large organizations, such as Axis [46], Saab [144], or ABB,
to improve our understanding of product-line practices. We used our gained
knowledge, resulting publications, and ongoing discussions, to reason about the
data we elicited from the literature. Particularly, we resolved unclear partial
orders to construct promote-pl (Section 3.3.5) and based the discussion of
software-engineering practices on this knowledge.

3.3.4 Data Extraction
For every publication, we extracted standard bibliographic data, namely authors,
title, as well as publication venue and year. To construct promote-pl, we
further extracted all product-line engineering activities (i.e., we did not consider
“standard” activities, such as requirements elicitation) that have been mentioned
in their specific wording. If these activities were in a partial order, we also
extracted that order. Moreover, we extracted the scope in which these activities
have been applied, for example, extractive adoption or platform-based evolution.
Finally, if we identified a specific software-engineering practice to be used, we
also documented this. We used a table to document and manage this data—with
Table 3.1 providing a summary of that table.

3.3.5 Process Construction
To construct promote-pl, we executed the following steps:

[a] We collaboratively analyzed the process models presented in the five
baseline publications (marked with BL in Table 3.1). So, we obtained an
initial understanding of the existing process models, how to unify termi-
nologies, and a first set of partial orders. However, the most important
outcome was a mutual agreement on how to elicit and document partial
orders.
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[b] Every author suggested relevant publications, and the first author con-
ducted the manual search.

[c] The first author read each publication, decided whether it fulfilled the
inclusion criteria, and extracted the data described in Section 3.3.4 if this
was the case. To ensure that we did not miss important publications or
activities, the other authors verified distinct subsets of all publications.

[d] We created a list of unique activity names (150+), which the first author
used to resolve synonyms, specify terms, and abstract common activities.
For example, we changed all occurrences of “product” or “system” to
“variant,” and specified “analyze requirements” according to its context
(i.e., platform, asset, or variant). The employed changes were verified
and agreed upon by the other authors. We remark that we were careful
and aimed not to overly abstract activities (e.g., we kept “build” as a
detailed activity of “derive variant”), which is why we report 99 distinct
activities in Table 3.1.

[e] We compared the different partial orders and activities based on their
scope and similarities. As a result, we defined partitions of the process
model (e.g., adoption and evolution).

[f] We constructed the process model by merging partial orders. To this
end, the first author used re-appearing activities and similarities in the
orders, structuring these according to the identified partitions. Then, we
removed redundancies as far as possible to derive a unified process model.

[g] To verify and agree on promote-pl, the third author interviewed the first
author. During this interview, the first author explained promote-pl,
design decisions, potential alternative representations, and based on what
data each model element was incorporated. We agreed to employ smaller
changes in promote-pl to improve its comprehensibility and resolve unclear
orders of activities.

By using this methodology, we aimed to improve the validity of promote-pl,
allowing other researchers to verify and replicate it.

3.4 The Process Model Promote-pl
We describe the partial orders of activities we identified from the literature,
followed by the structure and details of promote-pl.

3.4.1 Contemporary PLE Practices (RO1)
In Table 3.1, we provide an overview of all 33 publications we considered.
We can see that the publications we identified based on suggestions and the
manual search cover mostly the extractive adoption strategy and evolution,
which have become major topics in product-line engineering research [58,
95, 96, 172–174]. Moreover, the publications have been published in various
venues, not surprisingly mostly at the flagship conference for software product-
line engineering SPLC. We argue that this selection provides a broad and
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Table 3.1: Overview of the 33 publications we analyzed and the activities
described (based on our unified terminology).

Ref. Venue Scope Activities in their Partial Orders (≺): • – Separator; & – Parallelism; | – Alternatives; [. . . ] –
Sub-activities

BL [13] IEEE SW’02 Pro.
Ado.

Scope & Budget Platform ≺ Analyze Platform Requirements & Model Variability ≺ Design Architecture
≺ Design System Model ≺ Refine Architecture ≺ Design Assets • Analyze Variant Requirements & Select
Features ≺ Design & Adapt Architecture ≺ Adapt Assets & Build Variant

BL [11] IEEE SW’02 Pro.
Ado.

Develop Assets • Engineer Variant • Manage Platform • Design Architecture • Evaluate Architecture •
Analyze Platform Requirements • Integrate Assets • Identify Assets • Test • Configure • Scope Platform •
Train Developers • Budget Platform

BL [14] UPP’04 Pro.
Ado.

Analyze Domain ≺ Design Architecture ≺ Implement Platform • Analyze Variant Requirements ≺ Derive
Variant

BL [12] Book’05 Pro.
Ado.

Scope Platform ≺ Analyze Domain [Analyze Commonalities ≺ Analyze Variability ≺ Model Variability]
≺ Design Architecture ≺ Implement Platform ≺ Test Platform • Analyze Variant Requirements ≺ Design
Variant ≺ Derive Variant [Configure ≺ Implement Specifics ≺ Build Variant] ≺ Test Variant

BL [15] Book’13 Pro.
Ado.

Analyze Domain [Scope Platform≺Model Variability]≺ Implement Platform≺ Analyze Variant Requirements
≺ Derive Variant

ER [10] STTT’15 Ext.
Ado.

Analyze Commonality & Variability [Compare Requirements ≺ Diff Variants ≺ Model Variability] ≺ Design
Architecture [Extract Architecture ≺ Evaluate Architecture ≺ Refine Architecture & Variability Model]
≺ Develop Assets • Merge Variants ≺ Refactor ≺ Add Variation Points [Diff Variants ≺ Refactor] ≺
Model Variability ≺ Derive Variant • Analyze Commonality & Variability [Model Variability ≺ Compare
Requirements & Tests & Diff Variants ≺ Refine Variability Model] ≺ Extract Platform

ER [73] SPLC’16 Ext.
Ado.;
Vb.
Evo.

Diff Variants ≺ Analyze Variability ≺ Model Variability ≺ Add Variation Points ≺ Adopt Tooling ≺ Compare
Requirements ≺ Map Artifacts • Develop Assets [Propose Asset ≺ Analyze Asset Requirements ≺ Design
Asset ≺ Implement Asset ≺ Test Asset] • Release Platform [Plan Release ≺ Produce Release Candidate ≺
Test Platform] • Release Variant [Scope Variant ≺ Derive Variant ≺ Test Variant]

ER [58] ESE’17 Ext.
Ado.

Analyze Commonality & Variability [Locate Features] ≺ Model Variability ≺ Re-Engineer Artifacts

ER* [81] SPLC’17 Ext.
Ado.

Diff Variants ≺ Locate Features ≺ Model Variability ≺ Map Artifacts

ER* [145] SPLC’18 Ext.
Ado.

Model Variability ≺ Adopt Tooling • Domain Analysis • Implement Platform • Analyze Variant Requirements
• Derive Variant • Configure

ER [155] SPLC’18 Ext.
Ado.

Train Developers ≺ Analyze Domain ≺ Model Variability ≺ Implement Assets [Analyze Documentation |
Diff Variants ≺ Refactor]

ER* [140] Chapter’19 Ext.
Ado.

Analyze Variability ≺ Locate Features ≺ Map Artifacts

ER* [53] ESEC/FSE’19 Ado.;
Evo.

Plan Variability Modeling ≺ Train Developers ≺ Model Variability ≺ Assure Quality [Evaluate Model • Test
Model]

ER* [80] JSS’19 Vb.
Evo.

Propose Asset ≺ Analyze Asset Requirements ≺ Assign Developers ≺ Fork Platform ≺ Implement Asset ≺
Create Pull-Request ≺ Review Asset ≺ Merge into Test Environment ≺ Test Asset ≺ Merge into Platform ≺
Release Platform

ER* [95] SPLC’19 Ext.
Ado.;
Vb.
Evo.

Adapt Variant ≺ Propagate Adaptations • Analyze Domain ≺ Analyze Variability ≺ Locate Features •
Extract Platform • Model Variability • Extract Architecture • Refactor • Test Platform • Test Variant

ER* [46] ESEC/FSE’20 Vb.
Evol.

Scope Variant ≺ Design Variant ≺ Derive Variant ≺ Adapt Variant ≺ Assure Quality

ER* [59] VaMoS’20 Ext.
Ado.

Train Developers ≺ Analyze Domain ≺ Prepare Variants [Remove Unused Code ≺ Translate Comments ≺
Analyze Commonality ≺ Diff Variants] ≺ Analyze Variability ≺ Extract Architecture ≺ Locate Features ≺
Model Variability ≺ Extract Platform ≺ Assure Quality

SR [156] SPLC’15 Vb.
Evo.

Scope Variant [Analyze Variant Requirements • Design Variant • Configure] ≺ Budget Variant ≺ Design
& Implement Variant [Analyze Variant Requirements ≺ Design & Evaluate Variant ≺ Implement & Adapt
Variant ≺ — | Propagate Adaptations] ≺ Configure & Test Variant

SR [157] VaMoS’15 Ext.
Ado.

Analyze Variability [Diff Variants & Identify Fork Points ≺ Classify Adaptations ≺ Merge Bug Fixes | [Name
Assets ≺ Merge Assets into Hierarchy]] ≺ Add Variation Points ≺ Model Variability ≺ Locate Features ≺
Extract Platform ≺ Configure

SR [158] ESE’16 Ado. Analyze Domain [Gather Information Sources ≺ Define Reuse Criteria ≺ Collect Information ≺ Analyze &
Model Variability ≺ Extract Architectures ≺ Evaluate Results] ≺ Budget Platform

SR [159] SPLC’16 Pro.
Ado.

Engineer Platform [Analyze Platform Requirements ≺ Design Architecture & Implement Platform ≺ Imple-
ment Assets] ≺ Derive Variants • Manage Platform

SR [160] SPLC’16 Pro./Ext.
Ado.

Scope Platform ≺ Engineer Platform [Design System Model ≺ Design Architecture & Implement Platform
≺ Model Variability] ≺ Derive Variant [Design Variant [Design Variant Model ≺ Scope Variant ≺ Select
Features] ≺ Evaluate Design [Evaluate Design Logic ≺ Configure] ≺ Design Variant ≺ Implement Variant] ≺
Test Variant

SR [161] VaMoS’16 Pb.
Evo.

Analyze Variant Requirements ≺ Define Build Rules ≺ Configure & Derive Variant ≺ Test Variant

SR [162] JSS’17 Pro.
Ado.

Model Variability ≺ Design System Model ≺ Derive Variant

SR [163] SPLC’17 Vb.
Evo.

Fork Platform ≺ Test Platform ≺ Merge into Platform

SR [164] SPLC’17 Pro.
Ado.

Design Architecture ≺ Add Variation Points ≺ Model Variability ≺ Configure ≺ Derive Variant

SR [165] SPLC’17 Vb.
Evo.

Derive Variant [Scope Variant ≺ Plan Variant [Define Variant Backlog ≺ Estimate Efforts ≺ Plan Development]
≺ Build Variant [Create Backlog ≺ Time-Box Control]] • Manage Platform [Scope & Budget Platform]

SR [166] SPLC’17 Pro.
Ado.

Analyze Platform Requirements [Analyze Domain ≺ Scope Platform ≺ Model Variability] ≺ Design Architec-
ture ≺ Evaluate Architecture & Map Artifacts ≺ Derive Variant

SR [167] ICSE-SEIP’18 Ado.;
Pro.
Evo.

Analyze Platform Requirements ≺ Analyze Commonality & Variability ≺ Design Architecture ≺ Implement
Platform • Analyze Variant Requirements ≺ Scope Variant [Identify Assets & Define New Assets] ≺ Implement
Assets ≺ Integrate Assets ≺ Configure ≺ Test Variant • Map Artifacts • Model Variability • Unify Variability

SR [168] SPLC’18 Vb.
Evo.

Define Variant Backlog ≺ Implement Variant [Analyze Variant Requirements ≺ Implement Assets ≺ Test
Variant] ≺ Add Variation Points [Design Variation Points ≺ Refactor ≺ Test Platform]

SR [169] TSE’18 Ado./Evo. Add Variation Points ≺ Adopt Tooling • Manage Knowledge • Resolve Configuration Failures • Assure
Quality

SR [170] SPE’19 Ext.
Ado.

Plan Development [Assign Developers ≺ Assign Roles ≺ Analyze Documentation] ≺ Assemble Process [Select
Techniques ≺ Adopt Tooling ≺ Assign Tasks] ≺ Extract Platform [Execute Assembled Process ≺ Document
Assets ≺ Document Process]

SR [171] SPLC’19 Pro.
Ado.

Analyze Domain [Specify Properties ≺ Model Variability • Analyze Variant Requirements [Configure ≺
Optimization]] • Derive Variant [Configure ≺ Integrate Assets ≺ Test Variant] • Implement Platform

BL: BaseLine; ER: Expert Review; SR: Systematic Review
Ext.: Extractive; Pro.: Proactive; Ado.: Adoption; Pb.: Platform-based; Vb.: Variant-based; Evo.: Evolution
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contemporary overview of practice, serving as a suitable dataset for adapting
the baseline process models. However, we also identified interesting properties
of the dataset that were important to consider while constructing promote-pl.
Activities. We unified the terminologies used in the selected publications,
and abstracted activities to compare their orders. Still, we kept 99 unique
activities, far too many to integrate into promote-pl. There are two reasons
for this many activities. First, the publications vary heavily in the level of
detail in which they report activities. For example, some simply state “derive
product,” while others detail single steps of this activity (e.g., “build”). Second,
the publications cover various software-engineering methods (e.g., agile, model-
driven), domains (e.g., power plants, web services), implementation techniques
(e.g., C preprocessor, runtime variability), tools (e.g., fully automated derivation
process, build system), and development phases (e.g., business analysis, variant
derivation). The varying levels of details and the high diversity mean that it
is not possible to unify all terms and activities. We addressed this issue by
focusing on re-appearing activities in similar orders.
Partial Orders. As we can see in Table 3.1, we obtained a total of 42 partial
orders (without counting sub-orders or alternatives). Interestingly, due to
the variations in the activities, there is not a single order that is identical to
another order. Still, within a specific scope (e.g., extractive adoption), they
share similarities in terms of activities and their orders—while they are quite
different between scopes. This indicates again that we require an updated
process model for product-line engineering.

Besides the high diversity of activities, one particular reason for the missing
overlap seems to be ambiguity of what actions a specific activity comprises.
For instance, “analyze domain,” “scope platform,” and “analyze commonali-
ty/variability” are often used together within partial orders. However, their
exact orders vary, and sometimes one of these activities is a sub-activity of
another. This indicates that it may not be well-understood what activities
comprise what concrete actions, for instance, because different process models
vary in their definitions. To tackle this problem, we read descriptions in the
papers and relied particularly on the descriptions of [12] to reason about design
decisions.

3.4.2 Process Model Elements (RO2)
We display the high-level abstraction of promote-pl in Figure 3.1. The adop-
tion includes starting from existing (extractive) or planned (proactive) variants
that are integrated into a platform. Alternatively, a planned or existing variant
can represent the derived variant that is extended later on (reactive). During
the evolution, derived variants are evolved to include new features. Such vari-
ants can be evolved individually (clone&own) or integrated into the platform
by merging features or variants (returning to adoption).

We show the detailed representation of promote-pl in Figure 3.3, using
a customized representation that builds on UML activity diagrams [175] to
ease comprehensibility. The representation comprises nine different elements
(summarized in the bottom left corner):

1) Start Nodes have essentially the same meaning as in UML, but we allow
to start only at one; whereas UML would require to initiate the workflow
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Figure 3.3: The detailed representation of promote-pl.
at all start nodes simultaneously.

2–3) Activities and Activity Edges have exactly the same meanings and repre-
sentations as in UML.

4) Concurrent Activities are similar to fork and join nodes in UML, indicating
that the activities connected by the arrows are (or can be) performed at
the same time

5) Decision Nodes have the same meaning as in UML, and we explicitly allow
that they may have only one outgoing edge; representing an optional
workflow.

6) We use Situational Alternative to easily represent two scenarios: First,
to display that variant development also reflects parts of the reactive
adoption strategy. Second, to show that one workflow occurs only if
artifacts of variants are extracted (i.e., extractive adoption, evolution via
variant integration).

7-9) We abstractly indicate the position of six processes and their workflows in
promote-pl, distinguishing three different types. First, Adoption Processes
( ) are the proactive and extractive adoption strategies (as we will explain,
reactive adoption represents an evolution process). Second, Evolution
Processes ( , ) are re-appearing workflows used to extend a product
line—usually incorporating forward- and re-engineering activities (i.e.,
round-trip engineering). Third, the Management Process ( ) represents
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seven activities that are concerned with enabling and managing other
processes, which is why they are performed constantly and in parallel.

We remark that we omit end nodes, since promote-pl reflects adoption and
evolution in a round-trip engineering style. So, the end of all processes would
mean that the product line is discontinued.

3.4.3 Promote-pl and Adaptations (RO2, RO3)
A Different Decomposition. As explained in Section 3.2, organizations
appear to decreasingly separate and distinguish domain and application en-
gineering, which is supported by our elicited data and experiences. For orga-
nizations, it is more important to understand how to adopt a platform and
engineer variants, instead of considering the two phases in isolation (e.g., Dan-
foss reports platform extraction without fully modeling variability first [73]).
Moreover, organizations have mixed teams that employ domain and application
engineering in parallel. For example, in some organizations, the same team
implements a new variant and refactors it into platform assets, whereas the
platform team only tests and quality-assures assets. We reflected this primary
concern of interest in promote-pl, moving from domain and application engi-
neering towards the Adoption and Evolution of a product line. This is a major
difference compared to existing process models, and we explain the resulting
overarching processes of promote-pl in the following.
Product-Line Management. Some baseline process models comprise activ-
ities for managing a product line, often integrated into the domain engineering,
but also as a separate phase. Our empirical data suggests that the management
process ( ) comprises a challenging and practically important set of activities,
enabling organizations to plan and apply product-line engineering successfully.
We found that all management activities should run in parallel—to each other
and all development activities, which was also suggested before [11].

In particular, we found that seven activities are mentioned as important, for
instance, budgeting development activities, adopting tooling as well as processes,
and training developers, most of which are mingled and require monitoring of
development activities for steering. Interestingly, such management activities
have gained less interest in the research community compared to development
activities [137]. For instance, budgeting may be supported by cost models,
and several of such models have been proposed for product-line engineering.
Unfortunately, existing cost models are often limited (e.g., considering their
scopes and foundations in empirical data [59,149,176]), and only few experience
reports provide guides on how to employ them in practice [158,177].
Product-Line Aoption. For adopting a product line, we distinguish between
the three strategies defined by [132].

First, the proactive development process (left ) is identical to the domain
engineering of the baseline process models, comprising only minor clarifications.
At the beginning, an organization analyzes its domain, comparing its commonal-
ities (which others recommend to start with to identify reuse potential [12]) and
variability. Based on the results, the platform is scoped and requirements are
derived, which allows to construct a variability model. As we display in Figure
3.3, variability modeling can be performed in parallel to analyzing commonality
and variability, as both may affect each other (e.g., refining the variability
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model). Considering Figure 3.2, this represents “domain requirements engi-
neering” and “domain design” in the same order, but in a more flexible process.
Afterwards, the platform architecture is designed and the platform with its
assets as well as variation points is implemented (i.e., “domain implementation”
in Figure 3.2). We make two activities more explicit here that have been men-
tioned multiple times, and thus seem important to include: adding variation
points and mapping artifacts (e.g., assets, documentation, variability model) to
ensure traceability. Finally, the resulting product-line platform must be tested,
released, and quality assured, again fully in line with baseline process models.
Overall, this proactive adoption process is close to the domain engineering
described by [12]—except for separating management activities and refinements
that have been pointed out explicitly in recent publications.

Second, the extractive development process (right ) is a first extension
to the baseline process models. We actually found different instantiations of
this process, both usually starting with diffing of artifacts. On the one hand,
an organization can decide to perform a full-fledged feature-oriented integra-
tion, meaning that it performs the same analyses (but focused on variability
first [53]), scoping, and variability modeling as in the proactive adoption. This
represents a top-down approach for extracting the product line. However, after
the modeling, an organization usually designs an architecture by extracting and
adapting an architecture from the existing variants. Afterwards, the refactoring
mainly includes locating the identified features as well as adapting their assets
to the architecture and adding variation points.

On the other hand, an organization may decide to simply integrate variants
without defining the platform first. Instead, the platform is built by refactoring
the integrated variants, which involves identifying and locating features as well
as adapting the corresponding assets (e.g., adding variation points, improving
re-usability)—representing a bottom-up approach. For managing the product
line, the organization must model the refactored variability in parallel. As
for the proactive adoption, in both instantiations the organization also has to
map artifacts before the platform can be tested and eventually released. How-
ever, especially for the second instantiation, the organization may iteratively
integrate variants, resulting in a loop.

As we can see, the extractive development process comprises similar ac-
tivities as the proactive one. Still, there are differences in these activities, for
example, in the refactoring of the platform, adapting assets, and the missing
domain analysis (i.e., the variants are already established in the domain).
Moreover, if an organization does not employ a feature-oriented integration,
the process and its order of activities vary considerably.

Third, the reactive adoption process is not mentioned in the publications
we analyzed. However, this is rather unproblematic, since reactive adoption is
only a special case of the variant-based evolution. Particularly, a first variant
is implemented without the platform, and can afterwards be extended by
integrating new assets or variants into the first one. So, promote-pl represents
all adoption strategies, and especially for the reactive adoption process we can
see that domain and application engineering are mingled.
Product-Line Evolution. The evolution of a product line is driven by
new customer requirements. So, while we distinguish between three different
evolution processes, they usually start with the development of a new variant,



3.4. THE PROCESS MODEL PROMOTE-PL 83

and the typical application-engineering activities used for requirements analysis
and scoping the variant. However, after understanding what new assets are
required for developing a variant (i.e., during its design) and deciding to reuse
the platform, the individual evolution processes differ.

First, platform-based evolution (left ) is typically assumed implicitly in
baseline process models (cf. Figure 3.2). Thus, the evolution at this point
switches from application- to domain-engineering activities. The new asset
must be proposed to the platform, designed to fit the platform architecture,
implemented, which also includes adding variation points and modeling the
new variability, tested, and integrated. To this end, an organization may use
feature forks, but the core concept is a fast or continuous integration and close
coordination with the platform. Afterwards, the variant can be derived by
selecting its features, defining a configuration, and identifying the corresponding
assets for integrating them into a repository. Identifying assets can be fully
automated based on different technical solutions (e.g., configuration managers),
but without such automation developers have to identify and pull the assets
from different sources. Finally, the variant may require further adaptations that
should not be part of the platform, or can be tested and released as is. Still,
we found and experienced that organizations do not employ platform-based
evolution, but, instead, rely on the following processes.

Second, during variant-based evolution using asset propagation (right ),
an organization derives and clones a variant from its existing platform that
is close to the new variant. In some cases, this clone may even represent the
complete platform, for instance, when developing highly innovative variants
that may be intended to remain separated. After adapting the variant by
adding new assets, the organization may find that these assets are relevant
for other variants or even the whole platform. So, assets are propagated to
the platform, employing a similar process as for platform-based evolution,
namely implementing an asset for reuse, testing its functionality, and finally
integrating it into the platform. In particular, we experienced this evolution
process for established markets where variants require new assets that have
a high potential for various customers, and thus are intended for integration
early on. An important prerequisite for this process is that the variant has not
co-evolved for too long from the platform, as this challenges asset integration
(i.e., the platform may have changed too much for simply propagating the
asset)—in which case the third evolution process is more likely.

Third, variant-based evolution using variant integration ( ) refers to the
re-integration of complete variants into the platform. We found this to be a
common case if variants evolved for a longer time without synchronization with
the platform, for example, in the case of highly innovative variants, co-evolution
resulting in clone&own, or reactive product-line adoption. However, we also
found that such variants are re-integrated based on the same process as the
extractive adoption: The variant is diffed and then integrated by refactoring it to
fit the platform, which may involve variability analysis, scoping, and variability
modeling first; or a direct integration and parallel variability model. So, we can
see that variant-based evolution, particularly with variant integration, switches
the typical order of domain and application engineering, first implementing a
variant to then integrate the new assets into the platform.
Domain and Application Engineering. The aforementioned process de-
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scriptions already showed that domain- and application-engineering are far
more tangled and exist in varying orders compared to baseline process models.
So, the typical activities associated with these two phases are represented in
promote-pl, but the individual processes iterate between them. Since this
is based on the publications we analyzed and aligns with our experiences, it
seems that these two phases are rather cross-cutting concerns in contemporary
product-line adoption and evolution processes. For this reason, they are still
important and helpful to structure product-line engineering, but promote-pl is
an important update to provide a more comprehensive, practice-oriented, and
recent overview of product-line practices.

By constructing promote-pl, we found:

• A switch in the primary concern of interest from domain and application
engineering to adoption and evolution.

• That important management activities must run in parallel to the devel-
opment, but seem to be less investigated in research.

• That several adaptations to previous process models were necessary to
incorporate the three adoption strategies.

• That variant-based evolution via asset- or variant-integration is the major
strategy to drive the evolution of a product-line.

• That domain and application engineering are rather cross-cutting instead
of primary decomposition concerns.

3.5 SE Practices (RO3)
In this section, we discuss promote-pl’s relations to contemporary, trending
software-engineering practices, which are typically applied in combination.
Continuous Software Engineering. Referred to as continuous software
engineering [135], modern processes increasingly aim at bringing different phases
together—reflected in recent practices including continuous integration [178],
continuous deployment, continuous testing, or DevOps [179]. This trend is
reflected in promote-pl, bringing together domain and application engineering
in an iterative, round-trip-like process. The product-line literature recently
also emphasized these practices for variability management [163, 167], and
we experienced the demand for respective tool and methodological support
first-hand with industrial partners [51].

When engineering variant-rich systems, continuous software engineering
requires a configurable (product-line) platform. For instance, continuous
deployment requires automated configuration, since manually assembling the
final system (i.e., variant) cannot be done manually, or using clone&own for
frequent (continuous) deployment. Likewise, continuous integration facilitates
evolving the trunk using short-lived clones, and continuous testing also requires
automated configuration for running test cases.

In this light, promote-pl resolves a discrepancy between continuous software
engineering and the pre-dominant extractive and reactive adoption strategies [48]
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of product lines. It supports adopting a platform extractively or reactively,
and evolving the platform via variants. The latter, depending on the extent
of architectural deviation from the platform (see the activity Release Variant
with its decision nodes Integrate Asset or Integrate Variant in Figure 3.3), can
be integrated with the same activities as adopting a platform extractively (devi-
ation) or in a more continuous-integration-like way (no deviation). This aspect
of promote-pl unifies evolution and re-engineering, and establishes round-trip
engineering.
Clone Management and Incremental Adoption of Platforms. Orga-
nizations primarily use clone&own to implement variants [48,51,180], which
is a cheap and readily available strategy, typically based on using branching
facilities in version-control systems [3, 44, 181]. However, the maintenance
effort for cloned variants can easily explode. To support evolution [95] before
investing in a platform, clone-management frameworks strive to help synchro-
nizing variants and keeping an overview understanding [1,5,8, 9,182,183]. A
step towards clone management are governance strategies for branching and
merging [3]—explicit rules for engineers when creating variant branches, aiming
at reducing maintenance overhead to some extent. [181], for instance, provide
a branching model, which is also instantiated elsewhere [15]. However, with an
increasing number of variants, it may still be necessary to adopt a platform.
Instead of big-bang efforts, recently, incremental adoption strategies have been
proposed [1,6], aiming at incremental benefits for incremental investments, and
therefore avoiding the risks of big-bang migrations, which disrupt development
and the ability to sell products [84,146–148]. Finally, another common practice
is to use concepts of a configurable platform (e.g., variation points) together
with clone&own [51]. In this light, promote-pl explicitly supports clone man-
agement as well as an incremental adoption of platforms, or using both in a
unified manner.
Dynamic Configuration and Adaptive Systems. Modern, adaptive sys-
tems require late and dynamic binding, including microservice [184], cyber-
physical [185], industry 4.0 [186], and cloud computing systems [187]. There, re-
source variations, asset availability, and environmental changes require systems
and their software to adapt at runtime. To this end, a platform with variability
as well as parameterization mechanisms needs to be adopted. A difference is
that such platforms are not necessarily variant-rich systems. Instead, param-
eterization allows tuning or customizing systems to specific needs at runtime.
Not surprisingly, several of our analyzed publications describe product-line en-
gineering in such contexts [80,155,156,161]. In this light, the adoption strategy
is rather reactive, where a single system is developed and gradually extended
with variation points, as covered in promote-pl. Still, better methods and tools
are needed to manage and evolve dynamic and adaptive platforms [188,189].
Agile Practices. Agile software engineering [190,191] methodologies focus on
customer involvement, small increments, and fast feedback. Almost all agile
methodologies also build on the notion of features, including SCRUM, XP, and
FDD (feature-driven development). They also foster automated testing, which,
similar to continuous software engineering, requires configurable platforms.

We found two publications that report to adapt agile methods for their
product-line engineering: [73] underpin that product-line and agile engineering
are not conflicting, but the developers must be aware that they deliver assets
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to a platform that is used by others. Slightly in contrast, [165] find that agile
methods are not ideal to Derive Variants, because the development cycles are
too short to Train Developers. However, they adapted agile methods for evolv-
ing and throughout multiple product lines, which facilitated their engineering.
These experiences indicate that agile methods are important, particularly to
Evolve a product line (e.g., via its variants). In this light, promote-pl does
not only support agile practices, but is also crucial given the focus of agile
methods on features, automation (similar to continuous software engineering),
and incremental evolution via variants.
Simulation in Testing. Three of the analyzed publications, and two of our
industrial partners [51], explicitly mention to use simulation environments to
Test their platforms and variants [51,73,160,161]. While promote-pl captures
these activities, more research is needed in this direction. In particular, this is
different to sampling variants and test them, as safety-critical systems (e.g., cars,
power plants) require an actual simulation environment to test whether software
and hardware interact correctly. Moreover, as the simulators may have different
properties (e.g., for transferring data) or require additional features (e.g., for
Monitoring additional data), this can also result in simulation-specific assets
(Add Variation Points). In this light, promote-pl covers the relevant activities,
and can guide the development of supporting techniques for simulation testing.

3.6 Threats to Validity
Construct Validity. Regarding construct validity, we may have misinter-
preted the terminology used in different publications. Even more, some sets of
activities have been used in varying orders in different publications, indicating
variations in the use of the constructs we investigated. As a result, the orders
of activities we elicited may not completely represent those intended by the
authors. We mitigated this threat by building on 33 publications, carefully
reading the descriptions of activities in each publication, and reasoning based
on our experiences.
Internal Validity. Our work may be threatened by the methodology we
employed. We may have falsely disregarded publications, missed important
data during the extraction, and not derived the most suitable process model—
particularly as we also relied on our experiences and interpretation. However,
to limit these threats, we adapted recommendations for process theory [133],
suggesting that secondary studies (e.g., systematic literature reviews) are
a reliable source for such studies to reduce the potential bias of personal
knowledge. Moreover, we were careful to not overly interpret the data we
elicited, and checked all outcomes among all authors.
External Validity. The goal of this study was not to derive a universal
process theory, which is arguably not possible. Instead, we aimed to capture
how product-line engineering is currently done based on empirical data. So, as
our data also shows, several process properties, such as the technologies used,
the domain of the product line, and the developers involved, limit the transfer
of our results to other organizations. We mitigated this external threat by
considering various publications and reflecting on our industrial collaborations.
For this reason, we argue that we mitigated this threat as far as possible,
considering our goal of analyzing current practices.
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Conclusion Validity. Other researchers may derive a different process model
for product-line engineering, depending on the publications they consider, their
experiences, or the construction process. To limit this threat to the conclusion
validity, we explained our methodology, reasoned about our modeling decisions,
and documented all publications we considered. Thus, we enable researchers
to replicate and verify promote-pl.

3.7 Related Work
Software reuse, its methods, technologies, and processes have been studied
extensively. Related to our work, [192] survey existing domain-engineering and
product-line engineering processes. Similarly, [193] as well as [194] provide gen-
eral overviews on software reuse, including adoption strategies, methodologies,
and techniques. In contrast to us, none of these works derives a process model,
and they are rather old—missing insights on current practices and technological
advances.

Several researchers, including ourselves, have analyzed how developers
reuse software in practice. For instance, we investigated feature-modeling
practices [48,53] in order to understand how feature models are adopted and
constructed in practice, but this is only one activity in the process model.
Van der Lindern et al. [2] report 10 experience reports of how organizations
employ product-line engineering, and what benefits they achieved. However,
these cases are comparably old and analyzed in the context of the process
model of [12]. In a similar direction [195] compare the reuse practices of two
organizations, but do not derive a process model for these. We reviewed other
related work, which describes (parts of) product-line engineering processes
based on practical experiences, to construct promote-pl (cf. Table 3.1).

Out of the numerous literature studies on product-line engineering [196],
the works of [76], [197], and [58] may be the closest to promote-pl. [76] perform
a systematic mapping study on product-line evolution, identifying 23 studies
on extractive processes. [197] build on that study, including some additional
papers based on their selection to derive a taxonomy (which is similar to a
process theory [133]) of product-line re-engineering. Most recently, [58] report a
systematic literature review, also on re-engineering. In contrast to the other two
papers, the authors synthesize a high-level process model (see the corresponding
partial order in Table 3.1). All of these works focus on the specific processes
of re-engineering product lines, which is part of promote-pl. So, these works
are complementary, and they actually argue that well-defined, contemporary
process models are needed; which we contribute with promote-pl.

3.8 Conclusion
We presented promote-pl, a modern process model for product-line engineering.
Its design is based on a systematic analysis of the literature (experience reports
and empirical studies) and our own industrial experiences. We adapted a
method for deriving process theories to identify engineering activities and their
(partial) orders as reported in the literature, and then unified the terminol-
ogy to create an aggregated process model. The granularity of promote-pl
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allows practitioners to easily map and apply activities to various development
processes—less strictly than existing process models.

Core characteristics of promote-pl, as opposed to existing process models,
which were conceived almost two decades ago, are the:

• focus on adoption and evolution strategies as the dominant decom-
position criteria of the process, which is more aligned with primary
organizational concerns;

• support for different adoption strategies, including the dominant
extractive and reactive platform adoptions;

• support to evolve a platform via its variants instead of primarily via
the platform itself; and

• alignment with modern practices including continuous software engi-
neering, agile methods, clone management, incremental platform adoption,
and simulation-based testing.

We envision that future research will investigate the adoption of promote-pl in
case studies, and build corresponding tool support. Also, we hope to inspire
practitioners providing experience reports and requirements for tools supporting
promote-pl.
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Abstract
The ever-growing need for customization creates a need to maintain software
systems in many different variants. To avoid having to maintain different copies
of the same model, developers of modeling languages and tools have recently
started to provide implementation techniques for such variant-rich systems,
notably variability mechanisms, which support implementing the differences
between model variants. Available mechanisms either follow the annotative
or the compositional paradigm, each of which have dedicated benefits and
drawbacks. Currently, language and tool designers select the used variability
mechanism often solely based on intuition. A better empirical understanding
of the comprehension of variability mechanisms would help them in improving
support for effective modeling.

In this article, we present an empirical assessment of annotative and com-
positional variability mechanisms for three popular types of models. We report
and discuss findings from a family of three experiments with 164 participants in
total, in which we studied the impact of different variability mechanisms during
model comprehension tasks. We experimented with three model types com-
monly found in modeling languages: class diagrams, state machine diagrams,
and activity diagrams. We find that, in two out of three experiments, annota-
tive technique lead to better developer performance. Use of the compositional
mechanism correlated with impaired performance. For all three considered
tasks, the annotative mechanism was preferred over the compositional one in
all experiments. We present actionable recommendations concerning support of
flexible, tasks-specific solutions, and the transfer of established best practices
from the code domain to models.
Keywords: variability mechanisms, model-driven engineering, software prod-
uct line engineering, empirical study
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4.1 Introduction
Variant-rich systems can offer companies major strategic advantages, such as
the ability to deliver tailor-made software products to their customers. Still,
when developing a variant-rich system, severe challenges may arise during
maintenance, evolution, and analysis, especially when variants are developed in
the naive clone-and-own approach, that is, by copying and modifying them [12].
The typical solution to these challenges is to manage variability by using
dedicated variability representations, capturing the differences between the
variants [2]. An important type of variability representation are variability
mechanisms, which are used to avoid duplication and to promote reuse when
implementing variability in assets such as code, models, and requirements doc-
uments. Over more than three decades, researchers have developed a plethora
of variability mechanisms, albeit mostly for source code [15,198,199].

As companies begin to streamline their development workflows for building
variant-rich systems, they recognize a need for variability management in all key
development artifacts, including models. The use of models is manifold, ranging
from sketches of the system design, to system blueprints used for verification
and code generation. The car industry is particularly outspoken on their need
for model-level variability mechanisms [200]. For example, General Motors
named support for variation in UML models as a major requirement [201], and
Volkswagen reported large numbers of complex, cloned variants of Simulink
models in their projects [202]. Beyond automotive, the need for model-level
variability has been documented for power electronics, aerospace, railway
technology, traffic control, imaging, and chip modeling [51].

Recognizing this need, researchers have started building variability mech-
anisms for models. Variability mechanisms are now available both for UML
[18, 20, 203] and Domain-Specific Modeling Languages (DSMLs∗ [19, 21, 22,
36, 204–208]). Building on these results, researchers have started to address
advanced problems such as the migration of a set of “cloned-and-owned” model
variants to a given mechanism [108,202,209–211], and efficient analysis of large
sets of model variants [212–214]. Adoption in several industrial DSMLs has
demonstrated the general feasibility of model-level variability mechanisms in
practice [215].

While variability mechanisms for source code are reasonably well understood
[25,198,199], language and tool designers are offered little guidance on selecting
the most effective variability mechanism for their purposes. In fact, there is a
lack of evidence to support the preference of one mechanism over the other.
In line with previous studies on code-level mechanisms [17, 25, 216, 217], we
argue that comprehensibility is a decisive factor for the efficiency of a variability
mechanism—for any maintenance and evolution activity (e.g. bugfixing, feature
implementations), the developers first need to understand the existing system. A
better empirical understanding of the comprehension of variability mechanisms
could support the development of more effective modeling languages and tools.

To this end, we present an empirical study of variability representations
in models. We report on a family of three experiments in which we studied
how the choice of variability mechanism affects performance during model

∗DSMLs allow modeling software systems from different domains using domain-specific
notations.
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comprehension tasks. We consider comprehension tasks for three popular
model types†: class diagrams, state machine diagrams, and activity diagrams.
The experiments are fully randomized, and employ student developers from
three countries. We consider two selected variability mechanisms that are
representative for the two main types distinguished in the literature [218]:
Annotative mechanisms maintain an integrated, annotated representation of
all variants. Examples include preprocessor macros [219] (for code) and model
templates [203] (for models). Annotative mechanisms are conceptually simple,
but can impair understandability, since they clutter model or code elements
with variability information [25, 219]. Compositional mechanisms allow to
compose a set of smaller sub-models to form a larger model. Examples include
feature-oriented programming [220] (for code) and model refinement [221] (for
models). Compositional mechanisms are appealing, as they establish a clear
separation of concerns, but they involve a composition step which might be
cognitively challenging. We aimed to shed light on the impact of these inherent
trade-offs.

We focus on three model types used in various modeling languages: class
diagrams, state machine diagrams, and activity diagrams. The diagrams
are three commonly used types of UML models, popular both in academia
and industry. Class diagrams play a significant role in domain and system
analysis and design. They are representative for a wide array of visual languages
modeling domain concepts, such as Entity-Relationship diagrams (ER diagrams,
[222]), and they can be used for generating the architecture of a system [223].
State machine diagrams model system behavior in terms of the different states
a system exists in. They play an important role in software verification
[224]. Activity diagrams also model behavior, but in contrast to state machine
diagrams, they model the interaction between the user and the system. Both
state machine diagrams and activity diagrams are representative of other
behavioral representations such as sequence diagrams (which model a system
in terms of sequential interactions between actors), and can also be used for
code generation and system verification [225].

We make the following contributions:
• We present our findings on a family of experiments, each investigating

how the choice of variability mechanism affects the comprehensibility of
different model-related tasks for three popular model types.

• We present a quantitative analysis of correctness, the completion time, and
subjective assessments of our participants for six model comprehension
tasks.

• We present a qualitative analysis of participant responses, adding rationale
to explain the observed results.

• Based on our synthesized findings, we propose recommendations for
language and tools developers.

• We provide a replication package [226] that includes our experimental
material, anonymized responses, and analysis scripts.

†In this paper, we use the terms diagram and model interchangeably. In modeling
languages such as UML, models can consist of a single diagram. The difference between such
a model and the contained diagram is then not essential.
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This paper considerably extends our earlier conference paper [89] that
presented the first of our three experiments, focusing on class diagrams (73
participants). Based on these earlier results, we designed, performed, and
analyzed two follow-up experiments, keeping the methodological setup of the
first experiment, while varying the considered modeling languages. The results
add nuance and additional insights, while largely confirming the findings from
the first experiment. Based on the results, we are able to derive conclusion
about a broader class of modeling languages and based on more observations
(from 164 participants).

We present the first empirical study of variability mechanisms for models
that investigates the effect of different mechanisms in a controlled experiment.
While earlier empirical studies considered the comprehensibility of code-level
variability mechanisms (see Section 4.8), their generalizability to models is
unclear. Code usually has a tree-like structure and is expressed in textual
notations. Modeling languages support the structuring of models in a graph-like
manner and usually have graphical notations. Since different representations
are known to affect performance during decision-making tasks [227], specifically,
software engineering tasks [33], we argue that the comprehensibility of model
variability mechanisms requires a dedicated investigation. In the scope of
models, related work is on experience reports in variability modeling (e.g.,
[21, 142,143]) and controlled experiments outside the scope of variability (e.g.,
[34, 35,228]).

4.2 Background
There has been a recent surge of interest in dedicated variability mechanisms
for models. Lifting the related distinction from code-level mechanisms, two
main types are distinguished: Annotative mechanisms represent variability
with an annotated integrated representation of all variants. Mechanisms in
this category are model templates [19, 112, 203], union models [229], and the
top-down approach [230]. Compositional mechanisms represent variability
by composing variants from smaller sub-models (from here referred to as
model fragments). Available approaches mostly differ in their model fragment
syntax and composition semantics. Examples are delta modeling [231], model
superimposition [18], refinement [208, 221], components [36], and the bottom-up
approach [230].

To illustrate the role of both types of mechanisms in industry, we refer to
a recent survey of variability support in 23 DSMLs [215]. It describes four
strategies being used: First, a model represents one variant (9 languages);
second, elements are reused across models by referencing (10 languages); third,
multi-level modeling is used for capturing variability (1 language); fourth,
elements have so-called presence conditions (explained shortly, 3 languages).
The first strategy is considered as a baseline in our experiments. The second
and third one are compositional, as they spread differences between variants
across several smaller models. The fourth one is annotative.

We selected the two variability mechanisms for our experiments based on
the following criteria: (M1) The mechanism has a graphical syntax. (M2) The
mechanism is supported by available tools. (M3) The mechanism has been de-
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scribed in the scientific literature. The rationale for M1 was to study variability
mechanisms in the widespread graphical representation of our considered model
types. Support by tools (M2) and available literature (M3) may contribute
to the transfer of existing research results to industrial practice, and allow
practitioners to test the mechanisms in available prototypes.

Based on these criteria, as an annotative mechanism, we identified model
templates (implemented in FeatureMapper [19], SuperMod [20], and Henshin
[205]). For compositional, we identified two existing approaches fulfilling the
criteria: Delta modeling (implemented by DeltaEcore [232] and SiPL [233])
and model refinements (implemented by eMoflon [22]). We decided to consider
model refinements, as they implement the compositional paradigm in the most
straightforward way (delta modeling supports deletions, which increases its
expressiveness, but requires more complex syntax and semantics).
Example. We illustrate the specific variability mechanisms used in our exper-
iments with a simple example, inspired by Schaefer [234]. The same example
was also used in the experiment to introduce the variability mechanisms to the
participants.

The example represents a simple cash desk system that exists in three
similar, but different variants. Figure 4.1 depicts the individual variants using
separate class diagrams: Variant var1 consists of a CashDesk with a KeyBoard
and a Display. Variant var2 has additionally exactly one CardReader con-
nected to the CashDesk. Variant var3 replaces the Keyboard with a Scanner
and makes the CardReader optional (multiplicity 0..1 instead of 1).

The depicted representation of listing variants individually is used as a
baseline in the first of our experiments, referred to as the “enumerative mecha-
nism.” This solution is frequently applied in practice [215], where it leads to
severe maintenance drawbacks. For example, a bug found in one of the variants
must be fixed in all variants separately. The goal of the variability mechanisms
presented below is to simplify working with such similar, but distinct variants.
Annotative Variability. The annotative mechanism considered in our ex-
periments is model templates [203]. Like annotative mechanisms in general,
it combines all model variants into a single model with annotations. The
left-hand side of Figure 4.2 shows a model template for our example: a class
diagram that represents the three variants of the cash desk system. Parts of
the class diagram are annotated with presence conditions, stating the variants
in which the part occurs. For brevity, we define a presence condition as a list
of configuration options (disjunction). For example, the presence condition
«var1,var2» indicates that the annotated part is present when either the con-
figuration option var1 or var2 is selected. The absence of a presence condition
denotes that the part is contained in all variants.

Colors are used in the following way: Elements (classes and associations)

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

1

CashDesk Scanner

Display

var3

CardReader

0..1

Figure 4.1: Three variants of a cash desk system
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Figure 4.2: Annotative and compositional variability
with a black outline occur in all variants, elements with a grey outline occur
in two or more variants, elements with a colored outline belong to precisely
one variant, whose annotation is also depicted with the same color. The use of
colors to distinguish elements goes back to the original paper that introduced
model templates [203]. Colors may be crucial for comprehensibility. In the
case of code-level variability mechanisms, Siegmund et al. [216] found that
colors support understanding of annotative variability. We are interested to
determine if this finding also applies to models.

Individual variants are derived from the combined model as follows: The
user sets one of the configuration options as active. The concrete model is
derived by removing all those elements whose presence condition does not
contain the configuration option. For example, selecting the configuration
option var1 leads to the model variant var1 in Figure 4.1.
Compositional Variability. The compositional mechanism we considered
is refinement [22]. Like all compositional mechanisms, refinement provides
(i) a means of decomposing variants into smaller building blocks, and (ii) a
means of merging building blocks to form complete variants. This allows for
sharing and reuse of common parts in different variants. The building blocks
are visually shown as a network, as depicted in the right-hand side of Figure
4.2. Commonalities of var1 and var3, as well as var2 and var3 have been
extracted into separate “super” class diagrams. These diagrams have a dashed
border, as they only represent commonalities and are “abstract” in the sense
that they are not complete variants. Composition of diagrams is denoted using
an inheritance arrow, e.g., var2 is formed by combining var1, the elements
specified in var2, and the elements in the common super class of var3 and
var2. As the example demonstrates, multiple super class diagrams (see var3)
and transitive composition (see var2) are possible.

Deriving individual variants is a two-step process. First, a union of the
contents of the variant and all its transitive parents is computed; this results
in a single, flat class diagram (with no parents). Second, a merge operator is
used to combine elements that should be the same. For class diagrams, this
operator combines all elements with the same name. The merge operator also
defines how to resolve conflicts: for class diagrams, a common subtype must
exist for nodes to be merged, and multiplicities of merged edges are combined
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by taking the maximum of lower bounds and minimum of upper bounds. For
example, when the variant var1 is selected, it is merged with its parent (top
class diagram with dashed lines). Building the union of both class diagrams
and merging the cash desk elements leads to the model variant var1 in Figure
4.1.

Considered model types. In our experiment family, we cover three types
of models: class diagrams, state machine diagrams, and activity diagrams.
Our rationale is three-fold: These model types: (i) are commonly taught in
undergraduate education, allowing our participants to work with languages they
are already familiar with; (ii) are widely used in industry [235,236], indicating
their representativeness, (iii) together are suited to capture three essentially
different concerns: static structure, dynamic behavior from the internal system
perspective, and dynamic behavior in interaction with the user.

In each of these model types, variability can be implemented using the
annotative and compositional mechanisms illustrated in the example above.
We now discuss each model type and any necessary customizations required to
accommodate the model type in our considered mechanisms.

Class diagrams have a pronounced role in system design and analysis. In
code generation contexts, they are used to generate data management com-
ponents (e.g., large parts of enterprise web and mobile apps can be generated
from class models [237–239]), object-oriented code in roundtrip engineering
scenarios [240], and ample Model-Driven Engineering (MDE) tooling in mod-
eling platforms, such as the Eclipse Modeling Framework (EMF [241]). Class
models can be supported via model templates and model refinement in a
straightforward day, as shown in the example above.

State machine diagrams capture the dynamic behavior of a system, focusing
on one of its entities or objects, in terms of its possible states and the transitions
between the states, based on certain well-defined events. Like class diagrams,
they play an important role in code generation [242,243]. Expressing variability
in state machine diagrams using model templates is straightforward, based on
assigning presence conditions to states and transitions. Model refinement can
be applied in a similar way as for class diagrams. One additional complication
arises with hierarchical state machines, where merging must respect the nesting
of states as defined in different model fragments. In principle, multiple model
fragments can make conflicting contributions to the merge result (for example,
if there is a fragment with state A nesting a substate B, and another fragment
with a state B nesting a substate A). We designed our examples to avoid such
situations.

Activity diagrams, like state machine diagrams, also capture the dynamic
behavior of a software system. However, in contrast to state machine diagrams,
activity diagrams provide means to model user and user-visible activities, as
well as the flow between them. Activity diagrams allow modeling overlapping
activities (fork), or activities that need coordination (merge). Expressing
variability in activity diagrams using model templates is straightforward [244],
based on assigning presence conditions to activities. Model refinement can be
applied in a similar way as before. One complication concerns the merging
of flow: if the same activity appears in different fragments with different
subsequent activities, one needs to define how the arising conflict is resolved.
For our experiments, we defined a conflict-resolution rule that an actual activity
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Figure 4.3: Model refinement rule for activity diagrams: ending activities are
overwritten by decision nodes
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Figure 4.4: Methodology overview
always overrides an ending node. Figure 4.3 depicts an example: the left
fragment consists of the functionality of withdraw and the middle fragment
composes the activities for printing receipts. When merging both fragments,
the final activity in the left fragment is overwritten by the decision node
(represented as a diamond) in the middle fragment. The right fragment shows
the merged form of both fragments.

4.3 Overview on Our Family of Experiments
We performed a family of three experiments, illustrated in the high-level
overview in Figure 4.4. Our experiment family consisted of two independent
variables: the considered model type and variability mechanism. The former
was varied between experiments, i.e., each experiment focused on a single model
type. The latter was varied within each experiment, i.e., each experiment
compared multiple variability mechanisms on the same model type.

We considered three variability mechanisms—annotative, compositional,
and enumerative—where the enumerative mechanism (a simple listing of all
variants) was considered the baseline. In all three experiments, we adopted a
within-subject design, where each participant used each considered variability
mechanism on all tasks. We considered three widely used models types—class
diagrams, state machine diagrams, and activity diagrams—as discussed and
motivated in Section 4.2.

In Experiment 1, we considered all three variability mechanisms. Based
on some important observations from the experiment 1 (explained shortly),
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we decided to not consider the enumerative mechanism in the remaining
experiments. This allowed us to have a more in-depth comparison and reflection
of annotative and compositional variability in experiments 2 and 3, based on
more intricate tasks.

In every experiment, our participants worked with example models from cer-
tain domains, derived from the literature and our experiences. To avoid learning
effects based on answers of previously completed tasks, we varied the considered
example domain for each variability mechanism. Consequently, the number
of considered domains in each experiment matched the number of variability
mechanisms: three in Experiment 1, two in Experiment 2 and Experiment 3.

Prior to the experiments, as a preparatory study, we conducted a further
experiment (explained shortly in Section 4.4) to shape the design of our
materials and tasks. The goal was to assess the suitability of our experimental
tasks and to derive potential improvements of the setup.

To recruit a significant number of participants, we involved students as
participants, due to their representativeness as stand-ins for practitioners
[245]. The participants came from four different universities in Germany (two
universities), Netherlands, and Sweden. We shortly discuss demographic aspects
of our participants. In each experiment, we randomly divided participants into
n groups (n = number of variability mechanisms). For subject allocation, we
used a Latin square design [25,26] to ensure that each participant used every
distinct variability mechanism and domain exactly once, as to avoid learning
effects.

To ensure homogeneity, we kept other aspects constant across our exper-
iments as far as possible: training material, goals and research questions,
experimental design, task types, task metrics, subjective assessments, analy-
sis, and participant selection. We used different domains in each experiment,
deliberately to make the results generalizable. We customized the individual
tasks according to the domains, keeping the task types unchanged. To analyze
comprehensibility, we designed three task types: Understanding variants, com-
paring two variants, and comparing all variants. Our detailed methodology
and analysis is described in Section 4.5 and Section 4.6, respectively.

The considered domains were varied between the experiments: In Exper-
iment 1 and Experiment 3, we chose intuitively understandable examples that
inherently lend themselves towards being expressed with the considered model
type. To this end, we derived the domains by taking inspiration from literature.
The domain choice in Experiment 3 also incorporated participant feedback
from previous iterations of the experiment. In Experiment 2, we derived two
sub-domains from a software project considered in the course that the partic-
ipants were recruited from. This was useful because it allowed us to conclude
that all participants were familiar with the considered domains.

4.4 Preparatory Study
We conducted a preparatory study to evaluate our experimental design and
identify possible issues and other amendable aspects. The study was performed
on a population of 28 students (disjoint from the population of our experiment).
The students were familiar with class models, the model type used in the
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experiment.

The tasks considered were bug-finding tasks, a typical task type for assessing
the usefulness of visual representations [25, 95]. Participants were handed a
textual requirement specification, together with design models implementing
the requirements with one of the given variability mechanisms. The design
models contained a number of deviations from the textual requirements (bugs),
which the participants were asked to identify. We also asked the participants
to suggest potential improvements to the experiment using an open-ended
question.

To provide meaningful example domains, we considered the existing litera-
ture. The first example represented a phone product line with phones being
conditionally capable of making incoming and outgoing calls [18]. The second
example represented a project management system with managers, employees,
and tasks [246]. Students obtained a virtual instruction sheet and a link to
an explanation video for the used variability mechanisms. The students were
asked to complete the entire questionnaire in 30 minutes.

From this preparatory study we drew three main conclusions: First, example
models with 3 to 4 classes, and 3 or 4 variants each were too simple to demon-
strate a difference between both mechanisms. This conjuncture was supported
by one participant’s written recommendation to “create [more] complicated
examples with 6 or 7 classes and not so easy ones.”

Second, despite our efforts to provide clear requirements, a participant asked
us to be “more specific and less ambiguous with the requirement specifications.”
Ambiguity is an inherent risk to experimental validity since its effect is hard to
quantify (it is unclear how many participants assume a different understanding
than intended). Another, recurrent comment was that reading the descriptions
was tiring, threatening the completion rate. Therefore, we decided to switch
the nature of the used tasks in the main experiment to comprehension tasks
that do not rely on additional artifacts.

Third, the provided instruction video was viewed as redundant, as it showed
only information that was available on the instruction sheet. In the actual
experiments, we decided to omit the instruction video.

4.5 Methodology
In this section, we present the detailed experimental methodology for our
family of three experiments, each of which is focusing on one model type. Our
experimental materials and data, including the raw data, are publicly available
via our replication package [226].

4.5.1 Experimental Setup
As explained in Section 4.3, to ensure uniformity, we reused some components
of our experiment in all three executions: goals and research questions, training
material, task types, task metrics, subjective assessment, quantitative feedback,
and data analysis. In this section, we elaborate these common components of
our experiments.
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Figure 4.5: Questionnaire design for our experiments, with n=3 for experiment
1, and n=2 for experiments 2 and 3.
Research Questions. Our goal was to study the effect of variability mech-
anisms on model comprehension. Towards this goal, we formulated and inves-
tigated the following research questions:

RQ1 To what extent do variability mechanisms impact the efficiency
of model comprehension?

We studied the effect of annotative and compositional mechanisms on the
ability to solve model comprehension tasks correctly and quickly.

RQ2 How are variability mechanisms perceived during comprehen-
sion tasks?

We studied the perceived understandability and difficulty to complete model
comprehension tasks depending on the used variability compositional mech-
anism, based on subjective assessments.

RQ3 How are participant preferences for variability mechanisms
distributed over different task types?

We elicited qualitative and quantitative data about the participants’ subjective
preferences by asking them to choose a preferred mechanism and explain the
choice.
Experimental Design. We applied a cross-over trial, a variant of the within-
subject design [247], in which all participants are sequentially exposed to each
treatment. The treatments in our case were the use of the different variability
mechanisms during comprehension tasks. The main benefit of the chosen design
is its efficiency in enhancing statistically valid conclusions for a given number of
participants. The design also reduces the influence of confounding factors, such
as participant expertise, because each participant serves as their own control.

A main threat to this kind of study design are learning effects: during
the experiments, participants might transfer experience gained by solving
one task to other tasks. We mitigated this threat by using a Latin square de-
sign [25,26]. Participants were randomly distributed across equally sized groups,
such that each participant experimented with each variability mechanism and
each domain once. Each group was assigned one of several paths through
the experiment, based on the different possible combinations of domains and
variability mechanisms. For example, consider the three paths for Experiment
1, which included the variability mechanisms annotative (Ann), compositional
(Com), and enumerative (Enu), and three domains d1, d2, and d3 :

• Enu d1→Ann d2→Com d3 (path 1),
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• Com d1→Enu d2→Ann d3 (path 2), and

• Ann d1→Com d2→Enu d3 (path 3).

Following our Latin square design, to avoid bias related to the complexity of
the considered domains, the order of domains was fixed between paths.

Figure 4.5 shows the design and flow of our questionnaire. Each module
corresponded to one element of the above-mentioned paths, and consisted
of one model, its description, and six tasks. We discuss further threats and
mitigation strategies in Section 4.7.
Training Material. The participants received training material in the form
of handouts elaborating the variability mechanisms before beginning the ex-
periments (available in replication package [226], intro documents in folder
material). In the training material, we elaborated the variability mechanisms
and presented different representations of the illustrative example shown in
Section 4.2. We also showed how variants can be derived by giving valid
feature selections (annotative) or composing different sub-models (composi-
tional). We reused the same training material across all experiments, with
small adjustments. Specifically, we extended the material for Experiment 3
(activity diagrams), where the composition required an extra step, i.e., when
merging two activity diagrams, decision nodes overwrite ending activities.
Preliminary Assessment. In the questionnaires (available in replication
package [226], folder questionnaires), before the actual tasks, we asked the
students to self-assess their expertise in three relevant categories using five-
point Likert scales: Model type (the baseline technology of our experiment),
programming (to argue for the representatives of our findings), and the con-
sidered variability mechanisms (the experimental treatment). The five-point
scale consisted of positive integers from 1–5, 1 representing the lowest value,
and 5 representing the highest. Table 4.1 shows a summary of participant
self-assessment ratings for the three experiments.
Task types and Tasks. While designing tasks, we aimed for representa-
tiveness. We designed task types to depict common activities performed by
developers in variant-rich systems. For each domain represented using a given
variability mechanism, participants were required to perform tasks of three
types. Every task type consisted of two concrete tasks. Below, we discuss the
three task types, provide an argument for their representativeness, and give
examples for the concrete tasks per task type.

Task Type 1 (“understanding variants”) required participants to map el-
ements of the model (classes, states or activities) to variants. This task type
is inspired by feature location: a common activity where parts of an artifact
(code or model) implementing a feature has to be identified. Tasks of this type
followed the style: “Which variants have the elements X and Y? List all such
variants, or write none otherwise.” Consider the Phone management domain in
the first experiment (in the replication package [226], material/exp1/Ship.pdf ),
we formulated the following task for task type 1: How many variants have both
the classes “Camera” and “Video”?

Task Type 2 (“comparing two variants”) required participants to differentiate
two variants in terms of the elements they consist of. Specifically, they needed to
list the non-overlapping elements of two given variants. In practice, such a task
is performed to deeply understanding how two closely related variants differ.
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Tasks of this type followed the style: “How do the two variants Var1 and Var2
differ? List all differing elements if there are any.’ As an example, consider the
Robocode domain in the second experiment (see the replication package [226],
material/exp2/Boat.pdf ), where we formulated the following task for task type
2: Which state(s) does [the robot variant] ”Grizzlyman” have that [variant]
“Toxitonic” doesn’t have? List all such states if there are more than one.

Task Type 3 (“comparing all variants”) involved a broader comparison, e.g.,
listing elements belonging to all variants. Such a task type is performed when
trying to understand the entire variant space. Tasks of this type resembled
the following style: “Which elements are included in all variants?” To reduce
effort in the case of larger examples, we specified a pre-selection of a obvious
elements and asked the participants to fill in the remaining ones. For example,
consider the third experiment with activity diagrams as the featured model
type (replication package [226], material/exp3/Train.pdf ). We formulated the
following task for task type 3: What is the longest possible path of activities
you can have in any of the products, from a start to an end activity? Please
list all activities that the path consists of (excluding start and end activities) in
order. If there are multiple longest paths, pick one.

Task types in the questionnaire were represented as sub-sections of the
modules (Figure 4.5), where each sub-section consisted of two tasks. Each task
consisted of one concrete question that the participants were asked to answer,
as illustrated in the previous examples.
Dependent Variables. For measuring efficiency (RQ1), we elicited two
metrics: correctness and completion time. The correctness of a task type was
the aggregate correctness of its two concrete tasks. For each task, we evaluated
the responses using a scale of 0–1 as follows: Correct responses received a
score of 1, partially correct 0.5, and incorrect 0. The responses were evaluated
against oracles that the authors produced. For each task type per sub-system,
the primary and secondary authors iteratively solved each individual task until
they reached a consensus (which formed the oracle). In majority of the cases,
both the authors had the same responses. As a margin of error, we also checked
if the responses to one task were consistently different than our oracles. This
was never the case in our experiments.

A response was deemed partially correct if it included some but not all
correct elements, or some correct and some incorrect ones. The scores of both
tasks of a task type were summed up to obtain the correctness score in the
range 0–2. This resulted in a total of three correctness scores per participant.
For completion time, we asked the participants to log the starting and ending
times of each module (Figure 4.5), which we converted to the completion time
in minutes.

To address RQ2, we asked the participants to assess the understandability
of each mechanism and the difficulty of addressing each task type using each
mechanism. Specifically, we asked the following questions:

(S1) How easy did you find it to understand each mechanism?
(S2) How difficult was it to answer the questions on “Understanding variants”

(tasks 1 and 2) for each mechanism?
(S3) How difficult was it to answer the questions on “Comparing two

variants” (tasks 3 and 4) for each mechanism?
(S4) How difficult was it to answer the questions on “Comparing all variants”
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(tasks 5 and 6) for each mechanism?
Following the common practice for subjective responses, we captured the

response on a 5-point Likert scale for each mechanism. The points represented
increasing levels of difficulty (from 1 easiest to 5 hardest). We used the same
labels for the Likert scales for S1-S4, specifying explicitly for each question
that 1 means very easy, and 5 means very difficult.

We aimed to investigate two hypotheses: that (i) all variability mechanisms
are perceived to be equally understandable, and (ii) while performing tasks of
each task type, participants experienced equal difficulty using all variability
mechanisms. For the former, we conducted a statistical analysis to compare the
understandability of different variability mechanisms included in the experiment.
For the latter, we conducted dedicated statistical analyses to compare difficulty
ratings per variability mechanism given by the participants for each task type.

For RQ3, we asked the participants to specify their preferred mechanism
per task type. To gain deeper insight into the rationale, and complement the
quantitative information with qualitative data, we also asked our participants
to elaborate on their choice of preferred mechanism—a setup inspired by
mixed-method research [248]. We used the following questions:

(S5) Which mechanism do you prefer for each of the three task types?
(S6) Can you explain your subjective preferences (intuitively)?
The answer to S5 was specified by selecting one of the literals Annotative,

Compositional, Enumerative, None for each of the task types. To collect the
qualitative data in S6, we kept S6 open-ended.
Analysis. For hypothesis testing, we used the Wilcoxon signed-rank test [249]
which we applied to the task and subjective metrics, following recommendations
according to which this test can in fact be applied to Likert-scale data [250]. We
used the standard significance threshold of 0.05. Two measurements involved
multiple comparisons (correctness and difficulty; each for 3 different task
types). For these metrics, we applied the Bonferroni correction [251], yielding
a corrected significance threshold of 0.017, obtained by dividing 0.05 by 3. We
employed the A12 score for assessing effect size following Vargha and Delaney’s
original three interpretations [41]: A12≈0.56 = small; A12≈0.64 = medium;
and A12≈0.71 = large. All tests were executed with R.

For assessing the qualitative data, one of the authors used inductive coding
to tag the participants’ comments from one of the experiments with relevant
keywords. Afterwards, two other authors verified the tags and suggested
improvements in the tags. Based on the discussion and feedback with the two

Table 4.1: Technical background of our participants

Exp. Experience with
MType Prog. Ann. Com. Enu.

1 3.47±0.60 3.62±0.74 1.73±0.87 1.86±1.03 1.87±0.93
2 2.84±0.58 3.42±0.74 2.26±0.73 2.52±0.77 -
3 3.39±0.64 4.0±0.46 2.1±0.8 2.3±0.86 -

Ratings on a 5-point Likert scale. 1: lowest 5: highest.
Exp.: Experiment MType: Model type Prog: Programming
Ann: Annotative Variability Com: Compositional Variability Enu:
Enumerative Variability
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authors, the author tagged the comments for the remaining two experiments.
The tags were useful to identify interesting aspects, and their frequency helped
to identify the redundant concerns.
Participants. The participants were recruited from undergraduate and grad-
uate courses at various universities. Our rationale for recruiting students is
their suitability as stand-ins for practitioners: students can perform involving
unfamiliar software engineering tools equally well as practitioners [245]. The
students were recruited from courses with completed previous lectures and
homework assignments on models featuring in the experiment. Before the ex-
periment, it was pointed out that participation in the experiment was entirely
voluntary, and data would be stored anonymously. To encourage participation,
a gift card raffle was offered as a prize to interested participants.

4.5.2 Experiments
We now discuss the individual aspects of our experiments: model types, domains,
participant demographics, and application of the Latin square design.

Experiment 1 was focused on class diagrams. In this experiment, in addition
to the annotative and compositional mechanisms considered in all experiments,
we included the enumerative mechanism as a baseline for comparison.

To select the systems, we specified a set of criteria that a subject system
would need to fulfill: (C1 ) The system has been introduced in previous liter-
ature. (C2 ) The system comprises several variants. (C3 ) The system has not
been introduced in a context related to a particular variability mechanism. The
rationale of these criteria was to select systems that represent real variability,
rather than making up artificial examples on the spot. As a result, we derived
variability-enriched class diagrams for three domains: Simulink, a project man-
agement system, and a phone system. These domains were identified from
literature based on their familiarity to the authors (convenience sampling [252]).
For the former two domains, we were aware of several available variants in the
literature. To systematically identify available variants, we performed database
searches in Google Scholar, IEEExplore, and ACM’s Digital Library, with the
search strings “Project Management meta-model” and “Simulink meta-model.”
The considered variants of Phone correspond to the feature model from the
original paper.

Simulink [253] is a block-based modeling language that is widely applied
in the design of embedded and cyber-physical systems. The absence of an
official specification has given rise to the emergence of various variants. The
Project Management (PM) [246] product line represents a family of software
systems for project management, with concepts such as projects, activities,
tasks, persons, and roles. The Phone product line, introduced by Benavides
et al. [127], represents a family of software systems for mobiles phones with
various hardware functionalities, such as different cameras and displays.

For each domain, we designed three class diagrams: one per variability
mechanism. With three mechanisms (Enu, Ann, com) and three domains (d1,
d2, d3 ), following a Latin square design [25, 26], the paths were:

• Enu d1→Ann d2→Com d3 (path 1),

• Com d1→Enu d2→Ann d3 (path 2), and
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• Ann d1→Com d2→Enu d3 (path 3).

We recruited 73 participants, all of which were BSc students in a German
university. The students were recruited from courses with completed previous
lectures and homework assignments on class models. In line with our strategy
to recruit students familiar with class models, students expressed an average
level of expertise, amounting to 3.47 (mean) ± 0.60 (standard deviation). The
self-reported programming expertise of 3.62 ± 0.74 was comparable. In contrast,
the self-reported expertise in variability mechanisms was considerably lower,
amounting to 1.73 ±0.87 in annotative mechanisms, 1.86 ±1.03 in compositional
mechanisms, and 1.87 ±0.93 in enumerative mechanisms. The homogenous
experience of our participants is beneficial for the validity of our findings,
by countering a possible threat related to different previous knowledge. In
the light of our justification for selecting students as participants (based on
evidence for their suitability as stand-ins for developers [245]), our sample is
representative for developers with similar experience levels in modeling and
variability mechanisms.

Participants were randomly divided into three groups, and assigned one of
the above-mentioned paths, allowing them to experiment with each variability
mechanism and each domain once. Each participant was required to perform
three tasks types for the three models, each represented using a different
variability mechanism. At the end, the participants were asked to provide their
subjective assessments and preferences (S1–S6), and rationale for their choices.

Table 4.2: Correctness scores for experiment 1 (class diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.7/2 2.0/2 0.6 1.5/2 2.0/2 0.7 1.7/2 2.0/2 0.6
2: Comparing two variants 1.5/2 1.5/2 0.6 1.5/2 1.5/2 0.6 1.6/2 1.5/2 0.4
3: Comparing all variants 1.6/2 2.0/2 0.7 1.2/2 1.0/2 0.7 1.5/2 2.0/2 0.7
Total 4.8/6 5.0/6 1.3 4.2/6 4.5/6 1.4 4.9/6 5.0/6 1.1

Mdn: Median, St.dev: Standard deviation
Table 4.3: Correctness scores for experiment 2 (state machine diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.2/2 1.0/2 0.8 1.2/2 1.0/2 0.7 - - -
2: Comparing two variants 1.0/2 1.0/2 0.8 1.1/2 1.0/2 0.8 - - -
3: Comparing all variants 1.2/2 1.0/2 0.8 0.8/2 1.0/2 0.7 - - -
Total 3.4/6 3.0/6 2.0 3.1/6 3.0/6 1.8 - - -

Mdn: Median, St.dev: Standard deviation
Table 4.4: Correctness scores for experiment 3 (activity diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn St.dev Mean Mdn St.dev
1: Tracing elements to variants 1.4/2 1.5/2 0.6 1.2/2 1.0/2 0.6 - - -
2: Comparing two variants 1.4/2 1.5/2 0.6 0.9/2 1.0/2 0.7 - - -
3: Comparing all variants 1.4/2 1.5/2 0.5 0.9/2 1.0/2 0.6 - - -
Total 4.2/6 4.0/6 1.0 3.0/6 3.0/6 1.3 - - -

Mdn: Median, St.dev: Standard deviation

Experiment 2 considered state machine diagrams as model type. Both
considered domains were based on the robotics programming game Robocode
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[39]. The rationale was that students were involved with Robocode as a course
project and were, therefore, familiar with it. Moreover, Robocode bots possessed
considerable variability [155], which allowed us to model state machines that
were reasonably complex. Our considered domains represented two high-level
features of Robocode robots, each using a separate state machine diagram.
For each domain, we designed two state machines: one using the annotative
mechanism, and another one using the compositional mechanism.

We recruited 65 students from a Swedish university (63 Bsc, 2 PhD).
Participants were divided into two groups, and assigned into those randomly. In
the preliminary assessment, on average, the participants rated their experience
with state machine diagrams to be 2.846 ±0.587. Participants also gave an
average rating of 3.42 ±0.749 to their programming experience. The self-
reported experience of participants for the two variability mechanisms was
considerably lower: 2.26 ±0.73 for annotative, and 2.52 ±0.77 for compositional.
These ratings are, however, comparable to each other, and do not indicate any
bias towards a particular mechanism.

Following our Latin square design, we exposed both sub-domains (d1, d2 )
to the groups in the same order, and reversed the order of the variability
mechanism they were represented with.

• Com d1 →Ann d2 (path 1),

• Ann d1 →Com d2 (path 2).

Experiment 3 was focused on activity diagrams as model type. We designed
activity diagrams for two domains: a Flight reservation system (FRS) and an
Email service provider (ESP). We created them upon our experience and by
taking inspiration from the literature.

The participants in this experiment were 26 MSc students studying at a
Dutch university. Participants were randomly allocated into two groups. Par-
ticipants indicated an average experience of 3.39 ±0.64 with activity diagrams,
and 4.0 ±0.6 with programming. The mean scores for experiences with both
variability mechanisms were significantly lower: 2.1 ±0.8 and 2.3 ±0.86 for
annotative and compositional mechanisms respectively. The high ratings for
experiences with activity diagrams and programming can be explained by our
participants being MSc students, who have undergone significant practice with
software design and implementation. The lower ratings for both variability
mechanisms are also reasonable, since they were not taught in detail in the
course. However, the ratings are close to one another, reducing any possible
biases in the results.

We designed two activity diagrams per domain, each represented using a
different variability mechanism. With two domains (d1, d2 ), the paths after
applying our Latin square design were:

• Ann d1→Com d2 (path 1).

• Com d1→Ann d2 (path 2),
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4.6 Results
We now present the results from our experiments, structured along our research
questions. For each, we have one subsection presenting the relevant results
from all three experiments. This supports a direct comparison of our observa-
tions along our two independent variables (modeling language and variability
mechanisms).

4.6.1 RQ1: Efficiency
In RQ1, we studied the effect of annotative and compositional mechanisms on
efficiency, that is, the ability of our participants to solve model comprehension
tasks correctly and quickly. To this end, we computed correctness scores and
completion time based on the task responses, collected in the modules of our
questionnaire (see Figure 4.5). As explained in Section 4.5, the correctness
score of a task type ranged between 0 and 2, based on aggregating the scores for
the two questions in each task type. The completion time was determined by
measuring the difference between the starting and ending time for completing
all tasks for one particular variability mechanism.
Correctness. Table 4.2-4.4 provide a high-level overview of the correctness
scores. Each table corresponds to one experiment and model type, and shows
mean scores, median scores (Mdn), and standard deviations (St.dev) per task
type and variability mechanism. A complementary, more detailed overview
is offered by Figure 4.6a. Figure 4.6b, and Figure 4.6c, which visualize the
distribution of scores obtained for each task.

Considering class diagrams (Experiment 1, Table 4.2), the participants
generally performed equally well with the annotative and the enumerative
mechanisms. In contrast, the use of the compositional mechanism lead to a
noticeable drop in mean performance. Hypothesis testing showed that the
difference for compositional to other types was significant for task types 1
and 3. For type 1, we found p=0.01 for the comparison to annotative, with a
medium-ranged effect size of A12=0.62 (p=0.02 for the comparison to enumer-
ative, surpassing the corrected threshold). For type 3, we found p<0.01 when
comparing compositional to both annotative and enumerative, with medium
effect sizes (A12=0.66 and 0.64, respectively). We did not find significant
differences between the mechanisms for type 2. Annotative and enumerative
do not differ significantly in any considered case.

The similar results obtained for annotative variability and the baseline (enu-
merative) for this and the following RQs motivated us to focus in experiments
2 and 3 on the comparison between annotative and compositional variability.
Our rationale was that by not considering enumerative, we could allocate more
time to annotative and compositional, which we could use for more involved
questions within the task types that would allow a more in-depth comparison
between these mechanisms.

Consequently, in Experiment 2 and Experiment 3, we observed lower average
correctness scores than in Experiment 1. With state machine diagrams (Exper-
iment 2, Table 4.3), there were no prominent differences between the results for
annotative and compositional mechanisms for type 1 (1.2 vs 1.2) and 2 (1.0 vs
1.1). A significant difference was evident for the most complex task type, type 3,
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Figure 4.7: Completion time in minutes for (a) Experiment 1 (b) Experiment
2 and c) Experiment 3. Y-axis: Variability mechanisms (A: Annotative C:
Compositional E: Enumerative) X-axis: Time taken in minutes
where annotative outperformed compositional with a score of 1.2 vs. 0.8. For
type 3, hypothesis testing revealed a significant difference in performance using
annotative and compositional with p=0.01 and medium effect size (A12=0.61).
We did not find significant differences between the mechanisms for types 1
and 2. An explanation is offered by the nature of the considered examples:
Answering the questions was possible without an in-depth understanding of
how the composition operator works. Hence, an inherent disadvantage of the
compositional mechanism does not manifest itself in these examples. For task
type 3, where we find statistically different results, this concern does not apply.

With activity diagrams (Experiment 3, Table 4.4), the differences were
more pronounced. Participants performed better using annotative mechanism
for type 1 (1.4 vs 1.2), type 2 (1.4 vs 0.9) and type 3 (1.4 vs 0.9). Hypothesis
testing reveals significant differences for all task types, with p<0.01 for all types.
The effect size of this comparison was small-to-medium for type 1 (A12=0.59),
medium-to-large for type 2 (A12=0.67) and large for type 3 (A12=0.76). In
the overall performance, the participants on average achieved a score 1.3 times
higher with annotative than with compositional mechanism (4.2 vs 3.0). Com-
pared to experiment 2, one noteworthy aspect that adds to the explanation
of these findings is that performing the tasks required a better understanding
of the involved composition algorithm, since relevant information was spread
over several composition fragments.

Annotative outperformed compositional variability on average in all three
experiments. Specifically, the annotative mechanism lead to higher correctness
scores on average than the compositional one for all task types and domains
except one. The differences were significant for six out of nine cases (3 task
types and 3 experiments). Compared to the baseline (enumerative variability,
Experiment 1), annotative variability did not lead to significant performance
differences, whereas compositional variability did.

Completion Time. Table 4.5 provides an overview of the completion times
of participants for solving all tasks in all experiments. According to this data,
the average time taken for performing tasks using annotative mechanism was
always less than time taken using other mechanisms. Figure 4.7a, Figure 4.7b,
and Figure 4.7c represent the distribution of completeness times taken by
participants using different variability mechanisms for Experiment 1, 2, and 3
respectively.

In line with the observations about correctness, the speed of performing tasks
was highest in experiment 1, due to the simpler tasks in each task type, which al-



4.6. RESULTS 109

lowed us to consider the enumerative baseline solution in addition to annotative
and compositional variability. The participants were fastest on average when
using the annotative mechanism (mean completion time: 6.6 minutes), some-
what faster, but not significantly so than when using enumerative (7.1 minutes,
p=0.12). Participants, however, tasks took significantly longer when using the
compositional mechanism (8.8 minutes). The differences between compositional
and both annotative and enumerative were highly significant with p<0.001. The
effect size was large when comparing compositional and annotative (A12=0.71)
and medium-to-large for compositional to enumerative (A12=0.67).

In experiment 2, participants took roughly the same amount of time on
average using the annotative and compositional mechanisms (10.4 vs 11.3).
Hypothesis testing showed that the difference between times taken using both
mechanisms was not significant (p>0.25). These observations are in line with
the correctness-related ones, in which only one of the considered task types
(the most difficult one) lead to significant differences.

In experiment 3, participants were faster in performing their tasks on average
using the annotative mechanism than with the compositional one (14.2 vs 16.8
minutes). However, this difference is not significant (p>0.38). Contrasted with
the significant differences in the correctness scores for all three task types, we
find that the tendencies of both observations agree, but the implications for
correctness appear to be greater than those for completion time.

The annotative mechanism lead to the shortest on-average completion times
in all experiments. Participants took longest to complete the tasks when
using the compositional mechanism. Yet, only in one out of three experiments,
statistical significance was found. Compared to the baseline (enumerative
variability, Experiment 1), annotative variability outperformed the baseline
solution, but not significantly so.

4.6.2 RQ2: Subjective Perception
We report on the participant’s subjective perceptions of understandability and
difficulty to complete the tasks, based on our subjective assessment questions
(S1–S4 in our questionnaire; see Figure 4.5). The questions in this category
were answered on a five-item Likert scale, with lower scores indicating better
results. Table 4.6 gives an overview of the results, which are refined by the
Table 4.5: Completion times (in minutes) of our participants for all three
experiments.

Exp Mechanism Min Mn Mdn Max St.dev
1 Annotative 3 6.6 6 15 2.6

Compositional 4 8.8 8 17 3.2
Enumerative 3 7.1 6 19 3.1

2 Annotative 3 10.4 10 23 4.3
Compositional 5 11.3 11 22 3.7

3 Annotative 3 14.2 14 28 6.1
Compositional 8 16.8 14 32 6.7

Mn: Mean, Mdn: Median, St.dev: Standard deviation
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Table 4.6: Participant perceptions (understandability and difficulty ratings)
for Experiment 1, 2, and 3.

Annotative Compositional Enumerative
Exp Quality Mean Mdn St.dev Mean Mdn St.dev Mean Mdn St.dev
1 Understandability 2.6/5 3/5 1.1 3.2/5 3/5 1.1 2.2/5 2/5 1.2

Difficulty Task type 1 2.3/5 2/5 1.2 3.1/5 3/5 1.2 2.3/5 2/5 1.1
Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 2.2/5 2/5 1.2
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 2.5/5 2/5 1.1

2 Understandability 3.0/5 3/5 1.0 2.9/5 3/5 0.9 - - -
Difficulty Task type 1 2.6/5 3/5 1.0 2.6/5 3/5 1.0 - - -

Task type 2 2.6/5 3/5 0.9 2.6/5 2/5 0.9 - - -
Task type 3 2.9/5 3/5 1.0 2.9/5 3/5 1.0 - - -

3 Understandability 2.7/5 2/5 1.3 3.4/5 3/5 1.1 - - -
Difficulty Task type 1 2.3/5 2/5 1.0 3.2/5 3/5 0.9 - - -

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 - - -
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 - - -

1 Scores on a 5-point Likert scale with 1: very easy, 5: very hard to understand.
2 Scores on a 5-point Likert scale with 1: very easy, 5: very difficult to perform task.
Mdn: Median, St.dev: Standard deviation
visualizations in Figure 4.8a, 4.8b and 4.8c. The figures also include the exact
formulations of all questions.

In Experiment 1 (class diagrams, Figure 4.8a), enumerative was considered
to easiest to understand (mean: 2.2), followed by the annotative mechanism
(mean: 2.6). Compositional mechanism was the hardest to understand (mean:
3.2). The differences between the understandability of all three mechanisms
were significant, with varying effect size measures: for enumerative vs. anno-
tative, p=0.006 with A12=0.61 (small to medium effect); for compositional
vs. annotative, p=0.004 with A12=0.66 (medium effect); for enumerative vs.
compositional, p≤0.001, with A12=0.73 (large effect).

The difficulty rating was fully consistent with both the objective task metrics
(RQ1) and the understandability ratings. Regarding difficulty, annotative and
enumerative were considered to be less difficult than compositional for all task
types. Comparing the annotative and enumerative mechanism, the given mean
ratings were approximately equal, amounting to 2.3, 2.5, 2.5 for annotative,
and 2.3, 2.2, 2.5 for enumerative. We did not find statistical significance for
this comparison, reinforcing our decision to not consider enumerative in the
follow-up experiments. In contrast, the mean ratings for compositional of 3.1,
3.0 and 3.2 were much higher, indicating lower understandability. In all com-
parisons of compositional to another mechanism, we found significance. In all
cases but one (task type 2, annotative vs. compositional: p=0.03; A12=0.62),
the p-value was below 0.003 and the effect size between A12=0.65 and 0.69,
indicating a medium-to-large effect.

In experiment 2 (state machine diagrams, Figure 4.8b), for understandability,
participants gave approximately similar ratings to both annotative and composi-
tional (3.0 vs. 2.9). The difference was not statistically significant. Considering
difficulty, the mean scores per task type were identical (2.6, 2.6, 2.9 vs. 2.6, 2.6,
2.9), implying no statistically significant difference, largely consistent with the
correctness scores and completion times for the same experiment (RQ1). Still,
task type 3 gave rise to the only case in all our data where subjective assessment
and objective performance were not aligned: the reported difficulty levels do
not differ, while the correctness scores do so with statistical significance.

In experiment 3 (activity diagrams, Figure 4.8c), participants considered
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annotative to be notably more understandable than compositional (2.7 vs. 3.4).
The difference was statistically significant (p=0.3), with A12=0.68 (medium-to-
large effect size). Concerning difficulty, annotative was considered to be easier
than compositional for all task types (2.3, 2.5, 2.5 vs 3.2, 3.0, 3.2). The difference
for type 2 was significant, with p=0.005, and A12=0.73 (large effect). These
observations agreed with the correctness scores and completion times in RQ1.

The subjective perceptions of our participants largely agreed with the ob-
jective performance measurements: In two of the three experiments, the
found the annotative mechanism more understandable and easier to work
than the compositional one. The annotative mechanism was found (non-
significantly) harder to understand, but equally easy to work with as the
baseline (enumerative variability, Experiment 1).

Table 4.7: Distribution of preferred mechanisms per task type

Task type Ann. Com. Enu. None
Experiment 1
1 Understanding variants 50.7% 13.7% 34.2% 1.4%
2 Comparing two variants 26.0% 15.1% 57.5% 1.4%
3 Comparing all variants 43.8% 12.3% 42.5% 1.4%
Experiment 2
1 Understanding variants 58.6% 33.8% - 7.6%
2 Comparing two variants 52.3% 41.5% - 6.2%
3 Comparing all variants 46.2% 41.5% - 12.3%
Experiment 3
1 Understanding variants 78.3% 8.7% - 13.0%
2 Comparing two variants 78.3% 21.7% - 0%
3 Comparing all variants 78.3% 17.4% - 4.3%

Ann: Annotative Variability Com: Compositional Variability Enu:
Enumerative Variability

4.6.3 RQ3: Subjective Preferences
We report on our participants’ preferences, based on questions S5 and S6
in our questionnaire (see Figure 4.5). In S5, we asked our participants to
specify a preferred mechanism per task type (quantitative data). In S6, we
asked them for textual feedback to explain the rationale for their preferences
(qualitative data). In what follows, first, we present and discuss the distribution
of preferences (S5), before explaining our observations based on the provided
rationale (S6).

4.6.3.1 Quantitative Distribution of Subjective Preferences

Figure 4.9 and Table 4.7 provide an overview of our quantitative data: the
percentages of selected answers when asked to specify a preferred variability
mechanism per task type. For Experiment 1, we find that the preferences varied
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Figure 4.8: Subjective perceptions of our participants. Y-axis: Variability
mechanisms (A: Annotative C: Compositional E: Enumerative)
strongly between the tasks. Annotative was preferred by most participants
for task types 1 and 3, albeit with only a moderate to slight difference to the
enumerative mechanism: 50.7% vs. 34.2% for type 1, and 43.8% vs. 42.5%
for type 3. In contrast, the enumerative mechanism was preferred with a
large margin for task type 2, comparing two variants (which are explicitly
present in the enumerative representation). Compositional came in last in
all comparisons, with percentages between 12.3% and 15.1%. Participants
generally expressed a preference; the no-preference option was only selected
in 1.4% of all cases. Intuitively, the preference for enumerative for type 2 is
not surprising: in a comparison between two variants, explicitly representing
the variants seems beneficial. Based on the preference of annotative for type 1
and 3, we hypothesize that this representation is suitable for tasks that require
a good overview of all variants and the ability to trace elements to variants.

For Experiment 2, participants preferences were consistent with their un-
derstandability ratings per mechanism. Participants preferred annotative over
compositional for all task types: 58.6% vs. 33.8% for type 1, 52.3% vs. 41.5%
for type 2, and 46.2% vs. 41.5% for type 3. The more pronounced preference of
annotative for type 1 and 2 can be attributed to the consolidated view it offers,
making it easier to understand and compare variants (also confirmed by the sub-
jective assessments presented shortly). A considerable number of participants
selected the no-preference option, especially for type 3 (12.3%). While this
percentage is higher than in the other two experiments, one might still find it
surprisingly low: Even though there were hardly any differences in the subjective
assessment of understandability and difficulty (with low standard deviations),
most participants still specified a preference. One could interpret this finding
as supporting a role of personal inclination or taste in preferring a mechanism.

For Experiment 3, the differences were far more distinguished. The cleary
majority of the participants preferred annotative over compositional for all task
types (78.3% vs. 8.7% for type 1, 78.3% vs. 21.7% for type 2, and 78.3% vs.
17.4% for type 3). For type 1, 13% of the participants chose the no-preference
option. The preferences were consistent with both the correctness scores and
difficulty ratings. These observations are in line with our previous findings for
this experiment, in which annotative was found easier to use and lead to better
efficiency for all task types.
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Compared to compositional, annotative was generally preferred for all task
types, although with varying margins between the experiments. When also
offered the baseline representation (enumerative, Experiment 1), the prefer-
ences varied between the task types: Annotative was preferred for comparing
all variants, and for tracing elements to variants. Enumerative was largely
preferred for comparing two variants to each other.

4.6.3.2 Qualitative Explanations of Subjective Preferences

To obtain additional insights, we asked the participants to explain their prefer-
ences intuitively using an open-ended question. Based on our manual assessment
performed on the answers, we discuss the recurring aspects deemed as relevant
by the participants below. Importantly, some of the reported aspects could be
mitigated when working with proper tool support. Indeed, our findings might
be useful for informing the question of what improved visualizations should
focus on, as we further discuss in Section 4.6.4.
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Figure 4.9: Preference distributions of our participants in Experiment 1–3
(from left to right)

Conciseness. Models created using the annotative mechanism offer a consol-
idated view, where all variants of the domain are concisely shown as a single
model. Eight of our participants mentioned this as a benefit: “In the annotative
one you had all the information asked on the first look; comparing was easy
since the different [variants] were all in the same diagram.” With compositional,
the models were modular in nature. This however made the models scattered,
and therefore, hard to deal with. Five of our participants remarked that the
modularity made the models clearer and eased the tasks: “It [was] easier to
conduct direct comparisons between different products in the [compositional
mechanism], due to its modular nature.” However, the scatteredness of the
models was linked to difficulty in performing tasks: “[using compositional,
you] need to look at a lot of screens/windows.” A related aspect mentioned
by four of our participants was that the co-located presentation of information
made the information readily available, and helped in performing tasks: “The
enumerative shows all required parts at once and you don’t have to look really
close to see all required parts and connections.”
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Understandability. Eight of our participants found enumerative mechanism
easy to understand and work with: “the enumerative variant is the easiest.”
None of the participants found it difficult to deal with. 26 of our participants
found annotative easier to understand and follow: “Annotative is simple to
understand and just beautiful.” Two participants remarked that annotative
mechanism was intuitive: “[Annotative] is ... way more intuitive, it gives a
better overview.” In contrast, six participants found annotative to be hard to
manage, mainly because of the cluttered models: “The main reason why I had
some challenges with the [annotative] version was probably because the text was
so clustered and hard to read.” Five of our participants found compositional
to be easier to understand, either because they were already familiar with the
mechanism, or they liked the modular structure: “It was easier to understand
compositional because of their modularity in my opinion.” 15 of our participants
experienced difficulty in understanding the compositional mechanism, mainly
because of its scattered nature: “The compositional one seems more scrambled,
and therefore a bit harder to follow and get a complete picture of.”
Familiarity. We observed that familiarity is a factor in preferring one mech-
anism over the other, if only in a participant’s initial assessment. Specifically,
we observed two interesting aspects of familiarity. First, participants preferred
mechanisms they had experience with: “Since I haven’t worked with [annota-
tive] variability before it was easier to grasp the compositional version.” Second,
once participants experienced with a particular mechanism, they changed their
preferences along the way: “At first the annotative was hard (it took a while to
understand what the starting state was), but once I understood it, it was easier
to handle than the compositional one.”
Scalability. In their explanation of why they preferred a particular variability
mechanism, several participants extrapolated from the considered case to more
complex ones, and foresaw potential issues with the scalability of the notation.
"[In enumerative,] although you need more models/space, you can see everything
relatively easy. However, if you have maybe like 20 variants, enumerative is
probably not the way to go.", "last the Enumerative, the 6 variants were okay
but when there are even more it is to much" [sic], and finally "The problem
with the Compositional was [the] bigger and more complex it gets, it is harder
to understand in a short time".
Efficiency. Participants preferred mechanisms which they found quicker
to work with, based on their subjective impressions. We observed three
relevant dimensions. First, participants favoured the mechanisms which offered
readiness; having readily available information at one look made the tasks easier.
The mechanisms favoured with this rationale were enumerative and annotative:
“The enumerative shows all required parts at once and you don’t have to look
really close to see all required parts and connections,” and “In [compositional],
you have to follow a path to find the differences, where as with [annotative], you
can see it right away.” Second, four participants expressed that the additional
step of combining fragments to create variants in compositional was intensive:
“Since you do not have to think about how to compose diagrams I think that
annotative is easier.” Third, the scattered nature of compositional models made
the tasks repetitive, an aspect two of our participants found laborious: “The
tagged approach of [annotative] does not require me to mentally jump back and
forth across the diagram like I have to do whilst using compositional diagrams.”
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Labels. When creating models, we deliberately chose labels that differed from
the names of the model elements to make the models reasonably complex. An
example from the Email Service Provider domain is Security, which was the
label used to map the activities encrypt email and decrypt email. Participants
rendered labels to be useful, especially in annotative models: “the labels with
variant on classes [were] very [helpful].” Labels in the models with annotative
mechanism were even more favoured, owing to their arrangement, which is
collocated with model elements: “The feature placement in the annotative
mechanism was more localized, making it feel better to work with.”
Colors. A design choice was to show the feature names in the annotative
representation in distinguished colors, based on previous recommendations for
code-level mechanisms [216]. Doing so balances out a disadvantage of annotative
representations: the use of labels increases information density and visual crowd-
ing [254], thus affecting readability. In line with these findings, participants
noted that it was "easier to compare classes in Annotative because of colors",
and that "the colouring of annotative diagrams make [task type 1] really easy".
Overview. We observed that participants chose mechanisms which offered a
good overview of the variants. Overview of variants is partially similar to our
task type 1 (understanding variants), however, it has a broader relevance to
other model-related tasks such as comparison. Six of our participants preferred
annotative, explaining that it gave a good overview: “It seems easier for me
to ... get a fuller understanding of the system when reading the annotative
mechanism.” Two participants preferred enumerative, and one participant com-
positional with this rationale. Two of our participants experienced difficulty
in getting an overview with the compositional mechanism: “There were many
more places to look when comparing with the compositional mechanism and it
became a bit difficult to overview.”
Flow. In both behavioural model types (state machine diagrams and activity
diagrams), participants strongly preferred annotative, expressing that the flow
of the model made the tasks easier. 11 participants expressed their preference
for annotative: “[It was] easier to understand how everything is connected with
the annotative.” None of the participants found compositional to be helpful
in understanding flow, seven expressing that compositional made it hard to
perform tasks because it did not support understanding flow: “I felt it was
harder to navigate with the compositional statechart diagram.”
Task specific. Participants’ preferences changed with task types. One par-
ticipant commented: “[task type 1 and task type 2] require more memorization
about which features are active and which actions belong to them. As such, I
prefer the compositional mechanism for these tasks, which is less cluttered and
more cleanly displays only those sub-diagrams that are useful for a particular
product. For the task type 3, it is likely that every feature will be enabled in
at least one product. This means that you need to form a mental image of the
diagram where all features are enabled. The fact that this is already contained
in the annotative diagram is now an advantage. The compositional mechanism
however, does not do this and as such requires more mental gymnastics in order
to reason about a comparison of all products.”
Additional aspects. Two of our participants experienced uncertainty, both
with compositional: “At first glance Compositional seemed easy but I was never
100% sure about my answers concerning it.” Two of our participants expressed
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that compositional mechanism assisted them to see only the relevant parts of the
models: “Compositional does the work of ignoring the unimportant parts for me;
the boxes for each feature only contains the relevant state. .” One participant
observed that models are harder to create with the compositional mechanism:
“compositional based [...] is harder to construct and implement than the anno-
tation based.” Two participants preferred annotative because it provided less
information to be processed by the brain: “[With compositional] you need to
remember a lot of things, product names and it’s features [..] Therefore I prefer
the annotative notation, because you have to remember less mandatory features.”
We propose related recommendations in Section 4.6.4.

A main contributing factor to the large preference of annotative was its
conciseness; some inherent disadvantages could be balanced out by the use of
labels and colors. Participant gave a variety of additional explanations, related
to understandability, familiarity, scalability, efficiency, ability to provide a
good overview, and understanding of flow.

4.6.4 Discussion and Recommendations
The objective and subjective differences between variability mechanisms ob-
served in our study can be considered by tool and language developers for
improving user experience, an important prerequisite for MDE adoption [255].
We discuss our findings in the light of derived recommendations.
Provide flexible, task-oriented representations. We find that there is
no globally preferable variability mechanism—indeed, the ”best“ mechanism
may depend on the task to be performed. Tool and language developers can
support user performance and satisfaction by providing multiple representations,
tailored to the task at hand. We propose to consider a spectrum of solutions,
each trading off the desirable qualities flexibility and simplicity: As the most
simple, but least flexible solution, one can augment a given representation
with task-specific, read-only views, e.g., given an annotative representation,
generate individual enumerated variants (or a subset thereof, see below). A
second, more advanced solution is to make these additional representations
editable, which offers more flexibility, but gives rise to a new instance of the
well-known view-update problem [256]—-the particular challenge here is to deal
with the implications of layout changes. The third, most advanced solution is
projectional editing [257], in which developers interact with freely customizable
representations of an underlying structure. Projectional editing offers the
highest degree of flexibility, but poses a learning threshold to users for adapting
to a new editing paradigm.
Support the simple solution, for appropriate use-cases. Our partici-
pants preferred the simple enumerative solution for a subset of tasks. While
being commonly applied in practice (e.g., in 9 out of 23 cases studied by
Tolvanen et al. [215]), this solution is inherently problematic: In small to
moderate product lines, organizations struggle with the propagation of changes
between cloned variants [202]. In large product lines, considering a distinct
model for each of thousands of variants is simply infeasible. Instead, we suggest
to address use-cases that involve a clearly defined subset of variants: In staged
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configuration processes [258, 259], such subsets are derived by incrementally
reducing the variant space, thus obtaining partial configurations of the system.
Variability viewpoints [260], which are applied at companies like Daimler, re-
duce the variant space based on the perspective of a specific stakeholder. To
address theses use cases, we suggest to provide support for selecting and inter-
acting with a subset of enumerated variants, while using a proper variability
mechanism for maintaining the overall system.

Use colors, and use them carefully. In line with the existing literature [216],
we find that colors can be helpful for mitigating the drawbacks of annotative
techniques. However, relying on colors in an unchecked way is undesirable due
to the prevalence of color-blindness. Up to 8% of males and 0.5% of females
of Northern European descent are affected by red-green color blindness [261].
A recommendation for language and tool designers is to avoid representations
that solely rely on color, and to use dedicated color-blindness simulators such as
Sim Daltonism (https://michelf.ca/projects/sim-daltonism/) to check
their tools. A further issue with colors might be scalability, in a situation when
there are many variation points that would need to be shown in different colors.
A mitigation would be to flexibly reassign colors depending on the current
screen focus, but even this approach would have limitations there is a need
for a high number of annotation colors inside the same screen. Alternative
visualization aids (for example, filtering) could be combined with coloring and
are highly desirable.

Composition: the whole is more than the sum of its parts. Participants
struggled with compositional mechanisms especially in tasks that required
them to understand how fragments interact with each other. In the case of
behavior modeling (Experiment 2 and 3), the observed performance differences
are more pronounced when participants had to understand cross-fragment
flow of activities or states. To be able to solve the tasks, they essentially
had to execute the composition algorithm in their mind. Potentially, this
drawback of compositional mechanisms can be balanced out by providing
special visualizations that illustrate the composition of (subsets of) fragments.
Such visualizations would reduce cognitive load during model comprehension
and would also allow to provide instant feedback upon changes.

Structured overview of recommendations. Based on our results and the
considerations in this section, we derive a structured overview of recommenda-
tions to tool developers and users, which we outline in Table 4.8. As the main
factors that should determine the selection of the variability mechanism, we
identify the expected number of variants and the expected type of tasks. This is
because we saw different optimal (best-perfoming and preferred) mechanisms
depending on the task type, and because the enumeration of variants, which
works particularly well for comparing two variants, does not scale to large
variant sets. To distinguish small from large variant sets, we use a size threshold
of 10, based on the magnitude of the variant sets considered in our experiments.
For small large sets, we propose to use either annotative or enumerative, de-
pending on the tasks most likely to occur. For large sets, the considerations in
the beginning of this section are particularly relevant: flexible, task-specific
editing support can be used to show the information currently of interest. This
helps to balance out scalability issues, notably the scalability issue with colors

https://michelf.ca/projects/sim-daltonism/
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in the annotative, and the issue with having an overly large set of variants in
the enumerative mechanism.

Table 4.8: Overview of recommendations derived from our results.

Expected number of variants Expected type of tasks Recommendation

small
(<10)

large
(≥10)

comparing all variants,
understanding

individual variants

comparing two
variants

• • annotative or enumerative
• • enumerative
• • • annotative or enumerative

• • flexible
• • flexible
• • • flexible

4.7 Threats to Validity
We discuss the threats to validity of our study, following the recommendations
by Wohlin et al. [252].
External Validity. Our experiment focuses on class models, state machine
diagrams, and activity diagrams, three ubiquitous model types. We discuss
representativeness and practical relevance in MDE contexts in Sect. 2. Fur-
thermore, we consider only two variability mechanisms in our comparison, an
annotative and a compositional one. While studying a broader selection of
modeling languages and mechanisms is left to future work, the qualitative data
presented in Section 4.6.3.2 is not necessarily specific to these model types and
mechanisms, and yields a promising outlook on generalizability.

Another issue is whether our results generalize to larger systems, specifically,
those with more variants and model elements. Since the number of variants
grows exponentially with the number of features, the enumerative representation
will eventually be outperformed by the other ones. We discuss possible roles
for the enumerative representation in larger systems in Section 4.6.4.

Finally, external validity is threatened by our sample of participants, made
up of students with limited prior experience with variability mechanisms.
Student participants can be representative stand-ins for practitioners in experi-
ments that involve new development methods [245]. Still, the results could be
different if considering participants that are experienced with the considered
variability mechanisms. While considering a broader spectrum of experience
levels would be worthwhile, we arguably focus on a critical population: In a
given organization, consider the onboarding of a new team member with a
similar experience level to our participants. Poor comprehension would pose a
major hurdle to becoming productive, and, therefore, pose a risk for the organi-
zation. As mitigation measures, we established via our questionnaire that our
participants had no unacceptable advantage of being much more familiar with
either compositional or annotative variability, and selected subject domains
that were either simple or already known to the students from previous course
units (thus avoiding potential misunderstandings as a source of error).
Internal Validity. Within-subject designs help to elicit a representative num-
ber of data points to support statistically valid conclusions. We addressed their
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drawbacks as follows: To address learning effects, we applied counterbalancing.
Between the different groups, we distributed the order of variability mechanisms
equally, while keeping the domain and task order constant. To balance the
assignment of participants to classes, we randomized the assignment.

To avoid researcher bias in the selection of our examples, we selected domains
that were not used before with a specific variability mechanism. Studying
comprehension in larger models is desirable, but has some principle limitations
with regard to the amount of information that participants can be exposed to
in the scope of an experiment (participant fatigue).

A possible source of bias is our choice of subject domains: a particular
domain might have been used in previous teaching units to explain a particular
variability mechanism, which would give an unfair advantage to these mecha-
nism. We intentionally selected domains that were simple and/or known to the
students. However, to our knowledge, they were not used to teach particular
variability mechanisms. Using our questionnaire, we asked our students to
specify their previous knowledge about variability mechanisms, and did not
find a noteworthy difference between the mechanisms.
Construct Validity. We operationalized comprehensibility with comprehen-
sion tasks, arguing for the importance of the considered tasks in Section 4.5.
The choice of tasks was informed by our pre-study, in which we encountered
trade-offs regarding participant fatigue and confounding factors when using
more demanding tasks (Section 4.4). Since we find significant performance
differences between mechanisms, the difficulty level of our tasks seems appropri-
ate; however, other tasks might exist (e.g. understanding a single feature and
its context), and task completion could also be facilitated if users are supported
by specialized tools (e.g. query engines). Generally, systematic knowledge on
the design space of model comprehension tasks would help to maximize realism
in comprehension experiments, but such knowledge is currently lacking.

Our setup did not involve tools, representing an unavoidable trade-off:
While having the participants use a tool environment would have been more
realistic, it would have lead to confounding factors related to usability obstacles
and participants’ familiarity with the tool. On the other hand, working with a
printout that could be derived from a tool (like in our experiments) also has
some significant commonalities to working with the tool. We study the question
of how well users can comprehend models in a particular visual representation.
Given that the representation looks the same in the tool and on printout,
we believe that construct validity for our results and recommendations is
established. Notably, while adequate tool support might be able to mitigate
some issues of particular representations, the developers of these tools should
at least be aware of these issues.

Colors were only used in the annotative representation, where their useful-
ness (for distinguishing elements from different variants) seems more obvious
than in the compositional one (where such elements are already distinguished
by being contained in different modules). A follow-up study for studying the
impact of colors in different representations might provide additional insight.

Subjective measures are generally less reliable than objective ones. However,
previous findings suggest that they are correlated with objective performance
measurements [262]. In fact, we find an agreement between the subjective and
objective measurements performed in our experiments.
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Conclusion Validity. Towards supporting conclusion validity, we used robust
statistical tests. We report effect sizes and, to deal with threats related to multi-
ple comparisons, applied a conservative correction to the considered significance
threshold. Threats arising from random irrelevancies outside the experimental
setting are reduced in experiments 1 and 2, which were administered with
all participants in the same room. Experiment 3, administered during the
COVID19 pandemic, is more prone to such irrelevancies, which, however, would
equally apply to all treatments.

4.8 Related Work
Annotative vs. Compositional Variability. Annotative approaches are
traditionally seen as inherently problematic. Spencer [219], for example, argues
that #ifdef usage in C as a means to cope with variability is harmful, leading
to convoluted, unreadable, and unmaintainable code (the infamous "#ifdef
hell"). Spencer appeals to basic principles of good software engineering: explicit
interfaces, information hiding, and encapsulation. Kästner et al. [218] argue
that compositional approaches tend to promise advantages, which, however,
only become manifest under rather specific assumptions. They emphasize that
only empirical research can provide conclusive evidence.

Aleixo et al. [263] compare both mechanism types in the context of Software
Process Line engineering, i.e., applying concepts and tools from SPL engineering
to software processes. They compare two established tools: EPF Composer,
which uses a compositional mechanism, and GenArch-P, which uses an annota-
tive one. Similar to our conclusions, they report that the annotative mechanism
performs better, especially with regards to a criterion the authors call adoption,
i.e., how much knowledge is required to initially apply the mechanism.
Empirical Studies of Variability Mechanisms. Krüger et al. [17] present
a comparative experimental study of two variability mechanisms: decomposi-
tion into classes, and annotations of code sections. They find that annotations
have a positive effect on program comprehension, while the decomposition
approach shows no significant improvement and, in some cases, a negative
effect. While these findings are in line with ours, this study focuses on Java
programs, and compares the considered mechanisms to a different baseline,
pure OO code without any traces of variants. In our case, we considered the
frequent case in industry of copied and reused model variants.

Fenske et al. [217] present an empirical study based on revision histories
from eight open-source systems, in which they study the effect of #ifdef pre-
processors to maintainability. They analyze maintainability in terms of change
frequency, which is known to be correlated with error-proneness and change
effort. In contrast to the traditional belief, they find that a negative effect of
#ifdefs to maintainability cannot be confirmed.

Santos et al. [264] study the effect of using two code-level variability repre-
sentations: feature-oriented programming (FOP) and conditional compilation
(CC), on program comprehension. In their case, they focus on debugging task–a
different scope than in our case. Specifically, they investigate the impact of FOP
and CC on various maintenance tasks involving bug-finding. They conclude
that there is no significant difference between the correctness, understanding,
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and response time of using both representations.
Feigenspan et al. [216] study the potential of background colors as an aid

to support program comprehension of source code with #ifdef preprocessors.
In three controlled experiments with varying tasks and program sizes, they
find that background colors contributed to better program comprehension and
were preferred by the participants. We base the use of color in our experiments
on these findings, and confirm them for the previously unconsidered case of
a model-level variability mechanism.
Empirical Studies of Model Comprehension. Labunets et al. [33] study
graphical and tabular models representations in security risk assessment. In
two experiments, they find that participants prefer both representations to a
similar degree, but perform significantly better when using the tabular one.
The authors build on cognitive fit theory [227] to explain their findings: tables
represent the data in a more suitable way for the considered task. Like we do,
this study supports the need for task-tailored representations.

Nugroho [35] studies the effect of level of detail (LoD) on model compre-
hension. In an experimental evaluation with students, the author finds that a
more detailed representation contributes to improved model understanding. Ra-
madan et al. [228] find a positive effect to comprehension of security and privacy
aspects when graphical annotations are included in the considered models. Our
results are in line with these findings, since the annotative mechanism includes
the names of the associated variants as one point of additional information.

Acreţoaie et al. [34] empirically assess three model transformation languages
with regard to comprehensibility. They consider a textual language and two
graphical ones, one of which uses stereotype annotations to specify change
actions in UML diagrams. They observe best completion times and lowest
cognitive load when using the graphical language with annotations, and best
correctness when using the textual language. Studying this trade-off further,
by studying variability mechanisms in graphical and textual representations,
would be an interesting extension of our work.
Model-level variability. There are two main research directions of variability
engineering at the model level: variability modeling and model-level variability
mechanisms. The former focuses on the modeling of the problem space (e.g.,
features and their relationships); the latter, which is the scope of this paper,
focuses on the solution space (implementation of variability in domain models).
Regarding variability modeling, there is a number of experience reports from
various domains. Alférez et al. [21] observe that existing variability modeling
approaches do not suffice to capture a number of aspects of video domain, in-
cluding numeric parameters, multifeatures and constraints. They qualitatively
compare a set of 13 approaches based on their ability to support the above-
mentioned aspects, and present a new textual variability modeling language
(VM) for modeling videos. Berger et al. investigate variability modeling of
topological spaces [143]. They share their experiences from modeling large-scale
fire alarm systems using UML2 class diagrams, and show that class diagrams
are an effective tool to model topological variability to generate configurator
tools. García et al. [142] give an experience report on the modeling of variability
in robotic applications. They use feature models as a notation for defining
variability of robotic applications in various dimensions, such as environment,
hardware, and mission variability.
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Most existing work on model-level variability mechanisms focuses either
on particular mechanisms (see Section 4.2) or the use of such mechanisms for
other tasks; e.g., product line testing [244] and product derivation [265]. Kühn
et al. [230] compare two particular approaches to variability engineering in
DSLs along three dimensions–feasibility, scalability, and sustainability—based
on intuitive arguments. In summary, the impact of variability mechanisms on
model comprehension has not been investigated yet in an empirical study. Our
study is the first to use a controlled experiment to produce systematic evidence
on the impact of variability representations on model comprehension, and as
such, can be used to guide the choice of variability mechanisms when modelling
the static and dynamic structure of product lines.

4.9 Conclusion
We presented a family of controlled experiments, in which we studied the
effect of the variability mechanisms of two fundamental kinds—annotative and
compositional mechanisms—on model comprehension. Our considered model
types—class diagrams, state machine diagrams, and activity diagrams—are
among the most popular and common models used in software engineering.
We conducted the study with student participants with relevant background
knowledge. For models with a scope and size similar to our examples and for
similar tasks, we can conclude that:

• Annotative variability resulted in better comprehensibility than composi-
tional variability for all task types.

• Compositional mechanism can impair comprehensibility in tasks that require
a good overview of all variants.

• Annotative variability is preferred over the compositional one by a majority
of the participants for all task types in all model types.

• The preferred variability mechanism depends on the task at hand.

We presented several recommendations to language and tool developers.
We discuss a spectrum of solutions for maintaining several task-tailored rep-
resentations. Having such solutions is especially important in large systems
where maintaining a separate model per variant is infeasible, but developers
might still want to interact with (sets of) variants of interest in a particular
task. We endorse the recommendation to use colors for improving comprehen-
sion in annotative variability, and discuss its limitations. If a compositional
mechanism is desired, users should be supported with visualizations, instead of
being required to perform composition in their minds.

We envision four directions of future work. First, we want to understand
the effect of tools to model comprehension. Second, we wish to systematically
explore the space of typical tasks during model comprehension. Additional
experiments would allow us to come up with a catalog of task-specific rec-
ommendations for variability mechanism use. Third, we are interested in
broadening the scope of our experiments to take different modeling languages
into account, including textual ones, which represent a middle ground between
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traditional programming languages and graphical modeling languages, and
transformation languages, for which many different reuse mechanisms have
recently been developed [114,266]. Fourth, further insight from our collected
data could be obtained by performing sub-group analysis. Questions of interest
are the effect of prolonged interaction of developers with different model types
on their performance for the three task types, and the effect of mechanisms
on the types of errors made by our participants (e.g., false negatives vs. false
positives).
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